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Abstract

Dynamic innovation incentives incorporating the �rm�s ability to delay innovation are re-

lated to market characteristics. Because of the replacement e¤ect these incentives are generallly

larger with competition, but if there is even a slight limitation on appropriability (�nite patent

duration or small probability of imitation) a monopoly �rm values a novel idea more highly

if it is su¢ ciently pioneering, and this is more likely to occur in industries with high growth

and volatility. If the size of innovation is endogenized, when growth and volatility are high

competitive �rms are more likely to opt for drastic innovations but innovate excessively from

a social standpoint.

JEL Classi�cation: G31 (Capital Budgeting; Fixed Investment and Inventory Studies;

Capacity), L13 (Oligopoly and Other Imperfect Markets), O33 (Technological Change: Choices

and Consequences; Di¤usion Processes)

Keywords: Drastic innovation; Real options; Replacement e¤ect

1 Introduction

Because of the inherent uncertainty of invention it is unlikely that novel ideas arrive at the most

opportune moment for commercial development. An important part of the value of innovation

then consists of the option value associated with developing a novel idea at a moment at which

economic conditions are most favorable. In a half-century of active research on the economics of

innovation in the wake of Arrow [1]�s seminal contribution, a considerable literature has developed
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relating innovation incentives to the degree of competition �rms face in the product market as well

as uncertainty regarding the success of R&D investments.1 In parallel the understanding of the

option value associated with investments has also evolved, and it can continue to usefully inform

innovation economics and policy by shedding light on the determinants of innovation when it

is viewed as an investment decision. Notably in high growth or high volatility industries in

which the value of expansion options is likely to be signi�cant, the link between competition and

innovation is less straightforward than the standard static analysis suggests, even when restricting

attention to the polar cases of monopoly and competitive �rms. Moreover, viewing innovation

as an investment opportunity provides a better understanding of the type of innovation that

�rms ultimately choose to pursue, by highlighting the role played by industry characteristics in

determining the magnitude of innovations.

This paper studies the innovation incentives of �rms by representing innovation as an ir-

reversible investment in which option value is likely to be important because the arrival of an

innovation and its development cost are generally not coordinated events. Using a standard

model of irreversible investment (Dixit and Pindyck [8]) to represent the dynamic innovation in-

centive of �rms, one quickly sees that option value should not have any impact on the comparative

innovation incentives of monopoly and competitive �rms, because of the power of the replacement

e¤ect. The intuition behind this is straightforward: because of the replacement e¤ect, the com-

petitive payo¤ is greater than the monopoly payo¤ in every state, and it then follows naturally

that the competitive option to develop the idea in any state is worth more than the corresponding

monopoly option.

However, the importance of the replacement e¤ect hinges upon a restrictive set of under-

lying assumptions, and much of the progress in the understanding of innovation incentives has

resulted from relaxing these assumptions in various ways.2 Viewing innovation as an investment

1Already a decade ago, Gilbert [13] refers to the wealth of economic models of innovation:

�di¤erences in market structure, the characteristics of innovations, and the dynamics of discovery

lead to seemingly endless variations in the theoretical relationship between competition and expendi-

tures on research and development or the outputs of research and development (R&D).�

2As Arrow observes ([1] p. 622):

�The only ground for arguing that monopoly may create superior incentives to invent is that

appropriability may be greater under monopoly than under competition. Whatever di¤erences may

exit in this direction must, of course, still be o¤set against the monopolist�s disincentive created by

his preinvention monopoly pro�ts.�
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opportunity in a dynamic setting, it is straightforward to incorporate some speci�c limitations

to the appropriability of invention into the analysis. For example, both the length of time for

which a novel idea is protected by a patent and the scope of patents are limited. Moreover,

information leakage is likely to occur over time, leading competitors to imitate or invent around

a novel idea. Such limitations to appropriability as these are likely to favor monopoly innovation,

which enjoys additional entry barriers in the product market. By integrating limits on appropri-

ability such as �nite patent duration or a random arrival of imitation into the standard model

of irreversible innovative investment, the circumstances that favor monopoly innovation can be

identi�ed precisely.

If a novel idea is �pioneering�in that it emerges at a moment when the cost of development is

currently high so that optimal time to develop an innovation is likely to be remote, then there is a

greater dynamic innovation incentive under monopoly than under competition. This is in a sense

a setback for any policy that aims to foster innovation by promoting those market structures that

o¤er greater incentives for innovation through merger policy for instance, since in a stochastic

dynamic setting the most favorable market structure changes over time with market conditions.3

That imperfect appropriately has consequences for relative innovation incentives is not in itself

particularly novel, but the real options approach allows more speci�c results to be derived that

are relevant for policy. This is because this analysis points to those circumstances under which

a monopoly market structure should not be viewed as an impediment to innovation, namely in

industries in which volatility or growth are su¢ ciently high so that the value of an innovation

resides mainly in the possibility of developing it in the future.4 Conversely, it is when market

conditions are more stable and development is likely to occur rapidly that the replacement e¤ect

3This policy objective is described by Gilbert [13] as follows:

�Studies also show that the social return to investment in R&D is higher than the private return[,]

which suggests that policies that promote innovation can pay large dividends for society. One way to

achieve these bene�ts is to promote industry structures that o¤er greater incentives for innovation,

including policies toward mergers and laws that govern exclusionary conduct.�

4Future earnings are notoriously important in the valuation of emerging internet businesses, as was the case

for the emblematic internet �rm Amazon in the late 1990s. Decades earlier, many important inventions of the

twentieth century were made at Bell Labs, an organization that favored research on projects of unproven immediate

commercial value (see, e.g., Gertner [12]). The main tehnical ideas behind mobile telephony for instance date

back to 1947, but it wasn�t until the FCC opened a block of frequencies a couple of decades later that cellular

networks were actually developed. In the technology adoption literature, the importance of waiting and optimal

timing is well-recognized (see Hoppe [16]), notably because of the expectation at any moment of further technical

improvements.
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will be relatively important and clearly favor competitive innovation.

Having at �rst focused attention on the timing of discrete investments (a notable exception

is Bar-Ilan and Strange [2]) research on investment options has begun recently to account for

both the timing and the magnitude of investment. In the framework for innovative investment

developed in this paper, the size of investment is best understood as a decision regarding the

magnitude of the innovation that the �rm ultimately brings to market, such as a targeted level of

unit cost reduction for a process innovation. Although some in�uential early work on innovation

considers the choice of innovation size in a static setting (Dasgupta and Stiglitz [7]), we argue

that it is in a dynamic context that this question takes on particular signi�cance. Here as well,

the real options approach allows the magnitude of innovation to be understood in relation to

industry and market characteristics. For instance, it is when market growth and volatility are

large that competitive �rms are more likely to delay innovation and opt for so-called drastic

innovations. Somewhat counterintuitively, competitive �rms innovate �too much, too late�. This

occurs because of a mechanism described by Huisman and Kort [19] in the following way. As

greater volatility raises the value of an investment option, it induces �rms to invest later at a

time when their marginal investment incentive is greater, either because marginal revenue has

increased or because the incremental cost of investment is lower. In the innovation framework

adopted here (which draws on a general speci�cation proposed by Pennings [20]), this implies that

competitive �rms invest too much, too late as compared with the social innovation incentive.

