
Evaluation of Forest Investment Using Real Options Theory 
 
 

Rebeca Ramos de Oliveira Figueiredo 
Departamento de Engenharia Industrial - PUC-Rio 

resfigueiredo@gmail.com 
 

Frances Fischberg Blank 
Departamento de Engenharia Industrial - PUC-Rio 

francesblank@puc-rio.br 
 

Marco Antonio Guimarães Dias 
Departamento de Engenharia Elétrica - PUC-Rio 

marcoagd@pobox.com 
 

February 15, 2017 
 

Abstract 
The modern financial literature recommends the real options approach to incorporate 
uncertainty and managerial flexibilities in forestry investment projects. This work aims to 
develop a valuation model for forestry projects in which the growth of tree inventory follows a 
logistic equation based on the estimated real growth of a forest. This paper aims to quantify 
the economic benefits of an optimal production policy driven by tree cutting in a eucalyptus 
forest. The model includes three independent state variables (inventory, time, and price, the 
last one modelled as a geometric Brownian motion) and two dependent variables: cutting 
rate and the value of the investment option. The results, obtained through the explicit finite 
difference method, are compared to other alternatives of inventory evolution and cutting rate 
decisions. The results show that adopting an optimal cutting policy based on real options 
theory has a great advantage. Moreover, the forest option value is higher when inventory 
growth is modelled by the deterministic logistic equation compared to the stochastic logistic 
equation. 
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1 Introduction 
 
Real options theory (ROT) is broadly used to evaluate natural resource 
investment projects (Pindyck, 1984; Brennan and Schwartz, 1985; Morck, 
Schwartz and Stangeland, 1989; Levi, 1996; Moreira et al., 2000; Insley, 
2002; Rocha et al., 2004; Baran, 2005; Kerr, 2008; Gastaldi and Minardi, 
2012). In forestry projects, timber price is related to the core uncertainty as 
well as the amount of trees growing in a forest (Morck, Schwartz and 
Stangeland, 1989; Conrad, 1997; Forsyth, 2000; Rocha et al., 2004). 
Rational investors maximize the value of the project by choosing an optimal 



 

cutting policy according to the current price of wood, stock and time. In most 
cases, defining the volume of trees cut in each period is a problem. 
We extend the model proposed by Morck, Schwartz and Stangeland (1989) 
to a forestry investment project that has the flexibility to employ an optimal 
price policy and stock-dependent cutting, presenting a more realistic 
temporal evolution of the stock. The price of wood follows a geometric 
Brownian motion (GBM) as in the mentioned paper. However, following the 
literature on the population of living organisms (Peroni and Hernández, 
2011; Goes, 2012), we propose that the inventory of trees follows a logistic 
growth equation. Given this main contribution of the work, we present the 
application of this model to a hypothetical forest. An important consideration 
of the model is the maximum level of saturation, implying a more realistic 
approach since natural resources are finite. The purpose is to present a 
general solution to a stochastic optimal control problem for investments in 
renewable resources, such as forests, that is, the optimal cutting rate and 
the value of a forest investment project. The analysis carried out in this 
article may interest forest companies as well as governments for decision 
making on public policy, specifically for better evaluation of concessions. 
Another contribution is the use of an explicit finite differences method (FDM) 
to determine the value of the project according to a similar approach 
proposed by Rocha et al. (2004). As the differential equation for the value of 
the investment option has no analytical solution, this work proposes the use 
of the finite difference method, which transforms a partial differential 
equation into difference equations that can be solved numerically. The 
necessary conditions for stability are applied in order to obtain convergence 
for the finite difference solution.  
The present work is structured as follows. In chapter 2, we present a 
literature review about the main papers that use real options theory to 
evaluate natural resource projects. Chapter 3 presents the proposed 
model and the tools applied in the development of a practical case. 
Chapter 4 presents a discussion of the most relevant results. Chapter 5 
presents the conclusions of this work, as well as recommendations for 
future research. 
 
2 Literature Review 
 
The evaluation of renewable resource projects in several sectors, 
including forestry investments, makes use of real options theory, 
considering the characteristics of uncertainty and flexibility of the projects. 
In these projects, uncertainty is commonly modelled on the price of the 
product being sold and on the resource stock. 
Pindyck (1984) examines the uncertainty implications in the stock of a 
hypothetical resource, that is, how the volatility of this variable affects the 
value of an asset. He shows that an increase in the variance of stock 



