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ABSTRACT 

In a group of exploration prospects with common geological features, drilling a well reveals 

information about chances of success in others. In addition, oil prices vary during the exploration 

campaign and with them so do the economics of wells and the optimal decision to drill. With these 

dependencies and price dynamics, where do we drill first and what comes next given success or 

failure in previous wells? The solution to this valuation problem should compare the value of learning 

(drilling wells that provide information) with the uncertain value of earning (drilling wells that have 

large payoffs, yet uncertain). We calculate a joint distribution for geological outcomes by applying 

information-theoretic methods and construct a two-dimensional binomial sequence to represent a two-

factor stochastic price process. We then propose a Markov decision process that solves the optimal 

exploration problem. An Excel® VBA software implementation of this algorithm also accompanies 

this paper. 

1. INTRODUCTION 

Motivated by a petroleum exploration campaign in the Barents Sea, off the northern coasts of 

Norway, we came to revisit a solution to a prominent exploration problem. When prospects are 

geologically dependent, what is the optimal sequence of drilling? A discovery or a dry hole in one 

well will affect the chances of success in the neighbouring prospects, so the exploration decisions 

should consider informational synergies between prospects. Furthermore, drilling in arctic waters and 

then evaluating the findings takes a long time, perhaps up to a year. By then the economic valuations 

for the upcoming wells expire and a new round of analysis completely changes the drilling policy. 

The management faces a new problem; as variations in oil prices clearly change the optimal drilling 

policy, then what is the value of taking this exploration campaign and where should we drill first?  

An optimal exploration policy should take into account the geological dependencies; yet considering 

the recent downturn in the markets that deeply affected the exploration business, a policy cannot 

ignore the possible future variations in prices. The unpredictable changes in prices make this problem 

like a restless bandit with multiple correlated arms. The state of the system changes not only because 

of the decision maker’s actions, but also according to external, possibly random, factors. A solution to 

these problems is by solving the underlying Markov decision process (Puterman, 2014).  In this paper, 

we apply a stochastic model that describes the dynamics of prices, and devise an aggregate algorithm 

for solving a moderate-sized problem of ten exploration prospects. 

Similar problems, from developing pharmaceutical products to selecting R&D projects, benefit from a 

solution to the sequential exploration problem. When developing correlated compounds for products 

that arrive later in the market, or when selecting dependent projects with delayed outcomes, the 
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decision makers deal with restless bandits with correlated arms. They face a trade-off between earning 

(drilling high-value wells) and learning (drilling prospects with most valuable information), but then 

values are not stationary; they change by the next decision epoch. We believe our valuation algorithm 

could also be useful for these other applications.  

We rely on explicit definition of forward curves as the way of reflecting variability on project value. 

Contrary to the common belief, the value of discovering oil and gas is not a lump sum; it is the net 

present value of a stream of cash flows materializing perhaps years in the future. To show how project 

value varies with prices, we first need to show how the outlook of prices varies. In our model, we 

employ cash flow models for each well to estimate the effect of changing forward prices on the value 

of a discovery. Assuming oil prices follow the two-factor process of Schwartz and Smith (2000), we 

apply the discrete binomial formulation of Hahn and Dyer (2012) to represent prices in our Markov 

decision process. For a group of exploration prospects, we do the following: 

• We apply an information-theoretic approach, previously used in Bickel and Smith (2006), to 

generate a joint probability distribution incorporating marginal chances of success and 

geological dependencies. 

• We model prices as a two-factor price process (Schwartz and Smith, 2000), and use the 

approach in Hahn and Dyer (2012) to construct dual-binomial lattices. The cash flow model 

takes the forward curves originating from each node of the lattice and estimates the value of 

discovery with respect to varying prices. 

• We construct a Markov decision process representing the sequential exploration problem 

given the joint probabilities and binomial lattices. A recursive algorithm, incorporating 

transition probabilities and rewards from previous steps, returns the value of optimal 

sequential exploration. 

In this paper, we build on the strand of literature describing sequential exploration. Bickel and Smith 

(2006) discussed optimal exploration of six prospects, with outcomes “dry” or “wet”, using a dynamic 

programming model. This led to 36 = 729 states and the authors developed a spreadsheet model to 

handle the valuation. Bickel, Smith and Meyers (2008) extended the previous model to more intricate 

geological uncertainties, now three “layers” of uncertainty each could take “fail” or “success” states. 

Solving for five wells, their dynamic programming model had to handle around 59,000 states. Brown 

and Smith (2013) and Martinelli et al (2013) considered even larger problems, clusters of exploration 

prospects each containing many targets. They suggested approximate methods to address the curse of 

dimensionality. While these models are prevalent and insightful at early phases of screening, we 

believe the effect of well economics gains importance as decision makers proceed towards 

commitment to investments. Our valuation algorithm expands the model in Bickel and Smith (2006) 

and further includes the effect of stochastic prices on optimal decisions. We also provide a modular, 

open source software application that performs the valuation algorithm.  

