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Abstract
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is a stopping time with respect to a given filtration, has occured. One
situation where this feature is present is when we want to value the real
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1 Introduction

During the lifetime of many investments there are events which the investor can
not control, but which are crucial in the development of the investment. It could
be waiting for a permit or unexpectedly be exposed to some form of news. In
this paper we consider a situation where there is an exogenously given random
time, which we take to be a stopping time with respect to a given filtration,
marking the first time at which an action can be taken. This means that even
though the investor wants to take the action, e.g. initiate a project, he is not
necessarily allowed to do so.

To calculate the value of this random start option, we start by calculating the
value of the standard American perpetual option using the same gain function as
in the random start option problem. We will assume that the underlying process
evolves according to a geometric Brownian motion. This makes it possible to get
analytical expressions for many American perpertual options, and this is indeed
the case for the two gain functions considered in this paper. See Karatzas [9],
Karatzas & Shreve [10], Øksendal [15], Peskir & Shiryaev [16] and Shiryaev [17]
for theory and applications.

As applications we consider the optimal time to initiate a project (e.g. to
start building on vacant land) given the constraint of a pending application to
start, and a version of an abandonment option. These are two examples of real
options, i.e. investment opportunities where there is an element of optionality.
For a broad introduction to real options, see Dixit & Pindyck [4].

There is a resemblance between this type of random time and the default
time of a bond, and we will partly use similar models as the ones used in credit
risk modelling as described in e.g. Bielecki & Rutkowski [2] and Jeanblanc et
al [8]. Another type of models used in real option valuation are the ones that
assumes that the time of maturity is random, and these resemble in some aspects
our models. For more on this class of models, see e.g. Miltersen & Schwartz [12]
and references therein.

The rest of the paper is organised as follows. In Section 2 we discuss the
general modelling assumptions. Section 3 contains the model applied to two
random start investment problems, Section 4 outline some generalisations of
the models described in Section 2, and Section 5 concludes and summarises.

2 The model

Let (Ω,F, P, (Ft)) be a complete filtered probability space where the filtration
satisfies the usual assumptions of being right-continuous and F0 containing all
P -null sets of F. A random time τ is a non-negative random variable:

τ : Ω→ [0,∞].

A random time τ is a stopping time with respect to the filtration (Ft) if it fulfills

{τ ≤ t} ∈ Ft for every t ≥ 0.
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We assume that there exists a bank account with constant rate r > 0 whose
value evolves according to

dB(t) = rB(t)dt with B(0) = 1.

We further assume the existence of a pricing measure Q locally equivalent to
P and such that the value of a stream of cash flows is the discounted expected
value under Q where the risk-free rate is used as discount rate.

Given is also a real-valued and continuous time-homogeneous strong Markov
process (Xt) which is adapted to (Ft), and a non-negative function G : R→ R+.
Our first task will be to calculate the value of the standard American perpetual
option with (Xt) as the underlying and G as gain function. The value at time
t ≥ 0 of this American contract is

Ut = ess sup
τ∈St

EQx

[
e−r(τ−t)G(Xτ )

∣∣∣Ft] ,
where St is the set of stopping times greater than or equal to t and where

EQx [ · ] = EQ [ · |X0 = x] .

Fakeev [6] has shown that when (Xt) is a time-homogenous strong Markov
process, then Ut = V (Xt) where V is the function

V (x) = sup
τ
EQx

[
e−rτG(Xτ )

]
and the supremum is taken over all stopping times. Hence, it is enough to
calculate the function V . We allow for τ =∞, and define

e−rτG(Xτ ) = lim sup
t→∞

e−rtG(Xt) on {τ =∞}.

A stopping time τ? such that

V (x) = EQx

[
e−rτ

?

G(Xτ?)
]

is called an optimal stopping time. For the theory of optimal stopping see
e.g. Peskir & Shiryaev [16], and for optimal stopping and American options in
models driven by a Brownian motion see Karatzas [9] and Karatzas & Shreve
[10]. We finally let τS denote the stopping time at which we at the earliest can
exercise an American perpetual option.

To solve our type of problems we proceed according to the following program:

1. Calculate the value function V for the standard perpetual American option
with gain function G:

V (x) = sup
τ
EQx

[
e−rτG(Xτ )

]
.

2. If t ≥ τS , then the value at t of the random start option with gain function
G is given by V (Xt).
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3. If t < τS , the value of the random start option is given by

EQ
[
e−r(τS−t)V (XτS )

∣∣∣Ft] . (1)

Note that we in general need to keep track of the time t here, since it
might influence when the time τS occurs.

We remark that if the option is exercised, then this is done at a time after time
τS has occured. In our applications the function V can be calculated explicitly
and the goal of the major part of this paper is to show how we can compute the
value of the option at times t when t < τS ; i.e. evaluate expressions of the type
given in Equation (1) above.