 

fluctuations reduces the expected rate of inventory growth. One of the 
relevant results to be mentioned is that in this case the rate of extraction or 
cutting is reduced. The author presents two reasons: increased volatility 
increases product scarcity and reduces the expected growth rate. 
Morck, Schwartz and Stangeland (1989) evaluate a forest concession in 
which wood price follows a GBM and the stock drift varies with the growth 
rate and the cutting rate. One of the main goals is to determine an optimal 
production policy that maximizes the value of the company. The cutting 
rate is determined as a function of the price, the current wood inventory 
and the time remaining until the end of the concession. Among the 
assumptions adopted, the cost function is given by a quadratic equation. 
Therefore, the function for the optimal production policy presents a 
maximum point in the quantity to be produced. The authors calculate the 
value of a forest in Canada and conduct a sensitivity analysis on some 
variables of the problem. A finding worth noting is that the less the stock, 
the lower the optimal cutting rate as the concession term approaches. 
They observe that (i) the higher the growth rate of the stock, the lower the 
cutting rate, so that cutting will be carried out for longer periods until the 
end of the stock; (ii) the higher the initial price, the greater the incentive to 
cut early; and (iii) the greater the price volatility, the greater the value of 
the forest option, so it is better to delay the cutting in order to make a 
larger profit. 
Levi (1996) presents a real option application to eucalyptus forest 
exploration projects for cellulose production. The dynamics of price and 
inventory growth are the same as proposed by Morck, Schwartz and 
Stangeland (1989), but with the assumption of a linear rather than the 
original quadratic cost function. In this case, the optimal stochastic control 
problem has a bang-bang solution, “to produce the maximum capacity or 
not to produce,” which simplifies the numerical solution of the problem.  
From another perspective, Conrad (1997) uses the real option approach to 
analyse the decision to preserve a 100-year-old forest in a North-American 
national park. Future values of park maintenance benefits (or amenities), 
such as visitation and habitat for the local fauna, are uncertain and follow 
a GBM. Considering the amenity flow to be proportional to park visitation, 
the author calculates the tendency and volatility parameters. Analytical 
solutions are derived for the value of the amenity that justifies preservation 
of the forest, besides harvesting it for commercialization. 
Forsyth (2000) applies the same concept from the abovementioned paper 
to evaluate a wilderness area. In both articles, the option value approach 
is used to determine whether to harvest a forest or preserve it for 
recreational use. Unlike the work of Conrad (1997), Forsyth (2000) uses a 
logistic process to describe the amenities. The author observes, using the 
logistic growth function, that the critical amenity value decreases as 
volatility increases. 



 

Moreira et al. (2000) evaluate a forest concession in Brazil, which depends 
on uncertainties in the estimation of commercial timber volume in the 
concession area, as well as on the future price of the log. Legal 
restrictions are imposed on the concession. The authors propose a 
methodology that values a forest concession based on real options theory 
and observe that the concession value is not proportional to current prices 
and inventories, being more sensitive to the uncertainty of prices than to 
inventories. Thus, the former must be measured more carefully. In 
addition, assuming a lack of knowledge of the initial stock level decreases 
the value of the concession, so that the greater the uncertainty regarding 
the initial quantity of wood in the region, the lower the value obtained for 
the concession. 
Rocha et al. (2004) apply a model similar to that used by Morck, Schwartz 
and Stangeland (1989) to a concession in the Amazon rainforest. Two 
stochastic processes are proposed for the price: the GBM and the mean 
reversion model (MRM). The result of the Dickey-Fuller unit root statistical 
test does not reject the GBM hypothesis for the price. As in the work of 
Levi (1996), the cost is given as a linear function of the cut rate, so that the 
cut rate is always maximum or zero. Applying the explicit finite difference 
methodology for the calculation of the concession value, the authors 
analyse the sensitivity of the option value to some problem variables for 
the two stochastic price processes. The value of the forest concession 
calculated with the price following a GBM is at least 1.5 times greater than 
that obtained under the mean reversion assumption and 8 times higher 
than the value based on the traditional NPV method. In addition, the 
longer the expiration period, the lower the sensitivity of the option value 
over the concession period. As price volatility increases, the value of the 
concession increases. In contrast, the value of the concession decreases 
as stock volatility increases. 
Insley (2002) evaluates a forest investment and models the optimal 
harvest decision. The value of the cutting option is estimated according to 
the dynamic programming approach, with GBM used for the stochastic 
price process. According to Insley (2002), the relationship between option 
value and volatility can be understood by examining the problem solution, 
which describes how the option varies over time. For a longer time to 
expiration, the option value is greater for higher volatility values of the 
underlying asset. 
Kerr (2008) applies the Insley (2002) methodology to a reforestation 
project, so that the optimal harvest decision is modelled as an American 
option. Variational inequalities from the American option problem are 
solved by the implicit finite difference method using the system of linear 
complementarity equations. The author observes that the option value and 
the optimal cutting rate are significantly influenced by wood price volatility, 
the risk-free rate, and harvest costs. 



