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Abstract 

From previous two-factor real options models (e.g., Paxson and Pinto, 2005; Armada et al., 2013), we 

acknowledge that the output price-quantity correlation coefficient affects significantly the value and 

timing of the investment (firms invest earlier the lower is the correlation coefficient). We highlight 

that the opposite result holds for wind energy investments. We study the price-quantity correlation 

mean of 14 UK wind farms over the time period between January 2003 and December 2014, and 

conclude that it varies significantly across wind farms (from -0.35 to 0.28). We test the correlation 

mean differences among the wind farms and find that some are high and statistically significant; thus, 

we conclude that there are wind farms located on sites which persistently exhibit higher price-quantity 

correlations and, therefore, ceteris paribus, are more valuable.  
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1. Introduction 

Firms assess the wind resource potential of a site before investing because it is directly related to the 

amount of energy that can be extracted. A major inconvenience of wind energy is the variability of 

production due to the unpredictability nature of the wind. Despite the technological progress, 

estimations of the energy production from wind farms are still inaccurate (Kwon, 2010; and 

Mirhosseini et al., 2011). For instance, Tindal et al. (2007) use a dataset which comprises information 

on 156 wind farms from the US and Europe and concludes that, on average, actual energy production 

is 92.1% of what was estimated. On the other hand, energy market prices are also volatile because of, 

among other aspects, changes in energy demand and the so-called spikes which can increase prices 

significantly in a matter of hours. Consequently, wind farms revenue over time is very uncertain.  

Different technologies and methodologies have been developed to assess the wind resource potential 

of sites, and map the wind resource of various geographic locations (see, e.g., Ramos and Iglesias, 

2014; Landry et al., 2017; Gualtieri and Zappitelli, 2014; and Hassanzadeh, 2016). There is also 

empirical evidence showing that the wind blows irregularly and its (monthly and hourly) speed 

pattern is site-specific. For instance, Ramos and Iglesias (2014) study the viability of wind power in 

Arousa, a natural reserve small island of Spain, and reveal that “the [wind] resource is characterised 

by its narrow range of direction (southwest and northeast in winter and summer, respectively) and 

marked monthly and hourly variability.” Specifically, they show that the windiest months are July and 

August and February and March, and the periods of higher wind speed are from 1 to 5 pm and from 8 

pm to midnight (p. 750).  

To our best knowledge, currently, while selecting a wind farm site, wind power developers do not 

consider the expected correlation between the energy market price and the energy production. 

However, we advocate that it affects significantly the value and timing of the investment, and show 

that it is site-specific and, therefore, ceteris paribus, wind power developers should select the sites 
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which exhibit a higher expected energy output price-quantity correlation.
2
 We support this assertion 

on both the available two-factor real options literature and our empirical results.  

The real options literature shows that when the value of a project is contingent on the future evolution 

of two (possibly correlated) stochastic variables (e.g., price-quantity, or price-investment cost), the 

correlation coefficient between the two variables affects significantly the value and timing of the 

investment (see Dixit and Pindyck, 1994, chapter 6; Paxson and Pinto, 2005; Adkins and Paxson, 

2011; and Armada et al., 2013, among others). The two-factor model of Dixit and Pindyck (1994) 

uses revenue and investment cost, whereas that of Adkins and Paxson (2011) uses revenue and 

operating costs, and those of Paxson and Pinto (2005) and Armada et al. (2013) both use output price 

and quantity. From the latter two models, we conclude that firms invest earlier the lower is the output 

price-quantity correlation (see, e.g., Paxson and Pinto (2005, p. 219).  

However, the theoretical findings of Paxson and Pinto (2005) and Armada et al. (2013), regarding the 

effect on the investment value of the price-quantity correlation, does not apply to the evaluation of 

wind farm investments. This is because the above literature was developed for the evaluation of 

projects where the output market price and the output quantity are both uncertain but guided by the 

market forces (i.e., their evolution and relationship over time obey to the so-called law of demand and 

supply). Therefore, the output price-quantity correlation is negative and the output production is not 

affected by the geographic location of the production facility – for further details see Section 2. 