Our work also contributes to valuation of real options and applications of the two-factor price model 

in Schwartz and Smith (2000); a model realistic enough to reflect the dynamics of prices in the 

markets and simple enough to provide decision insights. In the oil and gas industry, Jafarizadeh and 

Bratvold (2013 and 2015) simulated the two-factor price process to evaluate real options. Yet in our 

discrete Markov decision process, simulation will be prohibitive; we need a finite number of discrete 

states for prices. Originally developed to approximate Geometric Brownian motions by Cox et al 

(1979) and recently adapted by Hahn and Dyer (2008) for mean-reverting processes, binomial lattices 

are promising provisions to our sequential exploration model. We use the dual-binomial lattice 

developed by Hahn and Dyer (2012) to approximate the two-factor price process. 
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In the next section, we discuss the details of constructing dual binomial lattices for prices. Then in 

section 3, we use these lattices along with the joint geological probability distribution in a recursive 

algorithm that solves the Markov decision process. This section also has a brief description of the 

information-theoretic approach to calculate the joint probability distribution. In section 4, we describe 

how we implemented the valuation algorithm in Excel VBA. Using the software, we solve a problem 

with ten exploration targets, and perform sensitivity analyses that support decisions (with more details 

about the software and example in appendices).    

2. TWO-DIMNESIONAL LATTICE OF PRICES 

In sequential exploration, we constantly compare the value from drilling with the value of learning; 

both depend on the price-driven expected future cash flows. Our models of price behaviour, whether a 

random walk process as in earlier studies, or a mean reverting model as in common industry’s opinion 

and favoured by more recent studies, will have direct impact on the optimal sequential decisions. In 

this paper, we use the realistic, yet simple two-factor price process in Schwartz and Smith (2000) to 

describe the dynamics of prices.  

The two-factor model assumes the prices are mean reverting and converge to a varying equilibrium 

price1. The equilibrium, a random walk process itself, alters as a result of depleting resources or 

technological and political changes, while short-term deviations from this equilibrium, perhaps a 

result of temporary disruptions in supply, tend to disappear by time and follow an Ornstein-Uhlenbeck 

process. It is easier to think of this model as two nested processes for 𝜒𝑡, the short-term factor, and 𝜉𝑡, 

the long-term factor, where the spot price, 𝑆𝑡 is defined as ln 𝑆𝑡 = 𝜒𝑡 + 𝜉𝑡 and 

𝑑𝜒𝑡 = −𝜅𝜒𝑡𝑑𝑡 + 𝜎𝜒𝑑𝑧𝜒 (1) 

𝑑𝜉𝑡 = 𝜇𝜉𝑑𝑡 + 𝜎𝜉𝑑𝑧𝜉  (2) 

In the above equations, 𝜅 is the rate of mean-reversion, 𝜇𝜉 is the trend, 𝜎𝜒 and 𝜎𝜉 are the volatilities 

for short- and long-term factors, and 𝑑𝑧𝜒 and 𝑑𝑧𝜉 are the correlated increments of the standard 

Brownian motion processes with 𝑑𝑧𝜒𝑑𝑧𝜉 = 𝜌𝜒𝜉𝑑𝑡. 

For our Markov decision process, we need a representation of the above continuous diffusions in 

discrete sequences. The method in Hahn and Dyer (2012), based on a general approach in Nelson and 

Ramaswamy (1990), generates a two-dimensional binomial sequence that is simple and general for 

our purpose, and is not limited by gird size or the range of parameter values2. In this formulation, four 

branches originate from each node at each discrete period, two states for each price factor, resulting in 

a dual binomial recombining lattice. 

Assuming log of price at a specific node is 𝜉𝑡 + 𝜒𝑡, the four states (and transition probabilities to each 

state) for the next epoch will be 

State for ln 𝑆𝑡 Probability  

𝜉𝑡 + 𝛥𝜉 + 𝜒𝑡 + 𝛥𝜒 𝑝𝑢𝑢 (3) 

                                                      
1 This model is in fact exactly equivalent to the stochastic convenience yield model of Gibson and Schwartz 

(1990). Mean-reversion as an appropriate assumption for commodities is discussed in e.g. Laughton and Jacoby 

(1993), Cortazar and Schwartz (1994), and Dixit and Pindyck (1994). Schwartz (1997) discusses mean-

reversion in stochastic price models and their ability to price existing future contracts, as well as financial and 

real assets.  
2 Previous attempts to discretize two-factor price diffusions, notably the dual trinomial lattice approach in Hull 

and White (1994) or the improved version of Tseng and Lin (2007), worked only under a specific range of 

correlation values and had computational limitations.   
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𝜉𝑡 + 𝛥𝜉 + 𝜒𝑡 − 𝛥𝜒 𝑝𝑢𝑑 (4) 

𝜉𝑡 − 𝛥𝜉 + 𝜒𝑡 + 𝛥𝜒 𝑝𝑑𝑢 (5) 

𝜉𝑡 − 𝛥𝜉 + 𝜒𝑡 − 𝛥𝜒 𝑝𝑑𝑑 (6) 

Where the increment for each factor is  

𝛥𝜉 = 𝜎𝜉√∆𝑡 (7) 