 

Gastaldi and Minardi (2012) evaluate the value of anticipating or 
postponing harvesting of a eucalyptus forest in the face of uncertainties 
about the price of timber. The valuation focuses on a comparison between 
use of the traditional discounted cash flow and valuation by real options. 
The authors compare the results using the GBM and the mean reversion 
process for the price. The results are quite intuitive, suggesting that the 
best option is to cut younger forests when prices are high. 
Appendix 1 presents the articles in a consolidated form to facilitate 
comparison. The objective of the present research is to extend the Morck, 
Schwartz and Stangeland (1989) model considering a different process for 
the evolution tree inventory growth in a hypothetical forestry investment 
project. The present study proposes a logistic process to describe forest 
growth rather than considering a constant drift and or limiting growth with a 
barrier as in some abovementioned papers (Morck, Schwartz and 
Stangeland, 1989; Levi, 1996; Moreira et al., 2000; Rocha et al., 2004). 
According to Goes (2012), the growth of general living organisms follows a 
sigmoidal curve, characterized by a relatively rapid initial phase, of the 
exponential type, a convex middle phase, and a concave curve at the end. 
Peroni and Hernández (2011) affirm that the populations do not grow 
exponentially, with rare exceptions. They affirm that the population size (or 
density) increases until it reaches a relatively stable maximum limit. This 
behaviour can be described by what is known as a logistic equation, also 
called the Pearl-Verhulst equation (see Dias, 2015, p.82, or Tuckwell, 
1995, pp. 219-220). Figure 1 illustrates the logistic S-shaped growth curve. 

 
Figure 1 – The Logistic Growth Curve 

As noted by Tsoularis (2001), unrestricted growth, similar to exponential 
growth (Malthusian model), is an unrealistic assumption for a population 
model. Therefore, Verhulst (1838) considered a stable population with a 
saturation level. This behaviour, typically called the carrying capacity, 
forms an upper bound on the growth size. The logistic curve incorporates 
this idea and can also be seen to model physical growth of a population. In 
particular, when the initial population size is much smaller than the 
carrying capacity, the resulting logistic growth rate curve is sigmoidal. The 



 

logistic model was rediscovered and popularized by Pearl and Reed 
(1920) and is widely used nowadays to model population growth. 
Therefore, this work mainly contributes to the real options literature on 
forest resources by using the relatively more realistic logistic equation to 
model inventory growth. This means that without cutting, a population of 
trees will grow up to a limit, where it tends to stabilize. 
Furthermore, we propose to use the explicit finite differences method to 
obtain a solution under the real options approach and calculate the 
optimum cutting rate for trees for each period. The explicit FDM is easier 
to implement, less numerically intensive and more intuitive than other finite 
difference methods (see, e.g., Dias, 2015). Since it may present 
convergence problems, a stability condition is added to attain convergence 
and to obtain reliable results. The proposed explicit FDM is presented in 
the Appendix 2. 
 
3 Forest Concession Valuation 
 
Since this is a methodological work, one of the goals is to calculate the 
market value of a commercial-purpose forest concession. This value will 
depend on selected parameters to reflect a range of perspectives on 
productivity or market evolution. The result will be the best estimate for the 
market value of the concession conditional on the set of parameters 
adopted. It is important to underline that the concession value is based on 
the assumption that the firm will act optimally in cutting trees. Therefore, 
the company that owns the concession will choose a cutting rate that 
maximizes its market value. 
In the proposed model, the forest investment value – with an option of 
cutting trees in the concession period – and the cutting rate are the 
dependent variables; timber price, inventory of trees, and time are the 
independent variables. 
The timber price follows a GBM, and its risk-neutral form can be written as 
shown in equation 1: 
 
!"!

!
= 𝑟 − 𝛿 𝑑𝑡 + 𝜎𝑑𝑧!    (1) 

 
where P is the timber price at time t, 𝑟 − 𝛿  is the risk-neutral drift rate, r is 
the risk-free rate, δ is the convenience yield of timber, σ is the price 
volatility, and dz is the increment of a standard Wiener process. Q 
indicates that the process is risk neutral. 
In order to incorporate a more realistic element into the forest problem, we 
take into account the decreasing growth rate of the trees over time, which 
approaches zero as the forest inventory approaches the saturation level. 



 

In this article, the tree inventory drift is given by the logistic growth 
equation presented below.  
Considering that the forest initially has E0 cubic metres of timber, for 
purposes of this work, the variation in stock is determined by the following 
equation 21: 
 
𝑑𝐸 = 𝜂 𝐸 − 𝐸 𝑡 𝐸 𝑡 𝑑𝑡 − 𝑞 𝐸,𝑃, 𝑡 𝑑𝑡 + 𝜎!𝐸(𝑡)𝑑𝑧   (2) 
 
where E(t) represents the timber inventory at time t; 𝜂[𝐸 − 𝐸 𝑡 ] is the drift 
coefficient; 𝜂 is the reversion speed (here a growth speed parameter); 𝐸 is 
the saturation level; q is the cutting rate; and 𝜎! is the inventory volatility, 
which reflects the uncertainty about timber volume.  
The cash flow of a company on timber production is determined by 
equation 3. 
 
