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Abstract 

We derive a multi-factor duopoly real option game model which optimizes the timing of new 
technology adoptions when there is uncertainty about market revenue, technological progress and 
operating efficiency after adoption. This last feature of our model has not yet been addressed in the 
real options literature. We find analytical solutions for the firms’ value functions and analytical or 
numerical solutions for the investment thresholds of various alternative scenarios. We conclude that 
positive changes in the probability of technological progress sharply reduces the follower’s sensitivity 
to changes in the leader’s first mover advantage and, somewhat surprisingly, that for moderately low 
probability of a new technology arrival, market and operating efficiency uncertainty are no longer 
relevant factors determining the investment behaviour of the rival firm.  
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1. Introduction 

When should a leader adopt a new uncertain technology, if there is market and operating efficiency 

uncertainty?  What is the real option value for a leader/follower with an investment opportunity to 

invest in alternative new technologies, when both technologies are available, or when only the slightly 

less efficient technology is currently available? 

Firms face various types of uncertainties while evaluating new technology investments. The most 

common is market revenue uncertainty which is related to the unpredictability of the market demand 

and/or price changes, but often there is also operating efficiency (technical) and technological 

uncertainty which represent, respectively, the uncertainties related to the performance of the 

technology after the adoption and the arrival of new and more efficient technologies which makes the 

adopted technology (at least partially) obsolete. In this paper, we consider the simultaneous effect of 

market, technical and technological uncertainty on the timing of investments, for a leader-follower 

duopoly market. We provide analytical or quasi-analytical solutions for the optimal investment 

thresholds of the two firms, for various alternative investment scenarios, considering that 

technological uncertainty holds or is absent. 

Suppose that two firms are considering the construction of a new production facility which can either 

be based on a technology that is in the market (tech 1) or a new technology that may arrive at a not 

yet know date (tech 2). Firms face symmetric market demand, and price and technological 

uncertainty, but asymmetric technical uncertainty due to the learning effect. More specifically, tech 

2 is more advanced than tech 1 and so more efficient, with the efficiency after adoption (EAA) of the 

two technologies increasing at a constant rate over time due to learning effect. Therefore, for any 

given time t, with 𝑡 ∈ [0,∞), the EAA of the tech 1 or tech 2, if adopted, is higher for the leader than 

is for the follower, resulting in a first-mover market share advantage. It is also assumed that firms 
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play a “one-shot” investment game - i.e., they adopt either tech 1 or tech 2, depending on which of 

these strategies is the best.  

An industry we have studied, natural gas fracking in the U.S., has some of the characteristics we seek 

to model, with substantial market volatility (both in prices and quantity produced), technical 

efficiency as frackers disclose periodic shifts in the quantity of gas developed per investment dollars, 

and also the periodic reduction in operating costs over time, as drillers become more experienced. 

Typically, each of the eight substantial independent frackers discloses regularly thousands of new 

development well investment opportunities (over one billion dollars), and the resulting quantity of 

reserves developed, and average operating costs for those completed investments.  Each independent 

fracker offers guidance for develop opportunities and expectations over the next year, implying 

expected investment cost, expected future net cash flows, and operating efficiency levels.  Finally, 

dramatic new technologies have transformed this industry into one of the U.S. energy success stories, 

with greater horizontal drilling, deeper wells, and greater volume developed per investment costs.3   

McDonald and Siegel (1986), and Sick (1989) consider value and investment cost uncertainties for 

monopolies, and with Smets (1993) for duopolies, followed by Dixit and Pindyck (1994), Huisman 

(2001), Weeds (2002), Pawlina and Kort (2006) and Moretto (2008), among others. For monopoly 

markets, Murto (2007) studies the effect of revenues and technological uncertainty on the adoption 

of a new technology, where the arrival date of more advanced technologies is governed by a Poisson 

distribution. Grenadier and Weiss (1997) study the optimization of sequential investment 

opportunities due to technology innovations, where the value and the arrival of the innovations follow 

geometric Brownian motion (gBm) processes. Smith (2005) studies the simultaneous effect of 

revenue and investment cost uncertainty in the adoption of two complementary technologies, relating 

the cost uncertainty with technological progress.  

                                                
3 We will be pleased to supply our comparisons of eight independent frackers over the past few years.  
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For duopoly markets, Huisman (2001, ch. 9) studies the combined effect of revenue and technological 

uncertainty and shows that the timing optimization of investments is affected by the probability that 

a second technology becomes available. Paxson and Pinto (2005) study the effect of price and quantity 

uncertainty on firms’ investment behaviour using similarity arguments.  Armada et al. (2013) also 

consider price and quantity uncertainty without relying on similarity arguments.  Azevedo and Paxson 

(2018) extend Smith (2005) model by considering duopoly rivalry. For a literature review on real 

option game models see Azevedo and Paxson (2014). 

Technical uncertainty can also be related to the unpredictability of the investment cost, due to the 

complexity, size or other physical difficulties to concluding a project, following the Pindyck (1993) 

framework. It is usually modelled either as a unique source of uncertainty or in combination with 

market uncertainty.  

We study the simultaneous effect on the investment timing of market, technical and technological 

uncertainty, considering duopoly competition. We treat the investment problem as a “one-shot” game, 

therefore, each firm invests only once, either in tech 1 or in tech 2. At the beginning of the investment 

game there is one technology available (tech 1) and the probability that a more advanced technology 

(tech 2) arrives in the next instant. Ex-ante, firms holds the option to adopt tech 1 and the option to 

adopt tech 2, but the latter option can only be exercised if tech 2 arrives.  

We assume that market revenue and EAA follow geometric Brownian motion (gBm) processes, and 

technological uncertainty a Poisson process. Without further model constrains, it is not possible to 

know ex-ante which option exercise sequence firms will follow, but we identify the relevant “what-

if” scenarios of this investment game and derive, for each firm, the respective value functions and 

investment thresholds, using the standard real options-backward induction framework. Our analytical 

derivations are organized in two main sections:  
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§ First, we study the case where tech 2 is available (i.e., technological uncertainty is absent) and 

assume, in one case (scenario 1), that when tech 2 arrives both firms are idle. Another case 

(scenario 2) is considered for when tech 2 arrives and the leader is active with tech 1 and the 

follower is idle.  

§ Second, we study the case where tech 2 is not yet available (market, technical and technological 

uncertainties hold simultaneously) and characterize the scenario where at a given time t the leader 

is active with tech 1 and the follower is idle optimizing, in one case (scenario 3), the adoption of 

tech 2 and, in another (scenario 4), the adoption of tech 1.  

