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Analytical Solution for the General Two-Factor Investment Model: 
Option Value and Derivatives 
 
Abstract 
We provide simplified solutions for determining the real option value (and exercise 
threshold) for a perpetual opportunity to invest when there are two stochastic factors 
and circumstances which do not allow dimensionality reduction.  Our solution is easy to 
compute, amenable to interpretation, and enables analytical derivations for the partial 
derivatives.  We compare the properties of our model with one-factor and two-factor 
homogeneity degree models.  Analytical and numerical illustrations show that some of 
the typical real option value and thresholds assumptions, such as positive “vegas” do 
not necessarily hold.  
 

1 Introduction 
We provide a simplified analytical solution method for obtaining the value of the option to 

invest as well as derivatives with respect to certain key parameters for an investment-style 

real option model having two stochastic factors. Although the analytical solution for an 

investment opportunity formulated either as a one-factor model or a two-factor model 

assuming the homogeneity degree-1 property has been known for over 30 years, McDonald 

& Siegel (1986) and Sick (1989), an equivalent solution for a general two-factor model was 

proposed only recently, Adkins & Paxson (2006), Heydari (2010) and Støre, Fleten, 

Hagspiel, & Nunes (2017). Although their methods are computationally less onerous than 

numerical solutions based for example on finite-differences, their results are incomplete, 

possibly computationally unwieldy and their precision unexplored. Also, no analytical 

method is proposed for obtaining the key derivatives of the option value including the 

“vega”. In this paper, we revise their methods to develop a conceivably more elegant but 

computationally less onerous solution with the facility to yield the option derivatives 

analytically. Further we examine the precision of the solution method. 

 

The paper is organized in the following way. In section 2, we develop an analytical solution 

method based on Adkins & Paxson (2011), Heydari, Ovenden, & Siddiqui (2012),  Støre et 

al. (2017) for a general two-factor investment opportunity model. The model is based on two 

stochastic factors and designed in a way that makes the homogeneity degree-1 property 

inadmissible. For this model, we develop an alternative analytical method that yields the 

threshold boundary and the option value for all possible values. The results we obtain are 
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straightforward to compute and amenable to interpretation. They enable the option 

derivatives with respect to certain parameters to be derived analytically and the conditions 

governing the sign of each derivative to be determined. Accordingly, the properties of the 

general two-factor model can be compared with those corresponding to the one-factor model 

and two-factor homogeneity degree-1 model. In section 3, we apply our methods to the 

general two-factor abandonment opportunity model. Section 4 explores the precision of our 

methods. We demonstrate at least for the data-set employed that the precision in meeting the 

requirements for the smooth-pasting conditions is satisfactory We end with a brief 

conclusion. Much of the explanatory analysis is confined to Appendices. 

2 General two-factor investment model 
In the absence of competition and other forms of optionality, we consider a project 

investment, whose value is determined by a stochastic periodic cash-flow, denoted by 0X ≥ , 

a known periodic fixed operating cost, 0f > , and a one-off stochastic investment cost, 

0K ≥ . The formulation represents a general two-factor model, since the two factors ,X K  

are stochastic and the presence of a non-zero fixed operating cost makes the homogeneity 

degree-1 assumption underpinning the McDonald & Siegel (1986) model inadmissible. In 

short, our representation cannot be reframed as a one-factor model based on the ratio X K . 

However, if 0f = , our general model simplifies to the McDonald & Siegel (1986) 

formulation, while if K  is treated as known, then it simplifies to the standard one-factor 

model of Dixit & Pindyck (1994). 

  

2.1 Model 
The periodic cash flow and investment cost are assumed to be described by the following 

geometric Brownian motion processes:  

 d d dX X XX X t X Wα σ= + , (1) 

 dK d dK K KK t K Wα σ= + , (2) 

where α  denotes the respective known drift rate, σ  the volatility, and dW  an increment of 

the standard Wiener process. The covariance between the periodic cash flow and investment 

cost is specified by [ ]Cov d ,d dXK X KX K tρ σ σ=  where XKρ  denotes the correlation 
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coefficient with 1 1XKρ− ≤ ≤ . The risk neutral valuation relationship based on Ito’s lemma 

and contingent claims, Dixit & Pindyck (1994), is specified by: 

 
( ) ( )

2 2 2
2 2 2 21 1

2 22 2

0,

X K XK X K

X K

F F FX K X K
X K X K

F Fr X r K rF
X K

σ σ r σ σ

δ δ

∂ ∂ ∂
+ +

∂ ∂ ∂ ∂
∂ ∂

+ − + − − =
∂ ∂

 (3) 

where F  denotes the investment option value, 0δ >  the respective convenience yield and 

r α>  the risk-free rate. A valuation function, representing the investment option, satisfying 

(3), Adkins & Paxson (2011), takes the form: 

 ( ),F F X K AX Kβ γ= = , (4) 

where 0A >  is a non-negative coefficient. The generic parameters have the properties 0β ≥  

and 0γ ≤ , since the attractiveness of the option to invest is enhanced as the cash-flow 

increases but as the investment cost decreases, such that the option value tends to zero as X  

tends to  zero or as K  tends to infinity, 
lim 0

0
X
F
→

=  and 
lim

0
K
F
→∞

= . The parameters β  and γ  

are related through the characteristic equation: 

 ( ) ( ) ( ) ( ) ( )2 21 1
2 2, 1 1 0X K X K X KQ r r rβ γ σ β β σ γ γ rσ σ βγ δ β δ γ= − + − + + − + − − = . (5) 

The function Q  is an ellipse. This is illustrated in Figure 1 for the base case values exhibited 

in Table 1. The set of possible solutions for β  and γ  lie on the arc AA’. 

*** Figure 1 and Table 1 about here *** 

 

A two-dimensional space defined by non-negative values, 0X ≥  and 0K ≥ , is said to be 

separated into two mutually-exclusive exhaustive decision regions. One region named “hold” 

is defined such that for any ,X K  belonging to “hold”, the optimal policy is to retain the 

unexercised option and to wait until sufficiently more favourable values of X  and K  are 

obtained. The opportunity value for the “hold” region is ( ),F X K , (4). The second region 

named “invest” is defined such that for any ,X K  belonging to “invest”, the optimal policy is 

to exercise the option, commit the investment cost and be in receipt of the net cash-flow 

stream. The project value for the “invest” region is XX f r Kδ − − , the net present value. 

We can conceive the two decision regions as being separated by a discriminatory boundary. 

This boundary is defined by ( )ˆ ˆ, 0G X X K K= = = , where ˆ ˆ,X K  denote the respective 

thresholds that signal the option to be exercised, with ( ), 0G X K <  and ( ), 0G X K ≥  for the 
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“hold” and “invest” regions, respectively. The boundary can be represented by a set of 

infinite points { }ˆ ˆ,X K , that denote a trade-off between the cash-flow and investment cost as 

any K̂  increase can be compensated by a commensurate X̂  increase.  

 

Identifying the discriminatory boundary normally involves solving the equation: 

 ( )
,

0 max ,
X K

X

X f K F X K
rδ

 
= − − − 

 
. ( 6) 

The thresholds { }ˆ ˆ,X K  satisfy ( 6): 

 { } ( )
,

ˆ ˆ, arg max ,
X K X

X fX K K F X K
rδ

 
= − − − 

 
. 

The necessary first-order (smooth-pasting) conditions for a maximum are: 

 ( )
ˆ ˆ,

,1 0
X X X K K

F X K
Xδ

= =

∂
− =

∂
,  ( 7) 

 ( )
ˆ ˆ,

,
1 0

X X K K

F X K
K

= =

∂
− − =

∂
.  ( 8) 

The sufficient second-order conditions require, Sydsæter & Hammond (2006): 

 

( )

( )

( ) ( ) ( )

2

2
ˆ ˆ,

2

2
ˆ ˆ,

2
2 2 2

2 2
ˆ ˆ ˆ ˆ ˆ ˆ, , ,

,
0,

,
0,

, , ,
0.

X X K K

X X K K

X X K K X X K K X X K K

F X K
X

F X K
K

F X K F X K F X K
X K X K

= =

= =

= = = = = =

∂
− ≤

∂

∂
− ≤

∂

    ∂ ∂ ∂
    − ≥
    ∂ ∂ ∂ ∂    

  ( 9) 

 

Along the boundary where ˆ ˆ,X X K K= = , the realisable values for the “hold” and “invest” 

policies are identical, since sacrificing the option and simultaneously being compensated by 

owning the project neither creates nor destroys value. This equality is represented by the 

value matching relationship: 

 ˆ ˆ
ˆˆ ˆ ˆ
X

X fAX K K
r

β γ

δ
= − − , ( 10) 
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where ˆ ˆ,β γ  are the respective ,β γ  values corresponding to ˆ ˆ,X K . The set { }ˆˆ ˆ ˆ, , ,X K β γ  

forming the discriminatory boundary is obtained numerically from ( 10), ( 7), ( 8) and 

( )ˆ ˆ, 0Q β γ = , (5). The sufficiency conditions ( 9) are satisfied provided ˆ ˆ1, 0β γ≥ ≤ .  

 

We obtain the option value for any point 0 0,X K  belonging to the “hold” region by: 

1. Maximizing the option value with respect to X̂  and K̂  to identify the policy 

boundary and the implied relationships amongst the set { }ˆˆ ˆ ˆ, , ,X K β γ ; 

2. For 0 0,X K , minimizing the option value with respect to X̂  (or ˆˆ ˆ, ,K β γ ) to identify 

the relevant value of 0X̂  (or 0 0 0
ˆˆ ˆ, ,K β γ ) that belongs to the set { }ˆˆ ˆ ˆ, , ,X K β γ  and is to 

be used in evaluating the option value as well as its derivatives. 

 

2.2 Policy Boundary 

Instead of deriving the policy boundary { }ˆˆ ˆ ˆ, , ,X K β γ  from the value matching relationship 

( 10), Adkins & Paxson (2011), we adopt an alternative derivation based on the option value. 

Using ( 10) to eliminate A , the option value, 0 0
0 0AX Kβ γ  (4), for any point 0 0,X K  belonging to 

the “hold” region can be written as: 

 ( )
0 0

0 0
0 0 0 ˆ ˆ

ˆˆˆ ˆ ˆˆ, ; , , , ˆ ˆ
X

X K X fF F X K X K K
rX K

β γ

β γ
β γ

δ
 

= = − − 
 

. ( 11) 

The thresholds ˆ ˆ,X K  that define the policy boundary are selected as those that maximize 0F , 

since the greatest viable value rendered by the option has to be attained before being 

relinquished in exchange for the net present value of an active project. The first order 

conditions for a maximum can be expressed as1: 

 
ˆˆ 0,ˆ ˆ 1X

fX
r

βδ
β γ

= ≥
+ −

  ( 12) 

 
ˆˆ 0.ˆ ˆ 1

fK
r

γ
β γ

= − ≥
+ −

  ( 13) 

 

                                                 
1 Full derivation is supplied in Appendix A, (A6) and (A7), including proof of sufficiency condition. 
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Since ˆ ˆ0, 0X K≥ ≥  and 

 ˆ ˆ 1 0,ˆ ˆ
X

f r
X f r K

β γ
δ

+ − = ≥
− −

  

from ( 12) and ( 13), then ˆ 1β ≥  and ˆ 0γ ≤ . This corroborates our conjecture on their sign 

conditions and satisfies the sufficiency requirements. Moreover, ( 12) and ( 13) are identical 

to the solutions derived from the value matching relationship and smooth-pasting conditions2. 

