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Abstract

We investigate firms’ optimal decisions of investment timing and capacity in the presence

of time-to-build and competition. Because of uncertainty in time-to-build, the product of

the leader which makes the investment first might enter the market later than the follower’s

one. We show that a firm dominated in terms of investment lags can become a leader and

that the leader’s optimal capacity increases in the size of the dominated firm’s lags, even

when the dominated one becomes the leader. This result is consistent with electric vehicles

market in which a relatively new firm lacking in the experience of mass production makes

aggressive investment, while the biggest car makers capable of mass production with shorter

lags are timing their investment. With welfare-maximizing policy, however, the dominant

firm always becomes the leader. Comparing with investments chosen by welfare-maximizing

policy, those of the leader and the follower chosen in the market are made inefficiently

late and early, respectively. The welfare-maximizing capacities of both the leader and the

follower are much higher than those determined in the market but the difference is more

pronounced in the leader’s capacity. There is a significant loss of social welfare resulting

from the dominated firm becoming the leader, and the loss increases as the dominated

firm’s time-to-build gets longer.
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1 Introduction

Rome was not built in a day and neither were products in the market. It usually takes time to

make products available for sale from the initial investment, and the lags between the timing of

investment and that of making profits are inherently uncertain, especially when they are of a

large scale or based on state-of-the-art technology. The investment lags become more important

when there is competition between firms because they are directly linked to the leader-follower

relationship in the market.

In this study, we investigate firms’ optimal decisions of investment timing and capacity in a

duopoly market in the presence of time-to-build. The uncertainty in time-to-build changes the

leader-follower relationship significantly; the product of the leader which makes the investment

first can enter the market later than the follower’s one. Time-to-build affects the firms’ capacity

decisions as well, which are associated with the price of the product and consumer surplus. We

examine how time-to-build changes firms’ optimal investment strategies in a duopoly market

and the level of social welfare based on a continuous-time dynamic framework.

First of all, we show that a firm dominated in terms of time-to-build can become a leader

by making investment first in a market equilibrium. Given significant asymmetry of investment

lags, a dominant firm has less incentive to invest first because its product can enter the market

first even if it makes the investment later. That is, a relative advantage of time-to-build weakens

the incentive of preemption significantly, and the dominated firm with longer lags gets a chance

to become a leader in the market, although there is no guarantee that the leader’s product enters

the market first. This is a novel result in that existing literature on asymmetric duopoly market

has shown that a dominant firm with cost advantage always becomes the leader in the market

(e.g., Huisman (2001), Pawlina and Kort (2006), Kong and Kwok (2007)). The novelty can also

be found from the fact that we have shown a firm’s incentive to invest late without positive

externalities or availability of new technology, which is in sharp contrast with the argument of

a second-mover advantage from existing literature (e.g., Hoppe (2000), Femminis and Martini

(2011), Dutta et al. (1995), Hoppe and Lehmann-Grube (2001)).

We also show that the leader’s investment capacity increases in the size of the dominated

firm’s time-to-build, even when the dominated one becomes the leader. Namely, a dominated

firm makes more aggressive investment not only by the timing but also by the capacity as

its time-to-build gets longer. This finding, combined with the previous one, can explain car

companies’ investment behavior in electric vehicles market. A relatively new firm with a lack of

mass production experience such as Tesla has been making aggressive investment in electric cars

including the construction of gigantic battery factories and the installation of charging stations

all over the world. However, the biggest car makers capable of mass production with shorter lags

such as Toyota and Volkswagen have not made preemptive investment in electric cars, timing

their investments. These investment behaviors can be explained by significant asymmetry of

time-to-build between the firms.

Furthermore, we derive the welfare-maximizing investment policy in a duopoly market. This

policy assigns the roles of the leader and the follower to the dominant and the dominated firms
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in terms of time-to-build, respectively. Namely, the firm with shorter investment lags always

becomes the leader in this policy. The results also show that the welfare-maximizing investments

of the leader and the follower are made earlier and later than those chosen in the market,

respectively. In other words, the leader and the follower’s investments in the market are made

inefficiently late and early, respectively. This is in contrast with Huisman and Kort (2015) in

which the investments of both the leader and the follower are made inefficiently early in the

market. Socially optimal capacities for both the leader and the follower are much higher than

those chosen in the market and the difference is more significant for the leader’s capacity. It is

socially efficient to have products in the market as early as possible, and thus, the social planner

exploits the dominant firm’s shorter lags to maximize social welfare by putting more emphasis

on the dominant firm’s investment in terms of both its timing and capacity.

Comparing with a monopoly market, time-to-build makes more significant impacts on firms’

investment policies and social welfare in a duopoly market. A monopolistic firm’s investment

timing, which is delayed as time-to-build increases, coincides with the welfare-maximizing one,

and the capacity choices of both the monopolistic firm and the social planner are irrelevant to

investment lags. In contrast, the presence of time-to-build can switch the roles of the leader and

the follower in a duopoly market, and investment timing of them are significantly different from

the socially optimal ones; as mentioned earlier, the investments of the leader and the follower

are made inefficiently late and early, respectively. The capacities chosen by the firms and the

social planner are associated with the size of investment lags as well. In this sense, we clarify

that time-to-build makes different impacts in a different market structure.

Many papers have been devoted to investigate the effects of time-to-build. Majd and Pindyck

(1987) pioneered this field of research by considering an investment project that requires a series

of investment. Bar-Ilan and Strange (1996) elucidated this problem by assuming that a certain

period of time has to be passed to yield revenue and showed that the lags can lead to an earlier

investment by reducing the value of wait to invest. Bar-Ilan and Strange (1998) extended this

research to the decisions on a two-stage investment. Some studies even considered debt financing

for an investment project with time-to-build. Tsyplakov (2008) and Agliardi and Koussis (2013)

studied the effects of time-to-build on investment and debt dynamics, and Sarkar and Zhang

(2015) examined a two-stage investment with debt financing. Jeon (2018) endogenized capital

structure and the timing of investment and default in the presence of time-to-build. These

studies, however, were limited to an analysis on a monopolistic firm’s decision and did not

discuss the effects of time-to-build in the presence of competition.

Grenadier (1996) examined a duopolistic real estate market in which development requires

time-to-build, but there was no uncertainty in the construction lags and the paper put more

emphasis on the investment triggered by the decrease of demand shock rather than the effects

of time-to-build. Pacheco-de-Almeida and Zemsky (2003) studied a multi-stage investment in

a duopoly market with time-to-build and showed that the lags can lead to an equilibrium in

which firms make incremental investment, but there was no uncertainty in time-to-build in

their model as well. Weeds (2002) studied the effects of uncertain investment lags in a duopoly

market from the perspective of R&D competition, but it only examined a timing decision in
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a winner-take-all scenario. None of these studies discussed asymmetry in time-to-build and its

effects on the firms’ investment decisions.

Putting time-to-build aside, we can find much more studies on investment decision with

competition. Nielsen (2002) examined a duopoly market not only with negative externalities

but also with positive externalities. Huisman and Kort (2004) studied investment strategy in

a duopoly market with future availability of new technology. Bouis et al. (2009) considered

competition between three firms instead of two and found the accordion effect of the investment

triggers. Mason and Weeds (2010) showed that the leader’s investment threshold might not

monotonically increase with uncertainty in the presence of preemption. Thijssen et al. (2012)

adopted a general setup for examining a duopoly market and showed that the probability

that both firms invest simultaneously in spite of their lower values in the case of sequential

investments is non-zero. Huisman and Kort (2015) considered not only the decision of timing

but also that of capacity in a duopoly market and evaluated the effects of competition on social

welfare. These studies, however, assumed homogeneity of the firms in the market.

There are a number of studies that introduced asymmetry between the firms. Huisman

(2001) provides a comprehensive analysis on duopolistic firms’ investment strategies for a wide

range of setup. Lambrecht and Perraudin (2003) studied a preemption of a duopoly market in

the presence of incomplete information regarding investment costs. Pawlina and Kort (2006)

allowed cost asymmetry and showed that there can be an equilibrium in which one of the firm

has no preemption incentive and that the identical firms can result in a socially less desir-

able outcome than if one of them has a cost advantage. Kong and Kwok (2007) incorporated

asymmetry in both cost structure and revenue flow and presented a fuller characterization of

equilibrium. Casadesus-Masanell and Ghemawat (2006) studied a mixed duopoly in which a

profit-maximizing firm is competiting with a not-for-profit competitor. Thijssen (2010) incor-

porated player-specific uncertainty in a duopoly market and showed that preemption does not

necessarily occur.

There is a growing body of literature on a second-mover advantage in an oligopolistic mar-

ket which can lead to an attrition game rather than a preemption game. Dutta et al. (1995)

investigated quality competition in a duopoly market and addressed a second-mover advantage

as an option to adopt new technology. Hoppe and Lehmann-Grube (2001) extended their work

by incorporating R&D costs and showed that a second-mover advantage is greater when R&D

costs are high. Hoppe (2000) and Femminis and Martini (2011) elucidated the second-mover

advantage resulted from spillover of innovation. Décamps and Mariotti (2004) studied the ef-

fects of positive externalities taking private information on investment costs into account. Amir

and Stepanova (2006) provided a fuller characterization of equilibrium under a general setup

including asymmetric costs and various types of demands.

The remainder of this paper is organized as follows. To facilitate understanding, we examine a

monopoly market first in Section 2. Section 2.1 discusses a firm’s optimal decisions on investment

timing and capacity, and Section 2.2 derives the investment policy that maximizes social welfare.

Based on this argument, we proceed to a duopoly market in Section 3. In Section 3.1, we

assume that the firms’ roles as a leader and a follower are exogenously given and investigate

4



their optimal investment strategies. Section 3.2 endogenizes the firms’ roles in the market taking

preemption incentives into account. In Section 3.3, we derive the welfare-maximizing investment

policy of a duopoly market. Given these arguments, we present the results of comparative statics

regarding time-to-build and discuss their economic implications in Section 4. Sections 4.1 and 4.2

are dedicated to discussion of the firms’ optimal investment strategies and welfare-maximizing

policy, respectively. Section 5 provides a brief summary of the paper and discusses possible

future works.

