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Abstract

In this project we look at the investment behavior of firms in a market where consumers are exposed to

network effects. In this model, the profitability of each product depends on the number of consumers. The

investment timing is then related to the number of consumers. We show that, under various specifications

of consumer incentives, that the resulting process of consumers is mean reverting. Despite standard real

options models, this leads to a concave option value. Moreover, this model shows that more uncertainty

does not necessarily lead to delaying the investment moment. Finally, for increasing populations we show

that the value of waiting disappears.
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1 Introduction

In a standard real options setting for investment under uncertainty problems, market uncertainty is assumed

to follow a geometric Brownian motion (see, e.g., Dixit and Pindyck (1994) and McDonald and Siegel (1986)).

Despite being reasonably appropriate in a good number of situations, this is not always the most accurate

description of the market uncertainty behind economical problems. One of the advantages of a traditional

set-up, is that the use of a geometric Brownian motion, generally, results in analytical expressions. This

is an advantage that, e.g., mean-reverting processes like an Ornstein-Uhlenbeck process, generally, do not

possess. A disadvantage is that, and this holds in general for Brownian motions, one is unable to vary with

or discriminate between the upward trend and downward trend across state. These diffusion processes are

assumed to be exogenously given. However, in this paper we propose a model where the underlying market

uncertainty is implicitly determined as a continuous time Markov Chain. In our application, we study a
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market where the upward trend and downward trend of the underlying process are independently determined

and vary across state. In this way one can obtain any type of underlying process. The methodology in this

paper is able to solve each of these processes, i.e. this paper shows how to obtain the optimal investment

rule for a given upward and downward trend. This makes it possible to solve optimal investment problems

for, e.g., mean-reverting processes.

In particular, in our base model, we look at an application where the state process reflects the number

of consumers, so that the profitability of the project is stochastic and depends on the number of consumers.

We are studying a market with network effect for consumers. This means that the growth of consumers

is positively related to the current number of consumers. At the same time, consumers can independently

decide to stop purchasing (temporarily). As a result of these underlying incentives, the number of consumers

is a mean-reverting process. Even though one can potentially choose any form of underlying incentives, this

paper explicitely determines the optimal investment rule.

An example of such an application is a product that requires a subscription as, e.g., memberships for a

fitness center, a sports club or for a video on demand (VOD) company (Netflix, HBO, Time Warner Cable

and others). Here, a larger number of members has a positive effect on (the quality of) the supply. One can

think of, e.g., better and more facilities when considering a fitness center or a better and broader supply of

series and movies for the case of a VOD company. In this way there is a network effect for consumers. Even

companies offering social media fit the model. More members increases the value of the social media, while

the companies profit from advertisement and the sale of data.

Another example of such a market is the market for smart products, as e.g. navigation systems, where

(technology) products become more valuable when they are more widely adopted so that the rate at which

new consumers arive is increasing in the current number of consumers. A third example entails service

systems where factors like word-of-mouth induce an acceleration of the number of consumers. Here, for

instance, consumer loyalty plays an important role (see, e.g., Liu and Zhou (2008)). A fourth example

where our model could be applied to, is the repeated purchase behavior of consumers under influence of a

social network. From the studies on homophily1 (see, e.g., McPherson et al. (2001)) it follows that purchase

decisions are inter-dependent.

Another novel feature of our model is that jumps are assumed to be discrete. Although economically very

intuitive, this is not a common assumption in the real options literature. This results in a discontinuous

process. This paper shows that this does not interfere with our proposed solution concept.

> Section with contributions

This paper is organized as follows. After describing this paper’s set-up in Section 2, Section 3 analyzes the

process characteristics of the baseline model. Then, Section 4 studies the value of investment and Section 5

looks at the investment problem. The latter section also studies the feasibility of investment and does some

robustness checks. This part of the paper is followed by Section 6, where the baseline model is generalized.

1Theory that people connect themselves or make relationships with other people with comparable characteristics.
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Various other types of distributions are included here so that a general investment rule is obtained. Section 7

concludes the paper.

2 Model description

This model considers the investment decision of a rational, value maximizing firm on a market where the

underlying market uncertainty is assumed to follow a continuous time Markov Chain with state dependent

transition rates. More particularly, it is a birth-death process, where in our baseline model, we assume a

finite number of states. The interarrival time of new consumers is assumed to be exponentially distributed

with a state dependent rate, as is the time between two ’deaths’. At investment the firm starts up production

to serve its consumers.

In our baseline model, we consider a market where each state of the chain represents the number of

consumers. Then, the profitability of the considered product depends on consumer behavior. In this model

N ∈ N agents have the option to purchase the product. This means that, at each moment of time, the group

of N agents can be split into two groups: agents that are currently purchasing, i.e. consumers, and agents

that represent potential consumers. We will refer to the former group as active costumers and to the latter

as inactive. For inactive consumers, the willingness to start purchasing the product depends on the number

of active consumers. For each active consumer the rate to switch between inactive to active goes up with

η. Define by nt ∈ N = {1, . . . , N} the amount of consumers at time t buying the product. Then the time

each of the N − nt inactive consumers switches to active is exponentially distributed with rate ηnt. Notice

that in this way state n = 0 becomes an absorbing state2. This implies that the market is dead when this

state is reached. At the same time, active consumers are assumed to switch back to inactive with rate λ.

This results in a path n = (nt)t≥0, denoting at each point in time, the number of active consumers, i.e. the

number of consumers buying the product. The next section studies the process nt in greater detail3.

The firm receives net profits for each served active consumer. Analogue to standard models (see, e.g.,

Dixit and Pindyck (1994)), we assume that the firm is a price taker.4 To serve consumers the firm needs

to undertake an one-off investment at a sunk cost I ∈ R.5 After investment, the firm receives pnt at each

2Section 5.5 studies the effect of this assumption and also studies this model without absorbing states.
3This work is closely related to and inspired by epidemiology models where a distinction is made between suspectible (S)

and infected (I) agents. This paper’s set-up is comparable to SIS models where infected agents become susceptible again after

curing, as opposed to SIR models where a cured agent becomes immune and is called recovered (R). The main difference

is that in these models, the development of the infected population is studied and one is interested in the process as such.

Contrarily, our focus is on the investment of the firm where the underlying process only plays a role in the pursuit to find the

optimal investment moment. This work is also related to queueing systems, where our baseline model could be classified as an

Mn/M/∞/N queueing system. Here, as in the relation to epidemiology models, we do not only study the process itself, but

aim to apply the process in an investment under uncertainty setting. Generally speaking, the process could be classified as a

Gn/Hn/∞/N queueing system.
4FUTURE RESEARCH SECTION
5In Section 5.4 we consider alternative cost structures.
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time t where p is the unit price per product. To evaluate the firm’s option to undertake investment we

make use of standard optimization techniques as applied in the real options literature. Here, the moment of

investment relates to the value of the state process n. The firm then undertakes investment at the threshold

level n∗ ∈ N such that waiting for the process to go up to n∗+1 and then evaluate the option again does not

yield more value than immediate investment. Here we apply Bellman’s Principle of Optimality. Analogue

to standard real option problems the optimization problem is solved by applying the Bellman equation and

then solve the problem backwards.

3 Distribution of the process

This section aims to more deeply analyze the behavior and the distribution of the process nt. By nt the

number of active consumers at time t is defined. Let h > 0 be small. Then the number of arrivals in the

period [t, t + h] is Poisson distributed, or, the time until the next arrival is exponentially distributed with

rate ηnt(N − nt). As a result, at time t+ h there is one additional active consumer with probability

ηnt(N − nt)he−ηnt(N−nt)h = ηnt(N − nt)h+O(h) =: pu(nt)h+O(h),

where O(h) is defined such that O(h)
h → 0 as h → 0. One can show that the probability of two jumps is

of the magnitude of O(h) so that, for small h, this probability converges to zero. In a similar fashion, one

consumers drops out with probability

λnthe
−λnth = λnth+O(h) = pd(nt)h+O(h).