Due to the high number of market variables and investment scenarios, to avoid unnecessary 

complexity, in section 4 we focus our analysis on the most relevant results only. However, other 

alternative and relevant analysis can also be provided. When we consider the joint effect of market, 

technical and technological uncertainty we find that, somewhat surprisingly, for the follower, a 

relatively low probability that a second technology arrives in the next instant means that market and 

technical uncertainty are no longer important factors determining its investment behaviour. Regarding 

the leader, we find that its investment behaviour is driven by a more balanced combination of the size 

of the first-mover advantage, and market, technical and technological uncertainty.  

The paper is organized as follows. Section 2 introduces the duopoly investment game, describes the 

assumptions underlying the model for scenarios 1 and 2 and derives the firms’ value functions and 

investment thresholds. Section 3 develops similar models for scenarios 3 and 4. In section 4 we 

provide some sensitivity analysis and comment on the most relevant results. In section 5 we conclude 

and give some suggestions for further research.  

2. The Models: Scenarios 1 and 2   

Suppose that there are two idle firms, i and j, considering the adoption of a new technology, tech 1 or 

tech 2, in a context where there is uncertainty about both market revenue, 𝑥(𝑡), and efficiency of the 
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technologies after adoption, 𝐸+(𝑡) with 𝑘 = 1,2 , where “1” and “2” mean tech 1 and tech 2, 

respectively, and 𝐸+ 𝑡 ∈ [0,∞), where the lower limit represents a catastrophic scenario (after 

adoption the technology operates with zero efficiency), and the upper limit represents a perfect 

scenario (after adoption the technology operates without inefficiencies)4. Tech 1 is available and tech 

2 is not but it may arrive in the market at any moment in the near future. The arrival of tech 2 (at time 

τ) is governed by a Poisson process with intensity λ (there is a probability λdt > 0 that tech 2 arrives 

in the next interval dt). The firm that adopts first becomes the leader and gets a first-mover market 

share advantage (FMA). Finally, tech 2 is more expensive than tech 1 (𝐼6 = 𝛼𝐼8, with 𝛼 > 1) and 

more efficient (𝐸6 𝑡 = 𝛾𝐸8(𝑡) with 𝛾 > 1) where 𝐼8 and 𝐼6 are the investment costs in tech 1 and 

tech 2, respectively.  

Furthermore, market revenue and EAA follow geometric Brownian motion (gBm) processes, given 

by Equations (1) and (2): 5  

𝑑𝑋 = 𝜇=𝑋𝑑𝑡 + 𝜎=𝑋𝑑𝑧      (1) 

𝑑𝐸+ = 𝜇AB𝐸C𝑑𝑡 + 𝜎AB𝐸+𝑑𝑧+        (2) 

where, 𝜇= and 𝜇AB are the instantaneous conditional expected percentage changes in 𝑋 and 𝐸+ per 

unit of time, respectively; 𝜎=  and 𝜎ABare the instantaneous conditional standard deviation of 𝑋 and 

𝐸+ per unit of time, respectively; and 𝑑𝑧 and 𝑑𝑧+ are the increment of a standard Wiener process 

for	𝑋 and 𝐸+, respectively, with 𝑘 defined as previously. For convergence of the solution 𝑟 − 𝜇= −

𝜇AB > 0, where r is the riskless interest rate. For simplicity of notation we use 𝛿+ = 𝑟 − 𝜇= − 𝜇AB. 

                                                
4 Using our illustrative example of the introduction section, a catastrophic scenario represents the case of no 
economic natural gas development, which is rare but not unprecedented.  The practical 𝐸+  limit is high (if not 
infinite) along the range of output quantity produced per 𝐼+, and 𝑋. 𝐸+ which we have studied.  While not 
precisely geometric Brownian motion, an initial 𝐸+  well below 1, allows for substantial upside potential.  
5 For convenience of notation, henceforth, we drop the “t”. 
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Firm i’s revenue flow if it operates with tech k is given by: 

𝑋. 𝐸+. 𝐷+J+K                      (3) 

where 𝑋. 𝐸+ is the efficiency weighted revenue (EWR) of firm i if it is active with tech k, and 𝐷+J+K is 

a deterministic competition factor which represents the percentage of the market revenue of firm i for 

a given investment scenario, with 𝑖, 𝑗 = 𝐿, 𝐹 , where L means “leader” and F “follower”.6  

The following conditions on the above parameter 𝐷+J+K hold:  

𝐷6PQR = 𝐷8PQR > 𝐷8P8R = 𝐷6P6R > 𝐷8P6R                                           (4) 

where 𝐷6PQR = 𝐷8PQR = 1.0 and 𝐷8P6R < 0.5, which ensures that: i) the leader gets 100 percent of the 

market share if it is active alone; ii) if the two firms are active with the same technology the leader 

gets a market share advantage, because of the learning effect; iii) the follower’s market share is higher 

than that of the leader if the follower operates with tech 2 and the leader operates with tech 1, because 

tech 2 is more efficiency; iii) 𝐷+P+R + 𝐷+R+P = 1.0, because the sum of the market shares of the two 

firms when both are active is equal to 100 percent of the market revenue.  

2.1 Tech 2 is Available 

2.1.1 Both Firms are Inactive 

We start our analysis by the scenario where tech 1 and tech 2 are both available in the market. As 

tech 2 is more efficient than tech 1, it is never optimal to adopt tech 1. Therefore, both firms adopt 

tech 2 at their optimal times. Figures 1 illustrates firm’s investment thresholds for this scenario:   

                                                
6 As an illustration about how our notation works: 𝐷6PQR represents the leader’s percentage of the market 
revenue if it operates with tech 2 and the follower is inactive, and 𝐷8P6Rrepresents the leader’s percentage of 
the market revenue if it operates with tech 1 and the follower operates with tech 2. Similarly, 𝐷6R6Prepresents 
the follower’s percentage of the market revenue if both firms operate with tech 2.   



 8 

 

Figure 1: Thresholds line to adopt in tech 2. 

 
                                   𝜏         𝜑WX,X

∗
                          𝜑ZX,X

∗           

where 𝜏 is the arrival time of tech 2, and 𝜑WX,X
∗

 and 𝜑ZX,X
∗  are the leader and the follower thresholds to 

adopt tech 2, respectively.  

2.1.1.1 Follower 

Let 𝐹6,6(𝑋, 𝐸6) be the follower’s option value to adopt tech 2 if there is no technological uncertainty 

(λ = 0) and the leader is active with tech 2. Setting the returns on this option equal to the expected 

capital gain on the option and using Ito’s lemma, we obtain the partial differential equation (PDE) 

(5), which represents the follower’s value function for the region where it is inactive.  

8
6
[XZX,X
[=X

𝜎=6𝑋6 +
8
6
[XZX,X
[AXX

𝜎AX
6 𝐸66 +

[XZX,X
[=[AX

𝑋𝐸6𝜎=𝜎AX𝜌=AX +
[ZX,X
[=

𝜇=𝑋 +
[ZX,X
[AX

𝜇AX𝐸6 − 𝑟𝐹6,6 = 0          (5) 

We can reduce the dimensionality of the PDE from two to one using the similarity method, through 

the following variable change: 𝜑6 = 𝑋. 𝐸6.
7 Doing the respective substitutions in (5) we get the 

ordinary differential equation (ODE) (6), which represents the option value as a function of 𝜑6.  