Through its focus on the role of the uncertainty surrounding innovation in monopoly and

competition rather than strategic oligopoly �rms, the model of this paper is perhaps most closely

related to some early �auction�models of innovation incentives, as surveyed by Reinganum [22],

that study the scale of �rm investments and its repercussion for the speed of innovation. As in

these early models, innovation can occur more or less quickly as in the present paper, although

this happens here as a result of the timing of innovative projects rather than of their intensity,

and the focus remains on the polar cases of monopoly and competitive �rms and the e¤ect of

limited appropriability, in contrast with the considerable literature in industrial organization that

studies the relationship between innovation and competition through those models of strategic

behavior in oligopoly that are admittedly most likely to directly inform such policy objectives

as merger control. Among recent examples, Etro [9], Belle�amme and Vergari [3] and Chen

and Schwartz [5] study intermediate or alternative forms of product market competition such as

oligopoly, Stackelberg leadership, and coordination so as to identify speci�c circumstances that

favor monopoly innovation. At least since D�Aspremont and Jacquemin [6] research on the choice

of innovation size has similarly centered on strategic incentives in oligopolies so as to shed light
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on issues of policy relevance, such as R&D cooperation issue. Another in�uential line of research

on the economics of innovation has explored strategic innovation incentives when �rms race to

obtain a patent or adopt a technology whose arrival is uncertain (Reinganum [21]) and more

recent work in this area represents innovation as an investment option (Huisman [17], Weeds [25])

and integrates limited appropriability and strategic behavior in the presence of imitators into the

analysis (Huisman and Kort [18], Femminis and Martini [11]). Finally, there are strong parallels

between the study of innovation incentives for a �rm and models of technology adoption, such as

Farzin et al. [10]�s model of the optimal timing of technology adoption in a competitive setting

that this paper complements by highlighting the e¤ect of di¤erent market structures.

Section 2 develops a benchmark model of innovation incentives when a monopoly or compet-

itive innovator face a stochastic development cost for a novel idea and decide upon the timing

of investment, and veri�ed that the replacement e¤ect continues to hold in a dynamic setting.

Section 3 allows for di¤erent forms of limited appropriability, such as limited patent duration or

the arrival of imitation. In all cases, it emerges that even an arbitrarily small limitation on ap-

propriability for competitive �rms results in a greater dynamic innovation incentive for monopoly

�rms, when the current cost of development is su¢ cient high. Finally Section 4 allows for vari-

able innovation size and endogenizes drastic innovation in the case of competitive �rms. Section

5 concludes.

2 Dynamic innovation incentives

This section describes the value of innovation under monopolistic and competitive conditions in

the product market, incorporating any option value associated with the right to develop a novel

idea that may be present if a �rm has leeway as to the timing of an innovation, so as to determine

the dynamic incentives that �rms may have to innovate in these di¤erent market structures.

2.1 Monopoly innovation option

The following paragraphs describe a canonical model of innovation for a monopoly �rm along the

lines of Dixit and Pindyck [8] that forms the basis for the analysis in the rest of the paper. The

�rm is taken to engage in a process innovation where uncertainty applies to the cost of innovation,

and qualitatively similar results would obtain if product innovation or demand uncertainty were

present instead.
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Let � and �, � > � > 0, denote �ow pro�ts before and after innovation. These �ow pro�ts may,

for example, re�ect a process innovation that reduces unit cost, i.e. � = �M (c0) and � = �M (c1),

where �M denotes the optimal monopoly pro�t function and c0 and c1, c1 < c0, denote pre and

post-innovation unit cost. The discount rate r > 0 is assumed to be known and constant, so

� = �=r and � = �=r represent the capitalized values of perpetual pro�t �ows without and with

innovation.

Innovation begins when the �rm acquires the right to use a novel idea, but acquiring a novel

idea does not directly lead to a higher pro�t �ow. In order to be implemented, an idea must

be developed by the �rm in order to be viable, and this development involves a complementary

expenditure in order to roll the novel idea out onto the shop �oor or to bring it to market.

The �xed cost of developing an idea at a given time t, Kt, evolves according to a geometric

Brownian motion with drift � and volatility �, dKt = �Ktdt+ �KtdWt, with � > 0. The option

to delay development is therefore of potential value because of uncertainty regarding the future

�xed cost of development (�). The drift term may be interpreted either as a measure of resource

scarcity that raises the cost of development over time (if � > 0) or technical progress and learning

(� < 0), a form of market growth. In the latter case, the negative drift of the �xed cost is also

a potential source of value for the option to delay. Once the �xed cost is paid, development

is assumed to be instantaneous and riskless so that the �rm immediately starts perceiving a

corresponding �ow pro�t in the product market.5

Under these conditions a monopoly �rm holds a growth option with cost uncertainty. Its

decision consists in choosing at which time to develop its idea, and its optimal policy is a trigger

policy involving a stopping threshold of the development cost, denoted KM, that de�nes the

stochastic time at which it undertakes development, �M = inf
�
t � 0;Kt � KM

	
.

For a given current value of the �xed cost Kt = k standard arguments establish that under

the above assumptions the dynamic innovation incentive of a monopoly �rm is

V M (k) = sup
��t

Et
��
����K�

�
e�r�

�
(1)

=

8<: ���� k, k � KM

[KM]

+1


 k�
 , k > KM
(2)

5The main conclusions of the paper also hold if the success of innovation is stochastic. For instance if the arrival

of innovation success follows a Poisson process with arrival rate h > 0 then the �ow payo¤s � and �C are multiplied

by h=(r+ h) and (r+ h) must be substituted for r in the discounting parameter 
, but the qualitative comparison

of dynamic innovation incentives is una¤ected.
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where KM = (
= (
 + 1))
�
���

�
and


 (r; �; �) =
�

�2
� 1
2
+

s�
�

�2
� 1
2

�2
+
2r

�2
(3)

is a function of parameters that re�ects expected discounting, written 
 for short.6 If k > KM

then the last line in (2), V M (k) =
�
����KM

� �
KM=k

�

, incorporates the value of the option

to delay, and as @
=@� < 0 a straightforward envelope argument shows that @V M=@� > 0 in this

case.

2.2 Competitive innovation option and replacement e¤ect

The opposite case of the dynamic innovation incentive of a monopoly �rm (2) is the value of

innovation to a �rm facing a competitive fringe in the product market and thus earning no eco-

nomic pro�t before innovation. In this case, the dynamic innovation incentive is also interpreted

as the value that an inventor can extract upstream in a market for ideas. Let �C denote the

present value of the competitive �rm�s post-innovation �ow pro�t. Note that necessarily �C � �
(a competitive �rm cannot earn greater pro�t than a monopoly) and if �C = � the innovation is

said to be drastic. Following similar arguments to the monopoly option case above, the dynamic

innovation incentive of a �rm facing product market competition is

V C (k) =

8<: �C � k, k � KC

[KC]

+1


 k�
 , k > KC
(4)

where KC = (
= (
 + 1))�C.

In his seminal paper Arrow [1] demonstrates that in a standard setting �C > � � � (the

replacement e¤ect). From his result it directly follows that KC > KM and V C (k) > V M (k).