𝛥𝜒 = 𝜎𝜒√∆𝑡 (8) 

The probabilities of moving to each state, 𝑝𝑢𝑢 to 𝑝𝑑𝑑, are easier to calculate if we consider them as 

joint probabilities, the product of marginal probability of a move in 𝜉𝑡 and a conditional probability of 

a move in 𝜒𝑡. For example, 𝑝𝑢𝑢 = 𝑝𝑢 × 𝑝𝑢|𝑢 where 𝑝𝑢 is the marginal probability of “up” move in the 

long-term factor and 𝑝𝑢|𝑢 is the conditional probability of “up” move in the short-term factor. The 

marginal and conditional probabilities for four transitions are  

𝑝𝑢 = ½ +
𝜇𝜉𝛥𝑡

2𝛥𝜉
 (9) 

𝑝𝑑 = 1 − 𝑝𝑢 (10) 

𝑝𝑢|𝑢 =
∆𝜉(𝛥𝜒 + ∆𝑡𝜈𝜒) + ∆𝑡(𝛥𝜒𝜇𝜉 + 𝜌𝜎𝜉𝜎𝜒)

2𝛥𝜒(𝛥𝜉 + ∆𝑡𝜇𝜉)
 (11) 

𝑝𝑑|𝑢 =
∆𝜉(𝛥𝜒 − ∆𝑡𝜈𝜒) + ∆𝑡(𝛥𝜒𝜇𝜉 − 𝜌𝜎𝜉𝜎𝜒)

2𝛥𝜒(𝛥𝜉 + ∆𝑡𝜇𝜉)
 (12) 

𝑝𝑢|𝑑 =
∆𝜉(𝛥𝜒 − ∆𝑡𝜈𝜒) − ∆𝑡(𝛥𝜒𝜇𝜉 − 𝜌𝜎𝜉𝜎𝜒)

2𝛥𝜒(𝛥𝜉 + ∆𝑡𝜇𝜉)
 (13) 

𝑝𝑑|𝑑 =
∆𝜉(𝛥𝜒 + ∆𝑡𝜈𝜒) − ∆𝑡(𝛥𝜒𝜇𝜉 + 𝜌𝜎𝜉𝜎𝜒)

2𝛥𝜒(𝛥𝜉 + ∆𝑡𝜇𝜉)
 (14) 

We assumed 𝜈𝜒 = −𝜅𝜒𝑡 to simplify the equations. Furthermore, because equations (11) to (14) 

sometimes generate unacceptable results, we bound the probabilities for short-term factor between 

zero and one using the equation 𝑝 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 = max(0, min(1, 𝑝 𝑢𝑛−𝑏𝑜𝑢𝑛𝑑𝑒𝑑)). 

This will result in a dual binomial lattice for evolution of spot prices. At each node, the short- and 

long-term factors each can have an “up” or “down” tick, resulting in two connected binomial 

sequences. Although more comprehensible in three dimensional plots, we can still show the results in 

the lattice of figure 1 assuming four branches originate from each node and using parameter values in 

table 1. Here for example 𝑆1
++ = 𝑒𝜉0+𝛥𝜉+𝜒0+𝛥𝜒 represents a move in spot price from 𝑡 = 0 to 𝑡 = 1 

where both the short- and long-term factors have up ticks. The quadrinomial lattice shown in black 

solid lines generates four price states at 𝑡 = 1 and nine at 𝑡 = 2.    

Table 1 Parameter values for the two-factor price process  

Parameter of the process Value 

𝜒0 0.15 

𝜅 0.8 

𝜎𝜒 15% 

𝜉0 4.1 

𝜇𝜉 0 
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𝜎𝜉 20% 

𝜌𝜉𝜒 0.3 

 

Spot prices are often irrelevant to the economics of exploration decisions as expected cash flows of 

these projects appear years into the future. Instead, we are interested in the information that spot 

prices provide about the future trends. Forward curves provide such information by showing a riskless 

expectation of future price trends, and as in Jafarizadeh and Bratvold (2013 and 2015), can be 

theoretically reconstructed at each node of the lattice using the assumptions from the two-factor 

process. The relationship between forward prices and parameters of the process is 

ln 𝐹𝑡,𝑇 = 𝑟−𝜅(𝑇−𝑡)𝜒𝑡 + 𝜉𝑡 + 𝜇𝜉(𝑇 − 𝑡)

+ ½ ((1 − 𝑒−2𝜅(𝑇−𝑡))
𝜎𝜒

2

2𝜅
+ 𝜎𝜉

2(𝑇 − 𝑡) + 2(1 − 𝑒−𝜅(𝑇−𝑡))
𝜌𝜉𝜒𝜎𝜉𝜎𝜒

𝜅
) 

(15) 

 

Figure 1 Dual binomial lattice showing the dynamics of spot prices (dark solid lines) and resulting forward 

curves (dashed lines). The line in solid red is the forward curve fitted to the observed forward prices at 𝒕 = 𝟎. 