However, in the wind energy market, all the output produced is sold, due to regulation, and depends 

significantly on the wind conditions, and not, as usual, on the market demand. Notice that, the wind 

energy has usually priority to enter the electricity national grids, due to regulation, which turns the 

demand and supply relationship very atypical. Therefore, the price-quantity correlation is less 

predictable and, possibly, site-specific. We show that there are significant differences in the output 

                                                           
2
 Notice that a higher output price-quantity correlation means that in periods when the energy price is higher the (wind 

farm’s) energy production tends to be higher as well. Thus, a higher output price-quantity correlation implies a higher 

revenue.  



4 

 

price-quantity correlation amongst wind firms, and the higher the correlation the more valuable is the 

investment. 

We provide empirical evidence on the daily energy production irregularity of 14 UK wind farms, over 

the time period between January 2003 and December 2014, and conclude that the energy output price-

quantity correlation varies across firms (it is site-specific). More specifically, we find that there are 

wind farms which persistently exhibit a higher output price-quantity correlation coefficients and, 

therefore, ceteris paribus, are more valuable.
3
  

Our work has some relation with those of Olauson and Bergkvist (2016), who study the correlation 

coefficient between wind power generation in different countries, emphasizing that this aspect is 

important for quantifying the reduction in power generation variability when countries are electrically 

interconnected, Figueiredo et al. (2016a), who investigate the effect of price arbitrage and weather 

dynamics on the renewable energy output variations across several integrated power markets, and 

Masurowski et al. (2016), who propose a new approach to assess the impact of “varying minimum 

distances” between the wind turbines on the wind energy potential of a given geographic place.  

It also intersects with the works of Figueiredo et al. (2016b), who use a dataset from Denmark to 

illustrate the effects of the renewable energy output variation across multiple interconnected markets, 

and advocate that cross-border flows can play a role in the market splitting behaviour, Hoogwijk et al. 

(2004), who provide a global onshore wind energy potential analysis, taking into account the current 

technologies available and the main uncertainties underlying their methodological assumptions, and 

Eurek et al. (2016), who use mesoscale reanalysis data to estimate wind quality for both onshore and 

offshore wind sites across the globe.  

The next section discusses both the effect of the price-quantity correlation on the timing of the 

investment, relying on Paxson and Pinto (2005) and Armada et al. (2013), and justifies why the result 

                                                           
3
 To better illustrate our argument, let us consider the results of Ramos and Iglesias (2014) for the patterns of wind speed 

over time, according to which the windiest months are July and August and February and March, and the periods of higher 

wind speed during the day are from 1 to 5 pm and from 8 pm to midnight. Because the wind farms’ revenue is given by the 

market price times the quantity produced (sold), so the higher the correlation between price and quantity, the more valuable 

is the wind farm. This is because a higher correlation would mean that, in Arousa, the periods when energy market price is 

higher would tend to coincide with the periods when the wind speed (i.e., energy production) is stronger. 
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we obtain from these two models, regarding the effect of the correlation on the timing of the 

investment, does not hold for a wind farm investment. Section 3 restates the key steps of the analytical 

derivation of a two-factor (price-quantity) model, following Adkins and Paxson (2011) and Armada et 

al. (2013). Section 4 describes our data sample and the methodology used for testing the correlation 

mean differences among the wind farms. Section 5 describes the main results. Section 6 concludes. 