𝑓 𝑡 = (1− 𝜏)× 𝑃×𝑞 − 𝐶(𝑡)      (3) 
 
where 𝜏 is the tax rate on the profit of production and 𝐶(𝑡) the cost. 
A quadratic function is adopted (Morck, Schwartz and Stangeland, 1989), 
instead of a linear function (Levi, 1996; Rocha et al., 2004), to model the 
cost. According to Levi (1996), if the cost function is linear in relation to the 
cutting rate, the problem of stochastic optimal control will have a solution 
of the type “to cut at the maximal rate or not to cut,” simplifying the 
numerical solution of the problem. When the cost function is quadratic, the 
optimal cutting policy assumes values between an interval, and not 
necessarily zero or maximum values. The function considers a linear 
variable cost and a quadratic variable cost that reflects the marginal cost 
increase and can be represented as follows: 
 

𝐶(𝑡) =
𝑐!×𝑞 +

!!×!!

!
, 𝑠𝑒  𝑓(𝑡) > 0
 
0, 𝑠𝑒  𝑓(𝑡) ≤ 0

  (4) 

 
Given equations 1 and 2 for price P(t) and inventory E(t), respectively, 
according to the Itô-Doeblin equation for two stochastic variables, the 
partial differential equation (PDE) of the forest value is given by 
 
𝑑𝐹 = 𝐹!𝑑𝑡 + 𝐹!𝑑𝑃 +

!
!
𝐹!!(𝑑𝑃)! + 𝐹!𝑑𝐸 +

!
!
𝐹!!(𝑑𝐸)! (5) 

 

                                                
1 This stochastic version of logistic equation is a mean reversion process (geometric Ornstein-



 

Applying the Itô-Doeblin formula, it can be shown that the market value of 
the forest concession, F(P,E,t), is a contingent asset of the price and 
underlying inventory and grows according to PDE given by equation 6. 
 
𝑟𝐹 = 𝐹! + 𝑟 − 𝛿! 𝐹!𝑃 +

!
!
𝐹!!𝜎!𝑃! + 𝐹! 𝜂 𝐸 − 𝐸 𝑡 𝐸 𝑡 − 𝑞(𝑡) +

!
!
𝐹!!𝜎!!𝐸! + 𝑓(𝑡) (6) 

 
For this problem, the following boundary conditions are applied: 
 
𝐹 𝑃,𝐸,𝑇 = 0,   (7)  
𝐹 0,𝐸, 𝑡 = 0,   (8) 
𝐹 𝑃, 0, 𝑡 = 0,   (9) 
lim! →!!á! 𝐹! = 𝐸 − 𝐸!"#,  (10) 
 
Equation 7 ensures that the value of the concession is zero at the end of 
the concession. Equations 8 and 9 ensure that the concession value is 
zero when wood or stock prices fall to zero. According to equation 10, 
changes in market value due to changes in price are linearly proportional 
to the inventory available for production because when the price tends to 
infinity, we attempt to exploit any available reserve immediately. In this 
case, the project value is a function of inventory variation only. 
For each period of time, price and inventory, the optimal cutting rate q* is 
calculated to obtain the option value. In order to find this optimum 
production policy, we substitute equations 3 and 4 in equation 6 and take 
the partial derivative in relation to the quantity q. Imposing the constraints 
that (i) production should be non-negative and (ii) production can be 
suspended or restarted without additional costs, we can solve the optimal 
cutting rate using equation 11. 
 

𝑞∗(𝑃,𝐸, 𝑡) =
𝑚𝑎𝑥 0, !!!

!!! ×!!
+ !!!!

!!
, 𝑠𝑒  𝑓(𝑡) > 0

 
0, 𝑠𝑒  𝑓(𝑡) ≤ 0

  (11) 

 
The PDE given by equation 6, with the boundary conditions in equations 7 
to 10 and the constraints of q* (P,E,t) in 11, must be solved numerically for 
the option value solution. 
Besides the original model described, additional assumptions are made to 
compare different models, as special cases. For example, if the volatility of 
the inventory is zero, the inventory follows a deterministic equation, 
ignoring the stochastic term regarding timber volume. This particular 
example of the main model is analysed more specifically, and the results 
acquired in both cases are compared. 



 

We compare the market value given by the real options methodology with 
the traditional net present value (NPV) approach. The intrinsic flexibility of 
being able to temporarily suspend production or change the cutting rate 
cannot be quantified according to the traditional approach, and is given by 
the expected cash flow discounted by the project risk-adjusted discount 
rate (µ) as shown below: 
 

!"(!!,!,!)
!!! !