 

The policy boundary is a relationship linking X̂  and K̂ . It is obtained numerically by 

evaluating viable pairs of ˆ ˆ0, 0X K≥ ≥  satisfying ( 12), ( 13) and ( )ˆ ˆ, 0Q β γ = , (5). Starting 

with say a pre-specified K̂  value, the corresponding ˆˆ ˆ, ,X β γ  values are evaluated, a process 

which is repeated for other K̂  values until the boundary is formed3. Along the boundary the 

values ˆˆ ˆ ˆ, , ,X K β γ  vary, and the complete set of values { }ˆˆ ˆ ˆ, , ,X K β γ  constitutes the policy 

boundary. Figure 2 illustrates the boundary for Table 1 values. It shows the boundary CC’ 

separating the ,X K  space into two distinct decision regions, “hold” and “invest”. For any 

0 0,X K  lying above the boundary, satisfying 0X̂ X=  and 0
ˆK K> , the optimal decision is 

“hold”, otherwise “invest”. The boundary slope is positive, so the trade-off is also positive 

indicating that any K̂  increase has to be compensated by a commensurate X̂  increase. In 

Figure 1, the set of possible solutions for ˆ ˆ,β γ  lie on the arc AA”, so γ̂  can range between 0  

and ˆ1 β− . When ˆ 0γ = , K  is being treated as absent from the formulation4, which yields the 

one-factor solution of Dixit & Pindyck (1994); when ˆˆ 1γ β= − , f  is being treated as absent 

from the formulation, which yields the two-factor solution of McDonald & Siegel (1986). 

*** Figure 2 about here *** 

  

2.3 Option Value 

For 0 0,X K  belonging to the “hold” region, its option value is determined from a to-be-

selected point 0 0 0 0
ˆˆ ˆ ˆ, , ,X K β γ  belonging to the policy boundary: 

                                                 
2 This is shown in Appendix A, Appendix B offers a proof. 
3 A simple Excel procedure avoiding the solution of three simultaneous non-linear equations is provided in 
Appendix C. 
4 Alternatively, the investment cost is being treated as known instead of stochastic and its value is absorbed 
within the operating cost. 
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 ( )
0 0

0 0

ˆ ˆ
0 0 0

0 0 0 0 0 0 0 0ˆ ˆ
0 0

ˆˆˆ ˆ ˆ ˆˆ, ; , , , ˆ ˆ
X

X K X fF F X K X K K
rX K

β γ

β γ
β γ

δ
 

= = − − 
 

, ( 14) 

where { }0 0 0 0
ˆ ˆˆ ˆ ˆ ˆˆ ˆ, , , , , ,X K X Kβ γ β γ∈ . A justifiable rule is required to identify the single point 

0 0 0 0
ˆˆ ˆ ˆ, , ,X K β γ  on the boundary from the set of infinite points { }ˆˆ ˆ ˆ, , ,X K β γ . Støre et al. (2017) 

develop such a rule based on the envelope theorem that states: 

 ( )ˆ0 0 0
ˆ

ˆ ˆarg min , ;SX
X

X F X K X= , ( 15) 

where 0 0 0
ˆˆ ˆ, ,K β γ  are the values on the boundary corresponding to 0X̂ , and ( )ˆ 0 0

ˆ, ;SXF X K X  is 

the option reduced form function derived from ( )0 0
ˆˆ ˆ ˆ, ; , , ,F X K X K β γ  by using ( 12), ( 13) 

and ( )ˆ ˆ, 0Q β γ =  (5) to replace ˆˆ ˆ, ,K β γ . Also, ( )ˆ 0 0 0 0
ˆ ˆ, ;SXF X K X F= . Intuitively, the 

minimization rule can be justified because any prospective option buyer is knowledgeable 

regarding the project properties, can ascertain the policy boundary, determine the option 

values for all possible boundary values, and select the cheapest because it is not known where 

the trajectory of stochastic variables will hit the boundary. We can illustrate its validity by 

considering 0 016.98593, 75.0X K= =  in Figure 2, which lies on the boundary so its option 

value equals the  net present value for the project 0 0 249.6529XX f r Kδ − − = . The profile: 

 ( ) ( )ˆ0 0 0 0
ˆˆ ˆ ˆ ˆˆ, ; , , , , ;SXF F X K X K F X K Xβ γ= =   

 versus X̂  is reproduced in Figure 3; it is U-shaped and exhibits a minimum at 0 0X̂ X=  with 

0̂ 249.6529F = . 

*** Figure 3 about here *** 

 

The first order condition for ( )ˆ 0 0
ˆ, ;SXF X K X  yields 0X̂ , from which 0 0 0

ˆˆ ˆ, ,K β γ  can be 

evaluated. Since there is no closed form solution, Støre et al. (2017), it has to be generated 

numerically and because of this, it is not amenable to further analysis. We now develop an 

equivalent alternative, which yields the identical result but has the secondary merit of 

facilitating the derivatives of the option value to be obtained in an analytical form. 
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Since ˆˆ ˆ ˆ, , ,X K β γ  are intrinsically related through the boundary specification, then minimizing 

the option reduced form function with respect to any one of the ˆˆ ˆ ˆ, , ,X K β γ  produces the 

identical result: 

 ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ0 0 0 0 0 0 0 0 0ˆ ˆ ˆ ˆ
ˆˆ ˆ ˆ ˆmin , ; min , ; min , ; min , ; ,SSX SK SX K

F F X K X F X K K F X K F X Kγβ γβ
β γ= = = =   

where ˆ ˆ ˆ, , SSK S
F F F γβ

 are the respective reduced form functions derived in a similar way as 

ˆSXF . This is illustrated in Figure 4 a-d for 0 015.0, 75.0X K= =  belonging to the “hold” 

region, where each figure exhibits the option value profile versus ˆˆ ˆ ˆ, , ,X K β γ . These reveal 

that by minimizing ˆ ˆ ˆ ˆ, , , SSX SK S
F F F F γβ

 individually with respect to ˆˆ ˆ ˆ, , ,X K β γ , the identical 

minimum option value 0̂ 201.8942F =  results, with 

 0 0 0 0
ˆˆ ˆ ˆ16.96064, 75.73068, 1.70777, 0.30501.X K β γ= = = = −   

*** Figure 4 a-d about here *** 

 

It follows that ( 15) can be reformulated as a Lagrange minimization problem: 

 

{ } ( )

( )

0 0 0 0 1 2 3 0 0
ˆˆ ˆ ˆ, , ,

1

2 3

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ, , , , , , arg min , ; , , ,

ˆˆ
ˆ ˆ 1

ˆ ˆˆ ˆ, .ˆ ˆ 1

X K
X K F X K X K

fX
r

fK Q
r

β g
β g λ λ λ β g

βλ δ
β g

gλ λ β g
β g

= 

 
+ −  + − 

  + + +  + − 

  ( 16) 

where 1 2 3, ,λ λ λ  denote the Lagrangian multipliers. Instead, it is more effective to perform the 

Lagrangian minimization with respect to ˆ ˆ,β γ  after eliminating ˆ ˆ,X K from ( 16), since it both 

reduces the number of variables without increasing the complexity5 and facilitates the 

analytical production of the derivatives. We can reformulate ( 16) as: 

 { } ( ) ( )0 0 0 0 0 0
ˆ ˆ,

ˆ ˆ ˆ ˆˆ ˆ ˆ, , arg min , ; , , ,RF X K Q
β g

β g λ β g λ β g = +    ( 17) 

where 0λ  denotes the Lagrangian multiplier, ( )0 0
ˆ ˆ, ; ,RF X K β γ  is the reduced form function 

of ( )0 0
ˆˆ ˆ ˆ, ; , , ,F X K X K β γ  by using ( 12) and ( 13) to replace ˆ ˆ,X K  and given by: 

                                                 
5 The identical numerical result is obtainable by minimizing with respect to ˆ ˆ,X K  after eliminating ˆ ˆ,β γ , but the 
derivation is less straightforward. 
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 ( ) ( )
ˆ ˆ 1

ˆˆ ˆ ˆˆ
0 0 0 0

ˆ ˆ 1ˆ ˆˆ ˆ, ; , 0R XF X K X K
f r

β γ
γβ γ β ββ γβ γ β γ δ

+ −
−− − + −

= − ≥  
 

, ( 18) 

and ( )0 0 0 0
ˆˆ ˆ, ; ,R RF F X K β γ= . The first order conditions for ( 17) with respect to ˆ ˆ,β γ  are, 

respectively (see Appendix D for details): 

 
( )0 0 0 2 21

0 0 0 2
0

ˆ ˆ 1 ˆ ˆˆ ˆln 0,ˆ R X X K X X
X

X
F r

f r

β γ
l β σ γ rσ σ δ σ

β δ

  + −
    + + + − − =   

  

 ( 19) 

 
( )0 0 0 2 21

0 0 0 2
0

ˆ ˆ 1 ˆ ˆˆ ˆln 0,
ˆ R K X K K K

K
F r

f r

β γ
l γ σ β rσ σ δ σ

γ

  + −
    + + + − − =   −

  

 ( 20) 

The numerical solutions for 0 0 0
ˆ ˆˆ, ,β γ λ  are evaluated from ( 19), ( 20) and ( )0 0

ˆ ˆ, 0Q β γ = , (5). 

It is possible to combine ( 19) and ( 20) to eliminate 0̂λ  to yield: 

 

( )

( )

0 0 0

2 210
20 0

2 21
20 00 0 0

0

ˆ ˆ 1
ln ˆ ˆ ˆ

.ˆˆ ˆˆ 1
ln

ˆ

X
X X K X X

K X K K K

X

f r r
rK

f r

β γ

β δ β σ γ rσ σ δ σ
γ σ β rσ σ δ σβ γ

γ

 + −
 
  + + − −  =
  + + − −+ −
 
 −
 

  ( 21) 

with the solutions for 0 0
ˆ ˆ,β γ  obtainable from ( 21) and ( )0 0

ˆ ˆ, 0Q β γ = , (5). Since ( 21) can be 

expressed as: 

 

( )

( )

( )

( )

0 0 0 0 0 0

0 00 0

0 00 0 0 0 0 0

0 0

ˆ ˆˆ ˆ, ; , ,
ˆ ˆˆ ˆ

ˆ ˆˆ ˆˆ ˆ, ; , ,
ˆ ˆ

R

R

F X K Q

F X K Q

β γ β γ

γ γβ β
β ββ γ β γ

γ γ

∂ ∂

∂ ∂∂ ∂
− = = = −
∂ ∂∂ ∂

∂ ∂

, ( 22) 

then for any 0 0,X K  belonging to the “hold” region, the optimal solution 0 0
ˆ ˆ,β γ  occurs when 

the change in 0γ̂  due to 0β̂  as measured by the slope along ˆ
RF   equals the corresponding 

change as measured by the slope along ( )0 0
ˆ ˆ,Q β γ .   

 

The investment option value for any 0 0,X K  belonging to the “hold” region is given by 

( )0 0 0 0 0
ˆˆ ˆ, ; ,RF F X K β γ= . A numerical rule for discriminating whether or not 0 0,X K  belongs 
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to the “hold” region is obtained as follows. From (A8) and (A9), respectively, the values 

0 0,β γ  corresponding to 0 0,X K  are: 

 0 0
0 0

0 0 0 0

, .X

X X

X K
X f r K X f r K

δβ γ
δ δ

= = −
− − − −

  

We introduce the indicator IND , where 1IND =  means the  prevailing optimal decision is 

“invest” and 1IND = −  means “hold”. If 6: 

 ( )0 0 0 0 0 01 & & 0 & & 1& & , 0Qβ γ β γ β γ≥ ≤ + ≥ ≤   

is TRUE , then 1IND = , otherwise 1IND = − . The value of the project at 0 0,X K is given by: 

 0

0 0

ˆ if 1,
if 1.X

F IND
X f r K INDδ

= = −

= − − = +

  ( 23) 

Based on Table 1 values, the value function ( 23) is illustrated graphically in Figure 5 and 

numerically in Table 2, over domains covering both the “hold” and “invest” regions. As 

expected, both figure and table reveal that the project value increases for increases in 0X  but 

decreases in 0K . Further, both 0X̂  and 0K̂  decrease if either 0X  increases or 0K  decreases, 

so a favourable movement in the prevailing ,X K  values leads to a favourable change in the 

thresholds used in determining the option value. 