2. The price-quantity relationship 

In the current investment literature, the price-quantity relationship is normally modelled using a 

demand function with constant parameters (e.g., Dixit and Pindyck, 1994; and Caballero and Pindyck, 

1996). The assumption that both price and quantity follow independent stochastic processes means 

that the two variables are driven by exogenous factors. Yet, it does not mean that they are 

independent. For instance, when the law of demand and supply holds, the price-quantity correlation is 

negative. For this economic context, Paxson and Pinto (2005) and Armada et al. (2013) show that 

firms invest earlier (i.e., the investment is more valuable) the lower is the output price-quantity 

correlation. This result holds because when the law of demand and supply holds, the negative 

correlation works as a hedging factor in models which consider price and quantity uncertainty.  

However, we highlight that if we apply the above two-factor models to the evaluation of a wind farm 

investment, the above result regarding the effect of the correlation on the value/timing of the 

investment does not hold. Wind firms are more valuable (i.e., invest earlier) the higher is the price-

quantity correlation. This is because of regulation. For instance, the EU’s Renewable Energy 

Directive 2009/28/EC 
4
 ensures that priority access or guaranteed access to the grid-system of 

electricity produced from renewable energy sources is safeguarded for renewable energy, which turns 

the relationship between demand and supply very atypical, because all the energy produced is sold at 

a given price. 

 

                                                           
4
  See: http://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32009L0028.  
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3. A two-factor real option model 

In this section, we restate the key steps of the derivation of a two-factor real options model for a wind 

farm investment, following Adkins and Paxson (2011) and Armada et al. (2013).  

Let us assume that the energy market price ( P ) and the energy production ( Q ) both follow 

independent (but possibly correlated) geometric Brownian motion (GBM) processes given by: 

                    (1) 

                    (2) 

                   (3) 

where    and    are the instantaneous drift rates of the energy price and energy production (quantity 

sold), respectively;    and    are the instantaneous volatility of P  and Q , respectively; and    and 

   are the increment of a standard Wiener process for P  and Q , respectively. For convergence of the 

solution, we assume that the condition           holds, where r is the risk-free interest rate.  

Thus, while inactive, the firm holds the option to invest in a wind farm, which has valued under 

uncertainty. The value of the option to invest (      ) is represented by the following partial 

differential equation (PDE):  

 

 

   

     
    

 

 

   

     
    

   

    
          

  

  
        

  

  
                  (4) 

where          ,          and   , with        , is the market equilibrium required rate 

of return, given by: 

                                        (5) 

where    
    

  
 is the market price for risk,     is the correlation between the asset j and the market, 

and     is the market volatility. 



7 

 

The homogeneous part of Equation (4) has the following general solution: 

                            (6) 

where   and   are the roots of an elliptical characteristic equation.  

Following Adkins and Paxson (2011) we obtain: 

                           (7) 

Using Ito´s Lemma we can show that the project revenue,          , is represented by the 

following GBM process: 

                                              (8) 

where               .  

The required rate of return for the investment is given by the sum of the expected drift and the 

shortfall rate of return: 

                                             (9) 

Armada et al. (2013) show that the optimal investment threshold is reached when there is a pair 

(P*,Q*) for which Equation (10) holds:  

          
 

   
                      (10) 

where                and   is the positive root of a quadratic equation given by: 

  
 

 
 

    

  
     

 

 
 

    

  
  

 
 

  

  
          (11) 

For the same modelling setting, Paxson and Pinto (2005) obtain the following solution for the optimal 

investment threshold: 
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                          (12) 

where    
          .  

As highlighted in Armada et al. (2013), the difference between Paxson and Pinto (2005) and Armada 

et al. (2013) models is that the latter obtains a solution for the investment threshold without invoking 

homogeneity of degree one. Nevertheless, from both models, we conclude that firms invest earlier the 

lower is the correlation coefficient. 

4. Data Sample and methodology  

4.1 Data sample 

We collect monthly data on the energy market prices and the energy production of 14 UK wind farms, 

over the time period between 2003 and 2014. The data on energy prices and energy production was 

collected from the DataStream (APX UK spot power market) and the Renewable Energy Foundation 

(www.ref.org.uk), respectively.  