This leads to the following characterization of the distribution of nt+h, i.e. the process after a time period

of h units, for a given value of nt

nt+h =



nt + 1 with probability pu(nt)h+O(h)

nt with probability 1− pu(nt)h− pd(nt)h+O(h)

nt − 1 with probability pd(nt)h+O(h)

otherwise with probability O(h).

This means that

E[∆nt|nt] = (η(N − nt)nt − λnt)∆t+ Et[O(∆t)].

Taking limits leads to
Et[dn]

n
= −η (n− n̄) dt,

with n̄ = N− λ
η . This shows that the process is mean reverting around n̄ with mean reversion rate ηn. When

n > n̄ the process is expected to go down, which is caused by a higher downward rate relative to the upward

rate. A larger value of λ decreased the mean as a result of a shorter expected time that consumers switch
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from active to inactive. Conversely, an increase in η would have a positive effect on the level of n̄. This

mean depends not only on the values of λ and η but also on the value of N , the total amount of consumers.

Rather, the mean n̄ is defined by the average number of consumers not purchasing the product θ = λ
η . This

comes as a result of the cap imposed on the number of consumers. This drives the parabolic nature of the

upward rate balancing out the upward and downward movement of the process, the former being related to

n = N .

More technically, one should write the diffusion process as

dnt = Y (nt)dJ(nt),

where

dJ(nt) =

1 with probability (pu(nt) + pd(nt))dt,

0 with probability 1− (pu(nt) + pd(nt))dt.

and

Y (nt) =

1 with probability pu(nt)
pu(nt)+pd(nt)

,

−1 with probability pd(nt)
pu(nt)+pd(nt)

.

One can rewrite this process dn(t) as a martingale dñ(t), the so called compensated Poisson process,

dñ(t) = −(pu + pd)E[Y ]dt+ Y (t)dJ(t)

= −(pu − pd)dt+ Y (t)dJ(t)

= −ηn(N − θ − n)dt+ Y (t)dJ(t).

Again, this shows that the process dn is mean reverting with mean n̄ = N − θ.

Standard real option analyses often assume a geometric Brownian motion,

dx

x
= µdt+ σdz,

where zt is a Wiener process. This process differs in various ways from the process derived above. The most

obvious difference between the two is the fact that this process has discrete jumps, whereas a geometric

Brownian motion is a continuous function. Apart from that, more subtly, one can clearly see that the jump

rates continuously change, depending on the state nt ∈ N . This is not the case for the Brownian motion,

where log(x) is in no way dependent on the actual state xt. Noise, and therefore uncertainty, in the standard

model is exogenously inserted, where in this paper the fluctuations are endogenously determined.

> Make different section with comparison with Bm-s at the end of chapter

3.1 Additional analyses

The only absorbing state in this model is the state n = 0. Therefore not necessarily all states have been

visited before the process dies out. The first proposition determines the probability a certain state will be
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visited in a finite amount amount of time. Since all states communicate it is implicit that with probability

one, at some point, the process will hit zero. The second proposition formally proves this.

Proposition 1 Let Pi(n) = P[reaching state n at some t <∞ starting with i = n(0) < n active consumers],

then

Pi(n) =
Ai
An
∀ i = 1, ..., n

where

Ai =

i∑
j=1

(
λ

η

)j−1
(N − j)!
(N − 1)!

.

Since A1 = 1 we see that the probability of reaching state n starting with one consumers equals 1/An. One

can easily check that An is an increasing function. Interestingly, An increases concavely for n− 1 < N − θ

and convexly for the opposite. This is in line with the finding that the process nt is mean reverting around

N − θ.

Example 1 Let there be N = 4 consumers, define θ = λ
η . The probability that, at some point, all consumers

buy the product equals

P1 =

 4∑
j=1

(
λ

η

)j−1
(N − j)!
(N − 1)!

−1 =

[
1 +

λ

η

2!

3!
+

(
λ

η

)2
1!

3!
+

(
λ

η

)3
0!

3!

]−1
=

6

6 + 2θ + θ2 + θ3

P2 =

[
1 + θ

2!

3!

]
P1 = P1 +

2θ

η + 4λ+ 2λ2 + 2λ3
=

6 + 2θ

6 + 2θ + θ2 + θ3

P3 =

[
1 + θ

2!

3!
+ θ2

1!

3!

]
P1 =

6 + 2θ + θ2

6 + 2θ + θ2 + θ3
.

If λ = η then P1 = 3
5 , P2 = 4

5 and P3 = 9
10 . However, for θ = 2 these probabilities become P1 = 3

11 , P2 = 5
11

and P3 = 7
11 , while P1 = 48

59 , P2 = 56
59 and P3 = 58

59 for θ = 1
2 .

Notice that in this case the probability that one will ever reach one more consumer equals

Pi,i+1 =
Ai
Ai+1

= 1−
(
λ

η

)i
(N − i− 1)!

(N − 1)!

1

Ai+1
.

Proposition 2 Let Qi = P[reaching state 0 at some t <∞ starting with i = n(0) consumers], then

Qi = 1 ∀ i = 1, ..., N.

3.2 Noise of the process

After deriving ∆nt, one can, in a similar fashion, look at E[(∆n)2]. It follows that,

(∆nt)
2 =



1 with probability pu(nt)∆t+O(∆t)

1 with probability pd(nt)∆t+O(∆t)

0 with probability 1− pu(nt)∆t− pd(n(t))∆t+O(∆t)

otherwise with probability O(∆t).
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leading to, in expectation,

E[(∆nt)
2|nt] = (η(N − nt)nt + λnt)∆t+ E[O(∆t)].

Taking limits leads to
Vart[dn]

n
=

Et[(dn)2]

n
= η(N + θ − n)dt.

Here, since N + θ > n for all n, the noise increases for larger values of η, λ, and N . The rates at which

consumers change their purchase decisions are going up with λ and η, indicating that the system faces jumps

more rapidly when these rates go up. When η goes up, the process more quickly reaches the mean, if not

having reached state n = 0 in the meanwhile. Ultimately, this leads to a higher probability that process will

not die out anywhere soon. Conversely, λ has a comparable effect on Vart[dn] as η, while having a different

effect on the investment problem and the evolution of nt.

Notice that the concept of noise and uncertainty is different in this set-up than in the case of a Brownian

motion. In the latter case, more noise implies more uncertainty and therefore risk, which is generally

perceived as undesirable. Here, more noise does not (necessarily) mean more uncertainty. Instead, a larger

value of η increases the mean and makes that the process more rapidly converges to its mean, which reduces

the risk. A larger value of N not only increases variance but also increases the mean and the mean reversion

rate. Therefore, since the process generally converges to the mean, a larger spread arises explaining the larger

variance. Moreover, if N increases, pu goes up, but pd remains unaffected. A larger value of λ, though, is

undesirable for three reasons. First, the mean of the process decreases, which decreases profits. Second, the

time above the mean decreases since the downward rate is larger. Thirdly, the risk increases that the process

dies out. Hence, the relation between risk and noise is different for this set-up.

Notice that at the mean n = n̄ the noise becomes

Vart[dn]

n̄
= 2λdt.

4 Expected value at investment

In the previous section, the distribution of nt is determined, allowing one to calculate the firm’s value of

investment. When the firm undertakes investment it receives a positive cash flow stream until the process

dies out. With p denoting the net profit for each consumer, the firm gains, at each point in time, a value of

pnt. The firm obtains V (nt)− I, at investment, denoting the expected discounted cash inflow stream from

time t onwards corrected for the investment outlay, where, at time t, V (nt) reflects the expected accumulated

future cash-inflow stream,

V (nt) = E
[∫ ∞

s=t

p nse
−rsds | F(t)

]
. (1)

Here, r is the discount rate and F is the filtration with observations of the process n up till time t. Then

the following proposition shows that the value V (nt) is recursively defined.
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Proposition 3 Let V (n) be the value function as defined in (1) when the underlying state process is at state

n exactly. Then,

V (n) =
np

nλ+ (N − n)nη + r
+

(N − n)nη

nλ+ (N − n)nη + r
V (n+ 1) +

nλ

nλ+ (N − n)nη + r
V (n− 1). (2)

Notice that the boundary conditions for n = 0 and n = N , i.e. V (0) = 0 and pu(N) = 0, are incorporated.