We are interested in properties of the stopping time τS under both the objec-
tive measure P and the pricing measure Q. To this end we will start by specify
the properties of τS under the objective measure P , and then determine what
happens to these properties when we change measure from P to Q. The in-
vestor in our model has no possibility of influencing the time τS , and we assume
that τS and the underlying process (Xt) are independent under P . We further
assume that the randomness generated by τS can not be traded, so we have an
incomplete model. This means that there is not one unique, but infinitely many,
potential pricing measures Q, and we need to choose one of these. One way of
doing this is to assume that the distribution of τS under Q is the same as under
P and that τS and (Xt) are independent of (Xt) under Q as well. Choosing Q to
have these properties means that we use what is called the minimal martingale
measure, and this is the approach we will use. It has previously been used by
e.g. Møller [13] in applications to insurance and by Armerin & Song [1] in a real
options model. See Föllmer & Schweizer [7] and references therein for more on
the minimal martingale measure. Explicitly, we make the following assumptions
on the stopping time τS :

• P (τS > t) = Q(τS > t) > 0 for every t ≥ 0,

• P (τS <∞) = Q(τS <∞) = 1, and

• τS is independent of X under both P and Q.

Note that if τS is assumed to be a constant, then this τS does not fulfill the first
of these requirements, and this case must be considered seperately.

To be able to calculate the value of the American random start option we
need the result in Lemma 2.1 below. We let

Ft = Q(τS ≤ t),

and introduce
Γt = − ln(1− Ft) ⇔ Ft = 1− e−Γt ,

where the assumption Q(τS > t) > 0 for every t ≥ 0 from above guarantees that
Γ is well defined for every t ≥ 0. Now fix T > 0. Using the previous notation,
we have the following result:
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Lemma 2.1 Assume that Z is an (Ft)-predictable process such that the random
variable ZτS1(τS ≤ T ) is integrable. Then we have, for every t ≤ T ,

EQ [ZτS1(t < τS ≤ T )|Ft] = eΓtEQ

[∫
(t,T ]

ZudFu

∣∣∣∣∣Ft
]
1(t < τS)

= eΓt

∫
(t,T ]

EQ [Zu|Ft] dFu 1(t < τS).

For a proof see Bielecki & Rutkowski [2] or Jeanblanc et al [8]. If Z is non-
negative, then we can let T →∞, use monotone convergence, and get

EQ [ZτS1(t < τS)|Ft] = eΓtEQ

[∫
(t,∞)

ZudFu

∣∣∣∣∣Ft
]
1(t < τS)

= eΓt

∫
(t,∞)

EQ [Zu|Ft] dFu 1(t < τS).

Here we have used the fact that by assumption Q(τS < ∞). When Γ can be
written

Γt =

∫ t

0

γsds

for a function γ, then we say that τS has intensity γ and we have

dFt = γte
−

∫ t
0
γsdsdt

in this case. We can then write

EQ [ZτS |Ft]1(t < τS) =

∫ ∞
t

EQ [Zu|Ft] γue−
∫ u
t
γsdsdu1(t < τS).

Using this result when
Zt = e−rtf(Xt)

for a function f : R→ R+ yields the following result.

Proposition 2.2 With notation and assumptions above we have

EQ
[
e−r(τS−t)f(XτS )

∣∣∣Ft] =

∫ ∞
t

EQ [f(Xu)|Ft] γue−
∫ u
t

(r+γs)dsdu

when t < τS.

Note that the left-hand side with f = V in the expression above is Equation
(1). The case when τS = T > 0 is deterministic is not covered by the previous
Proposition. In this case we use that

EQ
[
e−r(τS−t)f(XτS )

∣∣∣Ft] = e−r(T−t)EQ [f(XT )|Ft]

for t < T .
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3 Applications

3.1 Modelling assumptions

We will now give examples of the technique described so far. In all examples
below we use the following model. Here Xt denotes the present value at time
t ≥ 0 of a developed project or investment.

• Under P the value (Xt) follows the geometric Brownian motion

dXt = µXtdt+ σXtdWt

with X0 > 0, µ ∈ R and σ > 0. The process W is a standard Brownian
motion under P .

• Under Q the value (Xt) follows the geometric Brownian motion

dXt = (r − δ)Xtdt+ σXtdW
Q
t ,

where WQ is a standard Q-Brownian motion. Here δ > 0 is the constant
cash flow yield generated by the investment.

• The intensity function of τS is a constant γ > 0, i.e. τS is exponentially
distributed with mean 1/γ under both P and Q.

In the examples below the two constants

β1 =
1

2
− r − δ

σ2
+

√[
1

2
− r − δ

σ2

]2

+
2r

σ2
> 1

and

β2 =
1

2
− r − δ

σ2
−

√[
1

2
− r − δ

σ2

]2

+
2r

σ2
< 0

will be used. They are the solutions to the quadratic equation

1

2
σ2β(β − 1) + (r − δ)β − r = 0, (2)

which in turn comes from the fact that we use the geometric Brownian motion
above when modelling the underlying value. The following proposition will be
used to calculate the value of random start options.