8
6
𝜑66𝜎]X

6 [
XZX,X ^X
[^XX

+ 𝜑6 𝜎=𝜎AX𝜌=AX + 𝜇= + 𝜇AX
[ZX,X ^X
[^X

− 𝑟𝐹6,6 𝜑6 = 0    (6) 

where 𝜎]X
6 = 𝜎=6 + 𝜎AX

6 + 2𝜌=AX𝜎=𝜎AX.  

ODE (6) has an analytical solution whose general form is: 

𝐹6,6 𝜑 = 𝐴8𝜑6
`a + 𝐵8𝜑6

`X                (7) 

                                                
7 For a detailed discussion on similarity methods see Bluman and Cole (1974).       
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where 𝐴8 and 𝐵8 are constants to be determined using the value-matching (VM) and smooth-pasting 

(SP) conditions. 𝛽8 and 𝛽6 are the roots of the characteristic quadratic function of a Euler’s type ODE 

given by: 

8
6
𝜎]X
6 𝛽 𝛽 − 1 + 𝜌=AX𝜎=𝜎AX + 𝜇= + 𝜇AX 𝛽 − 𝑟 = 0             (8)  

Solving (8) for 𝛽 we get two roots, one positive (𝛽8) and one negative (𝛽6): 

𝛽8(6) =
Q.defX

X g hijXeiejXklikljX k(g) gQ.defX
X khijXeiejXklikljX

Xk6mefX
X

efX
X         (9) 

Notice that as if 𝜑6 approaches zero the option is worthless, therefore, in (7) 𝐵8 = 0. Equations (11) 

and (12) are the VM and SP conditions.    

𝐹6,6 𝜑 = 0                      (10) 

𝐹6,6 𝜑ZX,X
∗ =

^RX,X
∗ nXRXP

oX
− 𝐼6      (11) 

[ZX,X(^RX,X
∗ )

[^X
=

nXRXP
oX

                  (12) 

Solving together Equations (11) and (12), after some algebraic manipulation, we get the constant 𝐴8 

and the threshold to adopt tech 2. 

𝐴8 =
^RX,X
∗ (apqa)

`a

nXRXP
oX

                        (13) 

𝜑ZX,X
∗ = `a

`ag8
oXrX
nXRXP

                                   (14) 

The follower’s value function is: 
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𝐹6,6 𝜑6 =
𝐴8𝜑6`a																	𝜑6 < 𝜑ZX,X

∗ 	
^XnXRXP

oX
− 𝐼6										𝜑6 ≥ 𝜑ZX,X

∗ 			
          (15) 

In the first row of (15) is the follower’s option value to invest in tech 2. In the second row is the 

follower’s payoff from operating in the market with leader, both with tech 2, from the moment 𝜑ZX,X
∗  

is reached onwards, less the investment cost. 

2.1.1.2 Leader 

If the follower adopts tech 2 when 𝜑ZX,X
∗ is reached the first time, the leader’s payoff is given by: 

𝐸 𝜑6𝐷6PQR𝑒
gmu𝑑𝑡 − 𝐼6 + 𝜑ZX,X

∗ 𝐷6P6R𝑒
gmu𝑑𝑡v

uwx
x
uwQ               (16) 

The first integral represents the leader’s payoff for the period where it is active alone, where 𝑡 = 0 is 

the moment when the leader adopts tech 2 and 𝑡 = 𝑇 the moment when the follower adopts tech 2. 

The second integral is the leader’s payoff for the period where both firms are active with tech 2. The 

leader’s value function is:  

𝐿6,6 𝜑6 =
^XnXPzR

oX
− 𝐼6 +

^X nXPXRgnXPzR
oX

^X
^RX,X
∗

`a

					𝜑6 < 𝜑ZX,X
∗ 	

^XnXPXR
oX

− 𝐼6																																																								𝜑6 ≥ 𝜑ZX,X
∗ 			

                (17) 

where ^XnXPzR
oX

 is the leader’s payoff at the moment it adopts tech 2 if it operates alone forever; 

^X(nXPXRgnXPzR)

oX

^X
^RX,X
∗

`a

 is derived using the continuity condition of 𝐿6,6 𝜑6  at 𝜑ZX,X
∗ . It is negative 

given that 𝐷6P6R − 𝐷6PQR < 0 (see inequality 4)8 and corresponds to the correction factor which 

                                                
8 This term equals the leader’s loss discounted back from the (random) time at which the follower adopt tech 2. 
The term 𝜑 𝜑ZX,a

∗

`a
 is interpreted as a stochastic discount factor equal to the present value of $1 received when 

the variable 𝜑 hits 𝜑ZX,a
∗  (see Pawlina and Kort, 2006, p. 10).      
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incorporates the fact that in the future if 𝜑ZX,X
∗  is reached the follower adopts tech 2 and the leader’s 

profits are reduced. ^XnXPXR
oX

 is the leader’s payoff if active in the market with the follower from the 

moment 𝜑ZX,X
∗  is reached onwards.  

Following the principle of rent equalization of Fudenberg and Tirole (1985), the leader adopts tech 2 

at the time when the value functions of the two firms cross first time. Therefore, equalizing Equations 

(15) and (16), for 𝜑6 < 𝜑ZX,X
∗ , we get:  

^XnXPzR
oX

− 𝐼6 +
^X nXPXRgnXPzR

oX

^X
^RX,X
∗

`a

− 𝐴8𝜑6`a = 0											                    (18) 

Replacing in (18) 𝜑6 by 𝜑WX,X
∗ , and using standard numerical methods to solve for 𝜑WX,X

∗ , we obtain the 

leader’s threshold to adopt tech 2.  