In this recurrence relation the value at n is defined as a function of V (n + 1) and V (n − 1), denoting the

discounted expected future value of the chain after the next transition, plus a term reflecting the intermediate

profit while being in state n.

The recurrence relation in (2) can be solved using the tridiagonal matrix algorithm, or sometimes called

the Thomas algorithm after Thomas (1949)6. This leads to the following proposition.

Proposition 4 Define

γn+1 =
ηn(N − n)

r + ηn(N − n) + λn(1− γn)
, (3)

βn+1 =
pn+ λnβn

r + ηn(N − n) + λn(1− γn)
, (4)

with γ1 = 0 and β1 = 0. Then

V (n) = γn+1V (n+ 1) + βn+1 =
ηn(N − n)V (n+ 1) + pn+ λnβn
r + ηn(N − n) + λn(1− γn)

solves (2), with

V (N) =
pN + λNβN

r + λN(1− γN )
.

Here, the function γn+1 can be interpreted as a stochastic discount factor for the period until the chain

reaches the state with one additional consumer. From (3) and (4) one can conclude, by induction, that

0 ≤ γn+1 < 1 and βn+1 > 0 for all n ≥ 1.7 The accumulated profits during the time it takes for the process

to reach state n + 1 from state n, i.e. the intermediate profit, is then captured by the function βn+1. This

is either the profit gained when only one jump is required to reach n + 1 reflected by the pn term or when

more jumps are required in case the process goes down first. As βn+1 reflects the profits in the time between

the process goes from n to n + 1, one can conclude that λnβn accounts for the profits obtained when the

process does not directly reach n+ 1, but first visits state n− 1.

This explains the shape of the functions γn+1 and βn+1, as shown in Figure 1. Around the mean,

for different values of n, the value function V (n) stays relatively the same, for the process is expected to

remain around its current value, which results in a discount factor close to 1 and small values of βn+1. For

large values of n the process is expected to go down so that, in expectation, the period until reaching one

additional consumer is long. This results in a small value of γn+1. Since it is expected to take a while before

one reaches one additional consumer, the additional profits are much larger for n > n̄, as Figure 1b shows.

6See Appendix B for more about this algorithm.
7Although γn+1 always seems to be strictly positive, is equals zero for n = N .
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(a) The function γn.
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(b) The function βn.

Figure 1: Examples of the functions γn and βn, for different values of n = 1, . . . , N .

At the same time, for values close to n = 0, the probability that the process dies out is large so that reaching

one additional consumer is not certain. Therefore, the discount factor is closer to zero8. The function βn is

linear in p and therefore, so is V (n). The unit price p can therefore be seen as a scaling parameter.

Lemma 1 Define

γ̄(n) =
r + ηn(N − n+ θ)−

√
r2 + 2rηn(N − n+ θ) + (ηn)2(n̄− n)2

2λn
.

Then γ̄(n) ∈ [0, 1), moreover, γn is an increasing function, i.e. γn+1 > γn, if γn < γ̄(n) and decreasing, i.e.

γn+1 < γn, if γn > γ̄(n).

One can check that γ̄(n) is continuous and γ̄(N) = 0. It follows that γn > γ̄(n) for sufficiently large n. This

implies that γ̄ → 0 as n→ N and so γ → 0 as n→ N . At n = n̄ this expression can be reduced to

γ̄(n) =
r

2λn̄
+ 1−

√
r

2λn̄

( r

2λn̄
+ 1
)
.

The function V (n) looks as shown in Figure 2. From (1) it follows that V (n) is increasing in n. Most

remarkably, this is a concave function, as opposed to general real option models with a geometric Brownian

motion. This is mostly explained by the concave nature of the drift term of the underlying stochastic process,

−ηn(n− n̄),

which is in turn the relative value of the upward and downward trend of the process. This means that the

added value of one additional consumers decreases in n. For values below n̄ this is explained by the fact that

for larger n one is closer to the mean n̄ so that the overall difference in function value is smaller. Afterall, it

8In Section 5.5 it is shown that this effect disappears when there is no absorbing state.

9



is expected that the process converges to the mean. For values above n̄, the process is expected to go down

so that one additional consumer only generates a temporary additional stream of profits. At the same time,

since the variance goes up with n, it also means that the process moves quicker for larger values of n, so

that the intermediate period between state is smaller9. This drives the concave nature of the function.

5 Investment problem

In this section the optimal investment rule is determined and studied. The firm faces the following opti-

mization problem,

sup
τ∗≥0

{V (nτ∗)− I} ,

where τ∗ is the investment moment. The investment moment τ∗ is then the first hitting time of the process

reaching nτ∗ . First, the value of waiting is determined with, consequently, the optimal trigger n∗ = nτ∗ .

Then, the trigger is studied for different parameter values, the feasibility of investment is determined and

the end of this section looks at the effect of the absorbing state n = 0.

n

0 5 10 15 20 25

V
(n
)

6

8

10

12

14

16

18

20

22

24

Figure 2: Value at investment V (n) for different values of n.

9Technically, the variance is only increasing in n for n < 1
2

(N + θ). However, for values of n close to N , the downward

trend is sufficiently larger relative to the upward trend to outweigh the decrease in variance.
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5.1 Value of waiting

Denote by F (n) the value of waiting, this is, the value when currently being at state nt one invests at some

later point in the future. The option value F (n) satisfies the Bellman equation given by
(ηn(N − n) + λn+ r)F (n) = ηn(N − n)F (n+ 1) + λnF (n− 1) for n < n∗ − 1,

(ηn(N − n) + λn+ r)F (n) = ηn(N − n)(V (n∗)− I) + λnF (n− 1) for n = n∗ − 1,

F (n) = V (n)− I for n > n∗ − 1,

(5)

where n∗ ≤ N reflects the minimum amount of active costumers required for investment. This means that

for values of n < n∗ waiting yields a larger value than investment, equivalent to the continuation region.

The stopping region is then defined for all values of n such that n ≥ n∗.

Proposition 5 Let F (n) be defined as the value the firm faces before investment, n < n∗. Then (5) is solved

by

F (n) =
ηn(N − n)

r + ηn(N − n) + λn(1− γn)
F (n+ 1).

with F (n∗) = V (n∗)− I.

Notice that, since γn ∈ [0, 1), F (n) is an increasing function. By induction, one can conclude that for

n < n∗, F (n) can be written as

F (n) = (V (n∗)− I)

n∗−1∏
k=n

ηk(N − k)

r + ηk(N − k) + λk(1− γk)
.

This means that the product on the right-hand side should be seen as the stochastic discount factor,

E
[
e−rTn(n

∗)
]

=

n∗−1∏
k=n

ηk(N − k)

r + ηk(N − k) + λk(1− γk)
,

where Tn(0)(k) is the first hitting time of state k at time t = 0. Here, each term

ηk(N − k)

r + ηk(N − k) + λk(1− γk)

represents the discounting over the time between k active consumers and k + 1 active consumers. The

fraction takes the form of a discrete discount factor where in the numerator the rate of going up is present.

The denominator consist of three terms: the discount rate r, the rate at which the process goes up and a

term including the rate at which the process goes down. The stochastic discount factor entails the time until

the process hits one more consumer. This either happens at the first next event, with an upward jump, or

requires more steps when the process first goes down. In that respect, γk accounts for these events.

5.2 Investment threshold

The following proposition determines the optimal moment of investment. Here, we make use of the fact that

at n = n∗ − 1, firms find it optimal to delay their investment, while this is no longer true for n = n∗.
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(a) Threshold for different values of λ ∈ (0.5, 25).
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(b) Threshold for different values of η ∈ (0.4, 25).