!
!!! = !!! !!! ! !"#$

!!! !
!
!!!    (12) 

 

𝑐𝑜𝑠𝑡 = 𝑐!𝑞 +
!!!!

!
  (13) 

 
In this work, two applications are realized for this model. In the first 
application the cutting rate q is fixed and the cutting process is performed 
at each period. Then, a second application based on cash flow 
maximization was made to obtain an optimum cutting rate, which varies 
with price and costs. In addition, inventory variation is considered for past 
cuts made. 
 
4 Hypothetical Project and Results 
 
The proposed model is applied to a hypothetical forest investment project 
and analysed. The parameters used in this analysis are shown in Table 1. 
 
Table 1 – Parameters 

Risk-free rate of return r 5% per year 
Current price of timber P0 R$ 50/m3 
Maximum price Pmax R$ 500/ m3 
Volatility of price σ 18% per year 
Convenience yield δ 4.6%per year 
Current inventory* E0 100 m3/ha 
Minimum inventory* Emin  30 m3/ha 
Saturation level of inventory* 𝐸  600m3/ha 
Reversion speed η 0.0004 
Expiration T 10 years 
Tax rate** τ 15% per year 
Linear variable cost c1 R$ 10/m3 
Quadratic variable cost c2 R$ 5/m3 

* Variables in thousand m3/ha. 
** Income tax rate obtained according to Law No. 9,393 (Brazil, 1996) for a 
forest with a total area of 500 to 1000 hectares and a land utilization rate 
of at least 80%. The tax rate was considered as a tax on profit. Any other 
tax that affects profit can be added without compromising the results. 



 

Historical eucalyptus prices were deflated and converted to constant real 
prices, on April 2015 basis, by the General Price Index (IGP-DI), an 
inflation index in Brazil. The Dickey-Fuller (DF) unit root test was 
performed, and the t-statistic (= -2.17) for the price series does not allow 
rejection of the null hypothesis (at a significance level of 1%). Therefore 
the GBM is a suitable process to represent the price series. The series of 
prices and the statistical results are shown in Appendix 3 and 4. 
Although MRM is usually used for modelling commodity prices, the GBM is 
used as the price diffusion process in the forest sector literature in most 
cases (Morck, Schwartz and Stangeland, 1989; Levi, 1996; Moreira et al., 
2000; Baran, 2005), and the null hypothesis was not rejected by the unit 
root test. 
The parameters of volatility and convenience rate are estimated based on 
the historical series of wood prices. The estimated drift α is 4.8% per year, 
and the volatility σ is 18% per year. The risk-free rate of return and the 
convenience yield are the same as those used by Moreira et al. (2000). 
The maximum price used in the finite difference grid is R$ 500 / m³, since 
the series does not exceed R$ 95.00 in the analysed period. 
In the main model proposed, the inventory follows a stochastic logistic 
process. Subsequently, we analyse a particular model where the inventory 
follows an equivalent process without the stochastic term, which is here 
called the logistic model. Furthermore, we treat another case using a fixed 
cutting rate instead of an optimum value. 
Data of the eucalyptus population on the level of saturation and minimum 
inventory levels of the eucalyptus population were obtained from 
Rodriguez, Bueno and Rodrigues (1997). The average reversion velocity 
was chosen to better represent forest growth behaviour as a logistic 
equation. 
In addition, the linear and quadratic variable costs considered are, 
respectively, R$ 10/m3 and R$ 5/m3, and sensitivity analysis is conducted 
for both. The linear variable cost, which incorporates implementation and 
maintenance costs, is the most commonly used parameter in the real 
options literature. However, the quadratic variable cost, used by Morck, 
Schwartz and Stangeland (1989), has an economic importance because it 
incorporates possible additional costs, such as extraordinary charges and 
costs of storage and displacement, among others. 
For application of the explicit finite differences method (Explicit FDM), a 
Java-based software2 was developed from the discretized equations 
corresponding to the proposed model as presented in Appendix 2. 
To explore the optimal cutting policy, some assumptions about the future 
price and inventory levels are necessary. On the assumption that these 
variables grow by their historical rates, an optimum cutting rate policy in 

                                                
2 Available on request in case of interest. 



 

relation to time can be obtained. The optimal cutting rates are based on 
two assumptions: (i) the initial timber price (R$ 50 in the base case) 
increases by the risk-neutral rate, (ii) the inventory is calculated based on 
the logistic equation, which is the value of inventory incorporating logistic 
growth. In addition, the harvest made in the previous period is deducted 
from the value of the stock over time, E(t). 
Some analyses related to the cutting policy are presented in Figures 2 to 
6. Figure 2 shows the cutting rate over time for different initial stock 
values. Most of the inventory is cut during the first half of the investment 
period. In addition, the higher the initial stock, the longer is the cutting 
period. This result is similar to the finding by Morck, Schwartz and 
Stangeland (1989), because the cutting rate decreases over time and the 
cutting time increases with the inventory. 
Figure 3 shows that the higher the initial price, the greater the incentive to 
cut the forest faster in the early periods. In contrast to Morck, Schwartz 
and Stangeland’s (1989) results, cutting is done faster in the present work, 
and the forest is cut in a shorter period of time. 
Figure 4 shows that higher volatility implies a higher option value, so 
postponing can be better than cutting right away. 