*** Figure 5 and Table 2 about here *** 

 

Table 2 values indicate 0̂λ  to be non-negative, since the Q  function constrains 0 0
ˆ ˆ,β γ  to lie 

on the ellipse. If 0̂ 0λ = , then the resulting 0 0
ˆ ˆ,β γ  values imply that 0 0X̂ X= , 0 0K̂ K= , so  

{ }0 0
ˆ ˆ, ,X K X K∈  belongs to the policy boundary. This can be shown by expressing ( 19) and 

( 20), respectively, in terms of 0X̂ , ( 12) and 0K̂ , ( 13): 

 ( ) 2 21
0 0 0 0 0 2

ˆ ˆˆ ˆ ˆln 0,R X X K X XF X X rl β σ γ rσ σ δ σ + + + − − =    ( 24) 

 ( ) 2 21
0 0 0 0 0 2

ˆ ˆˆ ˆ ˆln 0,R K X K K KF K K rl γ σ β rσ σ δ σ + + + − − =    ( 25) 

since for 0̂ 0λ = , then ( )0 0
ˆln 0X X =  and ( )0 0

ˆln 0K K = . For 0̂ 0λ > , 0 0X̂ X≠  and 

0 0K̂ K≠ . While we can surmise that 0 0X̂ X>  because intuitively an unexercised option is 

most likely due to 0X  not being sufficiently high enough to trigger an exercise, no similar 

                                                 
6 & &  is the truth functional operator of logical conjunction. 
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assumption can be made regarding the value of 0K̂  relative to 0K . If 21
2X Xr δ σ− −  in ( 24) 

can be treated as small, then 2
0 0

ˆ ˆX X Kβ σ γ ρσ σ+  is most likely to be positive since 

0 0
ˆ ˆ0, 0β γ> < , so 0 0

ˆ .X X>  In contrast, 2
0 0

ˆˆ K X Kγ σ β ρσ σ+  in ( 25) may adopt either sign 

suggesting that 0K̂  may be greater or less than 0K . This effect is revealed in Table 2, where 

1Test  and 2Test  are specified by: 

 2 21
1 0 0 2

ˆ ˆX X K X XTest rβ s γ rss  δ s= + + − − , ( 26) 

 2 21
2 0 0 2

ˆˆ K X K K KTest rγ s β rss  δ s= + + − − .  ( 27) 

For the illustrated values, 1 0Test >  and 0 0X̂ X≥ , which suggests: 

 ( ) 2 21
0 0 0 0 2

ˆˆ ˆln 0X X K X XX X rβ σ γ rσ σ δ σ ÷ + + − − ≤  , ( 28) 

because 0̂0, 0RF λ≥ ≥ . In contrast, 2Test  can be positive or negative, but Table 2 reveals that 

if 2 0Test >  then 0 0K̂ K≥  and if 2 0Test <  then 0 0K̂ K≤ , which suggests: 

 ( ) 2 21
0 0 0 0 2

ˆˆ ˆln 0K X K K KK K rγ σ β rσ σ δ σ ÷ + + − − ≤  . ( 29) 

 

2.4 Option value derivatives 
In this section, we investigate the sensitivity of the investment option value to changes in the 

various parameters of the Q  function, (5). The derivatives, obtained from the chain rule and 

conditions ( 28) and ( 29), are examined for the extent that the findings of the 1-factor model, 

Dixit & Pindyck (1994), and the 2-factor homogeneity degree-1 model, McDonald & Siegel 

(1986), translate to the general 2-factor model. The derivations for the general model are 

presented in Appendix E; the key findings are presented in Table 3. We find that the disparity 

is greatest for the two volatility parameters, while that for the remaining parameters is either 

absent or small. 

*** Table 3 about here *** 

  



13 
 

 

2.4.1 Cash-flow volatility 

Using the chain rule, the sensitivity of the option value to changes in the cash-flow volatility 

Xσ , 0̂ XF σ∂ ∂  is given by (E6):  

 
( ) ( )

( ) ( )

0 0 0 00
0 0 2 21

20 0

0 0 0 0
0 0 2 21

20 0

ˆ ˆ ˆ ˆ1ˆ ˆ ˆln ˆ ˆ
ˆ ˆ ˆ ˆ1

ˆ ˆln .ˆˆ

X K
R

X X X K X X

X K
R

K X K K K

F F X X
r

F K K
r

σ β β β γ rσ

σ β σ γ rσ σ δ σ

σ β β β γ rσ

γ σ β rσ σ δ σ

− +∂
= −

∂ + + − −

− +
−

+ + − −

  ( 30) 

From ( 30), the sign of  0̂ XF σ∂ ∂  depends on the sign ( )0 0 0 0
ˆ ˆ ˆ ˆ1X Kσ β β β γ ρσ− + because of 

( 28) and ( 29). This result contrasts with the standard finding of the 1-factor model where 

volatility increases lead to increases in the option value, but is similar to that for the 2-factor 

homogeneity degree-1 model, see Table 3. The option value 0̂F  is  an increasing function of 

Xσ  if: 

 0
2

0

ˆ 1
ˆ

X K

X

β ρσ σ
γ σ
−

>
−

. ( 31) 

Condition ( 31) always holds provided 0ρ ≤ . For 0ρ = , the two assets are uncorrelated and 

the circumstances influencing their respective evolutions are unrelated, which may arise 

when the cash-flow is subject to purely economic uncertainties while the investment cost is 

subject to unrelated technological uncertainties. For 0ρ < , they are negatively correlated, 

which may arise if an oil price rise is associated with an investment cost fall due to 

economies of scale. Realistically, however, it is more plausible to treat ρ  as positive, since 

asset prices in an economy tend to move together where (un)favourable economic prospects 

are likely to be accompanied with both higher (lower) cash-flows and higher (lower) 

investment costs. Even if 0ρ > , breaking ( 31) requires that the investment cost volatility 

dominates that for the cash-flow, K Xσ σ . This arises for those capital intensive projects 

like nuclear powered electricity generation, which are subject to considerable technological 

uncertainty that is significantly greater than the cash-flow uncertainty, particularly if the 

output price is underpinned by a fixed tariff policy. 
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It is interesting to compare ( 31) with the similar condition for the 2-factor homogeneity 

degree-1 model derived from (F7), which can be expressed as 2 1X K Xρσ σ σ < . Because 

0 0
ˆ ˆ 1β γ+ > , then ( 31) is the less restrictive of the two conditions. For 0ρ > , the relationship 

between the option value for some 0 0,X K  belonging to the “hold” region and the cash-flow 

volatility is U-shaped and exhibits a minimum at 

 0

0

ˆ
ˆ 1X K K
γσ ρσ ρσ

β
−

= <
−

 

for the general 2-factor model, and at X Kσ ρσ=  for the 2-factor homogeneity degree-1 

model. If the option value exhibits a minimum, then this occurs at a lower Xσ  value for the 

general 2-factor model than for the 2-factor homogeneity degree-1 model. Because of this, 

the 2-factor homogeneity degree-1 model is more likely than the general 2-factor model with 

identical parametric values to produce negative vegas in contrast to the 1-factor model. 

 

2.4.2 Investment cost volatility 

We obtain similar findings for vega with reference to the investment cost volatility Kσ . The 

sensitivity 0̂ KF σ∂ ∂  is given by (E10): 

 

( )

( )

0 0 0 00 0
2 21

0 20 0

0 0 0 00
2 21

0 20 0

ˆˆ ˆ ˆ ˆ1
ln ˆ ˆ ˆ

ˆˆ ˆ ˆ1ˆln .ˆ ˆˆ

K X

K X X K X X

K X
R

K X K K K

F X
X r

K F
K r

σ γ γ rσ β γ
σ β σ γ rσ σ δ σ

σ γ γ rσ β γ
γ σ β rσ σ δ σ

  − +∂
= −  

∂ + + − − 
  − +

−  
+ + − − 

  ( 32) 

In ( 32), the sign of  0̂ KF σ∂ ∂  depends on the sign ( )0 0 0 0
ˆˆ ˆ ˆ1K Xσ γ γ β γ ρσ− + . The option value 

0̂F  to be an increasing function of Kσ  if: 

 0
2

0

ˆ1
ˆ

X K

K

γ ρσ σ
σβ

−
> , ( 33) 

which is always true provided 0ρ ≤ . However, ( 33) may not hold for 0ρ >  particularly if 

K Xσ σ , as illustrated by a project having a high cash-flow volatility due to market 

uncertainty but a low investment cost volatility due to technological certainty. 
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2.4.3 Cash-flow investment cost correlation 

The impact of changes in the correlation coefficient on the option value is given by, see 

Appendix E (E14): 

 ( ) ( )

0
0 0

0 0 0 0

2 2 2 21 1
2 20 0 0 0

ˆ ˆˆ ˆ

ˆ ˆln ln
.ˆ ˆˆ ˆ

R X K

X X K X X K X K K K

F F

X X K K

r r

σ σ β γ
r

β σ γ rσ σ δ σ γ σ β rσ σ δ σ

∂
= −

∂

  × + 
+ + − − + + − −  

  ( 34) 

In ( 34), 0̂ 0F ρ∂ ∂ <  since 0ˆ 0γ < . A fall in the correlation coefficient causes a rise in the 

option value and makes the investment opportunity more attractive. This is partly due to any 

movement towards to an increasingly negative correlation coefficient between the cash-flow 

and investment cost being interpreted as beneficial, since a random event producing an 

increased cash-flow level becomes more likely to lead to a fall in the investment cost. But as 

we have shown above, it is also because a negative correlation enables vega to be positive. 

The finding 0̂ 0F ρ∂ ∂ <  matches the corresponding result for the homogenous degree-1 

model, (F8). 

 

2.4.4 Investment cost drift 

The effect of an investment cost drift Kδ  change on the option value is: 

 
( ) ( )

0
0

0 0 0 0

2 2 2 21 1
2 20 0 0 0

ˆ ˆ ˆ

ˆ ˆln ln
ˆ ˆˆ ˆ

0.

R
K

X X K X X K X K K K

F F

X X K K

r r

γ
δ

β σ γ rσ σ δ σ γ σ β rσ σ δ σ

∂
=

∂

  × + 
+ + − − + + − −  

>

  ( 35) 

This finding matches the corresponding result for the homogenous degree-1 model, (F10). 

 

2.4.5 Cash-flow drift 

Since the cash-flow drift Xδ  occurs in both the ˆ
RF  and Q  functions, the effect of changes on 

the option value is: 
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( ) ( )

0 0
0

0 0 0 0

2 2 2 21 1
2 20 0 0 0

ˆˆ ˆˆ ˆ

ˆ ˆln ln
ˆ ˆˆ ˆ

0.

R R
X X

X X K X X K X K K K

F F F

X X K K

r r

β β
δ δ

β σ γ rσ σ δ σ γ σ β rσ σ δ σ

∂
= +

∂

  × + 
+ + − − + + − −  

<

  ( 36) 

This finding matches the corresponding result for the homogenous degree-1 model, (F11). 

 

2.4.6 Risk-free rate 

Since the risk-free rate r  occurs in both the ˆ
RF  and Q  functions, the effect of changes on the 

option value is: 

 

( )
( ) ( )

0 0 0
0 0

0 0 0 0

2 2 2 21 1
2 20 0 0 0

ˆˆ ˆ 1 ˆˆ ˆ ˆ 1

ˆ ˆln ln
ˆ ˆˆ ˆ

0,

R R

X X K X X K X K K K

F F F
r r

X X K K

r r

β γ β γ

β σ γ rσ σ δ σ γ σ β rσ σ δ σ

∂ + −
= − + −

∂
  × + 

+ + − − + + − −  
≥

  ( 37) 

since 0 0
ˆ ˆ 1β γ+ ≥ . The equality condition governing ( 37) holds only if 0 0

ˆ ˆ 1β γ+ = , in which 

case the general two-factor simplifies to the homogenous degree-1 model and 0̂ 0F r∂ ∂ = . 