Proposition 3.1 Let X be the geometric Brownian motion

dXt = (r − δ)Xtdt+ σXtdW
Q
t ,

where WQ is a standard Brownian motion under Q and σ, r, δ > 0, and let τS
be exponentially distributed with mean 1/γ > 0 and independent of X under Q.
For any a, b ∈ R and t < τS we have

EQ
[
e−r(τS−t)Xa

τS1(XτS ≤ b)
∣∣∣Ft] = γXa

t J
(
r + γ − a(r − δ + (a− 1)σ2/2),

1

σ
ln

(
b

Xt

)
,
σ

2
− r − δ

σ
− aσ

)
,
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where

J(k, L,M) =


1
2ke
−L(M−

√
M2+2k)

(
M√

M2+2k
+ 1
)

if L < 0

1
k + 1

2ke
−L(M+

√
M2+2k)

(
M√

M2+2k
− 1
)

if L ≥ 0.

When a = βi for i = 1, 2 (with β1 and β2 as above), then

EQ
[
e−r(τS−t)Xβi

τS1(XτS ≤ b)
∣∣∣Ft] = γXβi

t J

(
γ,

1

σ
ln

(
b

Xt

)
,

−sgn(βi)

√[
1

2
− r − δ

σ2

]2

+
2r

σ2

 .

For a proof of the proposition, see Appendix A.1.

3.2 The objective measure P

We are mainly interested in the pricing measure Q, but in some cases we need
to use the objective meaure P . One example is when we want to calculate the
expected time until the random start option is exercised. In this case we need
the distribution of XτS under P . The solution to the GBM

dXt = µXtdt+ σXtdWt

is
Xt = X0e

(µ−σ2/2)t+σWt , t ≥ 0.

It follows that

lnXτS = lnX0 +

(
µ− σ2

2

)
τS + σWτS

= lnX0 +

(
µ− σ2

2

)
τS + σ

√
τS ·

WτS√
τS
,

where we set WτS/
√
τS = 0 when τS = 0. Since τS is independent of W under

P we have WτS/
√
τS ∼ N(0, 1) and we can write

lnXτS
D
= lnX0 +

(
µ− σ2

2

)
τS + σ

√
τS · Z,

where Z ∼ N(0, 1) is independent of τS . Hence, we recover the well known
fact that the random variable lnXτS has a normal mean-variance mixture dis-
tribution. When τS is exponentially distributed, then lnXτS is skew-Laplace
distributed (Kotz et al [11]). A random variable is skew-Laplace distributed if
its density function is given by

f(x) =

√
2

Σ
· κ

1 + κ2

{
e−
√

2κ
Σ |x−θ| if x ≥ θ

e−
√

2
Σκ |x−θ| if x < θ
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for some θ ∈ R, κ > 0 and Σ ≥ 0. We write AL(θ,Σ, κ) to denote this dis-
tribution. If τS is exponentially distributed with mean 1/γ, then lnXτS is
skew-Laplace distributed with parameters

θ = lnX0

Σ =
σ
√
γ

κ =

√
ν2 + 2γσ2 − ν√

2γσ
,

where

ν = µ− σ2

2
.

Expressing the parameters in the skew-Laplace’s density function using σ, γ, ν
and lnX0 we get

fτS (x) =
σ2γ√

ν2 + 2γσ2

 e−
√
ν2+2γσ2−ν

σ2 |x−lnX0| if x ≥ lnX0

e
− 2γ√

ν2+2γσ2−ν
|x−lnX0|

if x < lnX0.

For more on normal mean-variance mixture models and the skew-Laplace dis-
tribution see Kotz et al [11].

3.3 Valuation of a project – an optimal timing option

This is the main example we have in mind when studying random start American
options. When buying land in order to build on it, usually a building permit is
needed. Hence, even though the investor wants to build on the land he is not
allowed to do so until he has received the permit. In this application τS is the
time at which the building permit is given. The gain function in this case is
given by

G(x) = x− I,

where I is the investment cost of the project. Since it is never optimal to
exercise the option when the value of the project is smaller than 0, this problem
is equivalent to the one where

G(x) = max(x− I, 0),

i.e. when we have a perpetual American call option. Hence, the problem we
initially want to solve is

V (x) = sup
τ
EQx [max(Xτ − I, 0)] .

With dynamics of (Xt) as above we have

V (x) =

{
(Lc − I)

(
x
Lc

)β1

when x ∈ [0, Lc)

x− I when x ∈ [Lc,∞),
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where the critical level Lc, i.e. the level at and above which we exercise the
option, is given by

Lc =
β1

β1 − 1
I.

For a proof of this see e.g. Chapter VIII, §2a in Shiryaev [17] or pp. 209-211
in Øksendal [15]. To calculate the value at a time t < τS of the random start
option, we write the value V as

V (x) = (Lc − I)

(
x

Lc

)β1

1(x < Lc) + (x− I)1(x ≥ Lc)

= (Lc − I)

(
x

Lc

)β1

1(x < Lc) + x− I − x1(x < Lc) + I1(x < Lc).