 
Figure 2 – Cutting rate vs. time for different initial inventory levels 
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Figure 3 – Cutting rate vs. time for different initial price levels 
 

 
Figure 4 – Cutting rate vs. time for different price volatility levels 
 
Figures 5 and 6 show how the cutting rate varies over time for different 
variable cost values, both linear and quadratic. The cutting rate decreases 
with an increase in both linear and quadratic costs, and cutting itself is 
performed for a longer period. The cutting rate is more sensitive to the 
quadratic than the linear variable cost, which means that additional costs 
throughout the project can have a negative effect on the final investment 
value. This indicates that a detailed analysis of this variable must be 
conducted to ensure that the project is correctly evaluated. 
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Figure 5 – Cutting rate vs. time for different linear variable costs levels 
 

 
Figure 6 – Cutting rate vs. time for different quadratic variable costs levels 
 
Figures 7 to 9 show the option values related to the initial price for different 
parameter values of the stochastic price evolution processes and 
inventory levels. Figure 7 shows that the higher the initial inventory, the 
greater the value of the option, as in Morck, Schwartz and Stangeland 
(1989). 
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Figure 7 – Option value vs. price for different initial inventory levels 
 
Figure 8 shows that the convenience yield of the price has an inverse 
relationship with the option value, because the higher the price, the larger 
is the convenience yield, and the lower the option value. This result can be 
examined mathematically because this is a factor that diminishes the risk-
neutral drift of the price process. In addition, the convenience yield is also 
called the rate of return of shortfall (term coined by McDonald and Siegel, 
1984), so that high product inventory reduces the probability of supply 
disruption, decreasing the convenience yield. Therefore, the lower the 
convenience rate, the greater the option value. 
 

 
Figure 8 – Option value vs. price for different convenience yield levels 
 
Figure 9 shows the option value variation in relation to the initial inventory 
for different timber volume volatilities. Increasing the uncertainty in relation 
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to the inventory decreases the option value. Moreira et al. (2000) point to 
the negative sign of the EDP in equation 6 as vindication of this fact. 
Therefore, the result is similar to that presented by these authors. 
 

 
Figure 9 – Option value vs. inventory for different inventory volatilities 
 

 
Figure 10 – Option value vs. inventory for different initial price levels 
 
Figure 10 shows that the value of the option tends to a constant for very 
high inventory levels. Similarly, this result confirms the findings of Morck, 
Schwartz and Stangeland (1989) and Levi (1996), who use another growth 
model. 
A comparative analysis based on the project value is carried out for the 
three models described here as (i) the logistic model with a stochastic 
component, (ii) the logistic model and (iii) the logistic model with a fixed 
cutting rate. Case (i) is the main model proposed in this paper. In the 
logistic model with a stochastic component, the inventory follows the 
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geometric Ornstein-Unlenbeck model given by equation 2, and the cutting 
rate is optimized. In models (ii) and (iii), the inventory presents a growth 
path according to the deterministic logistic equation, removing the 
stochastic part. In model (ii), however, the cutting rate is optimized as in 
model (i), while case (iii) focuses on the decision of whether or not to cut 
at a given maximum cut rate (qmax). 
Table 2 summarizes the value of a logging company, that is, the value of 
the investment option, based on the finite difference method, with the 
parameters given in Table 1. The table shows the value of the project for 
different initial price levels. Each starting price has five different results. In 
addition to the cases involving real options theory, two cases based on the 
traditional net present value method are compared, one in which the 
cutting rate is qmax = 15 m³/year and another where cutting rate is 
optimized (q*), taking the partial derivative of the equation 3 in relation to 
the quantity q. As expected, the net present value criterion underestimates 
the forest value in all cases compared to the real options methodology. 
 

Table 2 – Market value in thousands of reals for different initial prices 

 

(i) Logistic 
Stochastic 

(ii) 
Logistic 

(iii) Logistic 
fixed cutting** 

NPV 
q=15 NPV  q* 

P0=40 818 818 366 -709 567 
P0=50 1,410 1,411 890 236 1,009 

P0=100 6,495 6,561 5,495 4,965 5,107 
P0=200 21,866 22,225 15,808 14,423 20,052 
P0=300 39,330 40,020 27,034 23,880 30,307 

**This model considered a maximum cutting rate of qmax = 15 m3/year. 

 
The model with the stochastic component provides a smaller option value 
than the logistic model, as evident from the sign of the second derivative 
FII, which is negative (see the partial derivative of equation 6). In this case, 
the greater the inventory volatility, the lower is the option value. This 
specific analysis is not reported in the literature, but other authors (Rocha 
et al., 2004; Moreira et al., 2000) have presented the case of varying 
inventory volatility, using an exponential classic stochastic model. 
 