Product market competition is therefore associated with earlier innovation and a greater dynamic

innovation incentive than monopoly, so that the replacement e¤ect holds just as well as in a

stochastic continuous time setting as in the static model. The intuition for this is very straight-

forward: if the competitive payo¤ is greater than the monopoly payo¤ in every single state of the

development cost, then it naturally follows that the competitive option to develop the idea in any

state is worth more than the corresponding monopoly option.

6The geometric Brownian motion has the property that for k � KM and �rst hitting time �M de�ned in the

text, Ek
h
e�r�

M
i
=
�
KM

k

�

. Here 
 is the absolute value of the negative root of the fundamental quadratic (see

Section A.1).
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2.3 Social incentive

In addition to identifying the replacement e¤ect Arrow compares the monopoly and competitive

innovation incentives to the social incentive to innovate. In order to perform a benchmark com-

parison in the continuous time setting considered here, assume that the social discount rate is the

same as that of �rms and that consumers are risk-neutral.

Consider a process innovation that reduces unit cost from c0 to c1 and let D(P ) denote

the demand function, assumed to be strictly decreasing on its domain. The capitalized surplus

�ows without and with innovation resulting from marginal cost pricing in the product market

are SC0 = (1=r)
R1
c0
D(s)ds and SC1 = (1=r)

R1
c1
D(s)ds. Similarly to (2) and (4), under these

assumptions the social gain from innovation is de�ned by parts as

W � (k) =

(
SC1 � SC0 � k, k � K�

[K�]
+1


 k�
 , k > K� (5)

where K� = (
= (
 + 1))
�
SC1 � SC0

�
is the socially optimal investment threshold. Since SC1 �SC0 �

�C, it follows directly that K� � KC so that innovation occurs later than is socially optimal under

both competition and monopoly as may be expected. Similarly it is straightforward to verify that

W � (k) � V C (k), so that both the monopoly and the competitive dynamic innovation incentives
fall short of the social optimum.

As stated in the introduction a direct consequence of the replacement e¤ect is that if an

explanation of monopoly innovation is to be found, it must lie in some other industry characteristic

that allows a monopoly �rm to have a greater innovation incentive.7 Certain limitations of

appropriability, namely over time, arise naturally in a dynamic setting and are taken up in the

next section.

3 Imperfect appropriability

As Arrow observes an inventor�s incentive unravels entirely if there is perfect competition both in

the product market and in the market for ideas. However conditions needn�t be so extreme that

permanent monopoly or perfect competition are the only possible upstream market structures.

In a dynamic setting, an inventor typically possesses only a partial degree of (or temporary)

monopoly power that it can exercise in the technology market. For example, the protection that

7For example if one of the �rms is an incumbent in a duopoly, the e¢ ciency e¤ect (Gilbert and Newberry [14])

results in a greater innovation incentive for an incumbent monopolist.
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an inventor derives from patenting may be of �nite duration, or alternative inventions or imitations

may arrive in the market. These mechanisms are examined in turn in this section: Section 3.1.1

describes a simple limiting case that emphasizes the existence of a range of development costs

over which a monopolist values an innovation more highly than a competitive �rm, and Sections

3.1.2 and 3.2 examine the robustness of this idea under intermediate and more realistic forms of

imperfect appropriability.

3.1 Finitely-lived inventor monopoly

This section describes the e¤ect of �nitely-lived patents on dynamic innovation incentives, begin-

ning with the extreme but illustrative case in which the competitive �rm does not hold an option

to delay before turning to the more realistic case of positive but �nite patent length.

3.1.1 Spot monopoly

Consider �rst an inventor who only has instantaneous monopoly power, either because a substitute

invention can emerge at the next instant so that �rms must race to innovate or because the inventor

cannot o¤er exclusivity to an innovating �rm by committing not to subsequently resell the novel

idea to a rival.

In this extreme case the inventor still has instantaneous pricing power in the market for

ideas and can extract value for the novel idea but a competitive �rm acquiring the novel idea

must develop it immediately in order to realize any value in the product market. Its innovation

incentive is therefore

V Cm (k) = max
�
�C � k; 0

	
(6)

where the m subscript refers to the competitive �rm�s Marshallian or net present value investment

threshold in this case, KC
m = �

C.

Comparing (2) and (6) yields the main intuition developed in the rest of the section: when

the current cost of development k is su¢ ciently high, the value of the innovation option held

by a monopoly �rm outweighs the replacement e¤ect so that the former has a greater dynamic

innovation incentive than a competitive �rm. Speci�cally, there exists a critical development cost

threshold bK that determines which of the two market structures values innovation more highly.
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In the �Schumpeterian� range over which the cost of development at the moment that a novel

idea arrives is su¢ ciently high, innovation is valued more highly by a monopoly �rm.8

This situation is represented in Figure 1: if a competitive innovator does not have the ability to

time its investment optimally, the value of innovation to a monopolist in the product market, who

has the possibility to postpone investment, is greater for su¢ ciently high levels of the development

cost. The critical threshold bK is determined by the intersection of V M (k) and V Cm (k) (dark grey).

Since an increase in input price volatility (�) raises the option value part of V M (k) while leaving

V Cm (k) una¤ected, @ bK=@� < 0. Greater cost uncertainty in such an industry increases the

likelihood that it is monopoly that values innovation more highly.

Proposition 1 If the inventor has an instantaneous monopoly in the market for ideas, there

exists an development cost threshold bK such that for k 2
� bK;1� a monopoly has a greater

incentive to innovate than a competitive �rm. Moreover bK decreases with input price volatility.

With respect to policy guidelines, competitive innovation is preferable to monopoly if k < bK,
whereas if k > bK the greater innovation incentive lies with monopoly. However because the

development cost �uctuates stochastically, up until investment has occurred there is a positive

probability over any interval of time of moving to a region in which the alternative market structure

has a greater innovation incentive, thus confounding any more general policy prescription.

8Schumpeter�s discussion of investment in new equipment by a monopoly �rm emphasizes both the �rm�s motive

to delay investment in the face of uncertainty and the possibility of misinterpreting the �rm�s decision to wait as

being driven by the preservation of existing pro�ts rather than the optimal timing of adoption of new equipment

or techniques ([23], p. 98):

�There is however another element which profoundly a¤ects behavior in this matter and which

is being invariably overlooked. This is what might be called the ex ante conservation of capital in

expectation of further improvement. [...] The real question then is at which link the concern should

take action. The answer must be in the nature of a compromise between considerations that rest

largely on guesses. But it will as a rule involve some waiting in order to see how the chain behaves.

And to the outsider this may well look like trying to sti�e improvement in order to to conserve existing

capital values.�

Discussions of the innovation advantages of large �rms often cite their ability to diversify risk by holding a

portfolio of R&D investments but stop short of identifying any option component that may be an integral part of

the value of such a portfolio.
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Figure 1: Because of the replacement e¤ect the dynamic innovation incentive (V C (k), light

grey) is globally larger under competition than monopoly (V C (k) > V M (k) for all k). How-

ever if the inventor has only instantaneous monopoly power, the competitive incentive to inno-

vate (V Cm (k), dark grey) is relatively smaller over the �Schumpeterian�range (V
C
m (k) < V

M (k)

for k 2
� bK;1�). Notably, for intermediate values of the development cost k 2 � bK;�C� the

monopoly �rm delays developing an innovation that a competitive �rm would introduce immedi-

ately, but values the innovation more highly.
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3.1.2 Patenting and the downstream innovation option

If there is a threat of competition from other inventors at the moment of discovery, an inventor is

compelled to immediately patent a novel idea. The inventor then retains monopoly power in the

market for ideas for a duration, taken to be of T > 0 years, until the patent expires. From the

standpoint of the competitive �rm that might acquire the novel idea, this means that innovation

can be pro�tably developed only over a limited time range t 2 [0; T ) since from the moment of

patent expiry onward imitative competitor investment occurs at any moment at which the net

present value of innovation is positive.