We now use Proposition 3.1 to find the value of this random start option at a
time t < τS with Xt = x. By using Proposition 3.1 on the first, fourth and fifth
of the five terms in the expression for V (x) we get

Value = (Lc − I)

(
x

Lc

)β1

γJ

γ, 1

σ
ln

(
Lc
x

)
,−

√[
1

2
− r − δ

σ2

]2

+
2r

σ2


+x

γ

γ + δ
− I γ

γ + r

−γxJ
(
γ + δ,

1

σ
ln

(
Lc
x

)
,−r − δ + σ2/2

σ

)
+γIJ

(
γ + r,

1

σ
ln

(
Lc
x

)
,−r − δ − σ

2/2

σ

)
.

This formula is not so intuitive, but looking at a concrete example as in Figure
1 we get a better picture. For small values of the geometric Brownian motion
the value of the random start option is not much smaller than the value of the
standard version of the American perpetuate call option. As the value of the
underlying increases towards the critical value, the two option values starts to
diverge, and at one point the value of random start option crosses the gain
function; this of couse will never happen to the standard American option. The
value at time t of the random start option is given by the dashed curve if t < τS ,
and by the dotted curve if t ≥ τS .

We now proceed to calculate, at time 0, the mean time until the project is
initiated. We start with some notation. Let τ?c denote the optimal stopping
time in the standard perpetuate American call option case, i.e.

τ?c = inf{t ≥ 0 |Xt ≥ Lc}.

We let
τ? = inf{t ≥ τS |Xt ≥ Lc}

be the optimal stopping time for the random start option, and we finally let

τ?S = τ? − τS
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Figure 1: Gain function (solid curve), value of the standard American perpetual
call option (dotted curve) and value of the random start American perpetual
call option (dashed curve) all with I = 100 as function of the initial value x.
The parameter values are r = 0.01, δ = 0.02, σ = 0.15, γ = 0.10 and the critical
level is in this case Lc = 178.19

denote the time we wait until we optimally start the project after the stopping
time τS has occured. With this notation we have

τ?S |XτS = x
d
= τ?c |X0 = x. (3)

We are interested in the actual mean time until the option is exercised, so we
use the objective measure P here, and we want to calculate

Ex [τ?] = Ex [τS ] + Ex [τ?S ] .

We have Ex [τS ] = 1/γ and use relation (3) to calculate Ex [τ?S ]. We recall that
under P the value process X has dynamics

dXt = µXtdt+ σXtdWt.

Now assume that

ν = µ− σ2

2
> 0.

The reason for doing this is that if this inequality does not hold, then if x < Lc
the expected time until we hit the critical level is infinite. One can show that if
ν > 0, then

Ex

[
e−ατ

?
c

]
=

{
1 when x ≥ Lc
(x/Lc)

√
(µ/σ2−1/2)2+2α/σ2−µ/σ2+1/2 when x < Lc
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(see e.g. Borodin & Salminen [3] p. 622). From this it follows that

Ex [τ?c ] =

{
1
ν ln (Lc/x) when x ≤ Lc
0 when x > Lc,

and using relation (3) we get

Ex [τ?S ] = Ex [Ex [τ?S |XτS ]]

= Ex

[
1

ν
ln(Lc/XτS )1(XτS ≤ Lc)

]
= −1

ν
Ex [ln(XτS/Lc)1(ln(XτS/Lc) ≤ 0)] .

To continue we use that

ln(XτS/Lc) ∼ AL

(
ln(x/Lc),

σ
√
γ
,

√
ν2 + 2γσ2 − ν√

2γσ

)
.

We have to distinguish between the two cases

(a) ln(x/Lc) ≥ 0 ⇔ x ≥ Lc , and

(b) ln(x/Lc) < 0 ⇔ x < Lc.

In case (a) we use the fact that if h ≥ 0 and a > 0 then∫ 0

−∞
yea(y−h)dy = −e

−ah

a2
,

and in case (b) that if h < 0 and a, b > 0 then∫ h

−∞
yea(y−h)dy +

∫ 0

h

ye−b(y−h)dy =
h

a
− 1

a2
+
h

b
+

1− ebh

b2
.

In both cases we use these results with

h = ln(x/Lc) and a =
2γ√

ν2 + 2γσ2 − ν
,

and in case (b) we additionally set

b =

√
ν2 + 2γσ2 − ν

σ2
.

Using these results together with Equation (3) we get the following expected
times until the options is optimally exercised.

(a) When x ≥ Lc:

Ex [τ?S ] =
ν2 + γσ2 − ν

√
ν2 + 2γσ2

2νγ2

(
x

Lc

)− 2γ√
ν2+2γσ2−ν

.
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(b) When x < Lc:

Ex [τ?S ] =

(√
ν2 + 2γσ2 − ν

)2

4νγ2
−

(√
ν2 + 2γσ2 − ν

)
ln
(
x
Lc

)
2νγ

− σ2

ν
(√

ν2 + 2γσ2 − ν
) · ln( x

Lc

)

+
σ4

ν
(√

ν2 + 2γσ2 − ν
)2 ·

( x

Lc

)√ν2+2γσ2−ν
σ2

− 1

 .
To get the mean time Ex [τ?] until the option is optimally exercised we simply
add Ex [τ?S ] = 1/γ to the expression for Ex [τ?S ] above. See Figure 2 for an
illustration.