 

3 Divestment 
We consider an operational asset having an embedded divestment option, but in the absence 

of competition and other forms of optionality. The project value is determined not only by a 

stochastic periodic cash-flow, 0Y ≥ , and a known periodic fixed operating cost, 0f > , as 

before, but also a divestment option that confers the right to sacrifice the operational project 

for a one-off stochastic value, denoted by 0Z ≥ . Since the analysis and findings are similar 

to those presented in section 2, only the results in brief are reproduced. 

 

3.1 The Model 
Similar to cash-flow process defined by (1), the value acquired by abandoning the project is 

described by a geometric Brownian motion process: 



17 
 

 d d dY Y YY Y t Y Wα σ= + , ( 38) 

 d d dZ Z ZZ Z t Z Wα σ= + , ( 39) 

where α  denotes the respective known drift rates, σ  the volatilities, and dW  an increment of 

the standard Wiener process. The covariance between ,Y Z  is [ ]Cov d ,d dYZ Y ZY Z tρ σ σ=  

where YZρ  denotes the correlation coefficient with 1 1XYρ− ≤ ≤ . The risk neutral valuation 

relationship is: 

 
( ) ( )

2 2 2
2 2 2 21 1

2 22 2

0,

Y Z YZ Y Z

Y Z

H H HY Z YZ
Y Z Y Z

H Hr Y r Z rH
Y Z

σ σ r σ σ

δ δ

∂ ∂ ∂
+ +

∂ ∂ ∂ ∂
∂ ∂

+ − + − − =
∂ ∂

  ( 40) 

where H  denotes the divestment option value and 0δ >  the respective convenience yields. 

A valuation function satisfying ( 40) adopts the form: 

 ( ),H H Y Z BY Zφ θ= =   ( 41) 

where 0A > . The parameters have the properties 0φ ≤  and 0θ ≥ , since the attractiveness of 

the divestment option increases as the cash-flow decreases and as the divestment value 

increases, such that 
lim

0
Y
H
→∞

=  and 
lim 0

0
Z
H
→

= . φ  and θ  are related through: 

 ( ) ( ) ( ) ( ) ( )2 21 1
2 2, 1 1 0YZ Y Z Y Z Y ZQ r r rφ θ σ φ φ σ θ θ rσ σ φθ δ φ δ θ= − + − + + − + − − = .  ( 42) 

 

A two-dimensional region defined by 0, 0Y Z≥ ≥  is divided into two mutually-exclusive 

exhaustive regions, named “retain” and “divest”. For any 0 0,Y Y Z Z= =  belonging to the 

former, the best policy is to retain the operational asset, with value YY f rδ − , together with 

its divestment option value BY Zφ θ , and to divest the asset and obtain the divestment value 

Z  if otherwise. Along the boundary separating “retain” and “divest”, since the sacrificing the 

asset and its option in exchange for the divestment value neither creates nor destroys value at 

the optimal thresholds, denoted by Ŷ  and Ẑ , respectively, the value matching relationship is: 

 
ˆ ˆ ˆ ˆ
Y

Y f BY Z Z
r

f θ

δ
− + = . ( 43) 

 By using ( 43) to eliminate B  from  
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4 Testing the Solution Precision 
The precision of the quasi-analytical solution is assessed in three ways: (i) from evaluating 

the value matching relationship along the policy boundary, (ii) evaluating the two smooth 

pasting conditions, and (iii) evaluating the option value from the valuation relationship. 

4.1 Value Matching Relationship 
The value matching relationship requires that for any point on the policy boundary, 

{ }0 0, ,PX K ∈∂Ω  the value of the investment option  ( )0 0,F X K  is equal to the immediately 

post exercise net value 0 0XX f r Kδ − −  for the project. We show this by first considering 

any { }0 0,X K  as if it belongs to the “hold” region. Since { }0 0, ,X K ∈Ω  then both ( 24) and 

( 25) apply. By setting 0̂ 0λ = , a measure of the distance between { }0 0,X K  and the policy 

boundary, it follows that 0 0X̂ X=  and 0 0K̂ K= . Since { }0 0
ˆ ˆ, ,PX K ∈∂Ω  by definition, it 

follows that { }0 0, .PX K ∈∂Ω  Along the policy boundary, the value matching relationship 

holds so the option value ( )0 0,F X K  and the net value 0 0XX f r Kδ − −   are equal. 

4.2 Smooth Pasting Conditions 

The two smooth pasting conditions require that for any { }0 0, ,PX K ∈∂Ω  the two first order 

conditions with respect to X  and K  have to hold: 

 ( ) ( )
0 0 0 0, ,

, ,1 ; 1.
XX X K K X X K K

F X K F X K
X Kδ

= = = =

∂ ∂
= = −

∂ ∂
  

The extent the solution satisfies these two conditions is assessed by comparing the option 

gradient as measured by the finite difference approximation with the predicted value. 

 

For any positive cash flow, 0 0X > , we identify the corresponding oK  for { }0 0, PX K ∈∂Ω  by 

solving the quadratic equation (5): 

 0 0

0 0 0 0

, 0X

X X

X KQ
X f r K X f r K

δ
δ δ

 
− = − − − − 

  ( 44) 

and selecting the positive root such that 0 0 XK X f rδ< − . For some small increment 0X∆ , 

the finite difference representation is applied to obtain an approximation for the option 

gradient with respect to cash flow: 
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 ( ) ( ) ( )
0 0

0 0 0 0 0

0 ,

, , , 1

XX X K K

F X K F X X K F X K
X X δ

= =

− − ∆ ∂
≈ =

∆ ∂
  

where the option value ( )F   is determined from ( 14) using the method explained in §2.3. 

The percentage error in satisfying the cash flow smooth pasting condition, 
0Xerr , is obtained 

from: 

 ( ) ( )
0

0 0 0 0 0

0

, , 1 1X
X

F X K F X X K
err

X δ
− −∆

= × −
∆

.  ( 45) 

  

The percentage error in satisfying the investment cost smooth pasting condition is obtained in 

a similar way. For any positive investment cost, 0 0K > , we identify the corresponding oX  

for { }0 0, PX K ∈∂Ω  by solving ( 44) and selecting the positive root such that 

0 0XX f r Kδ > + . For some small increment 0K∆  the pertaining finite difference 

approximation is given by: 

 ( ) ( ) ( )
0 0

0 0 0 0 0

0 ,

, , ,
1

X X K K

F X K F X K K F X K
K K

= =

− + ∆ ∂
− ≈ = −

∆ ∂
, 

and the percentage  error in satisfying the smooth pasting condition, 
0Kerr , by: 

 ( ) ( )
0

0 0 0 0 0

0

, ,
1K

F X K F X K K
err

K
− + ∆

= − −
∆

. ( 46) 

 

The absolute percentage errors relating to the two smooth pasting conditions, cash flow and 

investment cost, are exhibited respectively in Figure 6 (a,b). The error profile for the cash 

flow condition is based on 0 0.01X∆ =  and for the investment cost condition on 0 0.04K∆ = . 

The two profiles reveal that the error magnitudes in each case are very small so we can 

conclude that the analytical solution to identifying the discriminatory boundary is determined 

with a satisfactorily high level of precision. 

*** Figure 6 (a, b) about here *** 

5 Conclusion 
Our contribution of our paper lies in developing and extending the quasi-analytical for the 

general two-factor real-option model and determining the properties of its discriminatory 

boundary and option value for all feasible factor values. Although it builds on the works by 
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Adkins & Paxson (2011), Heydari et al. (2012), Støre et al. (2017), the solution method it 

adopts is distinctive and insightful. Particularly, it turns the focus of attention to the option 

value, which is a more fundamental element than the discriminatory boundary.  By 

performing the process of maximization on the option value after eliminating the coefficient 

A  instead of on the value matching relationship, we obtain a solution to the option value, 

which is not only identical in magnitude to that proposed by Støre et al. (2017), but also 

potentially more straightforward, with the secondary merit that the derivatives of the option 

value with respect to each of the various Q  function parameters can be obtained analytically. 

This demonstrates that in contrast to the standard result for a one-factor model that an 

increase in the underlying volatility is associated with an option value increase, an increase in 

volatility may or may not produce an option value increase for the two-factor model, but only 

if the correlation between the two factors is positive. Even in a world with multiple sources of 

uncertainty, asset prices tend to rise and fall in tandem, to a greater or lesser extent, so we can 

conclude that a strict positive relationship between volatility and option value is uniquely 

specific to only one-factor models. Although two-factor general models and homogeneity 

degree-1 models share the simultaneous property of a potentially positive and negative 

volatility option value relationship, their turning points identifying the change from negative 

(positive) to positive (negative) slopes are distinctly determined and subtle. 

 

The quasi-analytical method described here for determining the option value is designed for 

general two-factor formulations that obey the maximization requirement. It is essential that 

the power function proposed to solve the risk-neutral valuation relationship has 

characteristics that strictly obey the sufficiency condition for a maximum. In our case, that 

required the power parameter associated with cash flow to exceed one and that associated 

with investment cost to be negative. However, this sufficiency maximization requirement 

may not be met for representations of all other phenomena, in which case the solution method 

described here is inappropriate. The conventional approach to solving general two-factor 

models is to apply numerical techniques such as finite-differences. We demonstrate that the 

quasi-analytical method is favoured by having a high degree of precision when the smooth 

pasting conditions are evaluated using finite differences. This means that the method has the 

merits of being both less computationally onerous and sufficiently accurate. Finally, our 

method focuses on the option value. It is not absolutely necessary to determine the 

discriminatory boundary before evaluating the option value for any feasible point in the 
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“hold” region; the option value is obtainable without knowing the discriminatory boundary. If 

required, the boundary can be formed by evaluating the option value for every point in the 

“hold” region. 
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Appendix A: Sufficient conditions for a maximum 
From ( 11), the thresholds are selected to maximize the option value: 

 ( ) 0 0
0 0

ˆˆ ˆ ˆ, ; , ˆ ˆ
X K X fF F X K X K K

rX K

β γ

δ
    = = − −    

     
 . (A1) 

At the optimal thresholds where ˆ ˆ,X X K K= = , the corresponding values of ,β γ  are 

ˆ ˆ,β β γ γ= = .   

 

Differentiating F  (A1) with respect to X̂  yields: 

 0 0
ˆ ˆ1 ˆ

ˆ ˆ ˆ ˆ
F X K X X f K

rX X K X

β γ β
δ δ

 ∂    = − + +    ∂      
. (A2) 

From (A2), the first order condition for a maximum requires: 

 
ˆˆ ˆ

ˆ 1 X
fX K
r

β δ
β

 = + −  
, (A3) 

Which demonstrates ˆ 1β >  since ˆ 0X ≥  and ˆ 0β ≥ . If ˆ 0K = , then (A3) simplifies to the 
standard one-factor result, Dixit & Pindyck (1994). Differentiating F  (A1) with respect to 
K̂  yields: 

 0 0
ˆ1 ˆ ˆ

ˆ ˆ ˆ ˆ
F X K X f K K

rK X K K

β γ γ γ γ
δ

 ∂    = − + + −    ∂      
. (A4) 

From (A4), the first order condition for a maximum requires: 

 
ˆˆˆ

ˆ 1 X

X fK
r

γ
γ δ

 
= − 

−  
, (A5) 

for X̂ f rδ > . If 0f = , then (A3) and (A5) entail ˆ ˆ 1β γ+ =  as well as ˆ 0γ < , the result of 
McDonald & Siegel (1986). For 0f > , the respective thresholds from (A3) and (A5) are 
given by: 

 
ˆˆ 0ˆ ˆ 1X

fX
r

βδ
β γ

= >
+ −

, (A6) 

provided ˆ 0β >  and ˆ ˆ 1 0β γ+ − > , and: 

 
ˆˆ 0ˆ ˆ 1

fK
r

γ
β γ

= − >
+ −

, (A7) 

provided 0γ <  and 1 0β γ+ − > . From (A6) and (A7): 
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ˆˆ

ˆ ˆ
X

X

X
X f r K

δβ
δ

=
− −

,  (A8) 

 
ˆ

ˆ ˆ ˆ
X

K
X f r K

γ
δ

= −
− −

. (A9) 

 

The second order conditions validate that the obtained thresholds represent maximum values. 