With such a �nitely-lived monopoly any royalty that the inventor can extract has the form

of an American option of �nite maturity. Let V CT (k; t) denote its value. The valuation of such

an option is a time inhomogeneous problem for which no general analytic formula is known to

exist (the conditions that characterize V CT are given in Section A.2). Nevertheless some general

properties of V CT su¢ ce to establish a similar result regarding dynamic innovation incentives as

in the spot monopoly case.

First extending the length of patent protection inde�nitely yields the generic competitive

dynamic incentive Section 2.2, i.e. limT!1 V
C
T (k; t) = V C(k). Second, reducing the patent

length to zero eliminates any value of waiting so that a competitive �rms only perceives the net

present value of developing the innovation, i.e. V C0 (k; 0) = V Cm (k) as in Section 3.1. Finally a

revealed preference argument establishes that the incentive to innovate is monotonically increasing

in the patent length T , i.e. T 0 � T ) V CT 0 (k; t) � V CT (k; t) with strict inequalities if t < T : a �rm
facing a longer period of patent protection T 0 > T could simply set the same exercise threshold

as a �rm facing a shorter period, KT 0 (t) = KT (t) for t 2 [0; T ), in which case it holds the same
value over (0; T ) with a positive residual value if time t = T is reached and the option has not yet

been exercised. Therefore, for any (t; T ), V Cm (k) � V CT (k; t) � V C(k) (so V CT (k; t)lies between

the two grey curves in Figure 1).

In order to make a meaningful comparison of dynamic innovation incentives, suppose that

patent length is su¢ cient for the static innovation incentive to be greater for a competitive

�rm (T � (1=r) ln
�
�C=

�
���

��
). Then the comparison of competition and monopoly in-

centives is similar in nature to Section 3.1. For low enough k (e.g. if k � KM so instan-

taneous investment at t = 0 is optimal for all T ) the dynamic innovation incentive is lower

at t = 0 for monopoly, V M (k) < V CT (k; 0), and conversely V
M (k) > V CT (k; 0) for k large

enough. To establish this latter part, let pT;k := Pr
�
mins2(0;T )Ks �

�
1� e�rT

�
�C
��K0 = k	
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denote the probability9 that at some time before the patent expires the process Kt is in the region�
0;
�
1� e�rT

�
�C
�
over which the �rm invests immediately. The value of the competitive option

is then bounded above by the greatest value that it can expect to attain before time T is reached,

so V CT (k; 0) � pT;k
�
1� e�rT

�
�C where pT;k is decreasing in k with limk!1 pT;k = 0. Therefore,

there exists a threshold bK such that V M (k) > V CT (k; t) for all k � bK establishing an analogous

result to Proposition 1.

3.2 Competition and imitation

As an alternative to patent protection, pioneering �rms are thought to often rely on secrecy and

lead times (Hall et al. [15]). Once an idea is developed, the idea itself or at the least its existence is

revealed to potential competitors either directly or through a process of reverse engineering which

may take more or less time. The onset of imitation by rival �rms is then likely to be random from

the point of view of the innovator. Moreover, concurrent research by other inventors may lead

to the emergence of competing products, constituting another limitation to appropriation that is

random from the point of view of the innovator.

For simplicity suppose that competing invention and information leakage regarding the �rm�s

process innovation are represented by a single Poisson process with arrival rate � > 0. Once

information leaks to a competitor, imitation occurs and the innovator�s pro�t �ow is driven back

to zero immediately. In the presence of such stochastic imitation, the dynamic innovation incentive

of a competitive �rm is

V C� (k) = sup
��t

Et
��Z 1

0

�
1� e�rs

�
�C�e��sds�K�

�
e�r�

�
(7)

=

8<:
r
r+��

C � k, k � KC
�

[KC
� ]


0+1


0 k�

0
, k > KC

�

(8)

where


0 =
�

�2
� 1
2
+

s�
�

�2
� 1
2

�2
+
2 (r + �)

�2
(9)

and KC
� = (


0= (
0 + 1)) (r= (r + �))�C (see Section A.3).

9Adapting the �rst hitting time distribution for arithmetic Brownian motion gives

pT;k = Pr

�
min

s2(0;T )
Ks � �C

����K0 = k

�
=

Z T

0

k ��Cp
2��2s3

exp

264�
�
k ��C +

�
�� �2

2

�
s
�2

2�2s

375 ds:
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Note that the discounting parameter satis�es 
0 > 
, with the random arrival of imitation

playing in part a somewhat similar role to a jump in the stochastic process for Kt, and @KC
� =@� <

0. As a result, KC
� < K

C, from which it follows directly that V C� (k) < V
C (k). With uncertainty

regarding the duration over which the �rm perceives a pro�t �ow from innovation, the �rm has an

option with di¤erent characteristics than when there is no imitation, and there exist two arrival

rates thresholds, �K and ��, �K > �� (See section A.4) which are described in Proposition 2

below, which are critical to determining the comparative timing and value of innovation. For

� = 0, KC
� > K

M because of the replacement e¤ect and for � > 0 it can then be established that:

Proposition 2 With random imitation at arrival rate �, a competitive �rm develops a novel

idea (earlier,later) than a monopoly if and only if � (<;>)�K. If � � �� the dynamic innovation
incentive is greater under monopoly for all k, whereas if � < �� there exists a development costbK � 0 such that the competitive innovation incentive is (greater,lower) if and only if k (<;>) bK.

For � � �� the arrival rate of a competitive innovator is su¢ ciently high to o¤set the replace-
ment e¤ect entirely and the innovation incentive of a competitive �rm is globally lower than that

of a monopoly �rm. Conversely for � = 0 the replacement e¤ect always dominates any option

value comparison, as seen in Section 2.2, and the competitive incentive is globally higher. The

more interesting case to consider is the intermediate case of a moderate arrival rate � 2
�
0; ��

�
,

which is represented in Figure 2. In this range of arrival rates either the monopoly�s relatively

greater option value or the static replacement e¤ect may dominate the comparison of dynamic

innovation incentives. Over a subset of this range (0; �0) the separating threshold bK has an an-

alytic expression and over
�
�0; �

�
�
, bK cannot be solved for directly but it is straightforward to

establish that @ bK=@� so greater input price risk raises the likelihood that the dynamic innovation
incentive is higher for a monopoly.10

The resulting economic interpretation runs along the same lines as in Section 3.1.1: if ideas

are (moderately) imperfectly excludable then there exists a Schumpeterian range of development

costs over which, if an innovation is su¢ ciently �pioneering� insofar as its current development

cost is relatively high so that the moment of optimal development appears remote, then relative

option value is more important than the replacement e¤ect and the novel idea is worth more to

a monopoly than a competitive �rm. Of course, as the development cost �uctuates over time,

up until investment occurs there is always a positive probability of moving from one part of the

10 In contrast with Figure 2, for � 2
�
0; ��

�
at bK a monopoly �rm delays investment whereas a competitive �rm

invests immediately. Therefore an increase in � raises V M (k) while leaving V C
� (k) una¤ected, shifting the point of

intersection ( bK) leftward.
14



Figure 2: Competitive and monopoly innovation incentives V C� and V M with a low imitation

arrival rate � 2 (0; �0) �
�
0; ��

�
. Over

� bK;1� option value dominates the replacement e¤ect
and it is the monopoly �rm that values a novel idea more highly.

range to the other, rendering any general prediction as to which market structure provides greater

incentives for invention di¢ cult. Moreover an arbitrarily small level of imperfect excludability is

su¢ cient for such a situation to arise.