2.1.2 Leader Active and Follower Inactive 

2.1.2.1 Follower 

Now we derive the value function and threshold to adopt tech 2 for the follower if when tech 2 arrived 

the leader was already active with tech 1. The follower’s value function is: 

𝐹6,8 𝜑6 =
𝐴6𝜑6`a												𝜑6 < 𝜑ZX,a

∗ 	
^XnXRaP

oX
− 𝐼6				𝜑6 ≥ 𝜑ZX,a

∗ 			
             (19) 

with 𝛽8 is given by Equations (9) and the constant 𝐴6 is given by: 

𝐴6 =
𝜑𝐹2,1
∗ (apqa)

`a

nXRaP
𝛿2

                           (20) 

The threshold to adopt tech 2 is: 

𝜑ZX,a
∗ =

𝛽1
𝛽1−1

oXrX
𝐷2𝐹1𝐿

                   (21) 



 12 

2.1.2.2 Leader 

The leader’s value function is:  

𝐿8,6 𝜑8 =
^anaPzR

oa
− 𝐼8 +

^X naPXRgnaPzR
oX

^X
^RX,a
∗

`a

					𝜑6 < 𝜑ZX,a
∗ 	

^XnaPXR
oa

− 𝐼8																																																									𝜑6 ≥ 𝜑ZX,a
∗ 			

        (22) 

Equalizing (19) and (22), for 𝜑6 < 𝜑ZX,a
∗ , we obtain:  

^anaPzR
oa

− 𝐼8 +
^X nXPXRgnXPzR

oX

^X
^RX,a
∗

`a

− 𝐴8𝜑6`a = 0                (23) 

Replacing in (23) 𝜑6 by 𝜑Wa,X
∗ , and following standard numerical methods to solve for 𝜑Wa,X

∗ , we get the 

leader’s threshold to adopt tech 1 conditioned on the follower adopting tech 2. The economic 

interpretations of (22) and (23) is similar to those we described for (17) and (18).   

3. The Models: Scenarios 3 and 4   

3.1 Tech 2 is Not Available: leader active and follower inactive  

3.1.1 Follower’s threshold to adopt tech 2 

Notice that, under technological uncertainty the arrival date of tech 2 in the market is not known in 

advance. Thus, the follower can only adopt tech 2 is it arrives in the market and the threshold to adopt 

the technology is reached. In this section we assume that the leader is active with tech 1 (so it cannot 

adopt tech 2). Thus, the follower’s value is given by: 

8
6
𝜑66𝜎]X

6 [
XZX,a ^X
[^XX

+ 𝜑6 𝜎=𝜎AX𝜌=AX + 𝜇= + 𝜇AX
[ZX,a ^X
[^X

− 𝑟𝐹6,8 𝜑6 + 𝜆 𝐹6,8 𝜑6 − 𝐹8,8 𝜑8 = 0     (24) 

Using the two possible expressions for 𝐹6,8 𝜑6  (see Equation 19), we get the following solution: 
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𝐹6,8 𝜑6 𝜑8 > 𝜑Wa
∗ =

𝐴8𝜑6`a + 𝑌𝜑8`}																													𝜑6 < 𝜑ZX,a
∗ 	

𝑊𝜑6`� +
^XnXRaP

oX

�
oXg�

− �rX
mg�

			 					𝜑6 ≥ 𝜑ZX,a
∗ 			

                        (25) 

where 𝛽8 and 𝐴8 are given by Equations (9) and (13), respectively. The constants 𝐴6  and 𝑊 are given 

by Equations (25) and (26), respectively - derived by solving an equation system with the continuity 

and differentiability conditions for 𝐹6,8 𝜑6 𝜑8 > 𝜑Wa
∗  at 	𝜑6 = 𝜑Wa,X

∗ . 

𝑌 =
^RX,a
∗ pq}

moX`�k mg likljX `a �`�goX mg� `a rX
mg� oXk� `ag8 `}g`�

< 0               (26) 

𝑊 =
^RX,a
∗ pq�

moX`}k mg likljX `a �`}goX mg� `a rX
mg� oXk� `ag8 `}g`�

> 0               (27) 

See proof in Appendix.  

In the first row of (25), 𝐴8𝜑6`a is the option value to adopt tech 2 and 𝑌𝜑8`}  is a (negative) correction 

factor that reflects the fact that 𝜑ZX,a∗ can be reached with tech 2 not yet available. In the second row, 

^XnXRaP
oX

�
oXg�

 is the present value of the follower’s revenues from operating with tech 2 from the moment 

𝜑ZX,a
∗  is reached onwards; �rX

mg�
	is the present value of the investment cost; and 𝑊𝜑6`� is the option value 

to adopt tech 2, where 𝛽� and 𝛽� are, respectively, the positive and the negative roots of the following 

quadratic equation: 0.5𝜎]X
6 𝛽 𝛽 − 1 + 𝜌=AX𝜎=𝜎AX + 𝜇= + 𝜇AX 𝛽 − (𝑟 − 𝜆) = 0, given by: 

𝛽�(�) =
Q.defX

X g hijXeiejXklikljX k(g) gQ.defX
X khijXeiejXklikljX

Xk6(mk�)efX
X

efX
X            (28) 

For the follower’s investment threshold, we use the following VM and SP conditions, respectively:  

𝐹6,8 𝜑ZX,a
∗ 	 =

^RX,a
∗ 	nXRaP

oX
− 𝐼6       (29) 

[ZX,a ^RX,a
∗ 	

[^RX,a
∗ 	

=
nXRaP
oX

              (30) 
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Using Equations (29)-(30), after some algebraic manipulation, we obtain:  

𝜑ZX,a
∗ 			= `}

`}g8
oX

nXRaP
𝐼6                           (31) 

3.1.2 Follower’s threshold to adopt tech 1 

In this section, we determine the follower’s threshold to adopt tech 1 considering that tech 2 is not 

available but it is likely to arrive in the near future. Thus, the follower’s value function is given by: 

𝐹8,8 𝜑+ =

𝐽𝜑8�a + 𝑊𝜑6`} + 𝐻𝜑6`}																									𝜑6 ∈ [0, 𝜑ZX,a
∗ 	)	

𝐽𝜑8�a + 𝑃𝜑6`} +
^XnXRaP

oX

�
oXg�

− �rX
mg�

													𝜑6 ∈ [𝜑ZX,a
∗ 	, 𝜑Za,a

∗ 	)			
^anaRaP

oa
− 𝐼8																																																							𝜑8 ∈ [𝜑Za,a

∗ 	, ∞)			

              (32) 

In the first row, 𝐽𝜑8�a is the option value to adopt tech 1, with 𝜓8 and the constant 𝐽 given by Equations 

(34) and (35), respectively; 𝑊𝜑6`} is the option value to adopt tech 2, with the constant 𝑊 given by 

Equation (27); 𝐻𝜑6`} is a negative correction parameter which takes into account the fact that 𝜑ZX,a
∗   

can be reached with tech 2 not available, with constant 𝐻 given by Equation (36). In the second row, 

𝑃𝜑6`} reflects the fact that 𝜑ZX,a
∗  was reached, so 𝑃 > 0. The meaning of the other factors is the same 

as those described in previous sections.   