Figure 3: Threshold n∗ as a function of n̄, with K = 25, λ = 10, η = 1 and I = 10.

Proposition 6 Let n∗ be the investment trigger, then

n∗ = min

{
n ∈ {1, . . . , N}

∣∣∣ I ≤ pn+ λnβn
r + λn(1− γn)

}
.

Intuitively, investment is undertaken for the first time the fraction

pn+ λnβn
r + λn(1− γn)

exceeds the level of I. In that situation, the expected future profit stream covers the investment outlay I

required at the time of investment.

Figure 3 shows how the threshold looks as a function of the mean n̄ = N − λ
η . Figure 3a shows this for

different values of λ and Figure 3b does this for different values of η. Here one can see that a change in n̄

has different effects depending on whether the change was caused by a change in λ or η. Together shown in

Figure 4 one can clearly see that a change in n̄ as a result of a change in λ is much stronger. Clearly, a change

from n̄ = 15 to n̄ = 10 requires a change in λ of ∆λ = +5. However, to obtain a similar result η ought te

be changed by merely ∆η = − 1
3 . Clearly, such a relatively strong change in λ is much more noticeable. A

larger λ decreases the expected path of n(t) so that firms delays their investments. The opposite holds of

course when the mean goes up so that firms accelerate more quickly their investment moment when this is

caused by a change in λ compared to a change caused by η. The effect of N will be discussed later.

Alternative formulations of the threshold n∗ include

n∗ = min

{
n ∈ {1, . . . , N}

∣∣∣ I ≤ βn+1

1− γn+1

}
, (6)

so that the stopping region includes all points n such that

I ≤
βn+1

1− γn+1

.

12



This implies that, under the assumption that n(0) = 1, investment is undertaken immediately if and only

if10

I ≤ p

r + λ
.

> equivalent to traditional models with PP(λ)

However, the probability that the process dies immediately equals

λ

(N − 1)η + λ
.

It follows that, even though this probability can become very close to 1 by setting η sufficiently small,

investment is still undertaken as long as I is small enough.

Example 2 Let N = 10. Suppose λ = 5 and η = 1 so that n is mean reverting around N − θ = 5.

Furthermore, assume p = 1, r = 0.05 and I = 9. Table 1 shows all values. Recall that the stopping region

includes all points n such that

I ≤
βn+1

1− γn+1

.

From this Table we see that investment is undertaken when the process hits n = 7, which would have been

n = 4 in case of the NPV rule. Since the mean is quite low, the probability of the process dying out soon

is quite substantial. Therefore, to cover the investment cost, a relatively long project durability should be

expected in order for the project to be profitable. Therefore, one requires a threshold that is relatively large.

From the example one can infer that, for I being sufficiently large, it is possible that n∗ > n̄. In these

cases, the investment cost is too large to be covered by the regular expected future profit stream. Instead,

n̄

5 10 15 20 25

n
∗

0

5

10

15

20

25

Figure 4: Threshold n∗ as a function of n̄, for different values of λ (orange) and η (blue), with K = 25,

λ = 10, η = 1 and I = 10.

10As a result, when the inequality is satisfied, investment is immediately undertaken for any n(0).
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n V (n) β(n+1)
1−γ(n+1)

1 4.75 0.20

2 7.30 0.74

3 8.79 1.79

4 9.74 3.40

5 10.38 5.46

6 10.84 7.64

7 11.19 9.53

8 11.46 10.84

9 11.69 11.55

10 11.88 11.88

Table 1: Value function and decision fraction

one requires some additional profits, gained when the process takes values above the mean, to be able to pay

for the investment.

To prove that n∗ is uniquely determined, it is sufficient to show that the fraction
βn+1

1−γn+1
is increasing in

n. Then, the firm waits in the continuation region

C =

{
n ∈ N0, n ≤ N : I >

βn+1

1− γn+1

}
and undertakes investment in the stopping region S := N0\C ∩ [0, N).

Proposition 7 Let βn and γn be defined as in , then,

βn
1− γn

<
βn+1

1− γn+1

for all n.

The investment rule fraction
βn+1

1−γn+1
is shown in Figure 5. Characteristically the fraction follows pn

r for

values below n̄, but then changes for values beyond n̄. Lemma 5 in Appendix A shows that the fraction

is always below pn
r . For values below n̄, higher investment cost can be covered by additional consumers at

the moment of investment. However, when the process reaches values above n̄, the process is expected to

return to its mean so that the additional value of one more consumer is only very small and only results

in temporary short term revenues. This is not the case for n < n̄ since then all future payoff streams are

expected to be relatively higher. This explains the shape of the investment rule fraction.

Figure 6 shows how the option value F (n) typically looks. Similar to the value function V (n) this function

takes a concave shape. The intuition behind this result is of a similar nature. Assume n∗ ≤ n̄. Then, since

the process has the tendency to go up, being closer to the threshold n = n∗ implies that one additional

consumer does not yield relatively more value. Since the process is expected to converge to the mean, one

14
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n
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Figure 5: General shape of the fraction
βn+1

1−γn+1
, for different values of n = 1, . . . , N .

additional consumer only reduces the expected time until investment slightly. This brings up the question

whether this is a general result and whether this also holds for n∗ > n̄. As we will show, it is not. Intuitively,

for n∗ > n̄, getting closer to n∗ for values of n > n̄ yields a lot of value, since it was expected that the

process goes down and this increase makes investment more probable. Generally speaking, one expects the

function F to be concave for n ≤ n̄ and to be convex for n̄ < n < n∗. Let G : N → R be an increasing

function. Then G is called convex at n if

G(n+ 1)−G(n) > G(n)−G(n− 1).

Proposition 8 Let n ∈ {2, 3, . . . , n∗ − 1}. Then the value function F is convex at n if and only if

r + λn(1− γn)

r + λ(n− 1)(1− γn−1)
>

ηn(N − n)

r + η(n− 1)(N − n+ 1) + λ(n− 1)(1− γn−1)
.

V(n)

F(n)

2 4 6 8 10
n

-1

1

2

3

Figure 6: Value function V (n) and value of waiting F (n) for different values of n, with N = 10, λ = 6, η = 1,

n∗ = 5, and I = 3.
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Figure 7: Value function V (n) and value of waiting F (n) for different values of n, with N = 10, λ = 6, η = 1,

n∗ = 7, and I = 5.

One can show that this condition is equivalent to

γn+1 <
1− γn+1

1− γn
.

Since γn+1 ∈ [0, 1) one can easily see that this equation always holds if γn+1 ≤ γn, i.e. for when n is close

to N . This is for cases where the investment threshold is large. The equation in the proposition indicates

that for relatively large n this holds in general. The left hand-side is close to one, which makes that if the

right hand-side is smaller than one, the equation is satisfied. Since the last term in the denominator is close

to zero (for n not too close to N), we have that the denominator is definitely larger that the numerator if

n− 1 ≥ 1
2N , for in that case n(N − n) is decreasing in n.

Numerically one can check that this tipping point lies around n̄ for r = 0. For r > 0 this point decreases

so that for all n̄ < n < n∗ definitely the value of waiting behaves convexly.

5.2.1 Net present value

The following lemma relates the investment rule to the net present value.

Lemma 2 Let βn, γn and V (n) be defined as in Proposition 3, then,

βn+1

1− γn+1

< V (n+ 1)

for all n.

Investment is undertaken at n = n∗ for the smallest value of n such that

βn∗

1− γn∗+1

≤ I.

However, according to Lemma 2, at n = n∗ it holds that V (n∗+1) > I so that under the NPV rule investment

would have been undertaken for some n ≤ n∗. This shows that also under this paper’s formulation investment

of the investment problem, investment is undertaken for a larger trigger, compared to the NPV analysis.
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5.2.2 Additional analyses

The following corollary shows us that the investment threshold converges to a constant when the number of

consumers increases.

Proposition 9 If N →∞, then

n∗ → r

p
I.