Figure 2: Mean time until the random start American call option is exercised as
a function of the initial value x in the case when τS is exponentially distributed
with parameter γ = 0.1. The other parameter values are r = 0.01, δ = 0.02,
σ = 0.15 and ν = 0.01. As in Figure 1 the critical level is Lc = 178.19.

3.4 An abandonment option

We start by describing the standard American version of this example. At time
t = 0 we pay a sunk cost for the right to invest in a project at any future time.
There is also a possibility to abandon the right to carry out the project, and in
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this case we get the recovery amount K. Hence we want to find

V (x) = sup
τ
EQx

[
e−rτ max(Xτ ,K)

]
,

where Xt is the value of the project if it is initiated at time t. Note that since
the cost for the investment is paid for at the start, it does not enter into the
optimal timing problem.

Under the dynamics given at the beginning of this Section, the optimal value
is given by

V (x) =


K when x ∈ [0, L1]

K

[
−β2

β1−β2

(
x
L1

)β1

+ β1

β1−β2

(
x
L1

)β2
]

when x ∈ (L1, L2)

x when x ∈ [L2,∞).

where

L1 = K · β2

β2 − 1

(
−β2

β1
· β1 − 1

1− β2

)(1−β1)/(β1−β2)

and

L2 = K · β2

β2 − 1

(
−β2

β1
· β1 − 1

1− β2

)−β1/(β1−β2)

.

A proof of this is given in Appendix A.2. See also Yu [18]. Let us now turn
to the problem of valuing the random start version of this option. We start by
writing the optimal value of the standard American perpetuate option as

V (x) = K1(x ≤ L1)

+K

[
−β2

β1 − β2

(
x

L1

)β1

+
β1

β1 − β2

(
x

L1

)β2
]
1(L1 < x < L2)

+x1(x ≥ L2)

= K1(x ≤ L1)

+K

[
−β2

β1 − β2

(
x

L1

)β1

+
β1

β1 − β2

(
x

L1

)β2
]

(1(x < L2)− 1(x ≤ L1))

+x− x1(x < L2)

Again we can use Proposition 3.1 to get the value of the random start version
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of the perpetuate option:

Value = γKJ

(
γ + r,

1

σ
ln

(
L1

x

)
,−r − δ − σ

2/2

σ

)

+
γK

β1 − β2

(
− β2

(
x

L1

)β1

J
γ, 1

σ
ln

(
L2

x

)
,−

√[
1

2
− r − δ

σ2

]2

+
2r

σ2


−J

γ, 1

σ
ln

(
L1

x

)
,−

√[
1

2
− r − δ

σ2

]2

+
2r

σ2


+β1

(
x

L1

)β2

J
γ, 1

σ
ln

(
L2

x

)
,

√[
1

2
− r − δ

σ2

]2

+
2r

σ2


−J

γ, 1

σ
ln

(
L1

x

)
,

√[
1

2
− r − δ

σ2

]2

+
2r

σ2


+x

γ

γ + δ
− γxJ

(
γ + δ,

1

σ
ln

(
L2

x

)
,−r − δ + σ2/2

σ

)
.

Figure 3: Gain function (solid curve), value of the standard abandonment op-
tion (dotted curve) and value of the random start abandonment option (dashed
curve) all with K = 100 as function of the initial value x. The parameter values
are r = 0.01, δ = 0.02, σ = 0.15 and γ = 0.1.

See Figure 3 for an example of the value of the standard and the random start
abandonment option respectively.
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To calculate the mean time until the random start abandonment option is
exercised we will use the fact that the expected time until a Brownian motion
with drift µ per unit of time, volatility σ and started at x exits from the interval
(a, b) is given by

m(x; a, b) =
b− x
µ
− b− a

µ
· e
− 2µx

σ2 − e−
2µb

σ2

e−
2µa

σ2 − e−
2µb

σ2

for a ≤ x ≤ b

(see e.g. Dominé [5]). We now sketch how the expected time until the abandon-
ment option is optimally exercise can be calculated. If we again let

τ?c = inf{t ≥ 0 |Xt 6∈ (L1, L2)}

be the optimal stopping time of the standard version of the perpetuate American
option under consideration, and let

τ? = inf{t ≥ τ?S |Xt 6∈ (L1, L2)}

be the optimal stopping time of the random start version of the option. We
have

Xt 6∈ (L1, L2) ⇔ lnXt 6∈ (lnL1, lnL2),

and since (Xt) is a GBM we also have

lnXt = lnx+

(
µ− σ2

2

)
dt+ σdWt = lnx+ νt+ σWt.

With
a = lnL1 and b = lnL2

it follows that

Ex [τ?c ] = m(lnx; lnL1, lnL2)

=
lnL2 − lnx

ν
− lnL2 − lnL1

ν
· e
− 2ν ln x

σ2 − e−
2ν lnL2
σ2

e−
2ν lnL1
σ2 − e−

2ν lnL2
σ2

=
1

ν
ln
L2

x
− 1

ν
ln
L2

L1
· L
−2ν/σ2

2 − x−2ν/σ2

L
−2ν/σ2

2 − L−2ν/σ2

1

=
1

ν
ln
L2

x
+

1

ν
· 1− (x/L2)−2ν/σ2

1− (L1/L2)−2ν/σ2 ln
L1

L2
.