 

 
Figure 11 – Option value vs. price inventory for different models 
 
Figure 11 shows that the value of the option is higher for the logistic 
model. However, the difference between the results obtained with the 
stochastic logistic model and the logistic model is small. As already seen 
in the analysis of Figure 7, for the stochastic model, the sensitivity of the 
option value to the price is very low with initial stocks lower than 150 m³. 
The same is the case with the logistic model. As for the base case of an 
initial stock of 100 m³, this difference is not very sensitive, as shown in the 
graphic. 
In general, the option pricing methodology is useful to help investors 
estimate the fair value of an asset under uncertainties, quantify the 
economic benefit of the investment and determine the feasibility of forest 
management. 
 
5 Conclusion 
 
This paper uses real options theory to estimate the value of a forest 
concession for timber production, proposing an alternative process to 
describe the growth of tree inventory based on the logistic equation. The 
explicit finite difference numerical method was applied, and a sensitivity 
analysis based on the results was carried out to compare different cases 
and analyse the variables. Compared to the traditional NPV criteria, real 
options theory allows us to evaluate the gains from decision flexibility for 
scenarios of uncertainty. In the base case considered, the project value 
obtained through real options theory is more than twice as large as the 
one obtained through NPV approach with the fixed cutting rate and 
approximately 40% higher with the NPV with optimized cutting rate. 
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Another relevant result of the analysis is that the option value is greater for 
the logistic model. The results show that the value of a forest investment 
project is more sensitive to price uncertainty than inventory uncertainty, as 
in Moreira et al. (2000), so the estimation of the former must be even more 
important. 
Considering the lack of data availability and the precariousness of specific 
data on real projects, the results obtained are only indicative of the project 
value. However, these results are sufficiently suggestive and revealing to 
drive an upgrade of the proposed methodology with a set of parameters 
considered more realistic. 
Therefore, the cutting rate for wood in forest concessions can be 
determined in the context of an optimal control policy. This optimal control 
policy would determine the cutting pattern of the trees, depending on the 
price of the wood, the amount of wood in the forest reserve and the 
current time. However, the fact that the optimal time for cutting trees could 
be technically determined was not considered. Failure to consider that the 
cutting rate and the ideal age for cutting trees are technically determined 
can lead to results that do not represent the reality of the forest market. A 
technical and economic analysis of planting operations and industrial 
processes would be an important tool for management because the two 
activities are linked. This application, as well as an analysis of a forest 
concession with greater flexibility regarding the appropriate time for 
cutting, is suggested for future research. 
This research can be extended to different approaches and may interest 
both forest sector companies and governments, as an aid to public policy 
decision making, for better pricing of concessions. As a suggestion for 
future work, other numerical methods can be applied to evaluate options. 
Moreover, other stochastic processes can be used to describe wood price 
– mean reversion process, for example. It would also be interesting to 
extend the problem to consider the threshold price P*(E, t), the price 
above which it is optimal to have some cutting of trees, that is, the price 
so that q* > 0. We leave this analysis for future work. 
In fact, focusing on the optimal investment policy allows us to study social 
and regulatory problems as well, which is also a motivating theme for the 
use of the approach presented here. Parameters involving the inventory 
variable could also be estimated. In addition, with more in-depth research 
on the cost of forest market articles, one could consider the fixed cost of 
maintaining forest production and adopting a more assertive approach to 
variable costs. As this is a methodology applied to a natural resource, 
other types of resources could be considered. 
One expects that the application of this methodology to general problems 
involving inventory management has significant importance for academic 
works that would influence the development of a sustainable natural 
resource policy by companies and the regulators. Viewed mainly from the 



 

aspect of environmental preservation, the conscious use of natural 
resources is a promising field to be explored by future works. 
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Appendix 1 – Main references of real options in the area of renewable 
resources  

 

 
 

 

 

 



 

Appendix 2 – Explicit Difference Method 

We propose to use the explicit finite difference method. The first step is to 
establish a uniform grid where time, price, and inventory are discretized. 
The option F(P,E,t) is a function of three variables; therefore, a grid of 
three dimensions is represented. The option value is obtained through a 
backwards process, from the expiration date to the initial date. 
To develop the grid, we consider the maximum value for each of the 
following variables: Pmax, the maximum price value; T, the expiration date; 
and 𝐸, the saturation level. Then, the variables are divided into steps: o = 

T/dt, m = Pmax/dP and n = !
!"