Table 1 provides further information on our data sample, namely, the time period, location, number of 

turbines and production capacity of each wind farm, the name of the project developer, and whether 

the wind farms are located on-shore or off-shore.  

  

http://www.ref.org.uk)/
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Table 1: this table provides information about the wind farms of our data sample. Specifically, it provides shows our data sample the time period, the 

location, number of turbines and production capacity of each wind farm, and name of the wind farm project developer and whether the wind farms are 

located on-shore or off-shore.   

Wind Farm Location Technology Nº Turbines Capacity (kW) Developer Sample Time Period 

B. A. Tuire (1) Scotland On-shore 23 660 Scottish Power 2003-2014 

Hare Hill (2) Scotland On-shore 20 660 Scottish Power 2003-2014 

Rothes (2) Scotland On-shore 22 2,300 Fred Olsen Renewables 2005-2014 

Cefn. Croes (3) Wales On-shore 30 1,500 Falck Reneables 2006-2014 

Crystal Rig (4) Scotland On-shore 20 2,500 Fred Olsen Renewables 2004-2014 

Casyemire (5) Scotland On-shore 21 2,300 Scottish Power 2005-2014 

Scroby Sand (6) England Off-shore 30 2,000 E. ON UK Renewables 2005-2014 

Braes D. (7)  Stotland On-shore 36 2,000 SSE Renewables 2007-2014 

Pauls Hill (8) Scotland On-shore 28 2,300 Fred Olsen Renewables 2006-2014 

Black Law (10) Scotland On-shore 54 2,300 Scottish Power 2006-2014 

Haydard (11) Scotland On-shore 52 2,300 Scottish & Southern 2007-2014 

Kentish (12) England Off-shore 30 3,000 Vattenfall 2006-2014 

Barrow (13) England Off-shore 30 3,000 Dong/Centrica Energy 2007-2014 

Whitelee (14) Scotland On-shore 140 2,300 Scottish Power 2009-2014 

 

  



10 

 

4.2 Methodology 

Our aim is to study the correlation between the energy market price and the energy production of 14 

wind farms, using monthly data, and examine the correlation mean difference among the wind farms 

and their respective statistical significance. We start by computing the monthly correlation mean for 

each wind farm and the correlation mean differences among the wind farms. Then, we examine the 

statistical significance of the correlation mean differences, using a one-tailed test. 

4.2.1 Mean difference hypothesis test  

Let us define     
   

      
      

 
  as the mean difference of the monthly correlation between the 

energy price and the energy production of wind farm i, and the monthly correlation between the 

energy price and the energy production of wind farm j, with              and              

where    , where     
  is the correlation between the monthly energy price and the monthly energy 

production of wind farm i, and     
 

 is the correlation between the monthly energy price and the 

monthly energy production of wind farm j. in our analysis we use mean values for energy price and 

production, and a one-tailed mean difference test, formalized as follows:  

       
   

          (13) 

       
   

         (14) 

where H0 is the null hypothesis and H1 is the alternative hypothesis.  

We consider the following significance level: 0.01, 0.05 and 0.10. Thus, if the p-value is below 0.01, 

0.05 or 0.10 we accept the null hypothesis with 1%, 5% or 10% significance level, respectively. 

Otherwise, we reject the null hypothesis. 

5.  Results 
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In this section, we present our results for price-quantity correlation mean of each wind farm and the 

correlation mean difference among the wind farms.  

Tables 2, 2a and 2b provide information on the monthly correlation mean, maximum and minimum 

per wind farm and the correlation mean, maximum and minimum for the full sample. For instance, in 

the last three columns on the right hand-side, we show that the correlation mean, maximum and 

minimum for the Pauls Hill wind farm are 0.025, 0.896 and -0.634, respectively. At the bottom, Table 

2a shows, for instance, that the correlation mean, maximum and minimum for January, considering all 

the wind farms together, are -0.33, 0.479 and -0.50, respectively, and Table 2b shows that the 

correlation mean, maximum and minimum for the full sample are 0.072, 0.275 and -0.350, 

respectively.  