Solving (33) for 𝜓 we get two roots, one positive (𝜓8) and one negative (𝜓6): 

8
6
𝜎]a
6 𝜓 𝜓 − 1 + 𝜌=Aa𝜎=𝜎Aa + 𝜇= + 𝜇Aa 𝜓 − 𝑟 = 0             (33)  

Solving (8) for 𝜓 we get two roots, one positive (𝜓8) and one negative (𝜓6): 

𝜓8(6) =
Q.defa

X g hijaeiejakliklja k(g) gQ.defa
X khijaeiejakliklja

Xk6mefa
X

efa
X          (34) 

with 𝜎]a
6 = 𝜎=6 + 𝜎Aa

6 + 2𝜌=Aa𝜎=𝜎Aa.  
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Solving simultaneously the continuity and differentiability conditions for 𝐹8,8 𝜑  at 𝜑 = 𝜑ZX,a
∗ 	 

(expression 29) and the “value matching” and the “smooth pasting” conditions for 𝐹8,8 𝜑+  at 𝜑+ =

𝜑Za,a
∗  (expression 42, second row), we determine the constants 𝐻, 𝐽 and 𝑃, and the follower’s 

investment threshold 𝜑Za,a
∗ : 

𝐽 = 8g`�
`}g8

𝑊 	𝜑Za,a
∗

(`�g`})
+ m

(`}g8)(mg�)
𝐼8 	𝜑Za,a

∗
g`}

        (35) 

𝐻 = 𝐽 + `�
`}
𝑊 	𝜑ZX,a

∗
(`�g`})

−
nXRaP
`}(ok�)

	𝜑ZX,a
∗

(8g`})
                   (36) 

𝑃 = 𝑊               (37) 

There is no closed-form solution for the follower’s investment threshold, but using the VM condition 

at 𝜑Za,a
∗  and the information from Expression (33) and Equations (35)-(37) we obtain the Equation 

(38) from which we determine 𝜑Za,a
∗ . 

𝛽� − 𝛽� 𝑃(𝜑Za,a
∗ )`� +

(`}g8)�^Ra,a
∗ nXRaP

(ok�)o
−

`}g8 ^Ra,a
∗ naRaP
o

+ m`}rX
mk�

= 0           (38) 

3.1.3 Leader: threshold to adopt tech 1 

The value function is: 

𝐿8,6 𝜑8 =
𝐸𝜑8`} +

^anaPzR
oa

− 𝐼8 +
𝜑2 𝐷1𝐿2𝐹−𝐷1𝐿0𝐹

𝛿2
𝜑2
^RX,a
∗

𝛽3
						𝜑8 ∈ [0, 𝜑ZX,a

∗ )

𝐺𝜑8`� +
^anaPzR
oak�

^anaPXR
oa

�
oak�

																																												 					𝜑8 ∈ [𝜑ZX,a
∗ , ∞	)

      (39) 

where 𝐸𝜑8`} and 𝐺𝜑8`� are both positive (see proof in Appendix) and correct for the fact that the 

follower’s threshold to adopt tech 2 can be reached before tech 2 is available, which favours the 

payoff of an active leader. The constants 𝐸 and 𝐺 are given by Equations (40) and (41), respectively, 

derived using the continuity and differentiability conditions for 𝐿8,6 𝜑8  at 					𝜑6 = 𝜑ZX,a
∗ ; ^anaPzR

oa
− 𝐼8 
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is the leader’s payoff at the time of the adoption of tech 1 if it operates alone forever; 

^X naPXRgnaPzR
oX

^X
^RX,a
∗

`}

is derived using the continuity condition of 𝐿8,6 𝜑8  at 𝜑ZX,a
∗  , it is negative 

given that 𝐷8P6R − 𝐷8PQR < 0 (see inequality 4), and corresponds to the correction factor that 

incorporates the fact that in the future if 𝜑ZX,a
∗  is reached the follower adopts tech 2 and so the leader’s 

payoff will be reduced. The rest of the terms are defined as in the previous sections - with the 

necessary natation adjustments for the firm and technology that is being adopted. The constants 𝐸 and 

𝐺 are given by: 

𝐸 =
	𝜑𝐹2,1
∗

apq}
o `ag`� k� `ag8 naPzRgnaPXR

ok� o `}g`�
      (40) 

𝐺 =
	𝜑𝐹2,1
∗

apq�
o `ag`} k� `ag8 naPzRgnaPXR

ok� o `}g`�
                              (41) 

The threshold to adopt tech 1,  𝜑Wa,X
∗ , is determined by equalizing Equations (25) to (39) for 	𝜑6 <

	𝜑ZX,a
∗ , from where we obtain Equation (42): 

𝐴8𝜑8`} + 𝑌𝜑8`} − 𝐸𝜑8`} −
^anaPzR

oa
+ 𝐼8 −

𝜑2 𝐷1𝐿2𝐹−𝐷1𝐿0𝐹
𝛿2

𝜑2
	^RX,a
∗

𝛽3
= 0       (42) 

Replacing in (42) 𝜑8 by 𝜑Wa,X
∗  and solving in order to  𝜑Wa,X

∗  we get the leader’s investment threshold.  

3.2 Both Firms Inactive 

3.2.1 Leader’s threshold to adopt tech 1 

Assuming that the leader adopts tech 1 before tech 2 arrives and the follower is optimizing the 

adoption of tech 1 (adopts tech 1 when the respective threshold is reached), for when both firms are 

active with tech 1 (	𝜑8 ≥< 	𝜑Za,a
∗ ), the leader’s payoff is given by: 
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𝐹Wa,a 𝜑8 =
^anaPaR

o
                          (43) 

At the moment the leader adopts tech 1 (𝑇8P) its expected payoff is given by: 

𝐹Wa,a 𝜑8 = 𝐸 𝜑8𝐷8PQR𝑒
gmu𝑑𝑡 − 𝐼8 + 𝐹Wa,a 𝜑8 𝑒

gmu 𝑡 ≤ 𝑇8R + 𝜑8𝐷8P8R𝑒
gmu𝑑𝑡v

xaR

xaR
uwxaP

         (44) 

The first integral represents the leader’s payoff while alone in the market; the second integral is the 

leader’s payoff for the period where both firms are active with tech 1; 𝐹Wa,X 𝜑8 𝑒
gmu 𝑡 ≤ 𝑇8R is the 

present value of the leader’s payoff given by expression (43), which takes into account the fact that, 

before the follower adopts tech 1, there is the possibility that tech 2 arrives and the respective 

threshold reached, which would reduce the value of the leader. Thus, the leader’s value function is: 

𝐿8,8 𝜑 =

𝐿𝜑`} +
^ naPXRgnaPzR

o
^

	^RX,a
∗

`a

+
^naPzR

o
− 𝐼8																𝜑 ∈ < 	𝜑Wa,X

∗ , < 	𝜑ZX,a
∗

𝑀𝜑`} + 𝐺𝜑`� +
^naPzR
ok�

+
^naPXR

o
�

ok�
																																	𝜑 ∈ < 	𝜑ZX,a

∗ , < 	𝜑Za,a
∗

^naPaR
o

− 𝐼8																																																																													𝜑 ∈ < 	𝜑Za,a
∗ , ∞