3.2.1 Social incentive and welfare

As in Section 2 the monopoly and competitive incentives still fall short of the social incentive,

max
�
V C� (k) ; V

M (k)
	
� W � (k). Another welfare question involves the optimal level of leakage,

which is determined by the enforcement of secrecy, a less-often studied but nevertheless relevant

aspect of intellectual property.

The welfare associated with competitive innovation for a given level of the parameter � is com-

plex. The direct e¤ect of competitive innovation on consumer surplus is neutral if the innovation

is nondrastic but raises consumer surplus by SM1 �SC0 if the innovation is drastic. Moreover, imita-
tion when it occurs lowers the price in the product market to the new marginal cost c1, resulting in

a further increase in consumer surplus whose expected discounted value at the time that the �rm
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innovates is (�= (r + �))
�
SC1 � SC0

�
if the innovation is nondrastic and (�= (r + �))

�
SC1 � SM1

�
otherwise. Thus,

WC
� (k) =

8<:
r
r+��

C + �
r+�

�
SC1 � SC0

�
� k, k � KC

��
KC
�
k

�
0 �
r
r+��

C + �
r+�

�
SC1 � SC0

�
�KC

�

�
, k > KC

�

(10)

if PM (c1) > c0,

=

8<:
r
r+��

C + r
r+�S

M
1 +

�
r+�S

C
1 � SC0 � k, k � KC

��
KC
�
k

�
0 ��
SM1 � SC0

�
+ r

r+��
C + �

r+�

�
SC1 � SM1

�
�KC

�

�
, k > KC

�

if PM (c1) � c0.

Assuming an interior solution, an optimal level of informal intellectual property enforcement

solves dWC
� (k) =d� = @

��
KC
�
k

�
0
r
r+��

C

�
=@�+@

��
KC
�
k

�
0
�
r+�

�
SC1 � SC0

��
=@� if the innovation

is non-drastic and dWC
� (k) =d� = @

��
KC
�
k

�
0
r
r+��

C

�
=@�+@

��
KC
�
k

�
0 �
r
r+�S

M
1 +

�
r+�S

C
1 � SC0

��
=@�

if the innovation is drastic. In either case, the sign of di¤erent e¤ects is depends on the relative

magnitude of option value, which is sensitive to the current level of the state variable k. When

k is su¢ ciently large for instance, the e¤ect on discounting dominates and dWC
� (k) =d� < 0 so

maximal enforcement is optimal (...)

4 Uncertainty and the size of innovation

Research on real options has begun to focus attention on both the timing and the magnitude

of investment. This section complements the analysis of the dynamic innovation incentives of

Section 2 by allowing �rms to select the level of cost reduction achieved by a process innovation

through a simultaneous choice of the timing and scale of investment. In order to outline the e¤ect

of innovation size more clearly, perfect appropriability is once again assumed in this section, in

contrast with Section 3.

With variable investment size one expects the principle outlined earlier (Section 2.2) to con-

tinue to hold, namely that to the extent that a competitive �rm has a comparatively greater

incentive to innovate at any level of the development input�s price and for any given investment

size because of the replacement e¤ect, the competitive option to innovate will be relatively more

valuable than the monopoly option. Therefore the monopoly option with timing and size choice

is presented below for the sake of completeness, but incorporating size does not contribute as
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much in terms of economic understanding as the subsequent competitive �rm case. In the case of

a competitive �rm, endogenous innovation size is of greater interest because it can be linked to

market conditions in a novel way. In the standard investment framework used here, it is when the

volatility of the input price or learning in the input market are su¢ ciently large that a competitive

�rm is likely to opt for drastic innovation.

In order to study the choice of innovation size, assume that the unit cost of production is

constant and equal to c (x), where x denotes the �rm�s use of research input. Suppose that

c(0) > 0 and that c is decreasing over the relevant range. The level of development e¤ort of an

innovating �rm, x 2 R+, is chosen at the moment of investment. The �xed cost of investment is
then Ktx where Kt is the unit cost of the development input, and as in the rest of the paper Kt
evolves over time according to a geometric Brownian motion with drift � and volatility �.

4.1 Innovation size and dynamic innovation incentive: Monopoly case

With endogenous innovation size x, the post-innovation pro�t �ow is a function �(x) of the

development e¤ort, assumed to be twice di¤erentiable, non-decreasing and concave. In order to

solve the �rm�s investment problem with both timing and size choice, we proceed as in Huisman

and Kort [19].11

If the �rm invests when the input cost is Kt, at the moment of investment it chooses an

innovation size x that solves the static problem

max
x>0

�(x)�Ktx. (11)

Provided that Kt < limx!0�
0
(x) an interior optimum xM (Kt) exists which is the solution of

�
0
(x) = Kt, (12)

and otherwise xM (Kt) = 0. Provided that �(x) is concave, as explained below, the optimal level

of innovation size is nondecreasing in the investment threshold Kt.

At the moment investment occurs the value of innovation to a monopoly �rm is a C1 function

of Kt, �
�
xM (Kt)

�
��(0)�KtxM (Kt). The �rm�s investment problem is to determine a stopping

11An alternative way to understand the optimal investment policy that leads to the same result is to consider a

�rm making an ex-ante selection among an array of standard investment options of �xed size x, i.e. maxx V M (k;x)

where V M (k;x) =

8<: �(x)��� kx, k � 


+1

�(x)��
x



(�(x)��)
+1

(
+1)
+1x
k

, k > 



+1
�(x)��

x

.
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time � to solve

sup
��t

Et
�
�
�
xM (K� )

�
��(0)�K�xM (K� )

�
. (13)

The problem (13) needn�t have a straightforward solution in general. Before proceeding any

further, it is necessary to impose some technical restrictions in order to ensure existence and

uniqueness of an optimal investment threshold. Following Pennings [20] denote the investment

elasticity by "���(x) = x�
0
(x) =

�
�(x)��(0)

�
and suppose that the following assumptions are

satis�ed:1213

i) limx!0�
0
(x) <1,

ii) limx!1 "���(x) = 0,

iii) d("���(x))=dx < 0.