Originating from each node of the lattice in figure 1, the dashed lines in red represent the theoretical 

forward curves. When 𝑡 = 0, the theoretical forward curve (shown in solid red) fits the observed 

forward prices in the market. Later on, as spot prices vary in the lattice, so do the corresponding 

forward curves. By 𝑡 = 2 we will have a variety of curves from contango, e.g. the curve originating 

from the node 𝑆2
−−−−, to normal backwardation as in the curve originating from 𝑆2

++++.   

3. VALUATION ALGORITHM 

The sequential exploration problem resembles a restless multi-armed bandit with dependent arms 

(Puterman, 2014). Drilling each well provides information about chance of geological success in other 

locations. Yet, economic success is a matter of success in geology and a good price outlook. Wells 

that seem economically viable now may become uneconomical by the end of period because the 

forward curve moved to an unfavourable position. The solution is to make drilling decisions by 

considering both the geological learning and the stochastic property of prices.  

The next section discusses a method of integrating geological dependencies in the decision model. We 

then incorporate these dependencies along with dual binomial sequence of prices into a Markov 

decision process for the grand problem.  
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3.1. A Joint Probability Distribution for Geological Success 

We use the Kullback-Leibler method of relative entropy, introduced by Jaynes (1968) and applied in 

Bickel and Smith (2006), to generate a joint probability distribution of geological outcomes. If 𝒘 =

(𝑤1, … , 𝑤10) is a vector of ten binary random variables for our wells (e.g. 𝑤5 = 1 represents 

discovery in well 5), then we would like to construct a joint probability distribution 𝜋(𝒘) that reflects 

all the information at hand. The information-theoretic method utilizes the available information 

(chances of success for wells and geological correlations) and maximizes the relative entropy 

between 𝜋(𝒘) and a reference distribution 𝜋0(𝒘) that assumes independence. The result of this 

optimization 𝜋∗(𝒘) is a joint probability distribution that manifests the individual chances of success 

along with geological dependencies. 

To calculate  𝜋∗(𝒘) we need to solve a large optimization problem with a large set of constraints3 that 

may not be manageable in spreadsheet solvers. Instead, Bickel and Smith (2006) offer a workaround; 

a simplification based on the Lagrangian dual of the problem. If the marginal chance of success for 

each well is 𝑝𝑖 ≡ 𝑝(𝑤𝑖 = 1) and the joint pairwise probabilities are 𝑝𝑖𝑗 ≡ 𝑝(𝑤𝑖 = 1, 𝑤𝑗 = 1) then the 

Lagrangian dual of the optimization problem is 

max
𝜆

(− ∑ 𝜋∗(𝒘, 𝝀)

𝒘

+ 𝜆0 + ∑ 𝜆𝑖𝑝𝑖

𝑖

+ ∑ 𝜆𝑖𝑗𝑝𝑖𝑗

𝑖,𝑗

) (16) 

Where 𝜆0 is the unit multiplier,  𝜆𝑖 and 𝜆𝑖𝑗 are the Lagrangian multipliers associated with 𝑝𝑖 and 𝑝𝑖𝑗, 

and the vector 𝝀 represents all these elements. This problem has only 1 + 𝑛 + 𝑛(𝑛 − 1) 2⁄  variables 

and no constraints. For our ten-well problem, the automated Excel® Solver in VBA reaches a solution 

for this optimization within a few seconds. 

3.2. A Markov Decision Process 

Assuming we have specified the geological probability distribution and dual-binomial price ticks, 

determining optimal drilling strategy may seem straightforward. As in figure 2, the decision to drill 

well 5 at the outset of the exploration program depends on its probability of success, the probability of 

price moves in the next period, and expected conditional value of drilling the remaining wells over the 

next nine decision periods. This decision tree, however, turns out to become unmanageably large in its 

complete form, with almost four quadrillion end-nodes4.   

                                                      
3 For our ten well application, there will be 1024 unknown joint probabilities (2𝑛, 𝑛 = 10) and 56 constraints 

(1 + 𝑛 + 𝑛(𝑛 − 1) 2⁄ , 𝑛 = 10). Bickel and Smith (2006) explain the details of Kullback-Leibler procedure and 

its Lagrangian dual. 
4 In the first decision epoch, we have 10 alternative wells each with 2 geologic outcomes and 4 price moves. The 

next epoch has 9 wells, each with 8 outcomes. Continuing this trend we will have 10! × 810 total outcomes. 
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Figure 2 A partial decision tree showing the decisions and uncertainties in a sequential exploration problem  

We can simplify this decision model by considering the fact that multiple end-nodes associate with 

identical information and future cash flows. For example, if we were successful in well 5 and then 

failed when we drilled well 8, the future geological probabilities are going to be the same regardless 

of the order in which we drilled the wells. The price at that point in time is also independent of its 

historical path; the forward curve we use to evaluate cash flows will only be a function of spot price. 

We describe the Markov decision model that draws on this recombining feature. 