From these results, we conclude that the correlation mean varies significantly over time and across 

wind farms. 
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Table 2: this table provides information on the correlation coefficient mean, maximum and minimum per month for each wind farm. The last three columns on the 

right hand-side, show the monthly correlation coefficient mean, maximum and minimum per wind farm. At the bottom, Table 2a shows the mean, maximum and 

minimum of the correlation coefficient mean per month, considering the 14 wind farms. Table 2b shows the correlation coefficient mean, maximum, and minimum 

for the full sample. 

  
Correlation Mean per Month  

(per wind farm, for the sample time period) 
 

Monthly Correlation 

(per wind farm)  

Wind Farm Time Period Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Mean Max Min 

B. A Tuirc (1) 2003-14 -0.353    0.108  -0.025  -0.419  -0.073    0.323  -0.205    0.324    0.020  -0.028    0.091  -0.151   -   0.032      0.324  -  0.419  

Hare Hill (2) 2003-14 -0.500  -0.378  -0.499  -0.082  -0.211  -0.075  -0.036  -0.082    0.017    0.010    0.266  -0.244   -   0.151      0.266  -0.050 

Rhodes (3) 2005-14   0.301  -0.644    0.392    0.045  -0.262  -0.019    0.770    0.301  -0.444    0.052    0.549  -0.523       0.043      0.770  -  0.644  

Cefn. Croes (4) 2006-14 -0.054  -0.102    0.146    0.211    0.361    0.292  -0.094    0.073    0.518    0.021    0.455  -0.625       0.100      0.519  -  0.625  

Crystal Rig (5) 2004-14   0.211    0.516    0.339    0.422    0.145    0.368    0.255  -0.281  -0.445  -0.092    0.520  -0.160       0.150      0.520  -  0.445  

Casuamire (6) 2005-14 -0.067  -0.071    0.206    0.099  -0.187  -0.096    0.734    0.554  -0.285    0.004    0.292  -0.496       0.057      0.734  -  0.495  

Scroby S. (7) 2005-14 -0.261    0.200    0.355    0.061  -0.017    0.221  -0.548  -0.523    0.141    0.072  -0.306    0.235   -   0.031      0.355  -  0.548  

Braes D. (8) 2007-14   0.332    0.597    0.580    0.067    0.346    0.150    0.409    0.253  -0.063  -0.033    0.387  -0.165       0.238      0.597  -  0.165  

Pauls Hill (9) 2006-14 -0.205  -0.543    0.224    0.262  -0.251  -0.049    0.895    0.382  -0.267    0.171    0.311  -0.634       0.025      0.896  -  0.634  

Black Law (10) 2006-14 -0.158  -0.430    0.212    0.166    0.084    0.102    0.617    0.173  -0.127    0.125    0.348  -0.739       0.031      0.617  -  0.739  

Haydard (11) 2007-14 -0.101  -0.098    0.155    0.328  -0.002    0.239    0.468    0.228  -0.332    0.220    0.289  -0.461       0.078      0.468  -  0.461  

Kentish (12) 2006-14   0.037    0.342    0.312    0.312    0.384    0.310    0.051    0.013    0.497    0.132    0.136    0.076       0.217      0.497      0.013  

Barrow (13) 2007-14   0.479    0.766    0.185    0.453    0.618    0.471    0.613    0.463    0.145    0.078    0.105  -0.481       0.325      0.766  -  0.481  

Whitelee (14) 2009-14 -0.117    0.706    0.035    0.082    0.242    0.586  -0.080  -0.544  -0.848    0.010    0.002  -0.527   -   0.038      0.706  -  0.848  

                

                

  Table 2a  Table 2b 

  Correlation Mean per Month (considering the 14 wind farms)  Correlation (full sample) 