Assumption i) is su¢ cient to ensure that limx!0 "���(x) = 1, which together with ii) and

iii) su¢ ces to guarantee a unique solution to the condition (16) below. A monopoly �rm that

follows a threshold investment policy obtains the value

V Mx (k) =

8<: �
�
xM (k)

�
��� kxM (k) , k � KM

x

[KM
x ]


+1


 k�
 , k > KM
x

(14)

where the optimal stopping threshold is de�ned implicitly by

KM
x =





 + 1

�
�
xM
�
KM
x

��
��

xM (KM
x )

. (15)

The optimal investment threshold and innovation size for the monopoly �rm jointly solve (12)

and (15). Combining these yields a condition that implicitly de�nes the optimal innovation size,

"���(x
M) =





 + 1
. (16)

The conditions imposed for existence and uniqueness ensure that "(�(x)��)=x is single-downcrossing

at xM and comparative statics with respect to 
 and � directly follow. For instance, a greater re-

placement e¤ect is associated, somewhat counterintuitively from the perspective of the innovation

literature, with more innovation (in magnitude) rather than less.

12Pennings gives �(x) = x=(x + 1) as an example and the functions 1 � e�x and x (a� x) also satisfy these
assumptions (for the latter over the relevant range x 2 [0; a=2]).
13 If 
 is known then an alternative is to substitute for ii) and iii) by ii0) � (x)��(0) is strictly 1+(1=
)�concave

(see Section A.5). A function f : R! R+ is ��concave if, for � > 0, [f ]� is concave (see Caplin and Nalebu¤ [4]).
The greater is � the more stringent is this restriction.
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Proposition 3 A monopoly �rm earns the value V Mx (k) by making an innovative investment of

size xM at the threshold KM
x . An increase in uncertainty (lower 
) or a greater replacement e¤ect

(higher �) result in a greater innovation size (higher xM) and more delay (lower KM
x ).

4.2 Competitive investment option with size choice

A key di¤erence between the competitive option with variable investment size and the monopoly

option is that the type of pricing that occurs in the product market is related to the size of

innovation. Provided that the pre-innovation unit cost c(0) is su¢ ciently high there exists an

innovation size, denoted by xd, beyond which the innovation becomes drastic and the competitive

�rm prices as would a monopolist (QM(c(xd)) = D (c(0))). The competitive �rm�s payo¤ from

innovation therefore has the form

�C (x) =

(
(c(0)� c(x))QC(c(0)), x < xd

�(x) , x � xd
(17)

where QC(c(0)) denotes the competitive output level (which satis�es QC = D (c(0))). Note that

�C (x) is continuous at xd and furthermore that since QC(c(0)) = QM(c(xd)), limxd�
�
�C (x)

�0
=

�c0(xd)QC(c(0)) = �c0(xd)QM(c(xd)) = limxd+
�
�C (x)

�0
so �C (x) is C1 over its range. A su¢ -

cient condition for the investment threshold to be well-de�ned is if each of the parts of �C satis�es

the assumptions of the previous section.

Proceeding as in the monopoly case, a competitive �rm that invests when the input cost is

Kt chooses an innovation size x that solves the static problem

max
x>0

�C (x)�Ktx. (18)

Provided that Kt < limx!0�c0 (x)QC an interior optimum xC (Kt) exists which solves�
�C
�0
(x) = Kt, (19)

and xC (Kt) = 0 otherwise. Letting Kd =
�
c(0)� c(xd)

�
QC(c(0)) denote the development cost

that induces drastic innovation, with Kd = 0 if xd is unde�ned, xC (Kt) is de�ned implicitly by(
�c0(x)QC(c(0)) = Kt, if Kt > Kd

�
0
(x) = Kt, if Kt � Kd

. (20)

Because the functions �c and � are twice-di¤erentiable and concave xC (Kt) is C1 and decreasing
over each of its parts. The remainder of the reasoning proceeds as in the monopoly case. The value
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of the �rm at the moment of investment is �C
�
xC (Kt)

�
�KtxC (Kt), and the �rm determines a

stopping time � that solves

sup
��t

Et
�
�C
�
xC (K� )

�
�K�xC (K� )

�
. (21)

Following a threshold investment policy results in the value

V Cx (k) =

8<: �C
�
xC (k)

�
� kxC (k) , k � KC

x

[KC
x ]


+1


 k�
 , k > KC
x

(22)

and the optimal stopping threshold is de�ned implicitly by

KC
x =





 + 1

�C
�
xC
�
KC
x

��
xC (KC

x )
. (23)

The optimal investment threshold and innovation size jointly solve (20) and (23), and lead to a

similar elasticity condition for optimality

"�C=x
�
xC
�
=





 + 1
(24)

i.e.

�
xCc0

�
xC
�

c(0)� c (xC) =




 + 1
if xC � xd, �

xCc0
�
xC
�

(P (QM(c(xC)))� c (xC)) =




 + 1
if xC > xd. (25)

It follows directly that:

Proposition 4 A competitive �rm earns the value V Cx (k) by making an innovative investment of

size xC at the threshold KC
x . An increase in uncertainty (lower 
) results in a greater innovation

size (higher xC) and more delay (lower KC
x ).

Because the real options framework relates investment to industry characteristics, endogeniz-

ing the size of innovation provides an understanding of the type of market conditions that are

likely to foster drastic innovation. The greater the rate of learning in the input market (lower

�) or the level of uncertainty (higher �), the more likely it is that a competitive �rm opts for a

drastic innovation.

Comparing dynamic innovation incentives for monopoly and competitive �rms, the main in-

tuition of Section 2 still holds with innovation size choice. The replacement e¤ect implies that

for a given x, KC
x (x) � KM

x (x) whereas (20) does not lie below (12). Therefore, x
C < xM even if
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KC
x � KM

x and V Cx (k) � V Mx (k). Similar conclusions hold regarding the social incentive to inno-

vate, de�ned with respect to SCx = (1=r)
R1
c(x)D(s)ds. If the socially optimal innovation level also

satis�es an elasticity condition "(SCx�SC0 ) (x
�) = 
= (
 + 1) then one concludes that competitive

or monopoly �rms innovate excessively (xC; xM � x�), and in particular that in an intermediate
range of the discounting term 
, competitive �rms may opt for drastic innovation when it would

be socially preferable not to do so.

4.3 Inventor size choice

-Suppose inventor makes costly choice of x and bargains with monopoly or competitive �rm.

-no underinvestment and timing issues in competitive case

-possible investment in monopoly case, there is no cost of delay if k is high, if k is low

cost of delaying agreement for monopolist is reduced by replacement e¤ect (� � �) ; may have
underinvestment issues

5 Conclusion

In a stochastic dynamic framework not just the replacement e¤ect but also the current level

of prices and the amount of uncertainty are key determinants of the relative competitive and

monopoly innovation incentives. Developing these incentives in a standard model of investment

establishes that even a slight imperfection in the degree of exclusivity a¤orded to a novel idea is

su¢ cient for monopolies to value pioneering projects in which a novel idea arrives at a moment

when the development cost is currently prohibitively high relatively more highly than will a �rm

facing product market competition, casting doubt on the value of a policy prescription to favor

innovation by encouraging competition in industries where uncertainty and option value are likely

to be important.