2 Monopoly market

To facilitate the understanding of the framework, we consider a monopoly market first. A firm

makes the decisions of investment timing and its capacity. The price of the product at time t is

given by

P (t) = X(t)(1− ηQ(t)), (1)

where Q(t) is total market output, η > 0 is a constant, and X(t) is a demand shock. The

demand shock follows a geometric Brownian motion:

dX(t) = µX(t)dt+ σX(t)dW (t), (2)

where µ and σ are positive constants and (Wt)t≥0 is a standard Brownian motion on a filtered

space (Ω,F ,F := (Ft)t≥0,P) satisfying the usual conditions. The discount rate is given by a

constant r(> µ).

The investment incurs costs δ per unit, which amounts to the total costs of δQ. The man-

ufacturing process, however, takes an uncertain amount of time. Namely, it takes exponential

time with an intensity parameter λ to succeed in manufacturing products and yield revenue.

The investment lags are assumed to be independent of the demand shock.

2.1 Investment timing and capacity decisions

The firm makes the decisions of investment timing and capacity taking the investment lags into

account. Thus, the monopoly firm’s value function can be written as follows:

VM (X) = max
TM≥0,QM≥0

E
[ ∫ ∞

T̄M

e−rtQMX(t)(1− ηQM )dt− e−rTM δQM
∣∣∣∣X(0) = X

]
, (3)

where T̄M := TM + τ denotes the timing of manufacturing and τ follows an exponential distri-

bution with an intensity parameter λ.

In this dynamic framework, the optimal investment decision is comprised of two parts: its

timing and capacity, and the timing can be represented by the level of demand shock at which

the firm makes the investment. Namely, the investment timing can be described as TM :=

inf{t > 0|X(t) ≥ XM}. Following the standard argument of real options literature, the optimal

investment timing and capacity decisions and the firm value are derived as follows:
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Proposition 1 (Monopoly firm’s investment) The monopoly firm’s optimal investment ca-

pacity given the demand shock X is

Q∗M (X) =
1

2η

(
1− δ(r − µ)(r + λ− µ)

λX

)
. (4)

The value of the monopoly firm is

VM (X) =


AMX

β, if X < X∗M ,(
λX−δ(r−µ)(r+λ−µ)

)2
4λXη(r−µ)(r+λ−µ) , if X ≥ X∗M ,

(5)

where

AM =
(β − 1)β−1λβ

ηδβ−1(β + 1)β+1(r − µ)β(r + λ− µ)β
, (6)

and

β =
1

2
− µ

σ2
+

√(1

2
− µ

σ2

)2
+

2r

σ2
(> 1). (7)

The optimal investment threshold and the corresponding optimal capacity are

X∗M =
(β + 1)δ(r − µ)(r + λ− µ)

(β − 1)λ
, (8)

Q∗M := Q∗M (X∗M ) =
1

(β + 1)η
. (9)

Proof See Appendix A.1.

Note that the firm’s capacity decision is irrelevant to investment lags (i.e., Q∗M is independent

of λ), while the investment timing decision is affected by the lags (i.e., X∗M depends on λ). Re-

garding the effects of time-to-build on the timing decision, we have the following straightforward

results:

Corollary 1 As the investment lags converge to 0 (i.e., λ → ∞), the investment trigger de-

creases and converges to the one in the absence of time-to-build:

∂X∗M
∂λ

< 0,
∂2X∗M
∂λ2

> 0, (10)

lim
λ→∞

X∗M =
(β + 1)δ(r − µ)

β − 1
. (11)

2.2 Consumer surplus and social welfare

To investigate the impacts of investment lags on social welfare, we evaluate consumer surplus

first. Given the demand shock X and capacity Q, the instantaneous consumer surplus is∫ X

P

1

η

(
1− P

X

)
dP =

ηXQ2

2
, (12)

where the price P is given by (1). Since there is no entry of other firms, the total expected

consumer surplus given the investment strategies of XM and QM and the demand shock X is

CSM (X,XM , QM ) = E
[ ∫ ∞

T̄M

e−rt
ηX(t)Q2

M

2
dt
∣∣∣X(0) = X

]
=
( X

XM

)β ληXMQ
2
M

2(r − µ)(r + λ− µ)
, (13)
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and the expected producer surplus corresponds to the monopoly firm’s value:

PSM (X,XM , QM ) =
( X

XM

)β[λQMXM (1− ηQM )

(r − µ)(r + λ− µ)
− δQM

]
. (14)

We can evaluate the expected social welfare as the sum of them:

SWM (X,XM , QM ) = CSM (X,XM , QM ) + PSM (X,XM , QM )

=
( X

XM

)β[λQMXM (2− ηQM )

2(r − µ)(r + λ− µ)
− δQM

]
. (15)

Now we examine the investment decision of a social planner who takes both consumer

and producer surpluses into account. Following the same argument, the welfare-maximizing

investment policy and the loss of welfare in a monopoly market can be derived as follows:

Proposition 2 (Welfare-maximizing policy and welfare loss in a monopoly market)

The investment threshold and capacity that maximize social welfare in a monopoly market are

X∗∗M =
(β + 1)δ(r − µ)(r + λ− µ)

(β − 1)λ
, (16)

Q∗∗M =
2

(β + 1)η
, (17)

and the expected welfare loss in the monopoly market given the demand shock X is

WLM (X) = SW ∗∗M (X)− SW ∗M (X) (18)

=
(β − 1)β−1λβXβ

2η(β + 1)β+1δβ−1(r − µ)β(r + λ− µ)β
, (19)

where

SW ∗∗M (X) := SWM (X,X∗∗M , Q
∗∗
M ), (20)

SW ∗M (X) := SWM (X,X∗M , Q
∗
M ). (21)

Proof See Appendix A.2.

Note that the welfare-maximizing investment threshold coincides with the monopoly firm’s

optimal investment threshold (i.e., X∗∗M = X∗M ), while the welfare-maximizing capacity is twice

of the firm’s optimal capacity (i.e., Q∗∗M = 2Q∗M ), which are consistent with Huisman and Kort

(2015). That is, the relationship between a firm’s optimal strategy and a welfare-maximizing

policy in a monopoly market holds regardless of time-to-build. Regarding the effects of time-to-

build on the loss of social welfare, we can easily derive the following results:

Corollary 2 The loss of welfare in a monopoly market decreases in the size of investment lags

(i.e., 1/λ):

∂WLM
∂λ

> 0, (22)

lim
λ→0

WLM = 0, (23)

lim
λ→∞

WLM =
(β − 1)β−1Xβ

2η(β + 1)β+1δβ−1(r − µ)β
. (24)
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This result implies that the shorter the investment lags are, the more severe the loss of social

welfare is (Figures 1c and 1d). This is because the investment timing is advanced as investment

lags shorten (Figure 1a), while the difference between capacity decisions (Figure 1b) is irrelevant

to the lags.
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Figure 1: Comparative statics regarding the expected time-to-build in a monopoly market

3 Duopoly market

Now we proceed to a duopoly market in which two firms compete with homogeneous goods.

First, we assume the firms’ roles in the market are exogenously given in Section 3.1. Given these

arguments, we endogenize the firms’ roles taking preemption incentives into account in Section

3.2. In Section 3.3, we derive the welfare-maximizing policy and discuss how time-to-build and

competition in the market affect the level of social welfare.

3.1 Exogenous role

There are two firms in the market, type A and B firms, and they are asymmetric in terms of

time-to-build. Namely, type i firm’s investment lags follow an exponential distribution with an
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intensity parameter λi for i ∈ {A,B}. We designate the firms’ roles in a duopoly market as

a leader and a follower based on their investment timing. Note that because of the uncertain

investment lags, the follower’s products can be manufactured prior to that of the leader. To

be more specific, there are three possible scenarios regarding the order of the firms’ products

entering the market:

• Case 1 : The leader’s product enters the market even before the follower makes the invest-

ment, and the follower’s product enters the market afterwards.

• Case 2 : The leader’s product enters the market after the follower’s investment yet before

its manufacturing, and the follower’s product enters the market afterwards.

• Case 3 : The follower’s product enters the market before the leader’s one in spite of their

investment timing, and the leader’s product enters the market afterwards.

Case 1:
TL T̄L TF T̄F

τL τF

Monopoly by leader Duopoly

Case 2:
TL TF T̄L T̄F

τL
τF

Monopoly by leader Duopoly

Case 3:
TL TF T̄F T̄L

τF

τL

Monopoly by follower Duopoly

Figure 2: Timeline of three scenarios

For the ease of exposition, let us suppose the firms’ roles in the market are exogenously

given for now. Namely, we assume type i and j firms are a leader and a follower, respectively,

for i, j ∈ {A,B} and i 6= j, and we derive type i and j firms’ optimal investment strategies as

a leader and as a follower, respectively.