Remark 3.2 For a > 0 we have

lim
z↓0

ln z

1− z−a
= 0,

so letting L1 ↓ 0 in the expression for Ex [τ?c ] above under the assumption that
ν > 0 we get

Ex [τ?c ] =
1

ν
ln
L2

x
.

With L2 = Lc this is consistent with the expression for the expectation in the
optimal investment problem above.
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Again we use

τ?S |XτS = x
d
= τ?c |X0 = x,

and get

Ex [τ?S ] = Ex [Ex [τ?S |XτS ]]

= Ex [m(lnXτS ; lnL1, lnL2)1(L1 ≤ XτS ≤ L2)]

=
1

ν

(
lnL2 +

1

1− (L1/L2)−2ν/σ2 ln
L1

L2

)
P (L1 ≤ XτS ≤ L2)

−1

ν
E

[(
lnXτS +

(XτS/L2)−2ν/σ2

1− (L1/L2)−2ν/σ2 ln
L1

L2

)
1(L1 ≤ XτS ≤ L2)

]
.

Using the fact that lnXτS has a known distribution makes it possible to calculate
the expression on the right-hand side, but we will pursue these calculations
further.

Remark 3.3 A more realistic model is perhaps to consider the payoff function

G(x) = max(K,x− I).

In this model the investment can be terminated for a payoff of K, or initiated
at a cost of I – in this case paid at the time the project is undertaken. The
parameters β1 and β2 are the same (since they are determined by the dynamics
of the underlying diffusion) as above, but the matching condition at the level at
which we choose to initiate the project is different from the one above. It does
not seem to exist an analytical solution in this case, so we have to use some
numerical method to get the value of the standard American perpetual option.

4 Extensions

In this section we briefly comment on some possible ways of extending the model
used here.

4.1 Lévy processes with negative jumps

Instead of assuming a geometric Brownian motion, as we did above, we can
assume a more general model driven by a Lévy process Y which is assumed
to have finite exponential moments and only negative jumps. In this case the
solution to the standard American call option is known and has the same form
as in the GBM case (see Mordecki [14] for details). More explicitly we assume
that for t ≥ 0 we have

Xt = X0e
Yt

under Q (we focus on the valuation problem here), and as in the GBM case we
will use Proposition 2.2 to calculate the value of the random start option when
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t < τS . In the Lévy process case we get for u ≥ t

EQ [Xa
u1(Xu ≤ b)|Ft] = Xa

t E
Q
[
ea(Yu−Yt)1(Xu ≤ b)

]
= Xa

t E
Q

[
eaYu−t1

(
Yu−t ≤ ln

(
b

Xt

))]
= Xa

t

∫ ln(b/Xt)

−∞
eaydGu−t(y),

where
Gt(y) = Q(Yt ≤ y).

To continue we need to be able to calculate this expression, and then proceed
to prove a new version of Proposition 3.1. Even under the assumption of a
constant intensity it seems hard to get explicit expressions for the value of any
interesting random start options, and we will have to use numerical methods.

4.2 A more general model

If we move away from the Markovian case, then we need to use the general
formula for the value of an American perpetual option with gain function G :
R→ R+ given by

Ut = ess sup
ν∈St

EQ
[
e−r(ν−t)G(Xν)

∣∣∣Ft] .
Again St is the set of stopping times greater than or equal to t. In this case the
value of the random start American perpetual option is given by

Value =

{
Ut on {τS ≤ t}

EQ
[
e−r(τS−t)UτS

∣∣Ft] on {τS > t}

To get explicit expressions could be hard, but the important point to make is
that we do not need to make the assumption of a Markovian model; the same
principle holds for random start options in the general case.

4.3 A more general random time τS

Instead of assuming that τS is independent of the driving process(es) under
both P and Q we can use constructions that are used in credit risk models. Let
Ht = 1(τS ≤ t) and define Ht = σ(Hu, 0 ≤ u ≤ t). One approach is to assume
that the full information available at time t ≥ 0 is given by the σ-algebra Gt,
which in turn is assumed to be decomposed according to Gt = Ft ∨Ht. Here Ft
represents all information up to and including time t in excess of knowing if the
random time τS has occured or not (this information is given by Ht). In these
type of models it is assumed that τS is not an (Ft)-stopping time (it is obviously
a (Gt)-stopping time). In credit risk modelling this is known as the reduced form
approach (see e.g. Jeanblanc et al [8] for more on reduced form modelling). If
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we are only interested in the value of the random start option, then it is quite
straightforward to use this approach. If we want to use properties of τS under
P , e.g. to calculate the mean time until an option is exercised, then we need to
extend the reduced form models to also take care of the properties of τS under
P .

