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1 Introduction

To maximize profit in the manufacturing sector, businesses turn to offshore production because of
the low manufacturing costs. However, due to uncertain consumer demand and long lead times, it
is difficult to determine an optimal offshoring strategy. In order effectively hedge the risk associated
with offshoring, a dual-sourcing model is proposed. The dual-sourcing model enables companies to
maximize their profit while eliminating risk by applying a real options approach to decision making.

Consider the case of the production and sale of winter boots. As a seasonal item, winter boots
experience high demand during the winter months. However, it is difficult for retailers to accurately
determine the expected demand at a future date due to the unknown weather. Offshore lead times
can be up to six months or more and the costs of over or under production can be significant. The
problem can be simplified as a single-period stochastic demand problem. Our approach, provides an
optimal order quantity for the unknown demand as a dual-sourcing model. A portion of the expected
demand would be purchased from the offshore manufacturer months in advance, accounting for the
large lead time required. As time moves forward, the expected demand for boots becomes more
certain based on the seasonal changes, and another order will be placed from an onshore (local)
manufacturer with a much shorter lead time to meet this demand. This effectively hedges the
offshore manufacturing option and allows for profit maximization.

The purpose of this paper is to provide a psuedo-analytical solution to a single-period dual-
sourcing problem for perishable or seasonal goods under a general demand distribution. Future work
would consider multiple demand and sourcing periods from the local manufacturer to determine
a more realistic scenario. This more complicated approach, however, will no longer be psuedo-
analytical and will require numerical methods to solve. Furthermore, we can consider the demand
to be an observable process correlated to a traded, which can be hedged to reduce profit uncertainty.

2 Literature Review

Profit maximization in the retail industry can be summarized by optimal inventory control. (K.J. Ar-
row, 1951) developed what is now known as the Newsvendor model as a means of determining op-
timal inventory levels for a perishable product with fixed costs and unknown demand. This model
has been expanded both as single-sourcing and multiple sourcing models. (Mahmut Parlar, 1996)
considered a model where disruptions in product supply are prevalent and developed average cost
models for single and multiple suppliers under constant demand, utilizing a Markov chain process for
the case of two suppliers. Analytical closed-form solutions for single period dual-sourcing inventory
control with supply disruptions for both channels were developed by (Anastasios Xanthopoulos,
2011).

Assuming a stochastic supply (yield) with a known demand, in special cases such as agricultural
production, (Keren, 2009) considers additive and multiplicative yield risks within a single-period
demand. Expanding on this, assuming an unlimited supply capacity with unreliable yield, (Lei Shu,
2015) shows that the value of the optimized expected utility becomes less sensitive to the initial
inventory level as the degree of risk aversion decreases. Very detailed reviews of various supply
chain risks and their management styles have been done by (Tang, 2006) and (William Ho, 2015).

Our model does not consider disruptions on the supplier-end, and instead treats the local supplier
as a source of hedging. It is standard practice in industry for managers to have an "emergency"
supplier that can provide needed service during times of peak demand when standard inventory
management does not suffice. Early research from (Barankin, 1961) focused exactly on this issue -
an instantaneous delivery problem with a regular lead time of one period. For the case when the
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lead-time difference between the two suppliers was exactly one period, (Fukuda, 1964) determined
that the optimal order policy is a dual-index policy (DIP). A much more complex problem of when
the lead time differences are more than one period between the suppliers, the optimal policy becomes
difficult to compute and has a complex structure (Whittemore, 1977). This issue of various multiple
sourcing models is reviewed in depth by (Minner, 2003).

For situations when the difference between lead times is very large, (Veeraraghavan, 2008)
showed that these cases perform very closely to that of a DIP by separating the optimization of a
two-dimensional DIP to two one-dimensional optimization problems with deterministic lead times.
(Joachim Arts, 2011) then went on to use Markov chains to optimize the DIP as two one-dimensional
problems with stochastic regular lead times.