In the following, the first line specifies the relevant second derivative, the second line 

expresses it at the obtained thresholds, and the third line indicates the sign. From (A2): 

 ( )

2 2 2
20 0

2 2

0 0
2

ˆ ˆ1 ˆ ˆ
ˆ ˆ ˆ ˆ

11
ˆ ˆ ˆ 1

0,

F X K X X f f K K
r rX X K X

X K f
rX K X

β γ

β γ

β β β β β β
δ δ

β β
β γ

 ∂    = − + − − − −    ∂      

−   = −    + −   
<

  (A10) 

and: 

 

2
0 0

0 0

ˆ ˆ1 ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ

1
ˆ ˆ ˆ ˆ 1

0.

F X K X X f K K
rX K X K XK

X K f
rX K XK

β γ

β γ

γ βγ βγ γ βγ
δ δ

βγ
β γ

 ∂    = − + − + −    ∂ ∂      

   = −    + −   
>

  (A11) 

From (A4): 

 ( )

2 2 2
20 0

2 2

0 0
2

ˆ ˆ1 ˆ ˆ
ˆ ˆ ˆ ˆ

11
ˆ ˆ ˆ 1

0,

F X K X X f f K K
r rK X K K

X K f
rX K K

β γ

β γ

γ γ γ γ γ γ
δ δ

γ γ
β γ

 ∂    = + − − + −    ∂      

−   = −    + −   
<

  (A12) 

and: 

 
2 2

.ˆ ˆ ˆ ˆ
F F

X K K X
∂ ∂

=
∂ ∂ ∂ ∂

  (A13) 

The sufficient condition for a maximum requires, Sydsæter & Hammond (2006): 

 
2 2 2 2 2 2

2 2 2 2
0, 0, 0.ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

F F F F F F
X K X K X K K X
∂ ∂ ∂ ∂ ∂ ∂

≤ ≤ − ≥
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

  (A14) 

Since: 
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( ) ( ){ }

( )

2 2 2 2

2 2

2 22 2 2
0 0

22 2

2 2 2
0 0

2 2

ˆ ˆ ˆ ˆ ˆ ˆ

1 11
ˆ ˆ ˆ ˆ 1

1
ˆ ˆ ˆ ˆ 1

0,

F F F F
X K X K K X

X K f
rX K X K

X K f
rX K X K

β γ

β γ

β β γ γ β γ

β γ

βγ
β γ

∂ ∂ ∂ ∂
−

∂ ∂ ∂ ∂ ∂ ∂
− − −     =      

      + −

     = −      + −     
≥

  (A15) 

all the sufficient conditions for a maximum are satisfied. 

Appendix B: Equivalence between two methods 

Consider a model having m  variables , 1, ,iz i m=  . Denote the net present of an exercised 

project, defined as the present value of the net cash-flow stream less the investment cost, by 

( )iU z  and the option to invest by ( )iV z . The optimal investment threshold is denoted by 

ˆ , 1, ,iz i m=  . Then, by the value-matching smooth-pasting method, we set the thresholds 

according to the first order conditions for maximizing the value gain in exercising the option 

( ) ( )i iU z V z−  in order to derive the smooth pasting condition: 

 ( ) ( )ˆ ˆ' ' 0i iU z V z− =   (B1) 

Next, the value gain in exercising the option is set equal to zero at the threshold in order to 

derive the value-matching relationship: 

 ( ) ( )ˆ ˆ 0i iU z V z− = . (B2) 

 

The alternative method is based on maximizing the option value, which after ignoring any 

constants, such as 0 0,X K  in ( 11), can be expressed as: 

 
( )
( )

max
i

i

z
i

U z
V z

 
  
 

  (B3) 

The first order conditions for (B3) are: 

 ( )
( )

( ) ( )
( )2

ˆ ˆ ˆ' '
0

ˆ ˆ
i i i

i i

U z U z V z
V z V z

− = .  (B4) 

Now since the value gain in exercising the option equals zero at the threshold, 

( ) ( )ˆ ˆ 0i iU z V z− = , (B4) and (B1) are identical. 
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Appendix C: Simple Excel procedure 

The boundary ( )ˆ ˆ, 0G X K =  can be obtained by applying a procedure that does not involve 

solving multiple non-linear equations, see also Heydari et al. (2012), Støre et al. (2017). 

Every point along the boundary entails ,β γ  values that lie on the arc AA” of Figure 1, 

between the end points ( )1.64981, 0β γ= =  and ( )1.68055, 0.68055β γ= = − . Starting from 

a pre-specified γ̂ γ=  value with 0.68055 0γ− ≤ ≤ , the corresponding value of  β̂  is 

obtained as the positive root of ( )ˆ ˆ, 0Q β γ = , (5). From knowing ˆ ˆ,β γ , the corresponding 

values of ˆ ˆ,X K  are obtainable from ( 12) and ( 13), respectively. This is repeated until the 

boundary is formed. 

 

An alternative approach is to use ( 12) and ( 13) to eliminate ˆ ˆ,β γ  in order to express (5) in 

terms of ˆ ˆ,X K . From ( 12) and ( 13): 

 

ˆˆ 0,ˆ ˆ

ˆ
ˆ 0.ˆ ˆ

X X

X

X X

rX
rX f r K

r K
rX f r K

β
δ δ

δγ
δ δ

= ≥
− −

−
= ≤

− −

  (C1) 

Substituting (C1) in ( )ˆ ˆ, 0Q β γ =  yields: 

 

( ) ( )
( )

( )
( )

( )
( ) ( )

2 21 1
2 22 2

2

2

ˆ ˆ ˆ ˆ
ˆ ˆ,

ˆ ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ
ˆ ˆ ˆ ˆ

0.

X X X X
X K

X X X X

X
X K

X X

X Y X

X X X X

rX f r K r K rX f
Q

rX f r K rX f r K

r XK

rX f r K

r rX r r K
r

rX f r K rX f r K

δ δ δ δ
β γ σ σ

δ δ δ δ

δrσ σ
δ δ

δ δ δ
δ δ δ δ

+ −
= +

− − − −

−
− −

− −
+ − −

− − − −
=

  (C2) 

 Simplifying, (C2) can be expressed as: 

 ( ) 2 2
2 2

ˆ ˆ ˆ ˆˆ ˆ 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,

0.
XK X KX K

QQ X K c X c K c XK c X c K c= + + + + +

=
   (C3) 

where the respective coefficients are given by: 
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( )
( )

( )

2

2

2
ˆ

2 2
ˆ

2 2 21 1
ˆ ˆ 2 2

21
ˆ 2

2 21
ˆ 2

2 2
0

,

,

,

,

,

.

XX

X KK

X X K X X K KXK

X X XX

X Y KK

X

c r

c r

c r

c fr r

c fr r

c f r

δ

δ δ

δ δ δ σ rσ σ σ

δ δ σ

δ δ σ

δ

=

=

= − + + − +

= − + +

= + +

=

  

By repeatedly selecting different pre-specified K̂ f r≥  values, (C3) a quadratic function in 

X̂  can be solved by adopting the positive root where ˆ ˆ
XX K f rδ > + .  

Appendix D: Option value minimization 

For any 0 0,X K  belonging to the “hold” region, its option value is defined by ( 14):  

 ( )
0 0

0 0

ˆ ˆ
0 0 0

0 0 0 0 0 0 0 0ˆ ˆ
0 0

ˆˆˆ ˆ ˆ ˆˆ, ; , , , ˆ ˆ
X

X K X fF F X K X K K
rX K

β γ

β γ
β γ

δ
 

= = − − 
 

, (D1) 

where 0 0 0 0
ˆˆ ˆ ˆ, , ,X K β γ  belongs to the policy boundary, { }0 0 0 0

ˆ ˆˆ ˆ ˆ ˆˆ ˆ, , , , , ,X K X Kβ γ β γ∈ . Then based 

on the envelope theorem, Støre et al. (2017) show 0 0 0 0
ˆˆ ˆ ˆ, , ,X K β γ  is obtained from: 

 ( )ˆ0 0 0
ˆ

ˆ ˆarg min , ;SX
X

X F X K X= , 

where 0 0 0
ˆˆ ˆ, ,K β γ  are the boundary values corresponding to 0X̂  and ( )ˆ 0 0

ˆ, ;SXF X K X  is derived 

from ( )0 0
ˆˆ ˆ ˆ, ; , , ,F X K X K β γ  through using ( 12), ( 13) and ( )ˆ ˆ, 0Q β γ =  to replace ˆˆ ˆ, ,K β γ .  

 

An alternative solution is by Lagrangian minimization. We define the Lagrangian function 

:£  

 ( ) ( ) ( )0 0 0
ˆ ˆ ˆˆ ˆ ˆ, , ; , ,R£ F X K Qβ γ β γ λ β γ= + , (D2) 

where ( )0 0
ˆ ˆ, ; ,RF X K β γ  is derived from ( )0 0

ˆˆ ˆ ˆ, ; , , ,F X K X K β γ  through using ( 12) and ( 13) 

to replace ˆ ˆ,X K . The option value is given by: 

 ( )0 0 0 0 0
ˆˆ ˆ, ; ,RF F X K β γ=   (D3) 

where: 

 ( ) ( ){ ( )}0 0 0 0 0
ˆ ˆ,

ˆ ˆ ˆˆ ˆ ˆ, arg min , ; , , ,RF X K Q
β g

β g β g λ β g= −   (D4) 
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( ) ( ) ( )

( )

ˆˆ1

ˆ ˆ
0 0 0 0

ˆ ˆ 1
ˆˆ ˆ ˆˆ

0 0

ˆˆ1ˆ ˆ, ; , ˆ ˆˆ ˆ ˆ1 1

ˆ ˆ 1ˆ ˆ .