We use a recursive algorithm, similar to the logic of solving a decision tree, to infer the optimal 

drilling decisions. In the final decision epoch, all wells except for one have been drilled. The decision 

to drill this last well depends on its conditional probability of success given the previous outcomes as 

well as its expected cash flows given the four prevailing forward curves at that point. After we 

determined the optimal decision for the scenarios of last epoch, we move backwards and calculate the 

optimal action in previous epochs. The transition probabilities (the probability of moving from one 

state to another at each decision epoch) will be composed of conditional geological probabilities and 

probabilities for price ticks. 

To describe the state of wells at each decision epoch, we define 𝝎 = (𝜔1, … , 𝜔𝑖, … 𝜔10), where 𝜔𝑖 =

 “0”, “1” or “–”. Here, “0” means “failure”, “1” means “success”, and “–” represents the case where 

the well has not been drilled yet. With this notation, 𝝎 = (−, 0, 1, −, … , −) for example represents the 

state where we have drilled well 2 and 3, well 2 was a dry hole and well 3 was a success. Also, as we 

can only drill one well per epoch, the available eight alternatives at this state are all the wells except 

well 2 and 3. 

The recursive algorithm selects the well that yields the highest expected value given the conditional 

chance of success and price levels. In fact, the algorithm looks beyond the immediate drilling results 

and considers the expected payoff that follows consequent to this drilling decision—we refer to this as 

the continuation value for price 𝑆 and denote it by 𝑣𝑆(𝝎). 

If we are in state 𝝎 and well 𝑖 is not drilled yet (therefore 𝜔𝑖 =“–”), the expected value for well 𝑖, the 

NPV of future cash flows given that we observe price 𝑆 and drill well 𝑖, is denoted by 𝑣𝑖
𝑆(𝝎). This 

value depends on the expected future value of discovery at the current price level (𝑑𝑖
𝑆), failure (𝑓𝑖), 

and the continuation value at the next period’s four price levels. In other words 

𝑣𝑖
𝑆(𝝎) = P(𝝎𝑖

1|𝝎) (𝑑𝑖
𝑆 + 𝛿 (𝑝𝑢𝑢𝑣𝑆++(𝝎𝑖

1) + 𝑝𝑢𝑑𝑣𝑆+−(𝝎𝑖
1) + 𝑝𝑑𝑢𝑣𝑆−+(𝝎𝑖

1) + 𝑝𝑑𝑑𝑣𝑆−−(𝝎𝑖
1))) (17) 
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+P(𝝎𝑖
0|𝝎) (𝑓𝑖 + 𝛿 (𝑝𝑢𝑢𝑣𝑆++(𝝎𝑖

1) + 𝑝𝑢𝑑𝑣𝑆+−(𝝎𝑖
1) + 𝑝𝑑𝑢𝑣𝑆−+(𝝎𝑖

1) + 𝑝𝑑𝑑𝑣𝑆−−(𝝎𝑖
1))) 

 

Moreover, the continuation value for state 𝝎 is the maximum expected value for all drilling 

alternatives 

𝑣𝑆(𝝎) = max
𝑖

(0, 𝑣𝑖
𝑆(𝝎))      for all un-drilled 𝑖 (18) 

In the above equations 𝛿 =
1

(1+𝑟)∆𝑡 is the discount factor for rate 𝑟 and the length of time between 

decision epochs ∆𝑡. Also, 𝝎𝑖
1 is identical to 𝝎 except that 𝑤𝑖 = 1, and 𝝎𝑖

0 is identical to 𝝎 except 

that 𝑤𝑖 = 0. Here 𝑣𝑆++(𝝎𝑖
1) for example refers to the optimal value of 𝝎𝑖

1 if both short- and long-

term factors of prices go up in the next period. 

We determine the geological transition probabilities P(𝝎𝑖
1|𝝎) and P(𝝎𝑖

0|𝝎) using our knowledge of 

the total probability distribution 𝜋∗(𝒘) calculated in the previous section. If 𝑃(𝝎) is the probability of 

state 𝝎, it is calculated by summing up 𝜋∗(𝒘) over all possible scenarios for the unknown events. For 

example if 𝝎 = (−,0,1, −, −,0,0,1,1,1), then 

𝑃(𝝎) = ∑ 𝜋(𝑤1, 0,1, 𝑤4, 𝑤5, 0,0,1,1,1)

𝑤1,𝑤4,𝑤5

 (19) 

Where 𝑤, 𝑤4 and 𝑤5 range over {0, 1}. The probability of success and failure for well 𝑖 conditional on 

the state 𝝎 (The transition probabilities, where well 𝑖 has not yet been drilled and 𝜔𝑖 = “–”) would be 

Prob(𝝎𝑖
1|𝝎) =  Prob(𝝎𝑖

1) Prob(𝝎)⁄  and Prob(𝝎𝑖
0|𝝎) = Prob(𝝎𝑖

0) Prob(𝝎)⁄ , respectively. 