By backward induction, we investigate the follower’s investment decision first. Suppose the

leader’s product has already entered the market. That is, we examine the follower’s investment

strategy in Case 1. Given type i leader’s product in the market, type j follower chooses its

investment timing and capacity taking the leader’s capacity QiL into account, and the follower’s

value can be evaluated as follows:

V j
F1(X,QiL) = max

T j
F1≥0,Qj

F1≥0
E
[ ∫ ∞

T̄ j
F1

e−rtQjF1X(t)(1− η(QiL +QjF1))dt− e−rT
j
F1δQjF1

∣∣∣∣X(0) = X

]
,

(25)

where T̄ jF1 := T jF1 + τj denotes type j follower’s manufacturing timing for the investment made

after the leader’s product enters the market and τj follows an exponential distribution with a

parameter λj . Type j follower’s investment timing can be described as T jF1 := inf{t ≥ T̄ iL|X(t) ≥
Xj
F1} where T̄ iL denotes type i leader’s manufacturing timing. Following the same argument,
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the follower’s investment decisions after the completion of the leader’s project are derived as

follows:

Proposition 3 (Follower’s investment after leader’s product enters the market) Provided

that type i leader’s product has entered the market, type j follower’s optimal capacity correspond-

ing to the demand shock X and the leader’s capacity QiL is

Qj∗F1(X,QiL) =
1

2η

(
1− ηQiL −

δ(r − µ)(r + λj − µ)

λjX

)
. (26)

The value function of the follower after the leader’s product enters the market is

V j
F1(X,QiL) =

A
j
F1(QiL)Xβ, if X < Xj∗

F1(QiL),

{(1−ηQi
L)λjX−δ(r−µ)(r+λj−µ)}2

4λjXη(r−µ)(r+λj−µ) , if X ≥ Xj∗
F1(QiL),

(27)

where

AjF1(QiL) =
(1− ηQiL)β(β − 1)β−1λβj

ηδβ−1(β + 1)β+1(r − µ)β(r + λj − µ)β
. (28)

The optimal investment threshold and the corresponding optimal capacity are

Xj∗
F1(QiL) =

(β + 1)δ(r − µ)(r + λj − µ)

(β − 1)(1− ηQiL)λj
, (29)

Qj∗F1(QiL) := Qj∗F1(Xj∗
F1(QiL), QiL) =

1− ηQiL
(β + 1)η

. (30)

Proof See Appendix A.3.

Now we suppose that type i leader invested in capacity QiL but its product has not been

produced due to the investment lags. Namely, we investigate the follower’s investment strategy

regarding Case 2 and Case 3. When making the investment decisions, the follower takes into

account not only the leader’s capacity but also the leader’s expected manufacturing timing, and

its value can be evaluated as follows:

V j
F0(X,QiL) = max

T j
F0≥0,Qj

F0≥0
E
[
1{T j

F0<T̄
i
L≤T̄

j
F0}

{∫ ∞
T̄ j
F0

e−rtQjF0X(t)(1− η(QiL +QjF0))dt− e−rT
j
F0δQjF0

}
+ 1{T̄ j

F0<T̄
i
L}

{∫ T̄ i
L

T̄ j
F0

e−rtQjF0X(t)(1− ηQjF0)dt+

∫ ∞
T̄ i
L

e−rtQjF0X(t)(1− η(QiL +QjF0))dt− e−rT
j
F0δQjF0

}
+ 1{T̄ i

L≤T
j
F0}

e−rT̄
i
LV j

F1(XT̄ i
L
, QiL)

∣∣∣∣X(0) = X

]
(31)

where T̄ jF0 := T jF0 + τj denotes type j follower’s manufacturing timing for the investment made

before the leader’s product enters the market. The follower’s investment timing can be described

as T jF0 := inf{t ∈ (0, T̄ iL)|X(t) ≥ Xj
F0}. Note that the first row of (31) corresponds to Case 2

in which the leader’s product starts to be made before the follower’s one, while the second row

represents Case 3 in which the follower’s product enters the market before the leader’s one. The

third row is Case 1 in which the leader’s product enters the market even before the follower

makes the investment, which corresponds to (25).

Following similar arguments, we can derive the follower’s investment strategies before the

leader’s product is produced as follows:
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Proposition 4 (Follower’s investment before leader’s project enters the market) Provided

that type i leader’s product has not entered the market yet, type j follower’s optimal capacity

corresponding to the demand shock X and the leader’s capacity QiL is

Qj∗F0(X,QiL) =
1

2η

[
(1− ηQiL)λi + (r + λj − µ)(1− ηλiQ

i
L

r+λi−µ)

r + λi + λj − µ
− δ(r − µ)(r + λj − µ)

λjX

]
. (32)

The value function of the follower before the leader’s project enters the market is

V j
F0(X,QiL)

=


AjF1(QiL)Xβ +AjF0(QiL)Xβi , if X < Xj∗

F0(QiL),

{(1−ηQi
L)λiλjX(r+λi−µ)+λjX(r+λj−µ)(r+λi−µ−ηλiQi

L)−δ(r−µ)(r+λi−µ)(r+λj−µ)(r+λi+λj−µ)}2
4ηλjX(r−µ)(r+λj−µ){(r+λi−µ)(r+λi+λj−µ)}2 ,

if X ≥ Xj∗
F0(QiL),

(33)

where

AjF0(QiL) =

[
Qj∗F0(QiL)λjX

j∗
F0(QiL)

(r − µ)(r + λi + λj − µ)

{
1− ηQj∗F0(QiL)−

ηλiQ
i
L

r + λi − µ
+
{1− η(QiL +Qj∗F0(QiL))}λi

r + λj − µ

}
−AjF1(QiL){Xj∗

F0(QiL)}β − δQj∗F0(QiL)

]( 1

Xj∗
F0(QiL)

)βi
, (34)

and

βi =
1

2
− µ

σ2
+

√(1

2
− µ

σ2

)2
+

2(r + λi)

σ2
(> 1). (35)

The optimal investment threshold and capacity, Xj∗
F0(QiL) and Qj∗F0(QiL) := Qj∗F0(Xj∗

F0(QiL), QiL),

are implicitly derived from (32) and

δ(1− ηQiL)(βi − β)

η(β + 1)(β − 1)

(
Xj∗
F0(QiL)

Xj∗
F1(QiL)

)β
+ βiδQ

j∗
F0(QiL)

=
(βi − 1)Qj∗F0(QiL)λjX

j∗
F0(QiL)

(r − µ)(r + λi + λj − µ)

[
1− ηQj∗F0(QiL)−

ηλiQ
i
L

r + λi − µ
+
{1− η(QiL +Qj∗F0(QiL))}λi

r + λj − µ

]
.

(36)

Proof See Appendix A.4.

From the follower’s optimal investment strategies in (26) and (32), we can easily obtain the

following result:

Corollary 3 For a given demand shock X and a leader’s capacity QiL, a follower’s optimal

capacity before the completion of the leader’s project always dominates than that after the com-

pletion of the leader’s project:

Qj∗F0(X,QiL) > Qj∗F1(X,QiL). (37)

This is a natural result considering that there is a chance for the follower to preempt the market

before the leader’s product enters the market. However, this does not imply that the follower’s

optimal capacity before the completion of the leader’s project (i.e., Qj∗F0(QiL)) always dominates

11



the one after the completion of the leader’s project (i.e., Qj∗F1(QiL)) because they depend on

the investment timing Xj∗
F0(QiL) and Xj∗

F1(QiL), respectively, and Xj∗
F0(QiL) can only be derived

implicitly from (32) and (36).

In this subsection, we assume that the firms’ roles are exogenously given, and thus, the fol-

lower can only invest after the leader’s investment. Namely, the follower’s value in Proposition 4,

V j
F0(X,QiL), assumes that the leader has already made the investment (i.e., X ≥ Xi

L). Before

the leader’s investment (i.e., X < Xi
L), the follower’s value depends on the leader’s investment

timing and can be written as follows:

V j
F (X,Xi

L, Q
i
L) =

( X
Xi
L

)β
V j
F0(Xi

L, Q
i
L). (38)

Lastly, we proceed to the analysis on type i leader’s investment decision. The leader takes

the follower’s investment timing and capacity decisions into account, and the firm value can be

expressed as follows:

V i
L(X) = max

T i
L≥0,Qi

L≥0
E
[
1{T̄ i

L<T
j∗
F0}

{∫ T̄ j∗
F1

T̄ i
L

e−rtQiLX(t)(1− ηQiL)dt+

∫ ∞
T̄ j∗
F1

e−rtQiLX(t)(1− η(QiL +Qj∗F1))dt
}

+ 1{T j∗
F0≤T̄

i
L<T̄

j∗
F0}

{∫ T̄ j∗
F0

T̄ i
L

e−rtQiLX(t)(1− ηQiL)dt+

∫ ∞
T̄ j∗
F0

e−rtQiLX(t)(1− η(QiL +Qj∗F0))dt
}

+ 1{T̄ j∗
F0≤T̄

i
L}

∫ ∞
T̄ i
L

e−rtQiLX(t)(1− η(QiL +Qj∗F0))dt− erT i
LδQiL

]
(39)

where T̄ iL := T iL+ τi denotes type i leader’s manufacturing timing and T̄ ∗F0 and T̄ ∗F1 denote type

j follower’s manufacturing timing given the optimal investment in Propositions 3 and 4. As

before, the leader’s investment timing can be expressed as T iL := inf{t ∈ (0, T jF0)|X(t) ≥ Xi
L}.

The first row of (39) corresponds to Case 1 in which the leader’s product enters the market even

before the follower’s investment. The second row of (39) is associated with Case 2 in which the

leader’s product enters the market after the follower’s investment yet before its manufacturing,

while the third row of (39) is Case 3 in which the follower’s product enters the market before

the leader’s one in spite of their investment timing.

Following the similar arguments, we can derive the leader’s optimal investment strategies

and its value as follows:

Proposition 5 (Leader’s investment) Type i leader’s optimal capacity corresponding to de-

mand shock X is

Qi∗L (X) = arg max
Qi

L≥0

AiL(X,QiL), (40)

where

AiL(X,QiL) =
QiL(1− ηQiL)λiX

(r − µ)(r + λi − µ)
−
( X

Xj∗
F0(QiL)

)βi ηQiLQj∗F0(QiL)λiλjX
j∗
F0(QiL)

(r − µ)(r + λi + λj − µ)

( 1

r + λi − µ
+

1

r + λj − µ

)
−
{( X

Xj∗
F1(QiL)

)β
−
( X

Xj∗
F0(QiL)

)βi(Xj∗
F0(QiL)

Xj∗
F1(QiL)

)β}ηQiLQj∗F1(QiL)λjX
j∗
F1(QiL)

(r − µ)(r + λj − µ)
− δQiL.