5 Summary

We have considered a model in which an American option cannot be exercised
until a given stopping time has occured. The main application we have in
mind is when an irreversible investment should be done (an example of a timing
option), but where we have to wait for a permit before the investment can be
done. The value of this optionalty is explicitly calculated, and we also determine
the expected time until this random option is optimally exercised. As another
application of the modelling framework presented, we consider a version of an
abandonment option. Again, it is possible to calculate the value of the random
start version of this option.

A Proofs

A.1 Proof of Proposition 3.1

We begin with two lemmas.

Lemma A.1 Define for k > 0 and L,M ∈ R

J(k, L,M) =

∫ ∞
0

Φ

(
M
√
x+

L√
x

)
e−kxdx,

where Φ is the distribution function of a standard normal distributed random
variable. Then

J(k, L,M) =


1
2ke
−L(M−

√
M2+2k)

(
M√

M2+2k
+ 1
)

if L < 0

1
k + 1

2ke
−L(M+

√
M2+2k)

(
M√

M2+2k
− 1
)

if L ≥ 0

For a proof, see Armerin & Song [1].

Lemma A.2 If X is the geometric Brownian motion

dXt = µXtdt+ σXtdWt

with µ ∈ R and σ > 0 and a, b ∈ R are two constants, then for 0 ≤ t < u it
holds that

E [Xa
u1(Xu ≤ b)|Ft] = xaea(µ+(a−1)σ2/2)(u−t)Φ (D(u− t)) ,
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where

D(z) =
ln(b/x)−

(
µ− σ2/2

)
z

σ
√
z

− aσ
√
z

=
1

σ
ln

(
b

x

)
· 1√

z
+
(σ

2
− µ

σ
− aσ

)√
z.

Proof. Using

Xu = Xte
(µ−σ2/2)(u−t)+σ(Wu−Wt)

we get

1(Xu ≤ b) = 1

(
Wu −Wt√

u− t
≤

ln(b/Xt)−
(
µ− σ2/2

)
(u− t)

σ
√
u− t

)
.

Since
Wu −Wt√

u− t
∼ N(0, 1),

and letting d(z) = D(z) + aσ
√
z, we get

E [Xa
u1(Xu ≤ b)|Ft] = Xa

t e
a(µ−σ2/2)(u−t)E

[
eaσ(Wu−Wt)1(Xu ≤ b)

∣∣∣Ft]
= Xa

t e
a(µ−σ2/2)(u−t)

∫ d(u−t)

−∞
eaσ
√
u−tz 1√

2π
e−

z2

2 dz

= Xa
t e
α(µ−σ2/2)(u−t)

∫ d(u−t)

−∞

1√
2π
e−

1
2 [(z−aσ

√
u−t)2−a2σ2(u−t)]dz

= Xa
t e
a(µ+(a−1)σ2/2)(u−t)Φ

(
d(u− t)− aσ

√
u− t

)
= Xa

t e
a(µ+(a−1)σ2/2)(u−t)Φ (D(u− t)) .

2

Here is now the proof of Proposition 3.1.
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Proof. For general a, b ∈ R we have

EQ
[
e−r(τS−t)Xa

τS1(XτS ≤ b)
∣∣∣Ft] = {Proposition 2.2 with f(x) = xa1(x ≤ b)}

=

∫ ∞
t

EQ [Xa
u1(Xu ≤ b)|Ft] γe−(r+γ)(u−t)du

= {Lemma A.2}

=

∫ ∞
t

Xa
t e
a(r−δ+(a−1)σ2/2)(u−t)Φ(D(u− t))γe−(r+γ)(u−t)du

= γXa
t

∫ ∞
0

e−[r+γ−a(r−δ+(a−1)σ2/2)]vΦ(D(v))dv

= {Lemma A.1}

= γXa
t J
(
r + γ − a(r − δ + (a− 1)σ2/2),

1

σ
ln

b

Xt
,
σ

2
− r − δ

σ
− aσ

)
.

When a = βi we have

r + γ − βi(r − δ + (βi − 1)σ2/2) = γ

and

σ

2
− r − δ

σ
− βiσ = −sgn(βi)

√[
1

2
− r − δ

σ2

]2

+
2r

σ2
,

and the proof is complete. 2

A.2 The value of the abandonment option

We want to solve the problem

V (x) = sup
τ
EQx

[
e−rτ max(K,Xτ )

]
,

where X is a geometric Brownian motion with dynamics given by

dXt = (r − δ)Xtdt+ σXtdW
Q
t .

Here WQ is a Q-Wiener process and we assume that r > 0, δ > 0 and σ > 0.
We also want to find, if it exists, an optimal stopping time τ? of this problem.

Theorem A.3 The optimal value and the optimal stopping time to the optimal
stopping problem above is given by

V (x) =


K when x ∈ [0, L1]

K

[
−β2

β1−β2

(
x
L1

)β1

+ β1

β1−β2

(
x
L1

)β2
]

when x ∈ (L1, L2)

x when x ∈ [L2,∞)
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and
τ? = inf{t ≥ 0 |Xt = L1 or Xt = L2}

respectively, where

β1 =
1

2
− r − δ

σ2
+

√[
1

2
− r − δ

σ2

]2

+
2r

σ2
> 1,

β2 =
1

2
− r − δ

σ2
−

√[
1

2
− r − δ

σ2

]2

+
2r

σ2
< 0,

L1 = K

(
−β2

β1
· β1 − 1

1− β2

)(1−β1)/(β1−β2)
β2

β2 − 1
,

and

L2 = K

(
−β2

β1
· β1 − 1

1− β2

)−β1/(β1−β2)
β2

β2 − 1
.