3 Model Formulation

Our model formulation proceeds as follows. Consider an unknown demand X faced by the local
company (LC) for a certain item is assumed to be a positive stochastic random variable with a
probability density function fX(x) and a cumulative distribution function FX(x). Assume the case
of a LC requiring product at time T . They have the ability to orderM units of the product from an
offshore manufacturer at time t0 at a cost per item of CM . Similarly, they have the option to order
U units from an onshore (local) manufacturer at time τ , in the future where t0 < τ < T , at a cost
per item of CU . The offshore manufacturer has a significantly longer production lead time than the
local manufacturer so order quantities at times t0 have to be decided long before the selling period
T . On the other hand, the offshore manufacturer has much lower production cost than the local
manufacturer (CM < CU ). The units are sold for a price P per item and have a salvage value of
PSalv. In the event that the demand is higher than the amount of stocked units available for sale,
the local company faces lost sales or a strategic price of PStrat per unit.

The expected profit function faced by the LC based on the order quantities M and U from the
offshore and onshore manufacturers, respectively, is given by

E[Profit(M,U)] = E[min(X,M + U)P + PSalv · (M + U −X)+

−PStrat · (X −M − U)+ −MCM − UCU ]
(1)

which can be expanded into nested expectations based on the order times t0 and τ as shown in the
following equation

E[Profit(M,U)] =

E[−MCM + Eτ [min(X,M + U)P + PSalv · (M + U −X)+ − PStrat · (X −M − U)+ − UCU︸ ︷︷ ︸
G(X;M,U)

]]

= E[−MCM + Eτ [G(X;M,U)]]

(2)

where G(X;M,U) is the profit function at time t = τ .
It is important to note that the order quantities from each of the suppliers is time dependent.

Equation 1 has regularization terms PStrat and PSalv which will affect the order quantities based on
their weight and the observable demand at the order time. If PStrat < CU − PSalv then the order
quantity from the onshore manufacturer at time τ will be less than the expected demand at time t0
and what was already ordered from the offshore manufacturer M i.e. U < Et0 [X]−M . This can be
explained by the fact that lost sales have less of an impact on the company’s profit compared to the
purchase price from the offshore supplier. Similarly, if PStrat > CU − PSalv then U > Et0 [X] −M
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and shows that the cost of ordering extra units from the offshore supplier has less of an impact than
the possibility of lost sales.

Working recursively, we can maximize the profit function G(X;M,U) based on the conditional
probability density function of XT at time t = τ and y = Xτ ; fXT |Xτ (x|y). By taking the derivative
of G(X;M,U) with respect to U and setting it equal to zero, the optimal onshore order quantity
U∗ can be determined for any value of M .

We can rewrite Eτ [G(X;M,U)] as

Eτ [G(X;M,U)] =

∫ ∞
−∞

[(x,M + U)P + PSalv · (M + U − x)+

− PStrat · (x−M − U)+]fXT |Xτ (x|y)dx− UCU
(3)

and maximize the expected profit by taking the derivative with respect to U and setting the equation
equal to zero, the details of which are provided in Appendix A. This allows us to determine the
optimal onshore order quantity U∗ which maximizes the overall profit at time t = τ

U∗ = F−1XT |Xτ

(
P + PStrat − CU
P + PStrat − PSalv

∣∣∣∣y)︸ ︷︷ ︸
γ(y)

−M ≡ γ(y)−M. (4)

For convenience the term γ(y) is introduced to represent the inverse cumulative distribution function
of P+PStrat−CU

P+PStrat−PSalv at time t = τ . The derived γ(y) resembles a modified newsvendor model, and it
will be used subsequently to solve for the optimal offshore order quantity M .