(41)

12



The value function of the leader is

V i
L(X) =

A
i
L(Xi∗

L , Q
i∗
L )
(
X
Xi∗

L

)β
, if X < Xi∗

L ,

AiL(X,Qi∗L (X)), if X ≥ Xi∗
L ,

(42)

where the leader’s optimal investment threshold and capacity are

Xi∗
L = arg max

Xi
L≥0

AiL(Xi
L, Q

i∗
L (Xi

L)), (43)

and Qi∗L := Qi∗L (Xi∗
L ), respectively.

Proof See Appendix A.5.

Recall that the follower’s optimal investment strategies are directly linked to the leader’s

capacity choice QiL. Thus, the leader’s optimal investment strategies are solved numerically

because the follower’s decisions of Qj∗F0(QiL) and Xj∗
F0(QiL) in Proposition 4 can only be derived

implicitly.

If we characterize type i and j firms’ roles as a leader and a follower and their investment

strategies by the following tuple:

Sij = (i, j,Xi
L, X

j
F0, X

j
F1, Q

i
L, Q

j
F0, Q

j
F1), (44)

we can immediately obtain the following straightforward result:

Corollary 4 Given the exogenous roles of type i and j firms as a leader and a follower, respec-

tively, the optimal investment strategy can be summarized as follows:

S∗ij = (i, j,Xi∗
L , X

j∗
F0(Qi∗L ), Xj∗

F1(Qi∗L ), Qi∗L , Q
j∗
F0(Qi∗L ), Qj∗F1(Qi∗L )). (45)

From the arguments derived in Proposition 5, we can easily obtain the state price of each

investment scenario at the timing of the leader’s investment as follows:

Corollary 5 Given investment strategy Sij, the state price of Case 1 in which the leader’s

product enters the market even before the follower makes the investment and the follower’s

product enters the market afterwards is

Φ1(Sij) := E
[
1{T̄ i

L<T
j
F0}

e−r(T̄
j
F1−T

i
L)
]

=
{( Xi

L

Xj
F1

)β
−
( Xi

L

Xj
F0

)βi(Xj
F0

Xj
F1

)β} λj
r + λj

. (46)

The state price of Case 2 in which the leader’s product enters the market after the follower’s

investment yet before its manufacturing and the follower’s product enters the market afterwards

is

Φ2(Sij) := E
[
1{T j

F0≤T̄
i
L<T̄

j
F0}

e−r(T̄
j
F0−T

i
L)
]

=
( Xi

L

Xj
F0

)βi λiλj
(r + λj)(r + λi + λj)

, (47)

and that of Case 3 in which the follower’s product enters the market before the leader’s one and

the leader’s product enters the market afterwards is

Φ3(Sij) := E
[
1{T̄ j

F0≤T̄
i
L}
e−r(T̄

i
L−T

i
L)
]

=
( Xi

L

Xj
F0

)βi λiλj
(r + λi)(r + λi + λj)

. (48)

13



3.2 Endogenous role

So far, we have assumed that the firms’ roles are predetermined. Now we relax the assumption

and endogenize their roles in the market. Given competition in a duopoly market, the firms

might have incentives to preempt the market and we have to take the preemption incentives

into account analyzing their roles in the market and investment strategies.

If type i firm chooses to invest after type j firm’s investment in QjL, its value as a follower

can be represented as V i
F0(X,QjL) given by (33). Meanwhile, if type i firm makes the investment

given demand shock X to preempt the market, its value as a leader with preemption investment

can be evaluated as follows:

V i
P (X) =


AiL(X,Qi∗L (X)), if X < Xj∗

F0(Qi∗L (X)),

Qi∗
L (X)λiX

(r−µ)(r+λi+λj−µ)

[
1− ηQi∗L (X)− ηQj∗

F0λj
r+λj−µ

+
(1−η(Qi∗

L (X)+Qj∗
F0))λj

r+λi−µ

]
− δiQi∗L (X), if X ≥ Xj∗

F0(Qi∗L (X)).

(49)

Note that the upper case of (49) corresponds to the lower case of (42). The lower case of

(49) implies that if type i firm makes the investment after the demand shock exceeds type j’s

investment threshold, both firms invest simultaneously.

It is straightforward that a firm has an incentive to preempt the market only if its value

as a leader exceeds that as a follower. We can conjecture that there is a level of demand shock

at which type i firm is indifferent between being a leader and being a follower denoted by

Xi
P := inf{X > 0|V i

P (X) ≥ V i
F0(X,QjL)}. Since a leader is more likely to appreciate monopoly

profits than a follower does, it is natural to presume Xi
P ∪X

j
P 6= ∅ for i 6= j; at least one of the

firms has an incentive to preempt the market.1

Based on the arguments discussed in the previous subsections, we can summarize the firms’

endogenous roles in the market and their investment strategies taking preemption incentives

into account as follows:

Proposition 6 (Optimal investment strategy with preemption incentive) The level of

demand shock at which type i firm is indifferent between being a leader and being a follower is

derived from

V i
P (Xi∗

P ) = V i
F0(Xi∗

P , Q
j∗
P ), (50)

where Qj∗P := Qj∗L (Xi∗
P ) for i, j ∈ {A,B} and i 6= j.

A) If Xi∗
P 6= ∅ for i ∈ {A,B} and Xi∗

P ≤ X
j∗
P for i 6= j, and

i) if Xj∗
P ≤ Xi∗

L , the optimal investment strategy is

S∗ = (i, j,Xj∗
P , X

j∗
F0(Qi∗P ), Xj∗

F1(Qi∗P ), Qi∗P , Q
j∗
F0(Qi∗P ), Qj∗F1(Qi∗P )), (51)

where Qi∗P := Qi∗L (Xj∗
P ).

1We cannot explicitly prove that at least one of the firms has preemption incentive because the leader’s

investment strategies can only be obtained by numerical calculation.
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ii) if Xj∗
P > Xi∗

L , the optimal investment strategy is

S∗ = S∗ij = (i, j,Xi∗
L , X

j∗
F0(Qi∗L ), Xj∗

F1(Qi∗L ), Qi∗L , Q
j∗
F0(Qi∗L ), Qj∗F1(Qi∗L )), (52)

where Qi∗L := Qi∗L (Xi∗
L ).

B) If Xi∗
P 6= ∅ and Xj∗

P = ∅ for i 6= j, the optimal investment strategy is (52).

Proof See Appendix A.6.

In case (A), both firms have incentive to preempt the market, and the firm willing to make the

investment at lower demand shock becomes the leader, bearing the cost of earlier investment. In

case (B), type j firm’s value as a follower dominates that as a leader with preemptive investment,

while type i firm is willing to burden the cost of earlier investment for the preemption.

Note that in case (A-i), type i firm does not invest at Xi∗
P at which it is indifferent from

being a leader and being a follower; it makes the investment at Xj∗
P at which its competitor is

indifferent between being a leader and being a follower. With Xi∗
P ≤ Xj∗

P ≤ Xi∗
L , there is no

reason for type i firm to invest at Xi∗
P because it can still be a leader by investing at Xj∗

P − ε,
which is closer to its optimal investment threshold Xi∗

L than Xi∗
P is. It is needless to say that in

cases (A-ii) and (B), type i firm has no reason to deviate from its optimal investment strategy

in the absence of preemption incentive.

3.3 Welfare analysis

Now we proceed to the welfare analysis in a duopoly market. By the argument discussed in

Section 2.2, consumer surplus in a duopoly market given the demand shock X and investment

strategy Sij are expressed as follows:

CSD(X,Sij) = E
[
1{T̄ i

L<T
j
F0}

{∫ T̄ j
F1

T̄ i
L

e−rt
ηX(t)(QiL)2

2
dt+

∫ ∞
T̄ j
F1

e−rt
ηX(t)(QiL +QjF1)2

2
dt
}

+ 1{T j
F0≤T̄

i
L<T̄

j
F0}

{∫ T̄ j
F0

T̄ i
L

e−rt
ηX(t)(QiL)2

2
dt+

∫ ∞
T̄ j
F0

e−rt
ηX(t)(QiL +QjF0)2

2
dt
}

+ 1{T̄ j
F0≤T̄

i
L}

{∫ T̄ i
L

T̄ j
F0

e−rt
ηX(t)(QjF0)2

2
dt+

∫ ∞
T̄ i
L

e−rt
ηX(t)(QiL +QjF0)2

2
dt
}∣∣∣X(0) = X

]
(53)

Following the same argument in Appendix A.5, we can rearrange (53) as follows:

CSD(X,Sij) =
η

2(r − µ)

( X
Xi
L

)β[λiXi
L(QiL)2

r + λi − µ
+
( Xi

L

Xj
F0

)βi
Xj
F0

{
−

λi(Q
i
L)2

r + λi − µ

+
λi

r + λi + λj − µ

(
(QiL)2 +

λj{2QiLQ
j
F0 + (QjF0)2}

r + λj − µ

)
+

λj
r + λi + λj − µ

(
(QjF0)2 +

λi{2QiLQ
j
F0 + (QiL)2}

r + λi − µ

)}
+
{( Xi

L

Xj
F1

)β
−
( Xi

L

Xj
F0

)βi(Xj
F0

Xj
F1

)β}λjXj
F1{2QiLQ

j
F1 + (QjF1)2}

r + λj − µ

]
. (54)

Meanwhile, there are two producers in a duopoly market, and thus, producer surplus is evaluated

as the sum of the two firms’ values:

PSD(X,Sij) = V i
L(X,Sij) + V j

F (X,Sij), (55)
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where the two terms on the right-hand side of (55) correspond to the values of the leader and

the follower for given investment strategies, respectively. Thus, the level of social welfare in a

duopoly market is evaluated as follows:

SWD(X,Sij) = CSD(X,Sij) + PSD(X,Sij)

=
( X
Xi
L

)β[ QiL(2− ηQiL)λiX
i
L

2(r − µ)(r + λi − µ)
+
( Xi

L

Xj
F0

)βi[ Xj
F0

2(r − µ)