X
R

X

f fF X K X K
r r

X K
f r

γ β

β γ

β γ
γβ γ β β

γ βδβ γ
γ β γ β γ

β γβ γ δ

− −

+ −
−− −

   − −   =
   + − + −   

 + −
= −   

 

  (D5) 

The solution values for 0 0 0
ˆ ˆˆ, ,β γ λ  are obtained from the two first order conditions of ( )ˆ ˆ,£ β γ   

and ( )0 0
ˆ ˆ, 0Q β γ = . Differentiating the elements of RF  with respect to β̂  yields: 

 

( )

( )( )

( )

ˆ ˆ 1

ˆ
0

0

ˆ

ˆ

ln ,ˆ

ˆ ˆ1 ln ,ˆ

ˆ ˆ 1
ˆ ˆ 11 ln ,ˆ

ln ,ˆ

R

R

R

X
X

R

X X
F

F

f r
f rF

F

β γ

β

β

β

β

β β
β

β γ
β γ

β

δ δ
β

+ −

−

−

∂
=

∂

∂
= − +

∂

 + −
∂   + −  = +   ∂  

∂
= −

∂

  

so: 

 
( )0

ˆ ˆ 1
lnˆ ˆ

R
R

X

XF F
f r

β γ

β β δ

  + −∂   =
  ∂

  

. (D6) 

Differentiating the elements of RF  with respect to γ̂  yields: 

 

( )

( ) ( )( )
ˆ ˆ 1

ˆ
0

0

ˆ

ln ,
ˆ

ˆ
ˆ1 ln ,

ˆ

ˆ ˆ 1
ˆ ˆ 11 ln ,ˆ

R

R

R

K K
F

F

f r
f rF

β γ

γ

γ

γ

γ
γ

γ

β γ
β γ

β

+ −

−

∂
=

∂

∂ −
= − + −

∂

 + −
∂   + −  = +   ∂  

  

so: 

 
( )0

ˆ ˆ 1
ln

ˆ ˆ
R

R

KF F
f r

β γ

γ γ

  + −∂   =
  ∂ −

  

. (D7) 

Also: 
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( ) 2 21

2

ˆ ˆ, ˆ ˆˆ X X K X X

Q
r

β γ
βσ γrσ σ δ σ

β

∂
= + + − −

∂
,  (D8) 

 
( ) 2 21

2

ˆ ˆ, ˆˆ
ˆ K X K K K

Q
r

β γ
γσ βrσ σ δ σ

γ

∂
= + + − −

∂
. (D9) 

 

So differentiating ( )ˆ ˆ,£ β γ  with respect to ˆ ˆ,β γ  yields: 

 ( ) ( )0 2 21
ˆ 0 2

ˆ ˆ 1ˆ ˆˆ ˆ, ln ,ˆ R X X K X X
X

X
£ F r

f rβ

β γ
β γ l βσ γrσ σ δ σ

β δ

  + −
    = + + + − −   

  

  (D10) 

 ( ) ( )0 2 21
ˆ 0 2

ˆ ˆ 1ˆ ˆˆ ˆ, ln
ˆ R K X K K K

K
£ F r

f rγ

β γ
β γ l γσ βrσ σ δ σ

γ

  + −
    = + + + − −   −

  

, (D11) 

and the two respective first order conditions are given by: 

 
( )0 0 0 2 21

0 0 0 2
0

ˆ ˆ 1 ˆ ˆˆ ˆln 0ˆ R X X K X X
X

X
F r

f r

β γ
l β σ γ rσ σ δ σ

β δ

  + −
    + + + − − =   

  

,  (D12) 

 
( )0 0 0 2 21

0 0 0 2
0

ˆ ˆ 1 ˆ ˆˆ ˆln 0
ˆ R K X K K K

K
F r

f r

β γ
l γ σ β rσ σ δ σ

γ

  + −
    + + + − − =   −

  

, (D13) 

where ( )0 0 0 0
ˆˆ ˆ, ; ,R RF F X K β γ= . From (D5), the option value for any 0 0,X K  belonging to the 

“hold” region is: 

 ( )
0 0

00 0 0 0

ˆ ˆ 1
ˆˆ ˆ ˆˆ 0 0

0 0 0 0 0

ˆ ˆ 1ˆˆ ˆ ˆR XF F X K
f r

β γ
γβ γ β ββ γβ γ δ

+ −
−− − + −

= = −   
 

.  (D14) 

 

The sufficiency condition is inspected from the second derivatives: 

 ( ) ( ) ( )
( )

2

0 2
ˆ ˆ 0,

ˆ ˆ 1 ˆ1ˆ ˆ, ln 0,ˆ ˆ ˆ ˆ 1
R

R X
X

X F
£ F

f rβ β

β γ γ
β γ l σ

β δ β β γ

  + − −  = + + ≥
   + −  

  (D15) 

 ( ) ( ) ( )
( )

2

0 2
ˆ ˆ 0,

ˆ ˆˆ 1 1ˆ ˆ, ln 0,ˆˆ ˆ ˆ 1
R

R K

K F
£ F

f rγ γ

β γ β
β γ l σ

γ γ β γ

  + − −
  = + + ≥
  − − + −  

  (D16) 
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( ) ( ) ( )

( )

0 0
ˆ ˆ,

0

ˆ ˆˆ ˆ1 1ˆ ˆ, ln lnˆ ˆ

,ˆ ˆ 1

R
X

R
X K

X K
£ F

f rf r

F

β γ

β γ β γ
β γ

γβ δ

lr σ σ
β γ

      + − + −
      =
      −

      

+ +
+ −

  (D17) 

and: 

 

( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ, ˆ ˆ, , ,

2 2 2 2
0

2 2

0 02 2
0

0 0

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, , , ,

1

ˆ ˆˆ ˆ1 1
ln lnˆ ˆ

ˆ ˆˆ ˆ1 1
2 ln lnˆ ˆ

X K

R K X
X

X

£ £ £ £

X K
F

f rf r

X K

f rf r

γ γβ β β γ β γ
β γ β γ β γ β γ

l σ σ r

β γ β γ
l σ σ

γβ δ

β γ β γ
rσ

γβ δ

− =

−

      + − + −      + + +      −       

   + − + −
   − × × ×
   −
   

( )

( ) ( )

( )

2

2 20

2 2
2

0 0

0

ˆ ˆˆ ˆ 1

ˆ ˆ1 1 2ˆ ˆˆˆ 1

ˆ ˆˆ ˆ1 1ˆ ˆ1 1ln lnˆ ˆ ˆˆ ˆˆ 1

ˆ ˆ 1
2 ln ˆ

X K

R

R
X K X K

R

X

X

F

F

X KF
f rf r

X

f r

σ

γβ β γ

l β γσ σ rσ σ
γβ γ β

β γ β γβ γ
γ γβ γ β δ β

β γ

β δ






+
− + −

 − − + + − × −+ −   
       + − + −− −       + +       − −+ −        

 + −
 − × ×
 
 

( )0
ˆ ˆ 1

ln
ˆ

0,

K

f r

β γ

γ

 + −   −  
≥

  (D18) 

since each term on the right hand side of (D18) is non-negative. Therefore, the sufficiency 

condition for a minimum is fulfilled. 

 

Appendix E: Option value derivatives 
The option value derivatives with respect to the various parameters are essentially obtained 

by using the chain rule and their sign condition by using ( 28) and ( 29). 

 

The option value derivative with respect to Xσ  is obtained from: 
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 0 0 0

00

ˆˆ ˆ ˆ ˆ
ˆ ˆ
R R

X X X

F F Fβ γ
σ σ γ σβ
∂ ∂ ∂ ∂ ∂

= +
∂ ∂ ∂ ∂∂

. (E1) 

Then from (D6) and (D7), respectively: 

 
( )0 0 0 0

00 0

ˆ ˆ 1ˆ ˆ ˆln lnˆ ˆ ˆ
R

R R
X

XF XF F
Xf r

β γ

β β δ

  + −  ∂   = =    ∂    

, (E2) 

 
( )0 0 0 0

0 0 0

ˆ ˆ 1ˆ ˆ ˆln ln ˆˆ ˆ
R

R R

KF KF F
f r K

β γ

γ γ

  + −  ∂   = =    ∂ −    

.  (E3) 

Also: 

 
( )0 0 0 00

2 21
20 0

0

ˆ ˆ ˆ ˆ1ˆ
,ˆ ˆ

ˆ

X KX

X X X K X X

Q

Q r

σ β β rσ β γβ σ
σ β σ γ rσ σ δ σ

β

∂
− +∂ ∂

= − = −
∂∂ + + − −
∂

  (E4) 

 ( )0 0 0 00
2 21

20 0

0

ˆˆ ˆ ˆ1ˆ
.ˆˆ

ˆ

X XX

X K X K K K

Q

Q r
σ γ γ rσ β γγ σ

σ γ σ β rσ σ δ σ
γ

∂
− +∂ ∂

= − = −
∂∂ + + − −
∂

  (E5) 

It follows from (E2)-(E5) that (E1) becomes: 

 
( ) ( )

( ) ( )

0 0 0 00
0 0 2 21

20 0

0 0 0 0
0 0 2 21

20 0

ˆ ˆ ˆ ˆ1ˆ ˆ ˆln ˆ ˆ
ˆ ˆ ˆ ˆ1

ˆ ˆln .ˆˆ

X K
R

X X X K X X

X K
R

K X K K K

F F X X
r

F K K
r

σ β β β γ rσ

σ β σ γ rσ σ δ σ

σ β β β γ rσ

γ σ β rσ σ δ σ

− +∂
= −

∂ + + − −

− +
−

+ + − −

  (E6) 

The sign of 0̂ XF σ∂ ∂  depends on the sign of  ( )0 0 0 0
ˆ ˆ ˆ ˆ1X Kσ β β β γ ρσ− + . 

 

The option value derivative with respect to Kσ  is obtained from: 

 0 0 0

00

ˆˆ ˆ ˆ ˆ
ˆ ˆ
R R

K K K

F F Fβ γ
σ σ γ σβ
∂ ∂ ∂ ∂ ∂

= +
∂ ∂ ∂ ∂∂

. (E7) 

Similarly: 

 ( )0 0 0 00
2 21

20 0

0

ˆˆ ˆ ˆ ˆ1
,ˆ ˆ

ˆ

K XK

K X X K X X

Q

Q r
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β

∂
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= − = −
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∂

  (E8) 
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 ( )0 0 0 00
2 21

20 0

0

ˆˆ ˆ ˆ1ˆ
,ˆˆ

ˆ

K XK

K K X K K K

Q

Q r
σ γ γ rσ β γγ σ

σ γ σ β rσ σ δ σ
γ

∂
− +∂ ∂

= − = −
∂∂ + + − −
∂

  (E9) 

so: 

 

( )

( )
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2 21

0 20 0
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2 21

0 20 0

ˆˆ ˆ ˆ ˆ1
ln ˆ ˆ ˆ
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K X X K X X

K X
R
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F X
X r

K F
K r

σ γ γ rσ β γ
σ β σ γ rσ σ δ σ

σ γ γ rσ β γ
γ σ β rσ σ δ σ

  − +∂
= −  

∂ + + − − 
  − +

−  
+ + − − 

  (E10) 

The sign of 0̂ KF σ∂ ∂  depends on the sign of  ( )0 0 0 0
ˆˆ ˆ ˆ1 K Xγ γ σ β γ ρσ− + . 

 

The option value derivative with respect to ρ  is obtained from:  

 0 0 0

00

ˆˆ ˆ ˆ ˆ
ˆ ˆ
R RF F Fβ γ

ρ ρ γ ρβ
∂ ∂ ∂ ∂ ∂
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∂ ∂ ∂ ∂∂

. (E11) 

Similarly: 
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∂
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∂
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so: 
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  (E14) 

The sign of 0̂F ρ∂ ∂  depends on the sign of  0 0
ˆ ˆ 0X Kβ γ σ σ < . 

 

The option value derivative with respect to Xδ  is obtained from: 

 0 0 0

00

ˆˆ ˆ ˆ ˆ ˆ
ˆ ˆ

R R R

X X X X

F F F Fβ γ
δ δ δ γ δβ
∂ ∂ ∂ ∂ ∂ ∂
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∂ ∂ ∂ ∂ ∂∂

, (E15) 
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since ˆ
RF  ( 18) is a function of Xδ . Now: 

 0
ˆˆ ˆR

R
X X

F Fβ
δ δ
∂

= −
∂

.  (E16) 

Similarly: 
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ˆ ˆ
,ˆ ˆ
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so: 
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  (E19) 

The sign of 0̂ XF δ∂ ∂  depends on the sign of  0
ˆ 0β− < . 

 

The option value derivative with respect to Kδ  is obtained from: 

 0 0 0

00

ˆˆ ˆ ˆ ˆ
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Similarly: 
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so: 
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  (E23) 

The sign of 0̂ KF δ∂ ∂  depends on the sign of  0ˆ 0γ− > . 

 

The option value derivative with respect to r  is obtained from: 
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since ˆ
RF  ( 18) is a function of r . Now: 
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Similarly: 
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so: 
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  (E28) 

The sign of 0̂F r∂ ∂  depends on the sign of  0 0
ˆ ˆ 1 0β γ+ − > . 