As expected, U∗ is largely dependent on the offshore order quantity M . With that in mind, it
is important to take into account that U∗ in Equation 4 can be negative under large values of M .
This can be explained under the circumstance where the LC is short-selling the local units, since
the assumption was previously made that the offshore unit cost is always less than onshore unit
(CM < CU ). This strategy is unacceptable and a more accurate representation of U∗ is

U∗(y) = max(γ(y)−M, 0) = (γ(y)−M)+. (5)

It is now possible to substitute the expression for U∗ into Equation 1 to determine the profit
function at time t = t0 based on the optimal local order quantity U∗,

E[Profit(M,U∗)] =

∫ ∞
−∞

(
−MCM +

∫ ∞
−∞

G(x;M,U∗(y))fXT |Xτ (x|y)dx
)
fXτ (y)dy (6)

Equation 6 can be reduced to (see Appendix B)

E[Profit] =
∫ ∞
γ−1(M)

[
γ(y) · (P + PStrat − CU ) + γ(y) · FXT |Xτ (γ(y)|y) · (PSalv − P − PStrat)

− PStrat ·G(y; γ(y),∞) + (P − PSalv) ·G(y; 0, γ(y))
+M · (CU − CM )

]
fXτ (y)dy+∫ γ−1(M)

0

[
M · (P + PStrat − CM ) +M · FXT |Xτ (M |y) · (PSalv − P − PStrat)

+G(y; 0,M) · (P − PSalv)− PStrat ·G(y;M,∞)
]
fXτ (y)dy.

(7)

The equation for γ−1(M) is based on the underlying distribution that is used to approximate
the unknown demand. Appendix C shows an example of the derivation of γ−1(M) for the normal
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distribution. Taking Equation 7; differentiating it with respect to M and and setting it equal to
zero while applying the integration initiated previously provides us with a final psuedo-analytical
expression for the optimal offshore order quantity M∗ which can be solved using simple numerical
methods or computer modeling

0 = CU − CM + (P + PStrat − CU ) · FXτ (γ−1(M))− (P − PSalv − PStrat)
∫ γ−1(M)

−∞
FXT |Xτ (M |y)fXτ (y)dy.

(8)

4 Results

Preliminary results are presented in this section. Figure 1 below shows the importance of choosing
a distribution which best represents the expected demand of the underlying asset. Running the
model, all parameters were kept constant, modifying only the stochastic process between Brownian
motion and geometric Brownian motion with varying initial expected demand X0.
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Figure 1: Expected profit based on stochastic process;
Brownian Motion: Drift = 20; Volatility = 30
Geometric Brownian Motion: Drift = 0.2; Volatility = 0.3
P = 10, PSalv = 3, PStrat = 4, CU = 6, CM = 5, T = 5/12, τ = 2/12

The expected profit (contours) based on the initial expected demand and varying offshore pro-
duction quantities (M) fluctuates greatly depending on the distribution used. This is especially true
with increasing initial expected demand, as the contours between chosen processes begin to cross
boundaries and can provide highly inaccurate results. It is imperative that the users of this model
understand the expected behavior of their underlying asset either through historical experience or
other stochastic processes.

Alongside, the implied drift and variance also have an effect on the expected profit. Using
a Brownian motion process while modifying drift and variance, Figure 2 shows a contour of the
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expected profit with respect to the initial expected demand X0.
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Figure 2: Effect of drift and variance on expected profit

As expected, an increase in drift will typically lead to an increase in the expected profit under
constant X0 and M . This can be explained by the fact that the LC is expecting a sharper increase
in demand as time progresses, as is noticed by seasonal items and much less so for year-round goods.
Modification of variance affects the expected profit as well, but nowhere near to the the extent that
the underlying distribution or drift do. A large variance causes disturbances and uncertainties in
pinpointing the optimal offshore and onshore order quantities. However this is usually negligible
compared to determining an accurate drift and stochastic process assumption.

The psuedo-analytical model does have its limitations. For example, when CU = PSalv, the
expected profit is undefined and approaches infinity as visible in Figure 3a below. This behavior is
expected and consistent with Equation 4 as the inverse cumulative distribution function simplifies
to F−1X|Xτ (1; y) =∞.
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(b) PSalv = 2.75, CU = 5, P = 10

Figure 3: Expected profit contour

For low values of CU (CU < PSalv), the offshore order quantity M has a much higher impact on
the expected profit. When the local production cost is less than the salvage value, ordering a small
quantity of units from the offshore source causes a large loss in potential profit. And as expected, it
can also be seen that the offshore order quantity has little to no effect on the expected profit when
the offshore and local production costs are equal (CU = CM ).