{
−
QiL(2− ηQiL)λi
r + λi − µ

+
λi

r + λi + λj − µ

(
QiL(2− ηQiL) +

QjF0(2− ηQjF0 − 2ηQiL)λj
r + λj − µ

)
+

λj
r + λi + λj − µ

(
QjF0(2− ηQjF0) +

QiL(2− ηQiL − 2ηQjF0)λi
r + λi − µ

)}
− δQjF0

]
+
{( Xi

L

Xj
F1

)β
−
( Xi

L

Xj
F0

)βi(Xj
F0

Xj
F1

)β}(QjF1(2− ηQjF1 − 2ηQiL)λjX
j
F1

2(r − µ)(r + λj − µ)
− δQjF1

)
− δQiL

]
. (56)

Given these arguments, we can derive the welfare-maximizing investment policy of type i

and j firms for exogenously given roles as a leader and a follower, respectively, as follows:

Proposition 7 (Welfare-maximizing policy for given roles in the market) Type j fol-

lower’s welfare-maximizing investment strategies after type i leader’s product enters the market

are characterized as follows:

Xj∗∗
F1 (QiL) =

(β + 1)δj(r − µ)(r + λj − µ)

(β − 1)(1− ηQiL)λj
, (57)

Qj∗∗F1 (QiL) =
2(1− ηQiL)

(β + 1)η
. (58)

Before type i leader’s product enters the market, type j follower’s welfare-maximizing investment

strategies, Qj∗∗F0 (QiL) and Xj∗∗
F0 (QiL), are implicitly derived from the following equations:

Qj∗∗F0 (QiL) =
1

η

[
1−

(r + λj − µ)ηQiLλi
r + λi + λj − µ

( 1

r + λi − µ
+

1

r + λj − µ

)
− (r − µ)(r + λj − µ)δ

λjX
j∗∗
F0 (QiL)

]
,

(59)

2(βi − β)(1− ηQiL)δ

η(β + 1)(β − 1)

(Xj∗∗
F0 (QiL)

Xj∗∗
F1 (QiL)

)β
=

(βi − 1)Xj∗∗
F0 (QiL)

2(r − µ)

[
λi

r + λi + λj − µ

{
QiL(2− ηQiL) +

Qj∗∗F0 (QiL){2− ηQj∗∗F0 (QiL)− 2ηQiL}λj
r + λj − µ

}
+

λj
r + λi + λj − µ

{
Qj∗∗F0 (QiL){2− ηQj∗∗F0 (QiL)}+

QiL{2− ηQiL − 2ηQj∗∗F0 (QiL)}λi
r + λi − µ

}]
− βiδQj∗∗F0 (QiL).

(60)

Type i leader’s welfare-maximizing capacity corresponding to demand shock X is

Qi∗∗L (X) = arg max
Qi

L≥0

AiW (X,X,QiL), (61)

16



where

AiW (X,Xi
L, Q

i
L) =

QiL(2− ηQiL)λiX
i
L

2(r − µ)(r + λi − µ)
+
( Xi

L

Xj∗∗
F0 (QiL)

)βi[Xj∗∗
F0 (QiL)

2(r − µ)

{
−
QiL(2− ηQiL)λi
r + λi − µ

+
λi

r + λi + λj − µ

(
QiL(2− ηQiL) +

Qj∗∗F0 (QiL){2− ηQj∗∗F0 (QiL)− 2ηQiL}λj
r + λj − µ

)
+

λj
r + λi + λj − µ

(
Qj∗∗F0 (QiL){2− ηQj∗∗F0 (QiL)}+

QiL{2− ηQiL − 2ηQjF0(QiL)}λi
r + λi − µ

)}
− δQj∗∗F0 (QiL)

]
+
{( Xi

L

Xj∗∗
F1 (QiL)

)β
−
( Xi

L

Xj∗∗
F0 (QiL)

)βi(Xj∗∗
F0 (QiL)

Xj∗∗
F1 (QiL)

)β}
×
(Qj∗∗F1 (QiL){2− ηQj∗∗F1 (QiL)− 2ηQiL}λjX

j∗∗
F1 (QiL)

2(r − µ)(r + λj − µ)
− δQj∗∗F1 (QiL)

)
− δQiL. (62)

Type i leader’s welfare-maximizing investment threshold and capacity are

Xi∗∗
L = arg max

Xi
L≥0

AiW (X,Xi
L, Q

i∗∗
L (Xi

L)), (63)

and Qi∗∗L := Qi∗∗L (Xi∗∗
L ), respectively. The welfare-maximizing investment strategy for type i and

j firms as a leader and a follower, respectively, is

S∗∗ij = (i, j,Xi∗∗
L , Xj∗∗

F0 , X
j∗∗
F1 , Q

i∗∗
L , Qj∗∗F0 , Q

j∗∗
F1 ). (64)

Proof See Appendix A.7.

Given these arguments, we can immediately obtain the following results:

Corollary 6 (Welfare-maximizing policy and welfare loss in a duopoly market) The

welfare-maximizing policy is

S∗∗ = arg max
S∗∗ij

SWD(X,S∗∗ij ), (65)

for i, j ∈ {A,B} and i 6= j, and the expected loss of welfare in a duopoly market is

WLD(X) = SW ∗∗D (X)− SW ∗D(X), (66)

where SW ∗∗D (X) := SWD(X,S∗∗) and SW ∗D(X) := SWD(X,S∗).

In a nutshell, a social planner assigns the roles of the leader and the follower such that their

investment strategies given by (64) maximize the level of social welfare.

4 Comparative statics and discussion

In this section, we present the results of comparative statics regarding time-to-build and discuss

their economic implications. The results of the firms’ optimal investment strategies and those

with welfare-maximizing policy are given in Sections 4.1 and 4.2, respectively. For numetical

calculation, we used the parameters given in Table 1:
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Notation Value Description

r 0.06 Discount rate

µ 0.02 Expected growth rate of demand shock

σ 0.3 Volatility of demand shock

1/λA 2 Type A firm’s expected time-to-build

1/λB [2, 7] Type B firm’s expected time-to-build

η 0.05 Coefficient of inverse demand function

δ 1 Investment costs per unit

X(0) 0.1 Initial demand shock

Table 1: Parameters for the numerical calculation

Note that without loss of generality, we fix type A firm’s expected time-to-build and see how

the results change as type B firm’s expected time-to-build varies. Namely, we designate type A

and B firms as a dominant and a dominated firms, respectively, in terms of time-to-build.

4.1 Firms’ optimal investment strategies

First of all, we can see from Figure 3a that when the difference between the firms’ time-to-build

is insignificant, the dominant firm (i.e., type A firm) becomes the leader, whereas the dominated

firm (i.e., type B firm) becomes the leader given a significant difference between time-to-build.

To be more specific, when 1/λB is not high enough, the level of demand shock at which type

A firm is indifferent between being a leader and being a follower is lower than that of type

B firm (i.e., XA∗
P < XB∗

P ), and type A becomes the leader by making the investment at the

threshold XB∗
P . Note that type A firm makes the investment at XB∗

P , not at XA∗
P , because it

is closer to its optimal investment threshold in the absence of preemption (i.e., XA∗
L ). When

1/λB is significantly higher than 1/λA, the inverse relation holds regarding the thresholds (i.e.,

XB∗
P ≤ XA∗

P ), and type B firm, which is expected to take more time to manufacture, invests at

the threshold XA∗
P and becomes the leader in the market. Figure 3b shows that in the former

case, the dominated firm (i.e., type B firm) invests as a follower at XB∗
F0 (QA∗P ) or XB∗

F1 (QA∗P )

depending on the leader’s manufacturing process, whereas in the latter case the dominant firm

(i.e., type A firm) becomes the follower by making the investment at the thresholds of XA∗
F0(QB∗P )

or XA∗
F1(QB∗P ).

Figures 3c and 3d present the optimal capacities of the leader and the follower, respectively,

and we can see that the leader’s capacity strictly increases in the size of the dominated firm’s

time-to-build, while the follower’s capacity strictly decreases in it. This result is in constrast

with that from a monopoly market in which the firm’s optimal capacity is irrelevant to time-

to-build (Figure 1b). Namely, the existence of time-to-build makes a different impact on the

firm’s capacity decision in a different market structure. Note that the tendency of increase in the

leader’s capacity lasts even after the dominated firm becomes the leader. That is, the dominated

firm makes more aggressive investment as a leader when its time-to-build gets longer.

These results are novel in that we have shown that the dominated firm can become a leader in

18



2 3 4 5 6 7
0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

(a) Leader’s investment threshold

2 3 4 5 6 7
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

(b) Follower’s investment threshold

2 3 4 5 6 7
5

5.5

6

6.5

7

7.5

8

(c) Leader’s investment capacity

2 3 4 5 6 7
4.8

5

5.2

5.4

5.6

5.8

6

(d) Follower’s investment capacity

Figure 3: Comparative statics regarding the expected time-to-build in a duopoly market with

the firms’ optimal investment strategies

the market, which is in sharp contrast with the arguments from existing literature on asymmetric

duopoly market. For instance, Pawlina and Kort (2006) investigated a duopoly market with

asymmetric investment costs and showed that a firm with relative cost advantage becomes

the leader in the market. Chapter 8 of Huisman (2001) discusses a more generalized setup

including positive externalities and various levels of initial demand shock, but with negative

externalities from competition and sufficiently low initial demand shock, the dominant firm

makes the investment first. Kong and Kwok (2007) introduced asymmetry in both investment

costs and revenue flow, but the firm with advantage of cost normalized by revenue becomes

the leader in the market. In our model, however, a dominated firm can choose to make the

investment first to become a leader, while a dominant firm voluntarily becomes a follower of

the market.

This novelty comes from the disparity of the timing of investment and that of manufacturing.