 

 

Appendix F: Homogeneity degree-1 model 
From ( 10), 0f =  yields the homogeneity degree-1 model of McDonald & Siegel (1986), 

with its option function power parameters that sum to 1: 
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 1 1 1
1 1 1 1

ˆˆ ˆ ˆ
X

XA X K Kβ γ

δ
= − , (F1) 

where the subscript 1 indicates the homogeneity degree-1 model and 1 1 1β γ+ = . From (5): 

 
( ) ( )

( ) ( )
1 1 1 1 1 1

21
1 1 12

, ; 1

1 0.XK K X K

Q Qβ β β γ γ β γ

σ β β β δ δ δ

= = = + =

= − + − − =
  (F2) 

where 2 2 22XK X X K Kσ σ ρσ σ σ= − + . 1̂β  is evaluated as the positive root of (F2). The optimal 

thresholds 1 1
ˆ ˆ,X K  are related by: 

 1 1

1 1

ˆˆ
ˆ ˆ 1

XX
K

δ β
β

=
−

  (F3) 

and ( ) 1 1 1
1

1 1 11 XA β β ββ β δ− − −= − . The option value is 1 11
1 1 0 0 0F A X Kβ β−= ≥  for any 0 0,X K  

belonging to the “hold” region so 0 0 1 1
ˆ ˆX Y X K< . The option value derivative is obtained in 

a similar way as in Appendices D and E: 

 1 1 1
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ˆ
ˆ
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σ σβ
∂ ∂ ∂

=
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, (F4) 

where: 
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Treating the denominator of (F6) as positive, the sign of 1 XF σ∂ ∂  depends on the sign of  

X Kσ ρσ− . The remaining derivatives are obtained in a similar way: 
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1 2 21
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the sign of 1 KF σ∂ ∂  depends on the sign of  K Xσ ρσ− . 
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Table 1 

Base Case Values 

 

Parameter Symbol Value 

Periodic fixed cost f   5.0 

Risk-free rate r   5.0% 

Convenience yield for X   Xδ   4.0% 

Volatility for X  Xσ   25.0% 

Convenience yield for K   Kδ   2.0% 

Volatility for K  Kσ   25.0% 

Correlation between X  and K   ρ   0.25 

 

The variables X  and K  denote the periodic cash-flow and investment cost, respectively. 
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Table 2 
Illustrative Results 

 

0K   
0 5.0X =  0 10.0X =  0 .015X =   0 20.0X =   0 .025X =   

25.0 0β̂   1.68819 1.68509 
   

 
0γ̂   -0.15785 -0.14176 

   

 
0̂λ   457.13 339.12 

   

 
0X̂   12.733 12.406 

   

 
0K̂   29.764 26.091 

   

 
1Test   0.0818 0.0819 

   

 
2Test   0.0153 0.0162 

   
 

Value   40.001 128.768 250.000 375.000 625.000 

50.0 0β̂   1.70289 1.70127 
   

 
0γ̂   -0.25488 -0.24151 

   

 
0̂λ   475.49 544.81 

   

 
0X̂   15.204 14.802 

   

 
0K̂   56.892 52.531 

   

 
1Test   0.0812 0.0813 

   

 
2Test   0.0094 0.0102 

   
 

Value   34.716 112.958 225.000 350.000 475.000 

75.0 0β̂   1.70879 1.70820 1.70778 
  

 
0γ̂   -0.31878 -0.31055 -0.305 

  

 
0̂λ   481.13 677.91 307.26 

  

 
0X̂   17.526 17.183 16.961 

  

 
0K̂   81.737 78.098 75.731 

  

 
1Test   0.0806 0.0807 0.0807 

  

 
2Test   0.0055 0.0060 0.0064 

  
 

Value   30.906 101.009 201.894 325.000 450.000 

100.0 0β̂   1.71112 1.71097 1.71087 
  

 
0γ̂   -0.36391 -0.35992 -0.3572 

  

 
0̂λ   480.35 764.78 583.62 

  

 
0X̂   19.713 19.495 19.351 

  

 
0K̂   104.813 102.524 101.009 

  

 
1Test   0.0800 0.0801 0.0801 
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2Test   0.0027 0.0030 0.0032 

  
 

Value   28.015 91.720 183.545 300.000 425.000 

125.0 0β̂   1.71183 1.71182 1.71182 1.71181 
 

 
0γ̂   -0.39757 -0.39667 -0.39606 -0.39559 

 

 
0̂λ   476.27 822.30 781.83 275.62 

 

 
0X̂   21.789 21.727 21.685 21.653 

 

 
0K̂   126.511 125.863 125.431 125.096 

 

 
1Test   0.0795 0.0795 0.0796 0.0796 

 

 
2Test   0.0006 0.0007 0.0007 0.0008 

 
 

Value   25.732 84.292 168.742 276.119 400.000 

150.0 0β̂   1.71178 1.71176 1.71175 1.71174 
 

 
0γ̂   -0.42374 -0.42504 -0.42591 -0.42658 

 

 
0̂λ   470.49 860.73 926.71 592.23 

 

 
0X̂   23.771 23.881 23.954 24.011 

 

 
0K̂   147.111 148.246 149.006 149.596 

 

 
1Test   0.0791 0.0791 0.0791 0.0791 

 

 
2Test   -0.0010 -0.0011 -0.0011 -0.0012 

 
 

Value   23.875 78.207 156.556 256.172 375.000 

175.0 0β̂   1.71134 1.71125 1.71119 1.71114 1.71110 

 
0γ̂   -0.44473 -0.44763 -0.44953 -0.45099 -0.45219 

 
0̂λ   463.86 886.40 1034.46 834.76 249.11 

 
0X̂   25.676 25.965 26.159 26.310 26.436 

 
0K̂   166.814 169.800 171.803 173.360 174.655 

 
1Test   0.0788 0.0787 0.0787 0.0786 0.0786 

 
2Test   -0.0023 -0.0025 -0.0026 -0.0027 -0.0028 

 
Value   22.329 73.118 146.338 239.413 350.729 

200.0 0β̂   1.71071 1.71053 1.71040 1.71030 1.71022 

 
0γ̂   -0.46201 -0.46606 -0.46869 -0.47070 -0.47234 

 
0̂λ   456.85 903.29 1115.77 1023.63 589.91 

 
0X̂   27.514 27.987 28.305 28.552 28.757 

 
0K̂   185.769 190.637 193.904 196.444 198.557 

 
1Test   0.0785 0.0784 0.0783 0.0783 0.0783 

 
2Test   -0.0034 -0.0037 -0.0038 -0.0039 -0.0040 

 
Value   21.017 68.790 137.634 225.121 329.729 
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The computations for this table are processed in the following way. For a given pair 

{ }0 0, ,X K  we first test whether the pair belongs to the “hold” or the “invest” region. 

 

If { }0 0,X K  belongs to the “hold” region, then: 

1. 0 0 0
ˆ ˆˆ, ,β γ λ  are obtained by solving ( 19), ( 20) and ( )0 0

ˆ ˆ, 0Q β γ = , (5); 

2. 0X̂  and 0K̂  are obtained from ( 12) and ( 13), respectively: 

 0 0
0 0

0 0 0 0

ˆ ˆˆ ˆ, ;ˆ ˆˆ ˆ1 1X
f fX K
r r

β γδ
β γ β γ

= = −
+ − + −

  

3. 1Test  and 2Test  are obtained from ( 26) and ( 27); 

4. Value  is determined from ( )0 0 0 0
ˆˆ ˆ, ; ,R RF F X K β γ= , ( 18). 

 

If { }0 0,X K  belongs to the “invest” region, then: 

1. The cells relating to 0 0 0 0 0 1 2
ˆ ˆ ˆ ˆˆ, , , , , ,X K Test Testβ γ λ  are left blank; 

2. Value  is determined from the net present value ( )0 0XX f r Kδ − − . 
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Table 3 
Option Value Derivative Sign Conditions for General 2-Factor Model, 

2-Factor Homogeneity Degree-1 Model and 1-Factor Model 
 

Derivative with 
respect to 

General 2-Factor Model 2-Factor 
Homogeneity 
Degree-1 Model 

1-Factor Model 

Xσ   ( )0 0 0 0
ˆ ˆ ˆ ˆ1 0X Kσ β β β γ ρσ− + >   0X Kσ ρσ− >   +   

Kσ   ( )0 0 0 0
ˆˆ ˆ ˆ1 0K Xσ γ γ β γ ρσ− + >  0K Xσ ρσ− >   

ρ  −   −    

Xδ   −   −  −   

Kδ   +   +   

r  +   0  +   

 

The items in this table identify the option value derivative sign condition for the general 2-

factor model, the 2-factor homogeneity degree-1 model, and the 1-factor model for the 

parameters defined in the respective Q  function. Positive (negative) dependence between the 

option value and the parameter, indicating an increasing (decreasing) option function, is 

denoted by ( )+ − , while 0  denotes independence. If the item is stated as a condition, then 

this condition has to be met for the option function to be increasing. Blank items indicate that 

the derivative is not applicable. Results are drawn from Appendices E and F for the general 

2-factor model and the 2-factor homogeneity degree-1 model, respectively, and from Dixit & 

Pindyck (1994) for the 1-factor model.   
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Figure 1 
Characteristic Function ( ), 0Q β γ =  

 

 

The elliptical function ( ), 0Q β γ =  is drawn based on Table 1 values. The maximum and 

minimum values for β  and γ  are: 

 
β  γ  

Maximum β  1.71187 -0.40797 
Minimum β  -0.99721 0.26930 
Maximum γ  0.01870 1.28521 
Minimum γ  0.69597 -1.42387 

 

The ellipse traverses the axes at 0.96981β = −  and 1.64981β =  (point A) when 0γ = , and 

at 1.24507γ = −  (point A’) and 1.28507γ =  when 0β = . The set of values conforming to 

0, 0β γ≥ ≤  and ( ), 0Q β γ =  is represented by points on the arc AA’.  
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The line BB’ represents 1β γ+ = . It crosses the ellipse at 0.25388β = −  and 1.25388γ = , 

and at 1.68055β =  and 0.68055γ = −  (point A”). Points on the arc AA” represents the 

values satisfying 0, 0, 1β γ β γ≥ ≤ + ≥  and ( ), 0Q β γ = . 
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Figure 2 
Threshold Boundary ( )ˆ ˆˆ ˆ ˆ, , , , 0G X Y A β γ =  

 

 

 

 

 

 

 

 

 

 

 

 
This figure is determined from (5), ( 12) and ( 13) using the Table 1 values, by  evaluating the 

values of ˆˆ ˆ, ,X β γ  repeatedly for various pre-specified ˆ 0K >  values. Typical values for G  

are given in the following table, with ( ) 1ˆ 1ˆ ˆ ˆ
XA X ββδ

−
−=  from ( 10): 

K̂  X̂  Â  β̂  γ̂  
0.0 10.15565 3.35999 1.64981 0.00000 

50.0 14.56870 5.61478 1.70022 -0.23341 
75.0 16.89206 7.33576 1.70764 -0.30327 

100.0 19.25498 9.17254 1.71080 -0.35540 
150.0 24.05027 12.90607 1.71173 -0.42704 
200.0 28.89753 16.47622 1.71016 -0.47344 
250.0 33.77315 19.76486 1.70803 -0.50574 
300.0 38.66583 22.74794 1.70591 -0.52943 
350.0 43.56951 25.43907 1.70396 -0.54753 
400.0 48.48070 27.86508 1.70223 -0.56178 
450.0 53.39724 30.05567 1.70070 -0.57330 
500.0 58.31770 32.03918 1.69935 -0.58279 

 

The values of ˆ ˆ,β γ  lie on the arc AA” of Figure 1. 
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Figure 3 

Option Value Profile of ( )0 0 0
ˆˆ ˆ ˆ16.98593, 75.0; , , ,F F X K X K β γ= = =  

versus Cash Flow Threshold ˆ10.15565 60X≤ ≤   
 

 

 