Expanding the analysis to allow �rms to choose the size of innovation highlights the role

of option value in explaining the emergence of drastic innovations, which are more likely to be

chosen by a competitive innovator when uncertainty (volatility) is high. Integrating option value

in this way enriches understanding of the dynamics of innovation, drawing a picture in which

monopolistic �rms are more closely associated with speculative, larger and long-term projects

whereas the prevalence of drastic innovations in competitive markets may be closely related to

the importance of uncertainty.
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An extension that is not pursued here would be to incorporate uncertainty regarding invention

as well, so that the moment at which invention arrives (and therefore the initial value of the

monopoly or competitive innovation options) is unknown ex-ante.
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A Proofs and derivations

A.1 Benchmark option

The monopoly �rm solves the optimal stopping problem

V M (Kt) = sup
��t

Et
��
����K�

�
e�r�

�
.

Letting k = Kt, V M (k) in (1) is the expected value of a �rm that invests when the current state of

the process is k. Following standard arguments (see Dixit and Pindyck [8]) this function satis�es

rV M (k) dt = EtdV M (Kt) . (26)

Expanding the right-hand side using Itô�s lemma yields the ordinary di¤erential equation

rV M = �k
dV M

dk
+
1

2
�2k2

d2V M

dk2
(27)

that V M solves along with the boundary and smooth pasting conditions

V M
�
KM

�
= ����KM

lim
k!1

V M (k) = 0

dV M

dk

�
KM

�
= �1.

A solution to (27) has the form V M (k) = A1k
�1 +A2k

�2 . The associated fundamental quadratic

is 0:5�2� (� � 1) + ��� r = 0, which has two roots of which only

� =
1

2
� �

�2
�

s�
1

2
� �

�2

�2
+
2r

�2

is negative and satis�es the second boundary condition. It follows from the other conditions that

KM =
��
1� �

�
���

�
and

AM = � 1
�

�
KM

�1��
.

Setting 
 � �� (so 
 > 0) yields the expressions in the text.
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A.2 Innovation option with �nite patent length

Let V CT (k; t) denote the value of the novel idea to a competitive �rm at time t with current

development cost k and given the patent duration T . The optimal investment threshold, KT (t),

is then time-dependent and the dynamic innovation incentive satis�es

rV CT =
@V CT
@t

+ �K
@V CT
@K

+
1

2
�2K2@

2V CT
@K2

(28)

over t 2 (0; T ). The continuation region is k > KT (t) and KT (t) and V CT (k; t) satisfy the

boundary and smooth-pasting conditions

limk!1 V
C
T (k; t) = 0

V CT (KT (t) ; t) = �
C
�
1� e�r(T�t)

�
�KT (t)

@V CT
@K (KT (t) ; t) = �1

V CT (KT (T ) ; T ) = 0

(29)

along with limt!T KT (t) = �C.

A.3 Option with random imitation arrival

A probability � per unit of time that a rival �rm successfully imitates the �rm�s innovation (in

which case all product market rent is competed away) corresponds to adding a jump to the

stochastic process (Dixit and Pindyck [8]). The di¤erential equation (27) then has the form

rV C� = �k
dV C�
dk

+
1

2
�2k2

d2V C�
dk2

� �V C� (30)

so the fundamental quadratic becomes 0:5�2� (� � 1) + �� � (r + �) = 0. Proceeding as above
yields the expression for 
0 in the text.

To establish that @KC
� =@� < 0 and K

C
� < K

C as claimed in the text, it is necessary to verify

that

f (�) :=

0


0 + 1

r

r + �
<





 + 1
(31)
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for � > 0. Note that f (0) = 1 and

f 0 (�) =
r
�
@
0

@� (r + �)� 

0 (
0 + 1)

�
(
0 + 1)2 (r + �)2

(32)

=

r

�
r+�
�2

�� �
�2
� 1

2

�2
+ 2(r+�)

�2

��0:5
� 
0 (
0 + 1)

�
(
0 + 1)2 (r + �)2

(33)

<

r

�q
r+�
2�2

� 
0 (
0 + 1)
�

(
0 + 1)2 (r + �)2
< 0. (34)

Alternatively it can be assumed that competing innventions arrive at a rate �0 > 0 (an form

of ex-ante threat to appropriability) and that information leaks leading to imitation at a rate �1
once innovation has occured. In that case, the innovation incentives becomes

V C�0 (k) =

8<:
r

r+�1
�C � k, k � KC

�0

[KC
� ]


00+1


00
k�


0
0 , k > KC

�0

(35)

where


00 =
�

�2
� 1
2
+

s�
�

�2
� 1
2

�2
+
2 (r + �0)

�2
and KC

�0 =

00


00 + 1

r

r + �1
�C (36)

and retains the asymptotic properties of V C� .

A.4 Comparison of dynamic innovation incentives with random lead time

The proposition is proved by studying the piecewise-de�ned functions (2) and (8) for di¤erent

values of the parameter �.

De�nition of �K

�K is de�ned implicitly by the condition KC
� = K

M. This condition can be expressed as

fK (�) :=

0


0 + 1
=





 + 1

���
�C

�
1 +

�

r

�
=: gK (�) . (37)

Here fK (0) =



+1 > gK (0). Both fK and gK are increasing, but fK is concave:

f 00K (�) = �
1

(
0 + 1)2

�
@
0

@�

�2
+

1


0 + 1

@2
0

@�2
< 0, (38)
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whereas gK is linear. Therefore there exists a unique intersection in (0;1), �K, establishing the
�rst part of the proposition.

De�nition of ��

Suppose that k � min
�
KC
� ;K

M
	
. Then V C� (k) (<;>)V

M (k) if and only if

r

r + �
�C (<;>)���. (39)

Let �� = r
��
�C=

�
���

��
� 1
�
> 0 denote the arrival rate that equates the competitive and

monopoly payo¤s from instantaneous investment. Since fK
�
��
�
> gK

�
��
�
, it follows that

�� < �K.

Comparison of innovation incentives for � > ��

Suppose that � > ��, so ��� > (r= (r + �))�C. There are two subcases to consider.

First, if � 2
�
��; �K

�
, then KC

� > K
M. For k 2

�
0;KM

�
, both �rms invest immediately and

V C� (k) < V
M (k) (by de�nition of ��). For k 2

�
KM;KC

�

�
, the monopoly �rm delays investment

whereas the competitive �rm does not. Over this range d
�
V M � V C�

�
=dk = �

�
KM=k

�
0+1
+

1 > 0. The di¤erence V M � V C� is thus bounded above by V M
�
KC
�

�
� V C�

�
KC
�

�
= � � � �

(r= (r + �))�C > 0. Finally for k > KC
� , both �rms delay investment and the ratio V

M=V C� =

(
0=
)
�
KM

�
+1 �
KC
�

��
0�1
k


0�
 increases in k. Therefore, for � 2
�
��; �K

�
, V C� (k) < V M (k)

for all k.

Second, if � 2
�
�K;1

�
, then KC

� � KM. For k 2
�
0;KC

�
, both �rms invest immedi-

ately and V C� (k) < V M (k). If � > �K, then the interval
�
KC
� ;K

M
�
is non-empty and for

k 2
�
KC
� ;K

M
�
the monopoly �rm invests immediately whereas the competitive �rm does not,

and d
�
V M � V C�

�
=dk = �

�
KM=k

�
0+1
+ 1 < 0. Over this range V M � V C� is therefore bounded

below by V M
�
KM

�
� V C�

�
KM

�
, and V M

�
KM

�
=V C�

�
KM

�
= (
0=
)

�
KM=KC

�

�
0+1
> 1. Finally,

for k > KM both �rms delay investment and V M=V C� increases in k as in the previous subcase.