 (45) 

where, the first row represents the leader’s value at the instant it adopts tech 1; 𝐿𝜑`} corrects the fact 

that tech 2 has to arrive for the follower to adopt it, which favours the leader; 
^ naPXRgnaPzR

o
^

	^RX,a
∗

`a

 

is negative and represents the fact that if tech 2 arrives and 	𝜑ZX,a
∗  is reached the follower adopts tech 

2, reducing the leader’s value; ^naPzR
o

− 𝐼8 is the present value of the leader’s payoff when it operates 

alone with tech 1 forever; in the second row, 𝑀𝜑`} values the possibility that 𝜑 rises above 	𝜑Za,a
∗  

before tech 2 arrives. This has both a positive and a negative effect on the leader’s value. There is a 

negative effect, because if the follower adopts tech 1 the leader loses its monopoly, but a positive 

effect, because if the follower adopts tech 1 it loses the option to adopt tech 2. Hence, the signal for 

the constant  depends on the market conditions; 𝐺𝜑`� and ^naPXR
o

�
ok�

 have the same meanings as M



 18 

those described for expression (39); ^naPaR
o

 is the leader’s payoff when both firms operate with tech 1 

from 	𝜑Za,a
∗  onwards.9  

The leader’s threshold to adopt tech 1, considering that the follower will adopt tech 1, is derived by 

equalizing the leader’s and the follower’s value functions, expressions (45) for 𝜑 ∈ 	𝜑Wa,X
∗ , 𝜑ZX,a

∗  and 

(32) for 𝜑8 ∈ [0, 𝜑ZX,a
∗  respectively, from which we obtain:  

𝐿𝜑`} +
^ naPXRgnaPzR

o
^

	^RX,a
∗

`a

+
^naPzR

o
− 𝐼8 − 𝐽𝜑6`} − 𝑊𝜑6`} − 𝐻𝜑6`}																						(45) 

Replacing in (45) 𝜑 by 	𝜑Wa,a
∗ , we determine a numerical solution for the leader’s investment threshold.  

4. Results and Sensitivity Analyses 

In this section, we provide a sensitivity analysis which examines the effect on firms’ investment 

thresholds of changes in our model parameters. Table 1 clarifies our scenarios and notation. 

Technological 
Uncertainty? (Equation) 

Notation 
Scenario 

Description 

𝜏
 

Arrival time of tech 2 

NO 
Tech 2 is available 

t≥ 𝜏		
 

(14) 𝜑ZX,X
∗  (1) Follower’s threshold to adopt tech 2 if the leader is active with 

tech 2 

(18) 𝜑WX,X
∗  (1) Leader’s threshold to adopt tech 2 if the follower adopts tech 2 

in the future 

(21) 𝜑ZX,a
∗

 
(2) Follower’s threshold to adopt tech 2 if the leader is currently 

active with tech 1 

(23) 𝜑Wa,X
∗  (2) This is the leader’s threshold to adopt tech 1 considering that it 

cannot adopt tech 2 and the follower can 

YES 
Tech 2 is not 

available 

t< 𝜏 

(31) 𝜑ZX,a
∗  (3) Follower’s threshold to adopt tech 2 when the leader is active 

with tech 1 and tech 2 is not yet available 

(39) 𝜑Wa,X
∗  (3) Leader’s threshold to adopt tech 1 considering that the 

follower adopts tech 2 when if it arrives 

(35) 𝜑Za,a
∗  (4) Follower’s threshold to adopt tech 1 when the leader is active 

with tech 1 and tech 2 is not yet available 

(43) 𝜑Wa,a
∗  (4) Leader’s threshold to adopt tech 1 considering that the 

follower adopts tech 1 

Table 1 – this table defines our investment scenarios and clarifies our notation relating it to the investment 
scenarios. In the previous sections we derived the expression for the investment thresholds above, which guide 
firms in their investment timing optimization.   

                                                
9 See full derivation of expression (45) and the expressions for the constants L and M in the Appendix, section 2. 
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In our illustrative results we use the following base parameter values: 

𝑋 𝐸8 𝐸6 𝜑8 𝜑6 𝐼8 𝐼6 𝜎= 𝜎Aa  𝜎AX  𝜇= 𝜇Aa  𝜇AX  𝑟 𝜆 𝜌=AB  

10 0.7 0.85 70 85 100 100 0.30 0.30 0.30 0.05 0.0 0.0 0.1 0.2 0.0 

Table 2 – Model Inputs 

𝐷8PQR  𝐷QR8P  
𝐷8P8R  𝐷8R8P  𝐷6P6R  𝐷6R6P  𝐷8P6R  𝐷6R8P  

1.0 0.0 0.60 0.40 0.60 0.40 0.55 0.45 

Table 3 - Competition Factors. Notice that we assume that, due to the efficiency asymmetry between the two 
technologies, the leader’s FMA is lower in the scenario where it is active with tech 1 and the follower is active 
with tech 2 than in the scenario where both firms are active with the same technology, because the follower 
benefits from operating with a more efficient technology which reduces the leader’s FMA.  

4.1 Tech 2 is Available 

4.1.1 Results: Scenarios 1 and 2 

Figures 1 and 2 show the sensitivity of the investment thresholds of the leader and the follower, 

respectively, to changes in the correlation coefficient between the market revenues and the EAA of 

technology k, for the investment scenarios 1 and 2.  

 
Figure 1 - shows the sensitivity of the leader’s 
threshold to adopt tech k to changes in 𝜌=AB  if there 
is no technological uncertainty. 

 Figure 2 - shows the sensitivity of the follower’s 
threshold to adopt tech 2 to changes in 𝜌=AB  if there 
is no technological uncertainty.  

 

For both figures 1 and 2, the line marked with a circle represents the thresholds for scenario 1 whereas 

the line marked with a triangle represents the thresholds for scenario 2. Thus, we conclude the 
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investment thresholds of the leader and the follower increase with the correlation between the market 

revenues and the EAA of the technology k ( 𝜌=AB) – a higher correlation delays the technology k 

adoption. Also, the investment thresholds of both firms become more sensitive as 𝜌=AB  increases for 

both scenarios (1 and 2), particularly for the follower.  

Figures 3 and 4 show the effect of changes in the volatility of the EAA of technology k on the 

investment thresholds of the leader and the follower, respectively. Again, the line marked with a circle 

represents scenario 1, whereas the line marked with a triangle represents scenario 2.  

   

Figure 3 – shows the sensitivity of the leader’s 
threshold to adopt tech 2 to changes in 𝜎AX, if there 
is no technological uncertainty. 

 Figure 4 – shows the sensitivity of the follower’s 
threshold to adopt tech k to changes in 𝜎AX, if there 
is no technological uncertainty. 

As expected, our results above show that, for the two firms and both scenarios, the investment 

thresholds increase with the tech 2’s EAA volatility - higher EAA uncertainty delays the adoption. 