The option values are evaluated for the various ˆˆ ˆ ˆ, , ,X K β γ  values on the boundary as 

provided by Figure 2 for 0 016.98593, 75.0X K= = , which because they lie on the boundary, 
has a known option value. The minimum option value and corresponding cash flow threshold 
are identified. 
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Figure 4a 
Option Value Profiles of ( )0 0

ˆˆ ˆ ˆ15.0, 75.0; , , ,F X K X K β γ= =  versus ˆˆ ˆ ˆ, , ,X K β γ   

 

 

 

 

 

 

 

 

 

 

 

The option value profile is constructed according to Figure 3, for ˆ10.15565 60X≤ ≤ . The 
minimum option value occurs at 0̂ 201.8942F =  for 0

ˆ 16.96064X = . 
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Figure 4b 
Option Value Profiles of ( )0 0 0

ˆˆ ˆ ˆ ˆ15.0, 75.0; , , ,F F X K X K β γ= = =  versus ˆˆ ˆ ˆ, , ,X K β γ   

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
The option value profile is constructed according to Figure 3, for ˆ0 500K≤ ≤ . The minimum 
option value occurs at 0̂ 201.8942F =  for 0

ˆ 75.73068K = . 
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Figure 4c 
Option Value Profiles of ( )0 0

ˆˆ ˆ ˆ15.0, 75.0; , , ,F X K X K β γ= =  versus ˆˆ ˆ ˆ, , ,X K β γ   

 

 
 
The option value profile is constructed according to Figure 3, for ˆ1.64981 1.71187β≤ ≤ , 

where ˆ 1.64981β =  and ˆ 1.71187β =  represent in Figure 1 point A and the maximum β  

value, respectively. The minimum option value occurs at 0̂ 201.8942F =  for 0
ˆ 1.70777β = . 
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Figure 4d 
Option Value Profiles of ( )0 0

ˆˆ ˆ ˆ15.0, 75.0; , , ,F X K X K β γ= =  versus γ̂  

 
 

 
 
The option value profile is constructed according to Figure 3, for ˆ0.68055 0.0γ− ≤ ≤ , where 
ˆ 0.0γ =  and ˆ 0.68055γ = −  represent in Figure 1 points A and A”, respectively. The minimum 

option value occurs at 0̂ 201.8942F =  for ˆ 0.30501γ = − . 
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Figure 5 
Project value for the two stochastic general investment model 

  
 
 

 
 
 
 
 
Figure 5 illustrates the project value for 00 26X≤ ≤  and 00 150K≤ ≤ . Project values and the 

corresponding 0 0 0 0 0
ˆ ˆ ˆ ˆˆ, , , ,X Kβ γ λ  values for { }0 5,10, ,25X =   and { }0 25,50, ,200K =   are 

presented in Table 2, together with the computational explanation. 
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Figure 6a 
Absolute percentage error relating to the cash flow smooth-pasting condition 

based on a finite-difference approximation with 0 0.01X∆ =    
 

 

The calculations supporting this figure are processed in the following way. Using an 

arbitrarily feasible 0X  value, we compute the corresponding 0K  value belonging to the 

discriminatory boundary. Then the option value 0̂F  at { }0 0,X K  is determined from ( 24), 

( 25) and ( )0 0
ˆ ˆ, 0Q β γ = , (5); since { }0 0, PX K ∈∂Ω , this can be alternatively obtained from 

( )0 0
ˆ ˆ

XX f r Kδ − − . The 0X  value is reset to 0 0X X−∆  where 0 0.01X∆ = , while the 0K  

value remains unchanged. The option value 0̂F  at the revised { }0 0,X K  is determined as 

before. The absolute percentage error is evaluated from the two option values and 0X∆ , ( 45). 

Some illustrative values are presented below. 
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0X   0K   0X̂   0K̂   0β̂   0γ̂   0̂λ   0̂F   0
% Xerr  

10.50 4.1147 10.5000 4.1147 1.6574 -0.0260 0.0000 158.3853 
 10.49 4.1147 10.5001 4.1159 1.6574 -0.0260 1.8563 158.1353 0.0312 

15.00 54.6831 15.0000 54.6831 1.7021 -0.2482 0.0000 220.3169 
 14.99 54.6831 15.0004 54.6877 1.7021 -0.2482 1.8829 220.0670 0.0234 

20.00 107.8213 20.0000 107.8213 1.7113 -0.3690 0.0000 292.1787 
 19.99 107.8213 20.0002 107.8229 1.7113 -0.3690 1.8553 291.9288 0.0178 

25.00 159.8284 25.0000 159.8284 1.7115 -0.4377 0.0000 365.1716 
 24.99 159.8284 24.9999 159.8270 1.7115 -0.4377 1.8242 364.9216 0.0142 

30.00 211.3260 30.0000 211.3260 1.7097 -0.4817 0.0000 438.6740 
 29.99 211.3260 29.9996 211.3220 1.7097 -0.4817 1.7986 438.4240 0.0118 

35.00 262.5509 35.0000 262.5509 1.7075 -0.5123 0.0000 512.4491 
 34.99 262.5509 34.9994 262.5449 1.7075 -0.5123 1.7785 512.1991 0.0101 

40.00 313.6131 40.0000 313.6131 1.7054 -0.5348 0.0000 586.3869 
 39.99 313.6131 39.9993 313.6055 1.7054 -0.5348 1.7625 586.1370 0.0088 

45.00 364.5703 45.0000 364.5703 1.7034 -0.5520 0.0000 660.4297 
 44.99 364.5703 44.9991 364.5614 1.7034 -0.5520 1.7497 660.1797 0.0078 

50.00 415.4559 50.0000 415.4559 1.7017 -0.5656 0.0000 734.5441 
 49.99 415.4559 49.9990 415.4461 1.7017 -0.5656 1.7392 734.2941 0.0070 

55.00 466.2906 55.0000 466.2906 1.7002 -0.5766 0.0000 808.7094 
 54.99 466.2906 54.9989 466.2799 1.7002 -0.5766 1.7305 808.4595 0.0064 

60.00 517.0876 60.0000 517.0876 1.6989 -0.5857 0.0000 882.9124 
 59.99 517.0876 59.9989 517.0762 1.6989 -0.5857 1.7232 882.6624 0.0058 
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Figure 6b 
Absolute percentage error relating to the investment cost smooth-pasting condition 

based on a finite-difference approximation with 0 0.04K∆ =    
 

 

The calculations supporting this figure are processed in the following way. Using an 

arbitrarily feasible 0K  value, we compute the corresponding 0X  value belonging to the 

discriminatory boundary. Then the option value 0̂F  at { }0 0,X K  is determined from ( 24), 

( 25) and ( )0 0
ˆ ˆ, 0Q β γ = , (5); since { }0 0, PX K ∈∂Ω , this can be alternatively obtained from 

( )0 0
ˆ ˆ

XX f r Kδ − − . The 0K   value is reset to 0 0K K+ ∆  where 0 0.04K∆ = , while the 0X   

remains unchanged. The option value 0̂F  at the revised { }0 0,X K  is determined as before. 

The absolute percentage error is evaluated from the two option values and 0X∆ , ( 45). Some 

illustrative values are presented below. 

 

 

 

 

 

 

0.000

0.005

0.010

0.015

0.020

0.025

0 100 200 300 400 500

Ab
so

lu
te

 p
er

ce
nt

ag
e 

er
ro

r 

Investment cost 



54 
 

 

 

0K   0X   0K̂   0X̂   0β̂   0γ̂   0̂λ   0̂F   0
% Kerr  

20.00 11.8678 20.0000 11.8678 1.6791 -0.1132 0.0000 176.6945 
 20.04 11.8678 20.0413 11.8714 1.6792 -0.1134 0.6591 176.6545 0.0219 

40.00 13.6553 40.0000 13.6553 1.6952 -0.1986 0.0000 201.3818 
 40.04 13.6553 40.0417 13.6591 1.6952 -0.1988 0.6847 201.3418 0.0209 

60.00 15.4921 60.0000 15.4921 1.7039 -0.2640 0.0000 227.3018 
 60.04 15.4921 60.0416 15.4959 1.7039 -0.2641 0.6985 227.2618 0.0195 

80.00 17.3620 80.0000 17.3620 1.7085 -0.3149 0.0000 254.0505 
 80.04 17.3620 80.0413 17.3659 1.7085 -0.3150 0.7052 254.0106 0.0181 

100.00 19.2550 100.0000 19.2550 1.7108 -0.3554 0.0000 281.3745 
 100.04 19.2550 100.0408 19.2589 1.7108 -0.3555 0.7079 281.3345 0.0167 

120.00 21.1644 120.0000 21.1644 1.7117 -0.3882 0.0000 309.1099 
 120.04 21.1644 120.0403 21.1683 1.7117 -0.3883 0.7083 309.0699 0.0154 

140.00 23.0859 140.0000 23.0859 1.7119 -0.4152 0.0000 337.1482 
 140.04 23.0859 140.0399 23.0898 1.7119 -0.4153 0.7075 337.1082 0.0143 

160.00 25.0166 160.0000 25.0166 1.7115 -0.4379 0.0000 365.4148 
 160.04 25.0166 160.0394 25.0204 1.7115 -0.4379 0.7059 365.3748 0.0133 

180.00 26.9543 180.0000 26.9543 1.7109 -0.4570 0.0000 393.8574 
 180.04 26.9543 180.0390 26.9581 1.7109 -0.4571 0.7041 393.8174 0.0124 

200.00 28.8975 200.0000 28.8975 1.7102 -0.4734 0.0000 422.4383 
 200.04 28.8975 200.0386 28.9013 1.7102 -0.4735 0.7021 422.3983 0.0116 

220.00 30.8452 220.0000 30.8452 1.7093 -0.4877 0.0000 451.1295 
 220.04 30.8452 220.0383 30.8489 1.7093 -0.4877 0.7000 451.0895 0.0109 

240.00 32.7964 240.0000 32.7964 1.7085 -0.5001 0.0000 479.9101 
 240.04 32.7964 240.0380 32.8001 1.7085 -0.5001 0.6980 479.8701 0.0103 

260.00 34.7506 260.0000 34.7506 1.7076 -0.5110 0.0000 508.7643 
 260.04 34.7506 260.0377 34.7543 1.7076 -0.5111 0.6960 508.7243 0.0097 

280.00 36.7072 280.0000 36.7072 1.7067 -0.5208 0.0000 537.6794 
 280.04 36.7072 280.0374 36.7108 1.7067 -0.5208 0.6942 537.6394 0.0092 

300.00 38.6658 300.0000 38.6658 1.7059 -0.5294 0.0000 566.6457 
 300.04 38.6658 300.0372 38.6695 1.7059 -0.5294 0.6924 566.6057 0.0088 

320.00 40.6262 320.0000 40.6262 1.7051 -0.5372 0.0000 595.6554 
 320.04 40.6262 320.0370 40.6298 1.7051 -0.5372 0.6907 595.6154 0.0083 

340.00 42.5881 340.0000 42.5881 1.7043 -0.5443 0.0000 624.7022 
 340.04 42.5881 340.0368 42.5917 1.7043 -0.5443 0.6892 624.6622 0.0080 

360.00 44.5512 360.0000 44.5512 1.7036 -0.5506 0.0000 653.7808 
 360.04 44.5512 360.0366 44.5548 1.7036 -0.5507 0.6877 653.7408 0.0076 

380.00 46.5155 380.0000 46.5155 1.7029 -0.5565 0.0000 682.8872 
 380.04 46.5155 380.0364 46.5191 1.7029 -0.5565 0.6863 682.8472 0.0073 

400.00 48.4807 400.0000 48.4807 1.7022 -0.5618 0.0000 712.0176 
 400.04 48.4807 400.0362 48.4843 1.7022 -0.5618 0.6850 711.9776 0.0070 

500.00 58.3177 500.0000 58.3177 1.6993 -0.5828 0.0000 857.9425 
 500.04 58.3177 500.0356 58.3212 1.6993 -0.5828 0.6795 857.9025 0.0058 
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