 Mean -0.033 0.069 0.187 0.143 0.084 0.202 0.275 0.095 -0.105 0.053 0.246 -0.350  Mean Max Min 

 Max. 0.479 0.766 0.580 0.453 0.618 0.586 0.895 0.554 0.518 0.220 0.549 0.235      0.072      0.275  -  0.350  

 Min. -0.500 -0.644 -0.499 -0.419 -0.262 -0.096 -0.548 -0.544 -0.848 -0.092 -0.306 -0.739        
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Table 3 shows the mean difference among the wind farms and (in between brackets) the respective p-

values, from which we can see that most of the results are statistically significant at least at 10% level. 

For instance, we find that the mean difference between the Barrow wind farm and the Braes wind 

farm is of 8.6 percentage points and statistically significant at 1% level. From Table 2 we 

acknowledge that the former wind farm has a correlation mean of 0.325, whereas the latter has a 

correlation mean of 0.238. Therefore, based on the reasoning discussed in Sections 2 and 3, we 

conclude that the Barrow wind farm is located on a site with a higher price-quantity correlation and, 

therefore, ceteris paribus, is more valuable. 

Similarly, we find that the correlation mean difference between the Kentish wind farm and the Braes 

wind farm is 2.1 percentage points and statistically significant at 5% level. From Table 2 we 

acknowledge that the former wind farm has a correlation mean of 0.217, whereas the latter has a 

correlation mean of 0.238. Therefore, following the same arguments as above we conclude that, 

ceteris paribus, the Braes wind farm is slightly more valuable.  

Finally, we find that the correlation coefficient mean difference between the Whitelee wind farm and 

the Crystal wind farm is 18.8 percentage points and statistically significant at 5% level. From Table 2 

we acknowledge that the correlation mean of the former wind farm is -0.038, whereas the correlation 

coefficient mean of the latter is 0.15. Hence, we conclude that, ceteris paribus, the Crystal wind farm 

is significantly more valuable. This result represents a very extreme case, in terms of correlation 

coefficient mean difference, and shows that high correlation mean differences among wind farms are 

possible.  

Paxson and Pinto (2005, p. 219) show a sensitivity analysis which illustrates the impact on firms’ 

investment threshold of changes in the price-quantity correlation from which we can infer that the 

Crystal wind farm, when compared with the Whitelee wind farm, is significantly more valuable 

because it is benefiting from a very generous “gift” of nature.  
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Table 3: this table provides information on the correlation coefficient mean differences among the wind farms. In between brackets are the p-

values, where “***”, “**” and “*” mean that the result is significant at 1%, 5% and 10% significant level, respectively. 

 Correlation Mean Differences 

 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

Hare Hill (2) 0.119* 
            

 
(0.0874) 

            
Rhodes (3) 0.076* 0.194 

           

 
(0.0623) (0.1179) 

           
Cefn. Croes (4) 0.133* 0.251* 0.057 

          

 
(0.0677) (0.0582) (0.1124) 

          
Crystal Rig (5) 0.182* 0.301* 0.107 0.050 

         

 
(0.0740) (0.0631) (0.1475) (0.1087) 

         
Casuamire (6) 0.090* 0.208 0.014 0.043 0.093* 

        

 
(0.0938) (0.1374) (0.1443) (0.1633) (0.0536) 

        
Scroby S. (7) 0.001 0.120* 0.074 0.131* 0.181* 0.088 

       

 
(0.1178) (0.0634) (0.1069) (0.0841) (0.0791) (0.1375) 

       
Braes D. (8) 0.271 0.389 0.195 0.138* 0.088* 0.181* 0.269* 

      

 
(0.1005) (0.1363) (0.1874) (0.0978) (0.0913) (0.0660) (0.0966) 

      
Pauls Hill (9) 0.057* 0.176* 0.019* 0.075 0.125* 0.033* 0.056 0.214 

     