In contrast, the offshore production price CM is not limited by the salvage value of the as-
set as shown in Figure 3b. The expected profit based on the offshore production price behaves
conventionally, providing maximum profit when CM is minimized.

The local order time τ and end time T have little effect on the maximum expected profit as
shown in Figure 4 below under most circumstances. Only in the case where the local order time
is equal to the the end time (τ = T ), does the maximum expected profit drop significantly as
shown by the large downward spikes in profit. This is because the time the local order is placed
is typically based on the lead time set by the local manufacturer. Therefore, orders placed at a
time where τ = T cause a large decrease in maximum expected profit because the goods cannot be
manufactured instantaneously and the LC is effectively not taking advantage of the hedging option.
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Conversely, the maximum expected profit is stagnating once CM = CU . As noted before, this
behavior is predicted because the LC would instead then choose the option to attain all of their
goods from the local manufacturer. Once it does become profitable for the LC to acquire a portion
of their assets from the offshore manufacturer (CM > CU ), we see the maximum expected profit
increase; creating a larger profit margin at each index of CM .
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Appendices

A Supplementary Derivation of U*

Equation 3 can be separated into sections A1−A4 as follows:

A1 =

∫ ∞
−∞

(1x<M+U · x+ 1x>M+U · (M + U)) · P · fXT |Xτ (x|y)dx, (9)

dA1

dU
=

∫ ∞
∞

1x>M+U · P · fXT |Xτ (x|y)dx

=

∫ ∞
M+U

P · fXT |Xτ (x|y)dx

=P · (1− FXT |Xτ (M + U |y)),

(10)

A2 =

∫ ∞
−∞

PSalv · 1x<M+U · (M + U − x) · fXT |Xτ (x|y)dx, (11)

dA2

dU
=

∫ ∞
∞

PSalv · 1x<M+U · fXT |Xτ (x|y)dx

=

∫ M+U

0
PSalv · fXT |Xτ (x|y)dx

=PSalv · FXT |Xτ (M + U |y),

(12)

A3 =

∫ ∞
−∞

PStrat · 1x>M+U · (x−M − U)) · fXT |Xτ (x|y)dx, (13)

dA3

dU
=−

∫ ∞
∞

PStrat · 1x>M+U · fXT |Xτ (x|y)dx

=−
∫ ∞
M+U

PStrat · fXT |Xτ (x|y)dx

=− PStrat · (1− FXT |Xτ (M + U |y)),

(14)

A4 =UCU , (15)
dA4

dU
=CU , (16)

where FXT |Xτ (M + U |y) is the cumulative distribution function of X at time t = τ and y = Xτ .
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B Reduction of Equation 6

Similar to the derivation of U∗, Equation 6 can be separated into

B1 =

∫ ∞
0

(1x<M+U · x+ 1x>M+U · (M + U)) · P · fXT |Xτ (x|y)dx,

B2 =

∫ ∞
0

(1x<M+U · (M + U − x)) · PSalv · fXT |Xτ (x|y)dx,

B3 =

∫ ∞
0

(1x>M+U · (x− (M + U))) · PStrat · fXT |Xτ (x|y)dx,

B4 =

{
−MCM − (γ(y)−M)CU if γ(y) ≥M
−MCM if γ(y) < M.