4.2 Tech 2 is not yet available 

Now we show our results for when tech 2 is not yet available. There are several investment scenarios 

available. Below we show our results for those we have analysed in the previous section.  
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4.2.1 Scenario 3 

Figures 5 and 6 show, respectively, the sensitivity of the follower’s threshold to adopt tech 2 (𝜑ZX,a
∗ ) and 

the leader’s threshold to adopt tech 1 (𝜑Wa,X
∗ ) to changes in l and 𝜎AX, in both cases for scenario 3 - where 

the leader is active with tech 1, and tech 2 is not yet available but there some probability (l) that it 

may arrive in the next instant. 

  

Figure 5: shows the sensitivity of the follower’s 
threshold to adopt tech 2 for scenario 3 (𝜑ZX,a

∗ ) 
(where tech 2 is not available and the leader is 
active with tech 1) to changes in both l and the 
volatility of the EAA of tech 2 (𝜎AX). 

 Figure 6 shows the sensitivity of the leader’s 
threshold to adopt tech 1 for the scenario 3 (𝜑Wa,X

∗ ) 
(where tech 2 is not available and the follower 
adopts tech 2 if it arrives) to changes in l and the 
volatility of the EAA of tech 2 (𝜎AX). 

 

Figure 5 shows that the follower’s investment behaviour regarding the adoption of tech 2 is mainly 

driven by l - its threshold to adopt tech 2 decreases significantly with l. Hence, a higher technological 

uncertainty accelerates the investment. It also shows that a higher EAA uncertainty delays the 

adoption. Moreover, somewhat surprisingly, we also find that, from low to moderately low l values, 

a rise in l increases significantly the follower commitment to adopting tech 2 and turns much less 

relevant the effect of the EAA uncertainty on the follower’s investment behaviour. Figure 6 shows 

that a rise in l also delays the leader’s adoption of tech 1, which is in line with what we would expect 
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because the more likely is the arrival of tech 2 the less attractive is the decision to adopt tech 1 because 

tech 2 is a more efficient technology. The effect of the volatility of the EAA of tech 2 (𝜎AX) on the 

leader’s threshold to adopt tech 1 is however complex. For low values of  l (from zero up to around 

0.15), a rise in 𝜎AX hasten slightly the adoption of tech 1 but, as l increases, a rise in 𝜎AX delays 

slightly the adoption. There is therefore a trigger value for l which once reached, if it decreases, a 

rise in 𝜎AX accelerates the adoption of tech 1, whereas, if it increases, a rise in 𝜎AX delays the adoption 

of tech 1. It appears that, for some range of technological uncertainty (l), the more unreliable is the 

expected EAA of the technology that is not yet available, the less likely is the adoption by the leader 

of the technology that is currently available.  

Figures 7 and 8 show, respectively, the sensitivity of the follower’s threshold to adopt tech 2 (𝜑ZX,a
∗ ) 

and the leader’s threshold to adopt tech 1 (𝜑Wa,X
∗ ) to changes in l and the FMA, in both cases for 

scenario 3 - where the leader is active with tech 1, and tech 2 is not yet available but there some 

probability (l) that it may arrive in the next instant.  

 
Figure 7 - shows the sensitivity of the follower’s 
threshold to adopt tech 2 to changes in both l and 
the first-mover advantage (FMA), for scenario 3 
(𝜑ZX,a

∗ ), where tech 2 is not available and the leader 
is active with tech 1. 

 Figure 8 - shows the sensitivity of the leader’s 
threshold to adopt tech 1 to changes in l and the 
first-mover advantage (FMA), for the scenario 3 
(𝜑Wa,X

∗ ), where tech 2 is not available and the 
follower adopts tech 2 if it arrives. 
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Figure 7 shows that, for the follower, a rise in the leader’s FMA turns the adoption of tech 2 

by the follower less attractive and that the follower’s threshold to adopt tech 2 decreases 

significantly with l. Figure 8 shows a rise in the FMA accelerates adoption of tech by the 

leader and that the leader’s threshold to adopt tech 1 is only sensitive to changes in the 

technological uncertainty for relatively low value of l. This is a very interesting result 

because it means that for high or moderately high technological uncertainty, technological 

uncertainty changes do not affect the leader’s commitment to the adoption of the available 

technology.    

4.2.2 Scenario 4 

In this scenario, we consider the case where tech 2 is not yet available, the leader is active 

with tech 1 and the follower is committed to the adoption of tech 1. We provide below the 

investment thresholds of the leader and the follower for scenario 4 and compare them with 

those we obtained for scenario 3. 

Efficiency Weighted  
Revenues: 𝜑� 

𝑋. 𝐸8 = 𝜑8 7.0 

𝑋. 𝐸6 = 𝜑6 8.5 

 
Tech 2 is not 

available 
 𝒕

<

𝝉 
 

 

Scenario 3 
𝜑Wa,X
∗  5.98 

𝜑ZX,a
∗  21.58 

Scenario 4 

𝜑Wa,a
∗  5.50 

𝜑Za,a
∗  31.29 

Table 4 - this table compares our results for both scenario 3 and scenario 4 

Based on the on above results we conclude that, for the leader, the threshold to adopt tech 1 was 

reached in both scenarios. Thus, it should adopt tech 1 immediately. As soon as the leader adopts tech 

1, the follower should monitor both the threshold to adopt tech 2 (𝜑ZX,a∗ )  and the threshold to adopt 
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tech 1 (𝜑Za,a∗ ), and adopt tech 1 or tech 2 depending on which of these thresholds is reached first - 

notice that tech 2 can only be adopted if the threshold is reached and it is available. According to the 

information above, none of the follower’s thresholds were yet reached, so it should wait. Notice that, 

if tech 2 arrives and both firms are inactive, they should monitor the thresholds derived for scenarios 

1 and 2 and adopt tech 2 when their thresholds are reached. 

From Table 4 we can also see that the leader’s thresholds for scenarios 3 and 4 are very similar, which 

means that the leader is almost indifferent about what the follower does (adopt tech 1 or tech 2). This 

is because, the FMA plays a very important role in the leader’s investment behavior and has no effect 

of the follower’s. However, the follower’s threshold for scenarios 3 and 4 differs significantly, which 

means that, it is very relevant for the follower which technology the leader adopts. It is more likely 

that it adopts the more efficient technology (if it arrives), when the leader operates with the less 

efficient technology.   

5. Conclusions 

This is the first two-firm multi-option real options game model studying the simultaneous effect of 

rivalry (through a duopoly game) and market, technical and technological uncertainty. Our results 

show that the “probability that a second -and more efficient- technology arrives in the next instant” 

(l) has a significant effect on the investment behaviour of the leader and the follower.   