 
(0.0774) (0.0905) (0.0374) (0.1514) (0.0789) (0.0813) (0.1429) (0.1167) 

     
Black Law (10) 0.063* 0.182* 0.012* 0.069 0.119* 0.026* 0.062 0.207 0.006* 

    

 
(0.0774) (0.0905) (0.0374) (0.1514) (0.0789) (0.0813) (0.1429) (0.1167) (0.0990) 

    
Haydard (11) 0.110* 0.229* 0.034* 0.022 0.072* 0.020 0.109 0.160* 0.053 0.047* 

   

 
(0.0989) (0.0299) (0.0433) (0.1876) (0.0571) (0.1249) (0.1153) (0.0843) (0.1167) (0.0709) 

   
Kentish (12) 0.249* 0.368* 0.173* 0.117 0.067 0.160* 0.248* 0.021** 0.192* 0.186 0.139 

  

 
(0.0689) (0.0651) (0.0703) (0.1870) (0.1426) (0.0605) (0.0735) (0.0272) (0.0946) (0.1110) (0.1176) 

  
Barrow (13) 0.357 0.476* 0.281 0.224* 0.175* 0.267 0.355* 0.086*** 0.300 0.293 0.247 0.108* 

 

 
(0.1111) (0.0639) (0.1506) (0.0913) (0.0661) (0.1310) (0.0900) (0.0076) (0.1483) (0.1463) (0.1290) (0.0690) 

 
Whitelee (14) 0.005 0.113* 0.081 0.138 0.188** 0.095 0.007 0.276* 0.063 0.069 0.116* 0.255 0.362 

 
(0.1118) (0.0936) (0.1056) (0.2029) (0.0159) (0.1372) (0.1206) (0.0842) (0.1073) (0.1205) (0.0944) (0.1520) (0.1458) 
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6. Conclusion 

Previous two-factor real options models show that the price-quantity correlation affects significantly 

the timing/value of investments (i.e., firms invest earlier the lower is the correlation). We highlight 

that because of the wind irregularity over time and the regulation (e.g., the EU’s Renewable Energy 

Directive 2009/28/EC), the above theoretical result does not hold for wind farm investments which 

are more valuable the higher the correlation. 

Our results for the price-quantity correlation mean show that it varies significantly across wind farms 

(from -0.35 to 0.28) and there are (high) correlation mean differences among the wind farms which 

are statistically significant. For instance, the correlation mean difference between the Whitelee wind 

farm and the Crystal wind farm is 18.8 percentage points and statistically significant at 5% level. 

Relying on Paxson and Pinto (2005) and Armada et al. (2013) real option models, we conclude that 

such an extreme correlation mean difference means that the latter wind farm is benefiting from a very 

generous (price-quantity correlation) gift of the nature. We find other less extreme correlation mean 

differences between the wind farms. Overall, our results show that while inspecting sites where to 

install wind farms, developers should estimate the expected correlation between the energy price and 

the energy production of each site and, ceteris paribus, select that which exhibit a higher energy 

price-quantity correlation.  

The wind energy capacity has grown significantly in the last decades, and it is expected to continue to 

growth significantly in the next years. This could press wind energy developers to improve their 

evaluation methods in order to select the wind farm sites. Our work suggests that they should also 

study the expected correlation between the energy market price and the energy production of the sites. 

This paper is devoted to wind energy investments, but our conclusions also apply to other types of 

renewable energy investments whose production is under regulation, such as that of the EU (EU’s 

Renewable Energy Directive 2009/28/EC). Our findings can lead to improvements in the wind farm 

site selection methods currently used by wind energy developers.  
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This research can be extended in several ways. For instance, it would be interesting to do a similar 

study using a larger sample with intraday data, if available, or to replicate our study for other EU 

countries. It would also be interesting to test whether the wind farms we identify here as “more 

valuable”, because they have a higher energy output price-quantity correlation, are indeed more 

valuable (profitable), if there is data is available.   
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