Larger investment cost, and similarly lower prices, increases the threshold since it requires more expected

profits to cover the cost. When discounting is done under a higher rate expected profits are reduces. As a

result one requires a higher number of active consumers to cover this. Notice that both λ and η play no

role. Recall that the rate at which the process goes up equals ηn(N − n) and the rate at which the process

goes down equals λn. This means that if N becomes very large, the rate the process goes up also becomes

very large. As a result, λ is always dominated by N . Moreover, if N goes to infinity, then also n̄ goes to

infinity. Hence, when N → ∞ one does not care about the probability that the process dies out anymore.

Nevertheless, one does care about the relative costs.

Proposition 10 Let Tnt
be the expected time until the process dies, given that there are currently nt active

consumers. Define

γTn+1 =
ηn(N − n)

λn(1− γTn ) + ηn(N − n)

βTn+1 =
1 + λnβTn

λn(1− γTn ) + ηn(N − n)

with γT1 = βT1 = 0. Then the expected time until death equals

Tn =
ηn(N − n)Tn+1 + 1 + λnβTn
ηn(N − n) + λn(1− γTn )

with

TN =
1 + λNβTN
λN(1− γTN )

.

5.2.3 Effect of parameters

Generally we see that firms delay their investment for larger values of λ, r and I, but accelerate for larger

values of η, p and N . This implies that the threshold is increasing with θ. If the mean of the process nt goes

up, i.e. for larger N and η and smaller λ, the process is expected to stay longer around the mean before the

process dies out. This means that, once a certain level is reached, investment is relatively safer for the same

N when the mean increases. Therefore, the expected payoff increases and one can accelerate investment.

Moreover, a larger η means that the process more quickly goes up, which makes investment more attrictive,

decreasing the threshold. The opposite argument applies to λ. For larger r, one discounts more heavily

so that future profits need to increase in order to make up for the investment cost which happens when
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investment is delayed. For a higher unit price p the same reasoning holds: it increases the profitability so

that one invests in an earlier stage of the process. For I one obviously finds a positive relation with the

investment threshold.

5.3 Feasibility of investment

As shown before, the investment trigger increases with I. That means that a larger value of I induces that

investment is undertaken for a larger value of n. But since n is limited, n ≤ N , this could mean that for

sufficiently large values of I, as follows directly from equation (6), the investment cost is too large so that

investment shall never be undertaken, this is, the investment in infeasible. After all, the fraction
βn+1

1−γn+1

does not depend on I. In this section we study this notion and, for a fixed level of the investment cost, how

this is affected by the other parameter values.

It follows that investment is never undertaken if

I > V (N) = βN+1 =
pN + λNβN

r + λN(1− γN )
.

This means that for the existence of the investment trigger one must study the behavior of βN+1. Assume

η = 1, λ = 10, N = 25, r = 0.05 and p = 1. If λ increases the rate at which consumers turn from active

to inactive increases so that not only the mean n̄ decreases but also the rate at which the process goes

down increases. Overall, profitability declines so that βN+1 also decreases, as illustrated by Figure 8a. The

opposite is true for η: an increase boosts the rate at which consumer starts purchasing and it increases the

mean n̄. For extremely low values of η, the fraction θ = λ
η is blown up and the mean n̄ = N−θ becomes very

small or even negative: profits are decimated. Contrarily, for large values of η the fraction θ goes to zero so

that for large values of η an increase has little effect, for the mean had already converged to N . Discounting

reduces the firm’s profits, which has a clear effect on βN+1 as visualized in Figure 9a. Finally, an increase

in N first makes the value of βN+1 increase concavely, but eventually a linear effect is observed. For small

5 10 15 20 25
λ
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400

500

βN+1

(a) The function V (N) = βN+1 for different values of λ.

1 2 3 4 5 6
η

100

200

300

400

βN+1

(b) The function V (N) = βN+1 for different values of η.

Figure 8: Effect on feasibility of the investment option under changes of λ and η.
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(a) The function V (N) = βN+1 for different values of r.
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(b) The function V (N) = βN+1 for different values of N .

Figure 9: Effect on feasibility of the investment option under changes of r and N .

values of N the mean plays an important role, so that an additional consumer on the market also increases

the mean by 1 making investment more interesting. However, since θ stays constant the effect becomes

smaller the more consumers are present. Since only one additional consumer is expected to purchase the

product a linear effect is realized.

Corollary 1 If N < r
pI, then investment is never feasible.

We saw that the investment trigger is decreasing in N , which means that if the lower bound to the

threshold equals r
pI, see Proposition 9, then investment is only feasible for situations where N ≥ r

pI.

> immediate investment if N > N̄?

Concludingly, for the investment to be feasible for any value of I, one requires, either, N to be sufficiently

large, or, r to be sufficiently small.

5.4 Linear investment cost

In the baseline model it is assumed that the investment cost is fixed. However, when studying the effect

of N , this might not be so reasonable as one can expect the investment cost to be much larger for larger

groups of consumers. Therefore, in this section, an alternative cost structure is considered to account for

these effects. In a set-up with N potential consumers, assume that the investment cost are linear in N , i.e.

I = cN,

for some c ≥ 0. Then, we have the following result. For N large enough the threshold converges to a fraction

of the number of consumers. More particularly,

lim
N→∞

n∗

N
=
cr

p
.
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In this case, thus, the investment threshold does not converges to a constant, but, contrarily, the percentage

of active consumers at investment does. This means that for different pool sizes, the investment trigger is

related to the relative group of potential consumers required to be active.

5.5 Absorbing state

In this final subsection we study the influence of the absorbing state n = 0 on the investment problem. In

the baseline model, the upward rate is defined by

η(n) = ηn(N − n),

which implies that the process cannot go up in the states n = 0 and n = N . Since λ(n) = λn, state n = 0

is an absorbing state. The question arises what happens if η(n) > 0 for n = 0, and how this changes the

investment strategy of the firm. In this section we approach this by changing η(n) in two different ways.

First the situation is studied where, for some c ≥ 0,

η(n) =

ηn(N − n) if n = 1, . . . , N,

c if n = 0.

(7)

Then, a similar study is conducted for

η(n) = η(n+ c)(N − n).

The functions γn+1 and βn+1 directly influence the investment rule and the value function V (n). There-

fore, first these functions are studied. Intuitively, γn+1 is the stochastic discount rate for the periode between

n and n+ 1. The difference between V (n) and γn+1V (n+ 1) is then reflected by βn+1, which can be inter-

preted for values of n < n̄ as the intermediate profit between n and n+ 1. As an example, we take N = 100,

c= 0
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(a) For all values of n.
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(b) For small values of n.

Figure 10: The function βn+1 for different values of c ∈ {0, 2, 10, 50}.
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Figure 11: The function γn+1 for different values of c ∈ {0, 2, 10, 50}.

η = 1, λ = 65, r = 0.05 and p = 1. Figures 10 and 11 then display the functions βn+1 and γn+1 respectively

for different values of c. Most distinctively is the difference between c = 0 and c = 2. In the former case the

state n = 0 is an absorbing state which means that once that state is reached, the process dies. However,

for the latter case the process, although slowly, will eventually leave state n = 0. This creates value so that

βn+1 goes up. Similarly, discounting is less strong, since the process is expected to leave n = 0 for positive

values of c. It is clear from the figures that for the magnitude of c has little influence on the course of

the functions, as long as its positive. For these examples the mean equals n̄ = 35. Around the mean, the

functions are relatively flat so that for larger values of the mean the functions more or less are shifted to the

right and the tails shrink. For γn+1 this implies that the descend will take off for a larger value of n and for

βn+1 this implies that the region with the large function values becomes smaller.
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(a) The stopping and continuation region with λ = 65.
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(b) The value function V (n) with λ = 55.

Figure 12: The stopping/continuation region and value function V (n) for c ∈ {0, 2, 10, 50}.
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(a) βn+1 for all values of n.
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(b) γn+1 for all values of n.

Figure 13: The functions βn+1 and γn+1 for different values of c ∈ {0, 2, 10, 50} with η(n) = η(n+c)(N−n).