When we consider the joint effect of market, technical and technological uncertainty we find that, 

somewhat surprisingly, a relatively low “probability that a second technology arrives in the next 

instant” (technological uncertainty) reduces significantly the importance of the market and technical 

uncertainty on the investment behaviour of rival firms. Any positive probability of technological 

innovation sharply reduces the follower’s sensitivity to changes in the leader’s FMA and the 

reliability of the second technology. The follower’s investment behaviour is driven mainly by the size 

of l and the leader’s investment behaviour by a more balanced combination of other model factors. 
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When there is no technological uncertainty, negative or relatively low positive correlations affects 

slightly the investment threshold of both firms and high positive correlations affect slightly the 

investment threshold of the leader and significantly the investment threshold of the follower. The 

follower is highly sensitive to changes in 𝜎AB,  and the leader is not.  

Our real option game setting is based on the assumption that there is a duopoly market with a FMA. 

It would be interesting to relax this assumption and extend our model to cases where there is a second-

mover advantage (attrition game). We use a competition framework where the FMA is based on ex-

ante determined competition factors, defined as proportions of the market revenues. Although 

mathematically challenging, it would be interesting to refine this assumption allowing dynamic 

market share.   
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Appendix 

1. Proofs 
1.1 Proof #1:  

Rewriting equation (39) as (A5), 

( ) ( ) ( )
( )( )( )( )

3

21

*
4 1 4 1 2

1 3 4

( )

1
F X Er r r I

Y
r

b
j db µ µ b lb d l b

l d l b b b

-
é + - + - + ùë û=

+ + - -
                                 (A1) 

We know that 
21

*
Fj , d , r , l , 1b , 3b  and 2I  are all positive, and 4 0b < .  

Simplifying the numerator: let ( ) 3

21

*
1 Fv

b
j

-
= , a rd= , ( )1( )X Eb r µ µ b l= - + , ( ) 1c rd l b= + . Simplifying the 

denominator: let ( )( )( )1 1d r l d l b= + + - , and ( )3 4e b b= - . Substituting these terms in (A1) and 

rewriting yields:  

1 4 4 2( )
( )

v a b c IY
d e

b b+ -
=            (A2) 

From the information above we conclude that a , b , c  and d  (given that 1 1b > ) are all positive. From 
Equation (32) we can see that 3 0b >  and 4 0b < , so 0e >  and the denominator is positive. The 

nominator is negative since 1v , a , b , c  and 2I  are positive and 4 0b < . Hence, . 

1.2 Proof #2:  
Rewriting equation (40) as (A7), 

( ) ( ) ( )
( )( )( )( )

4

21

*
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                 (A3) 

We know that 
21

*
Fj , 0d > , r , l , 1b , 3b  and 2I  are all positive and 4 0b < . Simplifying the numerator: 

let ( ) 4

21

*
2 Fv

b
j

-
= , a rd= , ( )1( )X Eb r µ µ b l= - + , ( ) 1c rd l b= + . Simplifying the denominator: let 

( )( )( )1 1d r l d l b= + + -  and ( )3 4e b b= - . Substituting in (A3) and rewriting yields:  

2 3 3 2( )
( )

v a b c IW
d e

b b+ -
=          (A4) 

From the information above we conclude that a , b , c  and d  (given that 1 1b > ) are all positive. From 
Equation (32) we can see that 3 0b >  and 4 0b < , so 0e > . Therefore, both the numerator and the 
denominator are positive. Hence 0W > . 

1.3 Proof #3: 0E >  
Rewriting equation (39) as (A5), 

( ) ( ) ( ) ( )
( ) ( )

3

21

1*
1 4 1 1 0 1 2

3 4

1
L F L FF d d
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b
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-
- + - -é ùë û=
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                                  (A5) 

We know that 
21

*
Fj , 0d > , r , l , 1b  and 3b  are all positive and 4 0b < . Simplifying the numerator: let 

( ) 3(1 )*
3 2F
v

b
j

-
= , a d= , 1 4b b b= - , ( )1 1c l b= - , ( )1 0 1 2L F L F

d d d= - . Simplifying the denominator: let ( )u d l= +  and 

( )3 4e b b= - . Substituting in (A5) and rewriting yields:  

0Y <

0Y <

0W >



 29 

3 ( ) )
( )

v a b c d
E

u a e
é ùë û=                    (A6) 

We conclude that 3v , a , b , c  and d  are positive (for c note that 1 1b > ). From equation (32) we can 
see that 3 0b >  and 4 0b < , so 0e > ). Hence 0E > . 

1.4 Proof #4: 0G >  
Rewriting equation (40) as (A7), 

( ) ( ) ( ) ( )
( ) ( )

4

21

1*
1 3 1 1 0 1 2

3 4

1
L F L FF d d
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j d b b l b
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-
- + - -é ùë û=
+ -

                    (A7) 

We know that 
21

*
Fj , 0d > , r , l , 1b  and 3b  are all positive and 4 0b < . Simplifying the numerator: let 

( ) 4

21

1*
4 Fv

b
j

-
= , a d= , 1 3b b b= - , ( )1 1c l b= - , ( )1 0 1 2L F L F

d de de= - . Simplifying the denominator: let ( )u d l= +  and 

( )3 4e b b= - . Substituting in (A7) and rewriting yields:  

4 ( ) )
( )

v a b c d
G

u a e
é ùë û=                     (A8) 

Notice that for 0l = , 1 3 0b b b= - =  (i.e., Eq. 32 is equal to Eq. 12). Defining the numerator of (A8) with 

3b  as a function of l  and taking its second derivative we can see that it is positive. In addition, we 

know that 4v , a , c  and d  are all positive (for c note that 1 1b > ). From equation (32) we can see that 

3 4b b> , so 0e > . Hence 0G > . 

2. Derivation - Expression (49) 

Let the first integral of Equation (48) be: 
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Ito’s lemma gives: 
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Leading to: 
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With solution: 
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2 0C =  since 4 0b <  and as j  increases the value of the leader should increase. Using the absorbing 
barrier condition (0) 0Z =  and the condition that ensures that at the follower’s investment threshold the 
leader’s option value is null, i.e., 

11

*( ) 0FZ j =  we conclude that  and 1C  is given by, 
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Let the second integral of equation (48) be: 
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The function ( )W j  must satisfy the Bellman equation for 
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Leading to:  
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With solution: 
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Using the boundary conditions: (0) 0W =  we get the constant 2 0B = . The rest of the constants are 
determined by solving the continuity and differentiability condition at 
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Fj j=  and using the boundary 

condition 11
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=  , leading to: 
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4B G=                     (A20) 

where E  and G  are given by equations (39) and (40), respectively, and 3B is given by: 
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Combining equations (47), (A14) and (A18) we get equation (49), rewritten here as (A22) 
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where, 
1 3L C B E= + +                (A23) 

1 3M C B= +           (A24) 

With 1C , 3B  and E  given by (A14), (A21) and (39), respectively.  
 