Because of time-to-build and its inherent uncertainty, the product of the follower that makes

the investment later can enter the market earlier than the leader’s one. A significant advantage

of time-to-build weakens the dominant firm’s preemptive incentive because it can still expect
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its product to enter the market first even if it makes the investment later. This can be seen

from Figure 3g which presents the state prices of Cases 1, 2, and 3. After the dominant firm

becomes the follower, there is a significant increase of the state price of Case 3 in which the

follower’s product enters earlier than the leader’s one. Given the weak preemption incentive

of the dominant firm, the dominated firm makes the investment first, hoping that its earlier

investment leads to earlier entry of its product in the market. It is natural that after the

dominated firm becomes the leader, there is a significant decrease of the state prices of Cases 1

and 2 in which the leader’s product enters market prior to the follower’s one .

Recent years have witnessed a number of studies that focus on a firm’s incentive to invest

late. These arguments are mostly based on the availability of new technology that enables

a second-mover to differentiate goods (e.g., Dutta et al. (1995), Hoppe and Lehmann-Grube

(2001)) or spillover of innovation that allows a second-mover to save investment costs (e.g.,

Hoppe (2000), Femminis and Martini (2011)). Namely, the traditional argument involves either

product innovation or process innovation. In contrast, our model shows a firm’s incentive to

invest late in the presence of competition without any innovation or positive externalities. To
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be more specific, the dominant firm (i.e., type A firm) has an incentive to invest late is not

because there is a second-mover advantage in the market but because it has a relative advantage

of investment lags which allows a second-mover to enjoy a first-mover advantage.

This result is of special interests not only from the theoretical perspective but also from

empirical aspects because it is consistent with what we observe in electric vehicles market. In

general, it is said that an electric car is much easier to build than a conventional car with an

internal combustion engine.2 However, the biggest car makers in the industry, which have much

experience of mass production, have not put much efforts to enter the electric car market. There

are a number of electric cars in the market now, but they have to be capable of 100km/h and

have a range of more than 300km for a single charge with affordable price to penetrate mass

markets. There are only two electric cars produced by top 5 car makers in the industry that

satisfy these conditions,3 and the major car companies have announced their plans to produce

more electric cars in years to come.4 In this sense, we can say that the dominant car makers

which have a relatively shorter time-to-build have not made a preemptive investment in electric

cars, timing for their optimal investment in electric car market.

While the major car companies were timing their investments, Tesla, a relatively new player

in car business, has made a huge amount of investment to preempt the market, including the

construction of gigantic battery factories and the installation of charging stations all over the

world. In spite of its ambitious vision and preemptive investment, Tesla has been struggling with

the mass production of Model 3, which is their first model targeted toward the mass market.5

In general, it is said that this was mostly because of their lack of experience in mass production,

and it will take more time to mass produce their cars as they initially planned. This corresponds

to a relatively longer time-to-build of the dominated firm in our model.

2The first practical production electric car with high-capacity rechargeable batteries was invented by Thomas

Parker in 1884, which was two years earlier than the invention of the first commercial production of motor vehicles

with internal combustion engines by Carl Benz. The first mass-produced electric vehicle was General Motors’

EV1 introduced in 1996, but they ceased the production in 1999.
3According to Organisation Internationale des Constructeurs d’Automobiles (OICA), the top 10 car manu-

facturers in 2016 by their production volumes are as follows: 1. Toyota, 2. Volkswagen group, 3. Hyundai/Kia, 4.

General Motors, 5. Ford, 6. Nissan, 7. Honda, 8. Fiat Chrysler Automobiles, 9. Renault, 10. Groupe PSA. Among

the cars produced by the top 5 companies, Kona Electric by Hyundai and Chevrolet Bolt EV by General Moters

are the only ones that satisfy the conditions. If we consider the ones from the top 10 makers, we have two more

cars that meet the conditions; Leaf by Nissan and Zoe by Renault.
4Toyota announced a plan to completely phase out vehicles that function with internal combustion engine

alone by 2025 and to sell more than 5.5 million electrified vehicles by 2030, but less than 20% of them are planned

to be fully-electric zero-emission vehicles. Volkswagen group also announced a plan to sell more than 3 million

electric vehicles a year in 2025.
5Tesla’s goal was to produce 1,500 cars of Model 3 in the third quarter of 2017, but only 260 cars were made

at that period of time. They were able to meet the original production plan from the third quarter of 2018, but

there have always been issues of safety and quality control regarding the cars produced by Tesla. For instance,

it turned out that they skipped “brake-and-roll” test to meet the production goal of Model 3, which led to more

than a 7% decrease of stock price on July 3, 2018.
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4.2 Welfare-maximizing investment policy

In this subsection, we present the results of comparative statics regarding time-to-build with

welfare-maximizing investment policy and compare them with those determined in the market

provided in Section 4.1.
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Figure 4: Comparative statics regarding the expected time-to-build in a duopoly market with

welfare-maximizing policy

First of all, the welfare-maximizing investment policy always assigns the roles of the leader

and the follower in the market to the dominant firm (i.e., type A firm) and the dominated firm

(i.e., type B firm), respectively, regardless of the degree of asymmetry in time-to-build. There

is a distinct difference between this result and that from the previous subsection in which the

firms’ endogenous roles change depending on their relative time-to-build. This result is intuitive

because it is socially efficient to have products in the market as early as possible.

We can see from Figures 4a and 4b that the leader’s socially optimal investment is made

earlier than that endogenously determined in the market (i.e., X∗∗L ≤ X∗L), while the follower’s

socially optimal investment is made later than that endogenously determined in the market

regardless of the leader’s manufacturing process (i.e., X∗∗F0 > X∗F0 and X∗∗F1 > X∗F1). In other

words, the investments of the leader and the follower in the market are made inefficiently late
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and early, respectively.

This is in sharp contrast with Huisman and Kort (2015) in which the investments of both

the leader and the follower in the market are made inefficiently early comparing with those

maximizing social welfare. This difference comes from the existence of time-to-build. As men-

tioned earlier, it is socially efficient to have the products in the market as early as possible,

and thus, the social planner decides to make the investment earlier taking the investment lags

into account. This result also stands in opposition to that from a monopoly market discussed in

Section 2.2 in which the firm’s choice of investment timing coincides with that maximizing social

welfare. Recall that this coincidence (i.e., X∗M = X∗∗M ) holds in the absence of time-to-build as

well (e.g., Huisman and Kort (2015)).

Figures 4c and 4d show that socially optimal capacities of both the leader and the follower are

much higher than that determined in the market (i.e., Q∗∗L > Q∗L, Q∗∗F0 > Q∗F0, and Q∗∗F1 > Q∗F1).

That is, both firms underproduce their products from the perspective of social welfare, and

this is in line with Huisman and Kort (2015). This is an intuitive result, considering that

overproduction lowers the price of the products, which harms the surplus of producers. As

23



discussed in Section 2.2, we also have the issue of underproduction in a monopoly market, but

the degree of underproduction is quite different. In a monopoly market, the socially optimal

capacity is twice of the firm’s choice (i.e., Q∗∗M = 2Q∗M ). In a duopoly market, the leader’s

socially optimal capacity is around twice of that determined in the market (Figure 4c), whereas

the difference between the follower’s socially optimal capacity and that determined in the market

significantly decreases as the dominated firm’s time-to-build increases (Figure 4d).

Combining the results given in Figures 4a through 4d, we can conclude that the social

planner exploits the relative advantage of the dominant firm to maximize social welfare by

putting more emphasis on its investment in terms of both the timing and the capacity, while

making the dominated firm’s investment play an auxiliary role in the market.

Figure 4f presents the level of social welfare with the firms’ optimal investment strategies

and the welfare-maximizing policy, and Figure 4g describes the loss of welfare evaluated as the

difference between them. We can see that there is a sharp increase in the loss of welfare after the

dominated firm (i.e., type B firm) becomes the leader in the market and that the loss increases

further as its time-to-build gets longer, which is a natural result.

5 Conclusion

In this paper, we examined how uncertain time-to-build affects the decisions of investment tim-

ing and capacity in a duopoly market. We showed that a dominated firm with longer investment

lags can get a chance to be a leader in a market equilibrium and that the leader’s capacity in-

creases as the dominated firm’s time-to-build gets longer, even when the dominated one becomes

the leader. This is a novel result in that we showed that a firm with relative disadvantage can

become a leader in the market, whereas existing literature has shown that a relative advantage

becomes the leader. The novelty can also be found from the fact that we showed a firm’s in-

centive to invest late in the absence of positive externalities or availability of new technology.

Our result can explain car companies’ investment behavior in electric cars market in which new

car makers with longer time-to-build are making aggressive investment, while dominant firms

with shorter lags are timing their investment. It is socially efficient to have products in the

market as soon as possible, and thus, the social planner exploits shorter investment lags of the

dominant firm; the welfare-maximizing policy always assigns the leader’s role to the dominant

firm and puts more emphasis on its investment in terms of both the timing and the capacity.

Comparing with the investments chosen by welfare-maximizing policy, those of the leader and

the follower determined in the market are inefficiently late and early, respectively. Last but not

least, we clarified that time-to-build makes a more pronounced impact on investment strategies

and social welfare in a duopoly market than in a monopoly market.

There remains a number of problems to be explored. We only considered homogeneous

goods for competition in a duopoly market, but a competition between differentiated goods in

the presence of time-to-build should be tackled in future works. For instance, the adoption of

new technology for making products can be considered. Information asymmetry on time-to-

build can also change the firms’ investment strategies significantly. We only considered the case
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of all-equity firm in this study for tractability, but introducing debt financing can enrich the

discussion by endogenizing the firms’ choices of capital structure and default timing. It is to be

hoped that this study will serve as a platform to investigate these problems in future works.

25



A Proofs

A.1 Proof of Proposition 1

Suppose the monopoly firm invests in capacity QM when the demand shock is X. The firm

value at the timing of investment, denoted by VM (X,QM ), can be evaluated as follows:

VM (X,QM ) = E
[ ∫ ∞

τ
e−rtQMX(t)(1− ηQM )dt− δQM

∣∣∣X(0) = X
]

=
λQMX(1− ηQM )

(r − µ)(r + λ− µ)
− δQM . (67)

Maximizing (67) with respect to QM yields the optimal capacity rule in (4).