The stopping region was defined as all values of n such that

βn+1

1− γn+1

≥ I.

The fraction on the left-hand side is shown in Figure 12a. Figure 12b displays the value function V (n). A

similar pattern is observed here. A positive value of c shifts the functions upwards. For different positive

values of c the functions are close. Again, this is for a relatively small mean. For larger means the difference

between the functions become smaller, since the number of times the state n = 0 is reached is smaller so

that the smaller profits obtained in that period are less prevalent. For a mean closer to zero, the difference

between the functions becomes larger so that even between the functions associated with c = 2, c = 10 and

c = 50 there is a relatively large difference.
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(a) The stopping and continuation region with λ = 65.
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(b) The value function V (n) with λ = 55.

Figure 14: The stopping/continuation region and value function V (n) with η(n) = η(n+ c)(N − n).
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When considering

η(n) = η(n+ c)(N − n),

one should notice that the greatest difference with (7) is that η(n) changes for all n when changing c.

This is then also reflected in the outcomes. Compared to (7), qualitatively all functions undergo the same

transformation when increasing c. However, since η(n) is affected for all n a second effect comes in, visible

in Figures 13 and 14. Overall, one can conclude that the presence of an absorbing state does not change the

outcomes qualitatively.

6 General form

In this section we analyze the general case where the rate at which the process, at state n, goes down equals

λ(n) and the rate the process goes up at state n equals η(n). As an example, consider three forms of each

rate. In the first case people’s decisions to stop or start purchasing are not influenced by the decisions of

other agents. In that case each of the N − n inactive consumers decides to switch at rate λ leading to an

overall rate of η(n) = η(N − n) at which the process goes up. Similarly at rate λ(n) = λn the process goes

down. Secondly, on the other hand, people’s decisions could be based upon the current number of consuming

agents, i.e. λ(n) = λn2 and η(n) = ηn(N −n). Alternatively, people are influenced by the number of people

not purchasing the product which results in λ(n) = λn(N − n) and η(n) = η(N − n)2. This leads to various

combinations and, as a result, different types of processes. Table 2 shows for different combinations the

trend of the resulting process nt, i.e. Edn
dt . This table also includes η(n) = ηn and λ(n) = λ(N −n) to study,

for instance, a birth-death process.

λn λn2 λ(N − n) λn(N − n)

ηn n(η − λ) ηn(1− θn) (λ+ η)(n− λ
λ+ηN) λn( 1

θ − (N − n))

η(N − n) η(N − n(1 + θ)) η(N − n− θn2) (N − n)(η − λ) η(N − n)(1− θn)

ηn(N − n) ηn(N − n− θ) ηn(N − n(1 + θ)) η(N − n)(n− θ) ηn(N − n)(1 + θ)

η(N − n)2 η(N − n)2 − λn η(N − n)2 − λn2 η(N − n)(N − n− θ) η(N − n)(N − n(1 + θ))

Table 2: Trend of the process

In line with Proposition 1, define by Pi(n) the probability of reaching state n when n(0) = i. Let

θ(k) = λ(k)
η(k) with θ(0) = 1, then for the general case Ai is defined as

Ai =

i∑
j=1

j−1∏
k=0

θ(k).

Example 3 In the case of a birth-death process, i.e. λ(n) = λn and η(n) = ηn, this probability is defined

as Pi(n) = θi−1
θn−1 . The same is obtained for any combination such that θ(k) = θ. For the combination
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n̄ λn λn2 λ(N − n) λn(N − n)

ηn 1
θ

λ
λ+ηN (MD) N − 1

θ (MD)

η(N − n) N
1+θ

1
2θ (
√

1 + 4θN − 1) 1
θ

ηn(N − n) N − θ N
1+θ θ (MD)

η(N − n)2 N + 1
2θ −

√
1
4θ

2 + θN n̄ > N N − θ N
1+θ

Table 3: Mean in case of a mean reverting process (MD in case of a mean diverting process).

of λ(n) = λ(N − n) and η(n) = ηn(N − n) one can show that Pi(n) is the cdf of a conditional Poisson

distribution with expectation θ, i.e. Pi(n) ∼ Fi≤n(i− 1) where F ∼ POI(θ), or

Pi(n) = Fi≤n(i− 1) =

∑i−1
k=0

θk

k! e
−θ∑n−1

k=0
θk

k! e
−θ
.

Notice that for Proposition 1 it holds that θ(k) = θ
N−k .

Table 3 shows the resulting means n̄ in case of a mean reverting process. MD stands for mean diversion.

Here it is shown that if the incentives for both switching options for the consumers are affected by the same

group of (in)active consumers, i.e. the combinations described above, the process is always mean reverting

with mean n̄ = N
1+θ = η

η+λN . For asymmetric cases this is not the case. In, e.g., the basic model in this

paper the process was mean reverting around n̄ = N − θ. This distinction plays an important role when

considering a large group of consumers. In the former, when mean reverting around η
η+λN , the process

converges in expectation to a fraction of the total amount of consumers in the market, whilst the in the

latter case the fixed amount of consumers not purchasing the product is a fixed number. A third type of

mean also assumes the mean to remain fixed for different values of N , but defines it as a fixed amount of

active consumer as with, e.g., λ(n) = λn2 and η(n) = ηn with n̄ = θ−1.

A second way to distinguish the different cases is the following. In most of the combinations one can speak

of a mean reverting process, this is, at every instance t the process is expected to move closer to the mean n̄

in case of a jump in the interval [0,∆t). In some cases the trend of the process is alway positive or negative,

see, e.g., λ(n) = λn and η(n) = ηn. Nevertheless, in 3 cases the process, in expectation, moves away from

n̄. We will call this mean diversion. This happens in, for example, the case where λ(n) = λ(N − n) and

η(n) = ηn. Here the rate at which people switch from active to inactive solely depends on the size of the

group of the currently inactive consumers and the opposite holds for η(n). This implies that if one of the

two respective groups is large it excellerates the speed at which the group grows, as opposed to the situation

where the growth of the group only depends on the size of the other group imposing a mean revering effect.

This magnet effect causes the process to either converge in expectation to n = 0 or n = N .
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6.1 Investment problem

The value at investment is defined by the recurrence relation that, for the general case, be written as

V (n) =
np

λ(n) + η(n) + r
+

η(n)

λ(n) + η(n) + r
V (n+ 1) +

λ(n)

λ(n) + η(n) + r
V (n− 1).

As in the base case this equation is solved by using the Tridiagonal Matrix Algorithm, which leads to

V (n) = γn+1V (n+ 1) + βn+1 =
η(n)V (n+ 1) + pn+ λ(n)βn
r + η(n) + λ(n)(1− γn)

with

γn+1 =
η(n)

r + η(n) + λ(n)(1− γn)
,

βn+1 =
pn+ λ(n)βn

r + η(n) + λ(n)(1− γn)
.

where γ1 = 0, V (N) = βN+1, and β1 = 0. The investment rule remains the same, so that the continuation

region consists of all points such that

I ≤ pn+ λ(n)βn
r + λ(n)(1− γn)

=
βn+1

1− γn+1

.

Example 4 Consider a pure birth process where λ(n) = 0 for all n. Then,

V (n) =
η(n)

r + η(n)
V (n+ 1) +

pn

r + η(n)
,

with V (N) = p
rN and investment is undertaken as soon as n+ 1 ≥ r

pI. Notice that the latter expression is

the same as the limit in Proposition 9.

One can show that, for the case where η(n) = η for all 0 < n < N , one obtains,

V (n) =



(
η
r+η

)N−n
p
rN + p

∑N−n
k=1

(
η
r+η

)N−n−k
N−k
r+η if 0 < n < N,

p
rN if n = N,

0 if n = 0.

For the case of λ(n) = λ(N − n) and η(n) = ηn(N − n) we see that for very large values of N the function

γn converges to γn = 1 for sufficiently large n. The function βn is non-monotonic, however, remains small

relative to pn for large values of n so that I ≤ 1
r (pn + λ(N − n)βn) → pn

r . This implies that Proposition 9

still holds for sufficiently large I.