. Thus, the option value is calculated for each 
grid node (m,n,o) = (i.ΔP, j.ΔE, o.Δt), and the optimal cutting rate is 
determined. 
To simplify the notation, assume that F(P,E,t) at (P,E,t) is represented by 
Fi,j,k, where P = i.dP and i ∈ (0, m), E = j.dE and j ∈ (0, n), t = k.dt and k ∈ 
(0, o). Applying the approximations of the finite difference method in 
equation 6, we can write Fi,j,k as a function of Fi*,j*,k+1, given in the equation 
12 (where i* = i, i-1, i+1 e j* = j, j-1, j+1): 
𝐹!,!,! =
!

!! !
∆!
𝑝!!𝐹!!!,!,!!! + 𝑝!!𝐹!!!,!,!!! + 𝑝!𝐹!,!,!!! + 𝑝!!𝐹!,!!!,!!! + 𝑝!!𝐹!,!!!,!!! +

𝑓(𝑡)  (12) 
where the values pi, pj and p0 depend on the current states P and E, and 
are given by 

𝑝!! =
!!
!!!! !!! !

!
  (13) 

𝑝!! =
!!
!!!! !!! !

!
  (14) 

𝑝! = !
∆!
− 𝜎!!𝑖! − 𝜎!!𝑗! (15) 

𝑝!! =
!!!

!
+ ! !!!∆! (!∆!)!!

!∆!
  (16) 

𝑝!! =
!!!

!
− ! !!!∆! (!∆!)!!

!∆!
  (17) 

Then the unknown value Fi,j,k is an explicit function of the values of F, 
known at time k + 1. For the values of the upper and lower borders of the 
variables P and T (Pmax, P = 0 and t = T), the option value is given by 
boundary conditions in the equations 7 to 10. 
Then, the discretization of 𝑑𝑃, 𝑑𝐸 and 𝑑𝑡 is chosen to provide an adequate 
balance between precision and computational time in order to avoid 
numerical problems, and the process converges to the correct value. 
This work follows the approach used by Dias (2015) to calculate 𝑑𝑃 and 
𝑑𝐸. The input values are not the steps (m, n and o), but the expected error 
ε. The steps in P and E were defined as percentages of accuracy of their 
respective current values. Thus, ε is the expected error, and the 
discretization is calculated as follows: 



 

∆𝑃 = 𝑃!×𝜀  (18)  
∆𝐸 = 𝐸!×𝜀  (19) 
The non-negativity of the value p0 in equation 15 is a necessary and 
sufficient condition to guarantee the stability of explicit DFM. Therefore, 
the value of ∆𝑡 is given by 
∆𝑡 = !

!!
!!!"#!

∆!!
!
!!
!!!

∆!!

   (20) 

 
  



 

Appendix 3 – Historical Series of Prices 
 
The historical series of eucalyptus spot prices was obtained from the 
forestry sector of the Advanced Studies Centre in Applied Economics 
(CEPEA), a Brazilian institution. Monthly data for the Sorocaba region in 
São Paulo were collected in units of (R$/st), or real per stereo, a volume 
measure of wood in stacked logs. The unit of measurement was then 
converted to real per cubic metre (R$/m³). Figure A.1 shows a historical 
monthly series based on 204 observations spanning approximately 18 
years, from June 1998 to April 2015. The deflation of the historical series 
of wood prices is graphically presented in Figure A.2. 

 
Figure A.1 – Historical average prices of eucalyptus in Brazil 

 
Figure A.2 – Historical deflated prices of eucalyptus in Brazil 
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Appendix 4 – Results presented by Dickey-Fuller test for price series using 
the EViews software  
 

 
 

t-Statistic   Prob.*
-2,17076 0,2177

Test critical values: 1% level -3,462574
5% level -2,875608
10% level -2,574346

Variable Coefficient Std. Error t-Statistic Prob.  
LNPRECO(-1) -0,03197 0,014727 -2,17076 0,0311

C 0,13697 0,061958 2,210741 0,0282

R-squared 0,02291 0,00271
Adjusted R-squared 0,01805 0,05211
S.E. of regression 0,05164 -3,07931
Sum squared resid 0,53597 -3,04667
Log likelihood 314,55 -3,06611
F-statistic 4,7122 2,35873
Prob(F-statistic) 0,03112

    Mean dependent var
    S.D. dependent var
    Akaike info criterion
    Schwarz criterion
    Hannan-Quinn criter.
    Durbin-Watson stat

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LNPRECO)
Method: Least Squares
Date: 07/18/16   Time: 15:16
Sample (adjusted): 2 204
Included observations: 203 after adjustments

Null Hypothesis: LNPRECO has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=0)

Augmented Dickey-Fuller test statistic

*MacKinnon (1996) one-sided p-values.