3.3. Calculating Immediate Cost and Reward 

The recursive algorithm of the previous section assumes we receive the immediate reward 𝑑𝑖
𝑆 if 

drilling well 𝑖 leads to discovery, or would have to pay the immediate cost−𝑓𝑖 if our action leads to a 

dry hole. Assuming immediate realization of these values is in fact inaccurate in the context of 

sequential petroleum exploration as any loss or benefit (specifically benefit) will appear years into the 

future. For example, following discovery of oil or gas, appraisal and field development activities may 

take considerable time before production revenue starts. For this reason, in our formulation we use the 

then-expected net present value of discovery or dry hole. 

Using the prevailing forward curve at the time of discovery to estimate production cash flows, and 

discounting the net cash flows (after deductions) to the time of discovery using a risk-free discount 

rate, we perform valuations in the risk-neutral paradigm. This approach to valuation, as discussed in 

Smith and Nau (1995) and implemented for exploration projects in Jafarizadeh (2017), conforms to 

the assumptions of the price process and the Markov decision model, and generates consistent 

valuations. Assuming 𝐹𝑡,𝜏
𝜉𝑡 ,𝜒𝑡, 0 < 𝜏 is the forward price with maturity 𝜏 originating from a node of the 

lattice with price elements 𝜉𝑡 and 𝜒𝑡, 𝑞𝑖
𝜏 and 𝑐𝑖

𝜏 are respectively the production and cost for well 𝑖 

during period 𝜏, and ∆𝑡 the time granularity of the problem  

𝑑𝑖
𝑆 = ∑

𝐹𝑡,𝜏
𝜉𝑡 ,𝜒𝑡𝑞𝑖

𝜏 − 𝑐𝑖
𝜏

(1 + 𝑟)𝜏

𝑛

𝜏=0

 (20) 

 

In the above equation, 𝑟 is the risk-free interest rate and 𝑛 is the length of project given discovery.  
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4. APPLICATION AND RESULTS 

The algorithm in section 3 is beyond manual calculations and even laborious in spreadsheets, yet it 

may be efficiently implemented using array programming5. Our Excel VBA program uses large three-

dimensional arrays to enumerate the states in the price lattice and Markov decision model. The 

program performs the optimization of the information-theoretic method using Excel Solver, and has 

built-in functions and subroutines to generate forward curves and calculate the associated net present 

values. Finally, the recursive algorithm processes on the elements of the arrays and generates the 

results. Appendix B explains the modules and their relationships in this program. 

4.1. Implementation in Excel® VBA 

The software follows the methodology we discussed in sections 2 and 3. It constructs three-

dimensional arrays for 𝜒𝑡 and 𝜉𝑡, specifically, 𝝌(10,10,10) and 𝝃(10,10,10) where the first 

dimension shows the time steps, the second shows the changes in short-term factor, and the third 

shows the changes in long-term factor. The sum of these two arrays will reveal the log of prices for 

each state and each time-step. We then construct a forward curve for each element of this array and 

calculate 𝑑𝑖
𝑆 (NPV given discovery) in an array 𝒅𝑖(10,10,10) for each well 𝑖. 

Similar arrays store information about joint and conditional probabilities to be used in the Kullback-

Leibler optimization procedure. In the end, after enumerating states, the recursive algorithm 

culminates in processing an array of 𝑽(59049,10,10) to store 𝑣𝑆(𝝎) and similar sized arrays to 

store 𝑣𝑖
𝑆(𝝎) for each state of each well. The first dimension of these arrays shows the total number of 

scenarios for ten wells when each can take three states “0”, “1” or “–”, a total of 310 scenarios. The 

second and third dimensions show the variations in value due to variations in short- and long-term 

factors of prices. Applying the recursive algorithm on these arrays takes the bulk of processing time; a 

ten-well example takes approximately three to five minutes of CPU time to evaluate. Appendix B 

provides more details on the structure of this software. 

A feature of this modularized program is its applicability and versatility. This open source code is 

composed of general modules; each accomplish a specific task and can effectively operate in other 

contexts. To show how this works, we organized the modules, with minimal programming effort, into 

sensitivity analysis subroutines. The next section shows how the program solves a complex 

exploration and how these subroutines can produce useful decision insights. 

4.2 Example 

We return to our arctic-circle exploration problem; a large, multi-prospect play with subsurface 

dependencies that requires a long time span to explore. The management believes that, with available 

resources, drilling a well and then analysis and interpretation of results will take at least a year. 

Assuming all wells require the same amount of resources, a complete exploration of this region would 

perhaps take a decade. In the meantime, dramatic variations in prices could sway the optimal policy. 

Hence, although at prevailing price projections the prospects are marginally uneconomical, the 

decision makers are interested in the expected value that an aggregate optimal exploration policy 

would bring about. 

                                                      
5 Although this application seems ideal for array programming languages, it is arguably not the ideal choice for 

users in academia and industry. For example, MATLAB® implementations of valuation algorithms (e.g. 

exploration waiting option in Jafarizadeh and Bratvold, 2015) are hampered by prohibitively high software 

license fees and scarce availability of programming skills. Yet Microsoft Excel is perhaps the platform of choice 

for small and medium scale analysis tasks in industry and dissemination of an open-source VBA application 

may be more beneficial. 
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Applying our valuation algorithm along with the assumptions about price process and geological 

correlations (with more details in Appendix A) reveals that the optimal sequential exploration of this 

region would have a significant positive expected value. In other words, while each prospect was not 

economically viable in isolation, a sequential drilling that considers both prices and geological 

learning would become a sound investment. Considering the value of information and price option 

makes all the difference. 