Although the different cases treated above imply different characteristics for each corresponding process,

the investment problem is generally the same for all mean reverting processes and mean diverting processes.

Figure 15a show how mean reverting processes generally can be translated into an investment rule. Here,

the fraction
βn+1

1− γn+1

25



βn+1

1-γn+1

pn

r

n
- n

(a) Mean reverting processes.

βn+1

1-γn+1

pn

r

n
- n

(b) Mean diverting processes.

Figure 15: General shape of the fraction
βn+1

1−γn+1
, for different values of n = 1, . . . , N .

is shown so that investment is undertaken when n is sufficiently large so that this fraction reaches the bound

I for the first time. Here one can see that the function changes its shape for values of n larger than n̄.

Once the process has crossed the mean n̄ it is expected to return to its mean so that one additional current

consumer does not bring in much value for the project so that it would not cover much of extra expenses

with respect to I. Differently, the value of waiting for an additional consumer is much less for n > n̄ than

for n < n̄. Therefore the fraction does not increase as rapidly for large values of n as it does for values below

n̄. This explains the shape of the curve. For a mean diverting process this changes. Since the process is

expected to converge to n = 0 for n < n̄ the value of investment is relatively small and investment shall only

be optimal for these values when I is very close to zero. However, for values above n̄ the process is expected

to increase at every instance. Since each jump is uncertain one still faces the risk of the process dying out

when being close to the mean. Therefore, as Figure 15b illustrates, only for values of n sufficiently above n̄

investment is considered.

Nevertheless, when considering large consumers groups, i.e. large values of N , the investment problem

changes as a result of their mean. When considering a mean diverting process, investment is not undertaken

for n < n̄. It is then crucial to see how this mean changes when N →∞. In the case where λ(n) = λ(N −n)

and η(n) = ηn(N − n), the process finds its mean at θ so that for large value of N this mean remains

constant. This implies that the investment decision is not altered. Notice that a downward jump happens

with probability λ
λ+ηn so that only the speed of the process is affected but not the jump distribution.

However, for the mean diverting processes with η(n) = ηn the mean converges with the size of N . This

happens since the downward rate is dependent on N but the upward rate is not, i.e. leaving the group of

active consumers is related to the size of the inactive consumer group, which becomes large, whilst entering

as inactive is only dependent on the current size of the actives. Hence, for these cases investment becomes

infeasible for large groups of consumers.
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The remaining three cases where one cannot speak of a mean, have a monotone trend. When assuming

that this trend is positive, the fraction either increases linearly or convexly. In this way, investment shall

always be undertaken, since, as in the case of a geometric Brownian motion, for sufficiently large values of

N , there is always a value with respect to the fraction larger than I.

Example 5 Consider a birth-death process, i.e. λ(n) = λn and η(n) = ηn. Then if r → 0, then γn →
η
λ

and βn →
p
λ (n− 1). As a result, n∗ = λ−η

p I.

6.1.1 Absorbing states

Suppose, in addition to our standard model, one assumes state n = N to be absorbing as well, i.e. λ(N) =

η(N) = 0. Then, both functions βn and γn are not affected for n = 1, . . . , N . Hence, the investment rule is

not altered. The only change to the model is the function V (N), through which all V (n) are affected. This

concludes that changing N into an absorbing state does not change the investment problem but only shifts

the pay-offs. This means that one does not care about the upward potential as much as one cares about the

probability of death.

6.2 Birth-death process

Assume that there are N consumers of which n are currently buying the product. Then assume that with

rate ηn a new consumer starts buying the product and with rate λn one consumer drops out. Then, (2) can

be rewritten as

V (n) =
np

nλ+ nη + r
+

nη

nλ+ nη + r
V (n+ 1) +

nλ

nλ+ nη + r
V (n− 1).

This equation is solved for

V (n) = γn+1V (n+ 1) + βn+1 =
ηnV (n+ 1) + pn+ λnβn
r + ηn+ λn(1− γn)

with

γn+1 =
ηn

r + ηn+ λn(1− γn)
,

βn+1 =
pn+ λnβn

r + ηn+ λn(1− γn)
.

where γ1 = 0, V (N) = βN+1, and β1 = 0. Since 1− ε ≈ 1
1+ε for small ε it holds that

λn

λn+ r
≈ 1− r

λn
.

Then one can check that, by approximation, it holds that

γn ≈
ηn

r + λn
,

βn ≈
p(n− 1)

r + λ
.
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This approximation leads to the following value function,

V (n− 1) =
ηn

r + λn
V (n) +

p(n− 1)

r + λ
,

with V (N) = pN
r+λ and V (0) = 0. Investment is undertaken when

I ≤ pn

r + (λ− η)(n+ 1)

r + λ(n+ 1)

r + λ
.

7 Conclusions
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Appendix A Proofs

In the proof of Proposition 3 Itô’s Lemma is applied. For processes with discrete jumps Itô’s Lemma is

defined as follows. Let

dXt = µtdt+ ηtdYt,

with dYt = Zntdnt. Define

f ′(X)ηdYt ≡ [f(Xt)− f(Xt−)]dn = [f(Xt− + ηtZnt
)− f(Xt−)]dnt.

Then,

df(Xt) = f ′(Xt)dX + 1
2f
′′(X)d〈X,X〉,

= µtf
′(Xt)dt+ [f(Xt− + ηtZnt

)− f(Xt−)]dnt.
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Proof of Proposition 1:

First notice that

(N − i)iη
(N − i)iη + λi

Pi +
λi

(N − i)iη + λi
Pi = Pi =

(N − i)iη
(N − i)iη + λi

Pi+1 +
λi

(N − i)iη + λi
Pi−1.

So that

Pi+1 − Pi =
λ

(N − i)η
(Pi − Pi−1).

Since it holds that P0 = 0 we have

P2 − P1 =
λ

(N − 1)η
P1

which, recursively, becomes

Pi+1 − Pi =
λi

ηi (N−1)!
(N−i−1)!

P1.

Then,

Pi+1 − P1 =

i∑
l=1

(Pl+1 − Pl) =

i∑
l=1

λl

ηl (N−1)!
(N−l−1)!

P1,

which is the same as

Pi+1 = P1

[
1 +

i∑
l=1

(
λ

η

)l
(N − l − 1)!

(N − 1)!

]
≡ P1Ai+1.

Notice that if we substitute l = j − 1,

Ai = 1 +

i−1∑
l=1

(
λ

η

)l
(N − l − 1)!

(N − 1)!
= 1 +

i∑
j=2

(
λ

η

)j−1
(N − j)!
(N − 1)!

=

i∑
j=1

(
λ

η

)j−1
(N − j)!
(N − 1)!

.

From here it follows that, since Pn = 1 that 1 = P1An so that Pi+1 = A−1n Ai+1. �

Proof of Proposition 2:

First notice that Q0=1 by definition. Moreover,

Qi =
(N − i)iη

(N − i)iη + λi
Qi+1 +

λi

(N − i)iη + λi
Qi−1.

For QN one obtains,

QN =
0

λN
QN+1 +

λN

λN
QN−1,

so that QN = QN−1. Similarly one can show that QN−1 = QN−2. By induction one finds QN−2 = . . . = Q1.

Finally,

Q1 =
(N − 1)η

(N − 1)η + λ
Q2 +

λ

(N − 1)η + λ
Q0.

Which has a unique solution, Q0 = Q1 = Q2 = 1. Hence Qi = 1 for all i. �

Proof of Proposition 3:
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Method 1 Notice that

V (nt) = pntdt+ (1− rdt)E[V (nt+dt)|nt] +O(dt).

This can be rewritten as

(r + ηnt(N − nt) + λnt)V (nt)dt = pntdt+ η(nt)V (nt + 1)dt+ λ(nt)V (nt − 1)dt+O(dt),

since

V (nt+dt) =


V (nt + 1) with probability ηnt(N − nt)dt

V (nt − 1) with probability λntdt

V (nt) with probability 1− ηnt(N − nt)dt− λntdt.