Therefore, for � 2
�
�K;1

�
, V C� (k) < V

M (k) for all k.

To sum up, for � > ��, V C� (k) < V
M (k) for all k, and therefore in this range bK = 0.

Comparison of innovation incentives for � � ��

If � < ��, then KC
� > KM. For k 2

�
0;KM

�
both �rms invest immediately, and V C� (k) >

V M (k) over this range. Any intersection must therefore occur either over
�
KM;KC

�

�
or over�

KC
� ;1

�
. To determine which of these occurs it is necessary to study the value of V C� =V

M at KC
� ,

where V C�
�
KC
�

�
=V M

�
KC
�

�
= (
=
0)

�
KC
� =K

M
�
+1

. Note �rst that lim�!0
�
V C�
�
KC
�

�
=V M

�
KC
�

��
=
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�
�C=

�
���

��
+1
> 1. Next,

@KC
�

@�
= KC

�

�
1


0 (
0 + 1)

@
0

@�
� 1

r + �

�
, (40)

so that after evaluating and simplifying

@
�
V C�
�
KC
�

�
=V M

�
KC
�

��
@�

=




0

�
KC
�

KM

�
+1�

 � 
0


0 (
0 + 1)

@
0

@�
� 
 + 1
r + �

�
< 0. (41)

Finally lim�!��
�
V C�
�
KC
�

�
=V M

�
KC
�

��
=
�
(
 + 1)
+1 =



��
(
0)
 = (
0 + 1)
+1

�
and it is straight-

forward to establish that this latter term is smaller than 1 for any 
0 > 
. Therefore, there exists

a unique �0 2
�
0; ��

�
such that V C�0

�
KC
�0

�
=V M

�
KC
�0

�
= 1. There are thus two cases to consider.

First, if � > �0 so V C�
�
KC
�

�
< V M

�
KC
�

�
, then V C� (k) intersects V

M(k) in
�
KM;KC

�

�
, i.e. in a

region in which a monopoly �rm delays investment whereas a competitive �rm invests immediately.

In this case bK is de�ned as the root in k 2
�
KM;KC

�

�
of

r

r + �
�C � k =

�
KM

�
+1



k�
 . (42)

Second, if � � �0 so V C�
�
KC
�

�
� V M

�
KC
�

�
, then V C� (k) intersects V

M(k) in
�
KC
� ;1

�
and

both �rms delay investment. In this case solving V C� (k) = V
M (k) directly yields

bK =

 




0

�
KC
�

�
0+1
[KM]
+1

! 1

0�


. (43)

For � = ��, by continuity (42) determines the unique intersection to be at bK = KM.

A.5 Innovation option with timing and size choice

A.5.1 Monopoly case

Pennings [20] provides su¢ cient conditions for an investment option with size and timing choice

with a general payo¤ speci�cation to be well-de�ned. The argument here runs along similar lines

to his except that Assumption ii:b) requires the investment elasticity to cross 
=(1+
) once from

above rather than to be globally decreasing.

In order to �nd V Mx and the optimal investment threshold and size, applying Itô�s lemma to

rV Mx (k) dt = EtdV Mx (Kt) yields

rV Mx = �k
dV Mx
dk

+
1

2
�2k2

d2V Mx
dk2

. (44)
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The boundary and smooth-pasting conditions are

V Mx
�
KM
x

�
= � (1� �)

1��
�

��
c
�
xM
�
KM
x

���� 1��
� � [c (0)]�

1��
�

�
�KM

x x
M
�
KM
x

�
lim
k!1

V Mx (k) = 0

dV Mx
dk

�
KM
x

�
= �xM

�
KM
x

�
(45)

where the last (smooth pasting) condition results from the optimality of xM, so that by the

envelope theorem
�
dV Mx =dk

� �
KM
x

�
=
�
@V Mx =@k

� �
KM
x

�
. Solving these conditions for the posited

form V Mx (k) = Ak� yields the value function and the candidate stopping threshold KM
x given in

the text. Uniqueness of KM
x (and xM) results from Assumption 1 in the text as follows.

Let

f (x) := �
0
(x) (46)

and

g(x) :=




 + 1

� (x)��
x

. (47)

The pro�t-maximizing innovation size if the �rm invests at an optimal threshold, xM, solves

f(x) = g(x). (48)

To establish the existence of a solution to (48) proceed as follows. Because f and g are

continuous a set of su¢ cient conditions is limx!0(f=g) > 1 and limx!1(f=g) < 1.

For the limit at zero, limx!0(f=g) = (1 + 1=
) limx!0
�
x�

0
(x) =�(x)

�
. Because � is strictly

concave, �(x) < �(0)+x�
0
(0) = x�

0
(0) <1. Therefore limx!0(f=g) < (1 + 1=
) limx!0

�
x�

0
(x) =x�

0
(0)
�
=

(1 + 1=
)
�
limx!0�

0
(x)
�
=�

0
(0) = 1 + 1=
.

The limit at in�nity is obtained using l�Hôpital�s rule

lim
x!1

f

g
= lim
x!1


 + 1




x
�(x)��
�
0
(x)

=

 + 1



lim
x!1

1

1� (�(x)��)�
00
(x)h

�
0
(x)
i2

< 1 (49)

where the �nal inequality follows from strict 1 + (1=
)�concavity of �(x) � �, which implies

1�
��
���

�
�
00
=
h
�
0
i2�

> 1 + (1=
). Therefore a solution to (48) exists.

The solution xM is unique if f � g is strictly single downcrossing, that is if f(xM) = g(xM))
f 0(xM) < g0(xM). Taking the condition f 0(x) < g0(x),

�
00
(x) <





 + 1

x�
0
(x)�

�
�(x)��

�
x2

, (50)
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and evaluating at xM = (
= (
 + 1))
��
�
�
xM
�
��

�
=�

0
(xM)

�
yields after simpli�cation

�
00
(xM) < �1




h
�
0
(xM)

i2
�(xM)��

, (51)

which also follows from strict 1 + (1=
)�concavity of �(x)��.

A.5.2 Competitive case

The competitive case proceeds like the monopoly case with the key di¤erence that the bene�t

from innovation �C (x) is de�ned by parts so existence and uniqueness of an optimal investment

threshold xC must be veri�ed. Since each part is 1 + (1=
)�concave, independently applying the
arguments of Section A.5.1 establishes that there exist a unique xa and xb such that

� xac
0 (xa)

c(0)� c(xa)
=





 + 1
(52)

and
xb�

0
(xb)

� (xb)
=





 + 1
. (53)

At the same time, by de�nition at xd,

�xdc0
�
xd
�

(c(0)� c (xd))QC(c(0)) =
xd�

0 �
xd
�

�
0
(xd)

.

Since the left-hand sides of (52) and (53) are both single-crossing, either xC = xa (if�xdc0
�
xd
�
=
��
c(0)� c

�
xd
��
QC(c(0))

�
<


= (
 + 1)) or xC = xb (if �xd�
0 �
xd
�
=�

0 �
xd
�
> 
= (
 + 1)), and xC = xd otherwise.
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