Figure 3 shows the valuation in three different versions; first, ignoring geological dependencies and 

variability of prices leads to the value of zero. Next, we assume prices vary. When prices follow a 

two-factor process, the expected value of the exploration play becomes positive. Finally, we include 

geological dependencies and notice another increase in valuation. 

 

Figure 3 Expected value of sequential exploration. Although values are not additive, in this example geological 

dependencies and variability of oil prices almost equally drove the total value 

Using the sensitivity analysis subroutine, we can take our valuation further by showing how key 

factors affect the value of sequential exploration. The univariate sensitivity analyses in figure 4 reveal 

that, for example, everything else unchanged, higher discount rates result in significantly reduced 

expected values.  

 

Figure 4 One-way sensitivity analysis graphs 

For correlated inputs, perhaps multi-way sensitivities are more insightful. In a two-way analysis of 

price volatility (figure 5), we notice that value is much more sensitive to 𝜎𝜉, the volatility in the long-

term factor. This is perhaps because of the long-term nature of investing in sequential exploration. 

With one-year intervals between drilling, the campaign takes almost ten years to conclude. 

Furthermore, production revenue of any discovery will take years to materialize. 
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Figure 5 Sensitivity analysis of value with respect to volatility in long- and short-term price factors 

In a more comprehensive analysis, we can even gain insight on the interlinked nature of price options 

and geological learning. Effectively a large number of parameters influence the expected value: these 

include individual project parameters, development solution given discovery, the price process and 

shape of the forward curves, and the configuration of prospect and their pairwise correlation. While 

evaluating the effect of such large variable set is prohibitive, we could still identify key elements and 

examine their effect. 

In general, we expect higher price volatility and stronger geologic correlations to generate higher 

values. So what is the minimum volatility that makes a group of exploration targets (with a common 

correlation, 𝜌) valuable? In other words, we are looking for break-even volatility given various levels 

of common correlation. We can run the valuation algorithm for this group of targets and vary the price 

volatilities 𝜎𝜒 and 𝜎𝜉 (while keeping all other parameters fixed) until we reach 𝑣𝑆0(𝝎) = 0. This 

would be the minimum 𝜎𝜒 or 𝜎𝜉 to have a positive value for sequential exploration. A simple goal-

seeking routine expedites the process. Figure 6 shows combinations of break-even volatility and 

common geologic correlation at specific spot price scenarios. 

 

Figure 6 Sensitivity analysis of value with respect to price and average geological correlation; each contour line 

represents combinations of 𝝈𝝃 and 𝝆 (solid lines) or 𝝈𝝌 and 𝝆 (dashed lines) that make 𝒗𝑺𝟎(𝝎) = 𝟎 at a specific 

spot price.    

In addition to a value estimate, we can also determine the starting well in this optimal sequence of 

decisions. Because in this valuation, the interactions between geological learning and stochastic prices 
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are intricate, a complete strategy map would neither be feasible nor beneficial for decision makers. 

However, running the software at any point in time and learning about the next well in the optimal 

strategy would be enough to make value-maximizing decisions.  

5. CONCLUSIONS 

This paper provides an algorithmic solution to the Markov decision process of sequential exploration. 

We combine the simplicity of binomial lattices with the power of recursive solutions and implement 

our method in an effective computer application. Furthermore, we solve a problem of sequential 

exploration consisting of ten wells and show how sensitivity analyses can provide deeper insights into 

exploration decisions. We integrate all the modelling tools in a single package but note that each can 

also work independently; for example, the subroutine for binomial lattice is also suitable for valuation 

of commodity options, the embedded functions for forward curve work elsewhere within the 

spreadsheet, and the recursion subroutine can be adopted in other restless bandit problems. 

Our valuation model is not limited to applications in the oil and gas industry. Comparable problems, 

for example developing drugs from common compounds in the pharmaceutical industry or sequential 

R&D projects, have similar characteristics. In these problems, once the relationship between value of 

a project and market uncertainties are understood, the applications of the model is effortless.  

Finally, we note an extension of the problem that can readily use this evaluation framework. In some 

contexts, individual discoveries may be too small to justify a development solution. Success in two or 

more wells could be bundled in a project that uses common production and export facilities to drain 

this cluster of discoveries. We can adjust the rewards for our Markov decision process and handle 

these functional synergies. The modifications of the code should also be straightforward.  