(17)

Appropriate boundary conditions can now be applied to the functions in Equation 17, as can be
seen for B1:

B1 =

∫ ∞
0

(1x<M+U · x+ 1x>M+U · (M + U)) · P · fXT |Xτ (x|y)dx

1x<M+(γ(y)−M)+ →

{
1x<γ(y) if γ(y) ≥M
1x<M if γ(y) < M

= 1γ(y)>M · 1x<γ(y) + 1γ(y)<M · 1x<M

M γ(y)

x

γ(y) M

x

1x>M+(γ(y)−M)+ = 1γ(y)>M ∗ 1x>γ(y) + 1γ(y)<M ∗ 1x>M

M γ(y)

x

γ(y) M

x

∴ B1 =P


∫ γ(y)

0
x ∗ fXT |Xτ (x|y)dx+

∫ ∞
γ(y)

γ(y) ∗ fXT |Xτ (x|y)dx if γ(y) ≥M∫ M

0
x · fXT |Xτ (x|y)dx+

∫ ∞
M

M · fXT |Xτ (x|y)dx if γ(y) < M.

(18)

Applying a similar process, functions B2 and B3 simplify to

B2 =PSalv


∫ γ(y)

0
(γ(y)− x) · fXT |Xτ (x|y)dx if γ(y) ≥M∫ M

0
(M − x) · fXT |Xτ (x|y)dx if γ(y) < M

(19)

B3 =PStrat


∫ ∞
γ(y)

(x− γ(y)) · fXT |Xτ (x|y)dx if γ(y) ≥M∫ ∞
M

(x−M) · fXT |Xτ (x|y)dx if γ(y) < M.

(20)
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By defining G(y; a, b) =
∫ b
a xfXT |Xτ (x|y)dx we are able simplify∫ γ(y)

0
(γ(y)− x) · fXT |Xτ (x|y)dx = γ(y) · FXT |Xτ (γ(y)|y)−G(y; 0, γ(y)); (21)

and apply this to Equations 18, 19, and 20 to reduce them to

∴ B1 =P

{
G(y; 0, γ(y)) + γ(y) · (1− FXT |Xτ (γ(y)|y)) if γ(y) ≥M
G(y; 0,M) +M · (1− FXT |Xτ (M |y)) if γ(y) < M

(22)

∴ B2 =PSalv


∫ γ(y)

0
(γ(y)− x) · fXT |Xτ (x|y)dx if γ(y) ≥M∫ M

0
(M − x) · fXT |Xτ (x|y)dx if γ(y) < M

=PSalv

{
γ(y) · FXT |Xτ (γ(y)|y)−G(y; 0, γ(y)) if γ(y) ≥M
M · FXT |Xτ (M |y)−G(y; 0,M) if γ(y) < M

(23)

∴ B3 =PStrat


∫ ∞
γ(y)

(x− γ(y)) · fXT |Xτ (x|y)dx if γ(y) ≥M∫ ∞
M

(x−M) · fXT |Xτ (x|y)dx if γ(y) < M

=− PStrat


γ(y)[1− FXT |Xτ (γ(y)|y)]−

∫ ∞
γ(y)

(x) · fXT |Xτ (x|y)dx if γ(y) ≥M

M [1− F (M); y)]−
∫ ∞
M

(x) · fXT |Xτ (x|y)dx if γ(y) ≥M

=− PStrat

{
γ(y)− γ(y) · FXT |Xτ (γ(y)|y)−G(y; γ(y),∞) if γ(y) ≥M
M −M · FXT |Xτ (M |y)−G(y;M,∞) if γ(y) < M

(24)

(25)

which can be substituted back into the original equation and reduced to the form presented in
Equation 7.

C Derivation of γ−1(M)

F (M + U∗(y), y) =
P + PStrat − CU
P + PStrat − PSalv

1

2
+

1

2
erf

(
M + U∗(y)− y

σ
√
2

)
=

P + PStrat − CU
P + PStrat − PSalv

U∗(y) = y + σ
√
2 ∗ erf−1

[
2

(
P + PStrat − CU
P + PStrat − PSalv

)
− 1

]
︸ ︷︷ ︸

γ(y)

−M
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Noting that γ(y) has to be greater than M allows us to rearrange the equation to:

γ−1(M) =M − σ
√
2 ∗ erf−1

[
2

(
P + PStrat − CU
P + PStrat − PSalv

)
− 1

]
. (26)
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