Meanwhile, the value of the monopoly firm’s option to invest, denoted by UM (X), should

satisfy

rUM (X) = µX
dUM (X)

dX
+

1

2
σ2X2 d2UM (X)

dX2
, (68)

subject to

UM (X∗M ) = VM (X∗M , QM ), (69)

∂UM (X)

∂X

∣∣∣∣
X=X∗M

=
∂VM (X,QM )

∂X

∣∣∣∣
X=X∗M

, (70)

UM (0) = 0, (71)

and a general solution of (68) with the boundary condition (71) is

UM (X) = AMX
β, (72)

where β is given by (7). Substituting (4) and (67) into (69) and (70) yields

X∗M (QM ) =
βδ(r − µ)(r + λ− µ)

(β − 1)λ(1− ηQM )
. (73)

From (4) and (73), we can obtain the results in Proposition 1.

A.2 Proof of Proposition 2

From (15), we can obtain the value of social welfare in a monopoly market at the timing of

investment in QM at X, denoted by SWM (X,QM ), as follows:

SWM (X,QM ) =
λQMX(2− ηQM )

2(r − µ)(r + λ− µ)
− δQM . (74)

Meanwhile, the value of a social planner’s option to invest, denoted by US(X), needs to

satisfy

rUS(X) = µX
dUS(X)

dX
+

1

2
σ2X2 d2US(X)

dX2
, (75)

subject to

US(X∗∗M ) = SWM (X∗∗M , Q), (76)

∂US(X)

∂X

∣∣∣∣
X=X∗∗M

=
∂SWM (X,Q)

∂X

∣∣∣∣
X=X∗∗M

, (77)

US(0) = 0. (78)
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A straightforward calculation yields the welfare-maximizing policy given by (16) and (17). Given

these results, the expected social welfare with welfare-maximizing policy at the initial period is

SW ∗∗M (X) :=SWM (X,X∗∗M , Q
∗∗
M ) =

( X

X∗∗M

)β 2δ

η(β + 1)(β − 1)

=
2(β − 1)β−1λβXβ

η(β + 1)β+1δβ−1(r − µ)β(r + λ− µ)β
. (79)

Meanwhile, the expected social welfare with the firms’ optimal investment strategies at the

initial period is

SW ∗M (X) :=SWM (X,X∗M , Q
∗
M ) =

( X

X∗M

)β 3δ

2η(β + 1)(β − 1)

=
3(β − 1)β−1λβXβ

2η(β + 1)β+1δβ−1(r − µ)β(r + λ− µ)β
. (80)

Thus, the expected welfare loss at the initial period is

WLM (X) = SW ∗∗M (X)− SW ∗M (X)

=
(β − 1)β−1λβXβ

2η(β + 1)β+1δβ−1(r − µ)β(r + λ− µ)β
. (81)

A.3 Proof of Proposition 3

Suppose type j follower invests in capacity QjF1 when the demand shock is X. It is natural

that the follower’s value at the timing of investment depends on X, QiL, and QjF1. Denoting the

value by V j
F1(X,QiL, Q

j
F1), the following holds:

V j
F1(X,QiL, Q

j
F1) = E

[ ∫ ∞
τj

e−rtQjF1X(t)(1− η(QiL +QjF1))dt− δjQjF1

∣∣∣∣X(0) = X

]
=
λjQ

j
F1X(1− η(QiL +QjF1))

(r − µ)(r + λj − µ)
− δQjF1. (82)

Maximizing (82) with respect to QjF1 yields (26).

Meanwhile, the value of the follower’s option to invest after the leader’s product enters the

market, denoted by U jF1(X), should satisfy

rU jF1(X) = µX
dU jF1(X)

dX
+

1

2
σ2X2 d2U jF1(X)

dX2
, (83)

subject to

U jF1(Xj∗
F1) = V j

F1(Xj∗
F1, Q

i
L, Q

j
F1), (84)

∂U jF1(X)

∂X

∣∣∣∣
X=Xj∗

F1

=
∂V j

F1(X,QiL, Q
j
F1)

∂X

∣∣∣∣
X=Xj∗

F1

, (85)

U jF1(0) = 0. (86)

Following the same argument in Proposition 1, we can easily derive the results in Proposition 3.
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A.4 Proof of Proposition 4

Suppose type j follower invests in capacity QjF0 when the demand shock is X. The follower’s

value at the timing of investment depends onX,QiL, andQjF0. Denoting the value by V j
F0(X,QiL, Q

j
F0),

the following holds:

V j
F0(X,QiL, Q

j
F0) = E

[
1{T̄ i

L≤T̄
j
F0}

{∫ ∞
T̄ j
F0

e−rtQjF0X(t)(1− η(QiL +QjF0))dt
}

+ 1{T̄ j
F0<T̄

i
L}

{∫ T̄ i
L

T̄ j
F0

e−rtQjF0X(t)(1− ηQjF0)dt+

∫ ∞
T̄ i
L

e−rtQjF0X(t)(1− η(QiL +QjF0))dt
}

− δQjF0

∣∣∣X(0) = X

]
. (87)

The first row of (87) is evaluated as follows:∫ ∞
0

[ ∫ ∞
τi

{∫ ∞
τj

e−rtQjF0X(t)(1− η(QiL +QjF0))dt
}
λje
−λjτjdτj

]
λie
−λiτidτi

=

∫ ∞
0

[QjF0(1− η(QiL +QjF0))λjX

r − µ

∫ ∞
τi

e−(r+λj−µ)τjdτj

]
λie
−λiτidτi

=
QjF0(1− η(QiL +QjF0))λiλjX

(r − µ)(r + λj − µ)

∫ ∞
0

e−(r+λi+λj−µ)dτi

=
QjF0(1− η(QiL +QjF0))λiλjX

(r − µ)(r + λj − µ)(r + λi + λj − µ)
. (88)

Likewise, the second row of (87) is calculated as follows:

QjF0λjX

(r − µ)(r + λi + λj − µ)

(
1− ηQjF0 −

ηλiQ
i
L

r + λi − µ

)
. (89)

Thus, (87) can be written as follows:

V j
F0(X,QiL, Q

j
F0) =

QjF0(1− η(QiL +QjF0))λiλjX

(r − µ)(r + λj − µ)(r + λi + λj − µ)

+
QjF0λjX

(r − µ)(r + λi + λj − µ)

(
1− ηQjF0 −

ηλiQ
i
L

r + λi − µ

)
− δQjF0. (90)

Maximizing (90) with respect to QjF0 yields Qj∗F0(X,QiL), the follower’s optimal capacity given

demand shock X and the leader’s capacity QiL, in (32).

Meanwhile, the value of the follower’s option to invest before the leader’s product enters the

market, denoted by U jF0(X), should satisfy

rU jF0(X) = µX
dU jF0(X)

dX
+

1

2
σ2X2 d2U jF0(X)

dX2
+ λi{U jF1(X)− U jF0(X)}, (91)

subject to

U jF0(Xj∗
F0) = V j

F0(Xj∗
F0, Q

i
L, Q

j
F0), (92)

∂U jF0(X)

∂X

∣∣∣
X=Xj∗

F0

=
∂V j

F0(X,QiL, Q
j
F0)

∂X

∣∣∣
X=Xj∗

F0

, (93)

U jF0(0) = 0. (94)
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A general solution of (91) with the boundary condition (94) is

U jF0(X) = U jF1(X) +AjF0X
βi . (95)

By substituting (32) and (90) into (92) and (93), we can obtain the results given in Proposition 4.

A.5 Proof of Proposition 5

Suppose the follower’s investment strategies are given by QjF0, QjF1, Xj
F0, and Xj

F1. Denoting

the demand shock at the timing of the leader’s investment by Xi
L, the first row of (39) is

calculated as follows:∫ ∞
0

[ ∫ T j
F0−T

i
L

0

{∫ T j
F1+τj−T i

L

τi

e−rtQiLX(t)(1− ηQiL)dt

+

∫ ∞
T j
F1+τj−T i

L

e−rtQiLX(t)(1− η(QiL +QjF1))dt
}
λie
−λiτidτi

]
λje
−λjτjdτj

=

∫ ∞
0

[ ∫ T j
F0−T

i
L

0

{QiL(1− ηQiL)Xi
L

r − µ
e−(r−µ)τi − e−r(T

j
F1−T

i
L) ηQ

i
LQ

j
F1X

j
F1

r − µ
e−(r−µ)τj

}
× λie−λiτidτi

]
λje
−λjτjdτj

=

∫ ∞
0

[QiL(1− ηQiL)λiX
i
L

(r − µ)(r + λi − µ)

(
1− e−(r+λi−µ)(T j

F0−T
i
L)
)

− e−r(T
j
F1−T

i
L) ηQ

i
LQ

j
F1X

j
F1

r − µ
e−(r−µ)τj

(
1− e−λi(T

j
F0−T

i
L)
)]
λje
−λjτjdτj

=
QiL(1− ηQiL)λi

(r − µ)(r + λi − µ)

(
Xi
L − e−(r+λi)(T

j
F0−T

i
L)Xj

F0

)
−

ηQiLQ
j
F1λjX

j
F1

(r − µ)(r + λj − µ)

(
e−r(T

j
F1−T

i
L) − e−(r+λi)(T

j
F0−T

i
L)e−r(T

j
F1−T

j
F0)
)
. (96)

Likewise, the second row of (39) can be expressed as follows:

QiL(1− ηQiL)λiX
j
F0

(r − µ)(r + λi + λj − µ)
e−(r+λi)(T

j
F0−T

i
L)−

ηQiLQ
j
F0λiλjX

j
F0

(r − µ)(r + λj − µ)(r + λi + λj − µ)
e−(r+λi)(T

j
F0−T

i
L),

(97)

and the third row of (39) is

QiL(1− η(QiL +QjF0))λiλjX
j
F0

(r − µ)(r + λi − µ)(r + λi + λj − µ)
e−(r+λi)(T

j
F0−T

i
L). (98)

The sum of (96), (97), and (98) is

QiL(1− ηQiL)λiX
i
L

(r − µ)(r + λi − µ)
− e−(r+λi)(T

j
F0−T

i
L) ηQiLQ

j
F0λiλjX

j
F0

(r − µ)(r + λi + λj − µ)

( 1

r + λi − µ
+

1

r + λj − µ

)
−
(
e−r(T

j
F1−T

i
L) − e−(r+λi)(T

j
F0−T

i
L)e−r(T

j
F1−T

j
F0)

)
ηQiLQ

j
F1λjX

j
F1

(r − µ)(r + λj − µ)
, (99)

which amounts to the optimization problems of (40) and (43) with (41).
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A.6 Proof of Proposition 6

Xi
P 6= ∅ for i ∈ {A,B} implies that V i

P (X) ≥ V i
F0(X,Qj∗L (Xj

P )) for some X > 0. Namely, there

exist the levels of demand shock at which each firm prefers to be a leader in spite of earlier

investment.