The Excel® VBA software is available at the following link 

https://www.dropbox.com/s/mrtr5tkl7ow2khr/Sequential_Exploration%202.1.xlsm?dl=0 
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APPENDIX A: PETROLEUM EXPLORATION VALUATION 

This appendix provides more details on the example of sequential exploration. Assume we have 

identified ten exploration prospects in a frontier region. Each well could be a “discovery” or “dry 

hole” and its outcome will likely affect the probabilities in other prospects. The value of a well given 

“dry hole” is the present value of its drilling cost, while value given “discovery” is the net present 

value of all its costs and expected production revenue. Table 2 shows the information about each well 

at current price levels 

Table 2 information about exploration wells in the example 

 
Chance of 
Success 

Value given 
“Success” 

Value given 
“dry” 

Expected 
Value 

Well 1 0.25 859 - 300 - 10 

Well 2 0.2 1596 - 400 - 1 

Well 3 0.25 752 - 300 - 37 

Well 4 0.3 795 - 350 - 6 

Well 5 0.2 1585 - 400 - 3 

Well 6 0.15 2065 - 400 - 30 
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Well 7 0.3 882 - 400 - 15 

Well 8 0.25 882 - 350 - 42 

Well 9 0.3 834 - 400 - 30 

Well 10 0.33 749 - 400 - 21 

 

These wells are not attractive in isolation. Their negative expected value shows that with current level 

of information, they will not create value. However, geologists in the company believe the wells are 

geologically dependent according to table 3 

Table 3 Geological correlations 

Wells↓→ 1 2 3 4 5 6 7 8 9 10 

1 1 0.1 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.2 

2  1 0.2 0.3 0.4 0.3 0.3 0.4 0.3 0.3 

3   1 0.1 0.2 0.1 0.1 0.2 0.4 0.4 

4    1 0.1 0.2 0.1 0.2 0.2 0.2 

5     1 0.1 0.3 0.4 0.3 0.3 

6      1 0.1 0.2 0.1 0.1 

7       1 0.2 0.1 0.1 

8        1 0.2 0.2 

9         1 0.3 

10          1 

  

APPENDIX B: SOFTWARE DETAILS 

This section describes the operation of the Excel® VBA functions and subroutine. In brief, the 

software collects data from the spreadsheet and performs the Kullback-Leibler procedure on 

probabilities and correlations. It then constructs the double-binomial lattices for prices and outcomes, 

and finally, carries out the recursive algorithm. The result of these tasks is the value of group of 

prospects under the optimal exploration strategy. 

As discussed before, the generalized modules in the program each perform a specific task and then 

pass the necessary arguments to the next units. This open-source structure allows users to manipulate 

and construct other special-purpose programs such as the sensitivity analysis subroutine we discussed 

in section 4. This appendix expands on this modular structure and provides further details on the 

specific functions and subroutines. 

The program is composed of two main subroutines, “DP Main” and “KL Main”, that act like control 

centres; they have module-level variables that pass to other subroutines to perform tasks. In the first 

stage, “KL Main” calls a subroutine that collects the input data from the spreadsheet. All the data is 

stored in arrays and then passed to the subroutine that performs the Kullback-Leibler optimization 

using Excel’s Solver. The result is the joint probability distribution that is given to “DP Main” 

subroutine that solves the Markov decision process using our recursive algorithm. In fact, this second 

stage in the program calls subroutines that generate price lattice and the scenario probabilities, and 

passes these results to a subroutine called “DP Recursion” that performs the recursive valuation 

algorithm. The result of this process is the value of the optimal sequential strategy.  
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Figure 7 Software’s modules and their structure  

The above flow chart shows the structure of the program and the series of tasks that the subroutines 

perform. Each subroutine may also utilize functions (not shown in the flowchart) that perform part of 

the processing. Table 2 shows a list of functions and subroutines in this software. 

Table 4 list of functions and subroutines 

Name Type Task 

FCURVE() Function Returns the forward price 𝐹0,𝑇 based on parameters of the two-

factor price process and time to maturity 𝑇.  

Puthenu() Function Returns the conditional probability 𝑃 𝑢|𝑢 in a dual lattice 

Puthend() Function Returns the conditional probability 𝑃 𝑑|𝑢 in a dual lattice 

Pdthenu() Function Returns the conditional probability 𝑃 𝑢|𝑑 in a dual lattice 

Pdthend() Function Returns the conditional probability 𝑃 𝑑|𝑑 in a dual lattice 

KL Main Subroutine Main subroutine for Kullback-Leibler procedure 

Data Collection Subroutine Collects input data from the spreadsheet and stores it in 
arrays. 

KL Solution Subroutine Converts the correlations to pairwise joint probabilities, then 
arranges probabilities into arrays, transforms the arrays to the 
spreadsheet and runs the Excel Solver to complete the KL 
procedure.  

DP Main Subroutine Main subroutine for solving the Markov decision process 

DP Price Subroutine Constructs the three-dimensional arrays to represent the 
binomial lattice for 𝜒𝑡 and 𝜉𝑡. It then generates a forward curve 
for pairs of 𝜒𝑡 and 𝜉𝑡 and calculates the then-NPV of discovery 
for each well. 

DP Probability Subroutine Uses the joint probability matrix generated in previous stage 
and constructs the array for probability scenario.  

DP Recursion Subroutine Uses arrays generated in previous stages and performs the 
backward recursion algorithm. Then returns the value of 
optimal sequential drilling and the first well in the sequence. 

 

 