To prove this, we will use the following observation from Mordecki [14]. We
formulate it under the pricing measure Q, but this is only because it fits with
our application, and for a general gain function G.

Observation A.4 Let

V (x) = sup
τ
EQx

[
e−rτG(Xτ )

]
,

where the supremum is taken over the set of stopping times. If a function V̂
and a stopping time τ̂ fulfills

(i) V̂ (x) = EQx
[
e−rτ̂G(Xτ̂ )

]
(ii) V̂ (x) ≥ EQx

[
e−rτG(Xτ )

]
for every stopping time τ,

then
V = V̂ and τ̂ is an optimal stopping time.

Lemma A.5 Assume that G(x) ≥ 0 for every x ∈ R. Sufficient conditions for
(ii) in Observation A.4 to hold are

• V̂ (x) ≥ G(x) for every x ∈ R, and

• e−rtV̂ (Xt) is a Q-supermartingale.

Proof. Let τ be a stopping time. Since e−rtV̂ (Xt) is a supermartingale by
assumption, for any n ∈ Z+ we have

EQx

[
e−r(τ∧n)V̂ (Xτ∧n)

]
≤ V̂ (x).

21



It follows that
lim inf
n→∞

EQx

[
e−r(τ∧n)V̂ (Xτ∧n)

]
≤ V̂ (x),

and using Fatou’s lemma (since G is non-negative and V̂ ≥ G, the process
e−rtV̂ (Xt) is also non-negative) we get

EQx

[
e−rτ V̂ (Xτ )

]
≤ V̂ (x).

Using V̂ (x) ≥ G(x) for every x ∈ R we finally get

EQx
[
e−rτG(Xτ )

]
≤ V̂ (x),

which is condition (ii). 2

We now turn to the proof of Theorem A.3.

Proof. We use Observation A.4 with

V̂ (x) =


K when x ∈ [0, L1]

K

[
−β2

β1−β2

(
x
L1

)β1

+ β1

β1−β2

(
x
L1

)β2
]

when x ∈ (L1, L2)

x when x ∈ [L2,∞)

and
τ̂ = inf{t ≥ 0 |Xt = L1 or Xt = L2}.

We start by noting that Q(τ̂ <∞) = 1 and that

M i
t = e−rtXβi

t , i = 1, 2,

are non-negative Q-martingales. It follows that

EQx
[
e−rτ̂ max(K,Xτ̂ )

]
= EQx

[
e−rτ̂ V̂ (Xτ̂ )

]
= EQx

[
e−rτ̂ (k1X

β1

τ̂ + k2X
β2

τ̂ )
]

= EQx
[
k1M

1
τ̂ + k2M

2
τ̂

]
.

Since for i = 1, 2 and every integer n we have

0 ≤M i
τ̂∧n ≤ L

βi
2

we can use bounded convergence to get

EQx
[
e−rτ̂ max(K,Xτ̂ )

]
= lim
n→∞

EQx
[
k1M

1
τ̂∧n + k2M

2
τ̂∧n
]

= k1M
1
0 +k2M

2
0 = V̂ (x).

This shows that V̂ and τ̂ satisfies condition (i). To prove that condition (ii) is
satisfied we use Lemma A.5. We have

V̂ (x) ≥ max(K,x) = G(x)
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and need to show that e−rtV̂ (Xt) is a Q-supermartingale. To do this we begin
by defining the function

F (x) =

 Kx−β1 if x ∈ (0, L1]
A1 +A2x

β2−β1 if x ∈ (L1, L2)
x1−β1 if x ∈ [L2,∞).

The function F is decreasing and concave, and we have

V̂ (x) = xβ1F (x) when x ∈ (0,∞).

Now take 0 ≤ s ≤ t and introduce the measure Q1 on Ft by using M1
t as

Radon-Nikodym derivative with respect to Q:

dQ1

dQ

∣∣∣∣
Ft

= M1
t .

We now get

EQ
[
e−rtV̂ (Xt)

∣∣∣Fs] = EQ
[
e−rtXβ1

t F (Xt)
∣∣∣Fs]

= M1
sE

Q

[
M1
t

M2
s

F (Xt)

∣∣∣∣Fs]
= M1

sE
1 [F (Xt)|Fs]

≤ M1
sF
(
E1 [Xt|Fs]

)
= M1

sF

(
EQ

[
M1
t Xt

∣∣Fs]
M1
s

)
≤ M1

sF (Xs)

= e−rsXβ1
s F (Xs)

= e−rsV̂ (Xs)

The first inequality above follows from Jensen’s inequality (since F is con-

cave), and the second from the facts that (M1
t Xt) =

(
e−rtXβ1+1

t

)
is a Q-

submartingale and that F is decreasing. 2
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