Suppose Xi∗
P ≤ Xj∗

P ≤ Xi∗
L for i 6= j. When the demand shock reaches Xi∗

P , type i firm’s

value as a leader exceeds that as a follower, while it is not sufficient enough for type j firm

to bear the cost of earlier investment. Type i firm, however, does not invest at Xi∗
P at which

it is indifferent between being a leader and being a follower; its competitor, type j firm, will

not invest until the demand shock reaches Xj∗
P , and thus, type i firm makes the investment at

Xj∗
P − ε, which is closer to its optimal investment threshold Xi∗

L than Xi∗
P is. It is needless to say

that the investment is made at Xj∗
P as ε approaches 0. Following the investment rule of (40),

the capacity is chosen as Qi∗P := Qi∗L (Xj∗
P ). Given type i firm’s investment in Qi∗P at Xj∗

P , type

j firm has no choice but to be a follower, and it makes the investment following Propositions 3

and 4.

If Xi∗
P ≤ Xj∗

P and Xi∗
L ≤ Xj∗

P , there is no reason for type i firm to deviate from its optimal

investment strategies because type j firm will not make the preemptive investment until the

demand shock reaches Xj∗
P , which is higher than Xi∗

L . Thus, the firms’ investment strategies

follow the ones in Propositions 3 through 5.

Xi
P 6= ∅ and Xj

P = ∅ for i 6= j imply that V i
P (X) ≥ V i

F0(X,Qj∗L (Xj∗
L )) for some X > 0,

while V j
P (X) < V j

F0(X,Qi∗L (Xi
P )) for all X > 0. Namely, only type i firm has an incentive to

preempt the market; type j firm has no incentive to become a leader since its value as a follower

is always higher than that as a leader. Thus, type i does not deviate from its optimal investment

strategies given in Proposition 5, and type j firm, as a follower, makes the investment following

Propositions 3 and 4.

A.7 Proof of Proposition 7

Suppose that type i and j firms’ roles are given as a leader and a follower, respectively. Given

the leader’s products in the market, the social planner solves the following problem:

SW ij
D,F1(X) = max

T j
F1≥0,Qj

F1≥0
E
[ ∫ T̄ j

F1

0
e−rt

QiL(2− ηQiL)X(t)

2
dt

+

∫ ∞
T̄ j
F1

e−rt
(QiL +QjF1)

(
2− η(QiL +QjF1)

)
X(t)

2
dt− e−rT

j
F1δQjF1

∣∣∣∣X(0) = X

]
. (100)

At the timing of investment given the demand shock X, (100) is evaluated as follows:

QiL(2− ηQiL)X

2(r + λj − µ)
+

(QiL +QjF1)
(
2− η(QiL +QjF1)

)
λjX

2(r − µ)(r + λj − µ)
− δQjF1. (101)

The first-order condition yields type j follower’s welfare-maximizing capacity corresponding to

the demand shock X and type i leader’s capacity QiL as follows:

Qj∗∗F1 (X,QiL) =
1

η

(
1− ηQiL −

δ(r − µ)(r + λj − µ)

λjX

)
. (102)
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Following the standard argument of value-matching and smooth-pasting conditions, we can

easily derive the welfare-maximizing threshold Xj∗∗
F1 (QiL) as (57), and by substituting (57) to

(102), we can obtain the welfare-maximizing capacity Qj∗∗F1 (QiL) in (58).

If the leader’s product has not entered the market yet, the social planner’s optimization

problem is written as follows:

SW ij
D,F0(X) = max

T j
F0≥0,Qj

F0≥0
E
[
1{T j

F0<T̄
i
L≤T̄

j
F0}

{∫ T̄ j
F0

T̄ i
L

e−rt
QiL(2− ηQiL)X(t)

2
dt

+

∫ ∞
T̄ j
F0

e−rt
(QiL +QjF0)

(
2− η(QiL +QjF0)

)
X(t)

2
dt− e−rT

j
F0δQjF0

}
+ 1{T̄ j

F0<T̄
i
L}

{∫ T̄ i
L

T̄ j
F0

e−rt
QjF0(2− ηQjF0)X(t)

2
dt+

∫ ∞
T̄L

(QiL +QjF0)
(
2− η(QiL +QjF0)

)
X(t)

2
dt

− e−rT
j
F0δQjF0

}
+ 1{T̄ i

L≤T
j
F0}

e−rT̄
i
LSW ij

D,F1(XT̄ i
L
)

∣∣∣∣X(0) = X

]
(103)

A tedious algebra similar with the one in Appendix A.4 shows that at the timing of investment

with the demand shock X, (103) can be written as follows:

λiX

2(r − µ)(r + λi + λj − µ)

(
QiL(2− ηQiL) +

QjF0(2− ηQjF0 − 2ηQiL)λj
r + λj − µ

)
+

λjX

2(r − µ)(r + λi + λj − µ)

(
QjF0(2− ηQjF0) +

QiL(2− ηQiL − 2ηQjF0)λi
r + λi − µ

)
− δQjF0. (104)

By first-order condition of (104) and value-matching and smooth-pasting conditions, we can

derive (59) and (60) from which we can obtain type j follower’s welfare-maximizing investment

strategies before the leader’s product enters the market: Xj∗∗
F0 (QiL) and Qj∗∗F0 (QiL).

Lastly, the social planner solves the following problem with regard to the leader’s investment:

SW ij
D,L(X) = max

T i
L≥0,Qi

L≥0
E
[
1{T̄ i

L<T
j∗∗
F0 }

{∫ T̄ j∗∗
F1

T̄ i
L

e−rt
QiL(2− ηQiL)X(t)

2
dt

+

∫ ∞
T̄ j∗∗
F1

e−rt
(QiL +Qj∗∗F1 (QiL))

{
2− η(QiL +Qj∗∗F1 (QiL))

}
X(t)

2
dt− e−rT

j∗∗
F1 δQj∗∗F1 (QiL)

}
+ 1{T j∗∗

F0 ≤T̄
i
L<T̄

j∗∗
F0 }

{∫ T̄ j∗∗
F0

T̄ i
L

e−rt
QiL(2− ηQiL)X(t)

2
dt

+

∫ ∞
T̄ j∗∗
F0

e−rt
(QiL +Qj∗∗F0 (QiL))

{
2− η(QiL +Qj∗∗F0 (QiL))

}
X(t)

2
dt− e−rT ∗∗F0δQj∗∗F0 (QiL)

}
+ 1{T̄ j∗∗

F0 ≤T̄
i
L}

{∫ T̄ i
L

T̄ j∗∗
F0

e−rt
Qj∗∗F0 (QiL)(2− ηQj∗∗F0 (QiL))X(t)

2
dt

+

∫ ∞
T̄ i
L

e−rt
(QiL +Qj∗∗F0 (QiL))

{
2− η(QiL +Qj∗∗F0 (QiL))

}
X(t)

2
dt− e−rT

j∗∗
F0 δQj∗∗F0

}
− e−rT i

LδQiL

∣∣∣∣X(0) = X

]
.

(105)
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A tedious algebra shows that (105) can be written as follows:

SW ij
D,L(X) = max

Xi
L≥0,Qi

L≥0

( X
Xi
L

)β[ QiL(2− ηQiL)λiX
i
L

2(r − µ)(r + λi − µ)
+
( Xi

L

Xj∗∗
F0 (QiL)

)βi[Xj∗∗
F0 (QiL)

2(r − µ)

{
−
QiL(2− ηQiL)λi
r + λi − µ

+
λi

r + λi + λj − µ

(
QiL(2− ηQiL) +

Qj∗∗F0 (QiL){2− ηQj∗∗F0 (QiL)− 2ηQiL}λj
r + λj − µ

)
+

λj
r + λi + λj − µ

(
Qj∗∗F0 (QiL)(2− ηQj∗∗F0 (QiL)) +

QiL{2− ηQiL − 2ηQj∗∗F0 (QiL)}λi
r + λi − µ

)}
− δQj∗∗F0 (QiL)

]
+
{( Xi

L

Xj∗∗
F1 (QiL)

)β
−
( Xi

L

Xj∗∗
F0 (QiL)

)βi(Xj∗∗
F0 (QiL)

Xj∗∗
F1 (QiL)

)β}
×
(Qj∗∗F1 (QiL){2− ηQj∗∗F1 (QiL)− 2ηQiL}λjX

j∗∗
F1 (QiL)

2(r − µ)(r + λj − µ)
− δQj∗∗F1 (QiL)

)
− δQiL

]
(106)

= max
Xi

L≥0,Qi
L≥0

( X
Xi
L

)β[
SW ij

D,F0(Xi
L)− δQiL

]
. (107)

Thus, type i leader’s investment strategies that maximize social welfare are Xi∗∗
L and Qi∗∗L which

can be derived from (61) and (63) with (62).
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