Then, if dt→ 0 one obtains (2).

Method 2: Bellman First notice, from Itô, that,

dV (nt) = V ′(nt)YtdIt = [V (nt− + Y (nt))− V (nt−)]dIt.

It follows

EdV (nt) = (pu + pd)dt

[
pu

pu + pd
V (nt− + 1) +

pd
pu + pd

V (nt− − 1)− V (nt−)

]
= [ηn(N − n)V (n+ 1) + λnV (n− 1)− (ηn(N − n) + λn)V (n)] dt

Which concludes

rV (n) = π(n) +
1

dt
EdV

= pn+ ηn(N − n)V (n+ 1) + λnV (n− 1)− (ηn(N − n) + λn)V (n).

Rewriting leads to (2). �

Proof of Proposition 4:

Follows directly from the tridiagonal matrix algorithm with

an = −λn,

bn = r + λn+ ηn(N − n),

cn = −ηn(N − n).

Since r + λn+ ηn(N − n) > λn+ ηn(N − n) the condition is satisfied. �

Proof of Lemma 1:

From the definition it follows that γn+1 < γn if and only if

ηn(N − n)

r + ηn(N − n) + λn(1− γn)
< γn.
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Rewriting leads to

(γn)2λn− γn(r + ηn(N − n) + λn) + ηn(N − n) < 0.

This parabola has two roots. It can easily be shown that the largest root is larger than 1 and one can check

that the smallest root is in between 0 and 1, as is γn. �

Corollary 2 Let N be the number of consumers on the market. Then V (N) < V (N − 1) if and only if

pN(1− γN ) < rβN

As will be shown later, the fraction
βn+1

1−γn+1
is increasing, so that

p

r
N > V (N) = βN+1 =

βN+1

1− γN+1

>
βN

1− γN
.

Hence, the inequality in Corollary 2 never holds, and therefore V (N − 1) < V (N).

Proof of Corollary 2:

From Proposition 4 is follows that V (N − 1) = γNV (N) + βN so that V (N − 1) > V (N) if and only if

βN
1− γN

> V (N) =
pN + λNβN

r + λN(1− γN )
.

Rewriting leads to the equation. �

Proof of Proposition 10:

The expected time until death can be written as,

TNt = dt+ E[TNt+dt
|Nt]

= dt+ pudtTNt+1 + pddtTNt−1 + (1− (pu + pd)dt)TNt
,

which is the same as

ηN(K + θ −N)TN = 1 + ηN(K −N)TN+1 + λNTN−1.

This can be solved using the tridiagional matrix algorithm, as before. �

Proof of Proposition 5:

As before, using the tridiagonal matrix algorithm, the solution is defined by

F (n) =
ηn(N − n)F (n+ 1) + λnβFn
r + λn+ ηn(N − n)− λnγFn

with F (n∗) = V (n∗)− I. The variables βF and γF are defined as

γFn+1 =
ηn(N − n)

r + λn+ ηn(N − n)− λnγFn

βFn+1 =
λnβFn

r + λn+ ηn(N − n)− λnγFn
where γF1 = 0 and βF1 = 0. This implies that βFn = 0 for all n. Finally, one can check that γFn = γn ∀n. �
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Lemma 3 Let βn and γn be defined as in , then,

βn
1− γn

≤ pn

r
⇒

βn+1

1− γn+1

<
p(n+ 1)

r

Proof of Lemma 3:

First,
βn+1

1− γn+1

<
p(n+ 1)

r
⇔ pn+ λnβn

r + λn(1− γn)
<
p(n+ 1)

r

which is equivalent to

λn(1− γn)

[
βn

1− γn
− pn

r

]
< p+

p

r
λn(1− γn).

Since the right-hand side is always positive, it is sufficient to have that the left-hand side is nonpositive. �

Lemma 4 Let βn and γn be defined as in , then,

βn
1− γn

< (≤)
βn+1

1− γn+1

⇔ βn
1− γn

< (≤)
pn

r

Proof of Lemma 4:

Notice that

βn+1

1− γn+1

− βn
1− γn

=
pn+ λnβn

r + λn(1− γn)
− βn

1− γn
=

(1− γn)pn− βnr
(1− γn)(r + λn(1− γn))

It follows that this fraction is positive if and only if (1− γn)pn > βnr. �

Proof of Proposition 7:

First, since β1 = γ1 = 0 we have that
βn

1− γn
=

p

r + λ
<
p

r

for n = 2 so that
βn

1− γn
≤ pn

r

for n = 1 and n = 2. Then, from Lemma 3, by induction, we know that this holds for all n ≥ 2. Then, the

rest of the proof follows from Lemma 4. �

Lemma 5 Let βn and γn be defined as in , then,

βn+1

1− γn+1

<
pn

r
.

Proof of Lemma 5:

Since
βn+1

1− γn+1

− pn

r
=

λn(1− γn)

λn(1− γn) + r

[
βn

1− γn
− pn

r

]
,

32



it follows that if βn

1−γn
< pn

r then it also holds that
βn+1

1−γn+1
< pn

r . Proposition 7 and Lemma 4 show that this

condition holds. �

Proof of Proposition 8:

Let n ∈ {2, 3, . . . , n∗ − 2}. Notice that,

F (n+ 1)− F (n) = (V (n∗)− I)

n∗−1∏
k=n+1

ηk(N − k)

r + ηk(N − k) + λk(1− γk)

[
1− ηn(N − n)

r + ηn(N − n) + λn(1− γn)

]
,

F (n)− F (n− 1) = (V (n∗)− I)

n∗−1∏
k=n

ηk(N − k)

r + ηk(N − k) + λk(1− γk)

[
1− η(n− 1)(N − n+ 1)

r + η(n− 1)(N − n+ 1) + λ(n− 1)(1− γn−1)

]
.

Then F (n+ 1)− F (n) > F (n)− F (n− 1) can be rewritten as

r + λn(1− γn)

r + ηn(N − n) + λn(1− γn)
>

ηn(N − n)

r + ηn(N − n) + λn(1− γn)

r + λ(n− 1)(1− γn−1)

r + η(n− 1)(N − n+ 1) + λ(n− 1)(1− γn−1)
.

This leads to the equation in the proposition. For n = n∗ − 1 the same analysis holds, but then without the

product in the middle, so that it leads to the same conclusion. �

Proof of Lemma 2:

Rewriting

V (n+ 1) > V (n) = γn+1V (n+ 1) + βn+1

gives the corresponding equation. �

Proof of Proposition 6:

At n = n∗ it holds that F (n) = V (n)− I. However, for n = n∗ − 1 we have

F (n) =
ηn(N − n)

r + λn(1− γn) + ηn(N − n)
(V (n∗)− I)

V (n) =
ηn(N − n)

r + λn(1− γn) + ηn(N − n)
V (n∗) +

pn+ λnβn
r + λn(1− γn) + ηn(N − n)

− I.

Firms wait as long as F (n) > V (n), which implies

ηn(N − n)

r + λn(1− γn) + ηn(N − n)
(−I) >

pn+ λnβn
r + λn(1− γn) + ηn(N − n)

− I.

Rewriting gives

I >
pn+ λnβn

r + λn(1− γn)

=
p(n∗ − 1) + λ(n∗ − 1)βn∗−1
r + λ(n∗ − 1)(1− γn∗−1)

=
βn∗

1− γn∗
.
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Differently, firms do not wait for n+ 1 when F (n) ≤ V (n), i.e.

I ≤ pn+ λnβn
r + λn(1− γn)

=
βn+1

1− γn+1

,

which concludes the proof. �

Proof of Corollary 1:

The investment trigger is defined as n∗ such that

I(r + λn∗(1− γn∗)) = pn∗ + λn∗βn∗ .

One can check that γ(n) → 1 and β(n) → 0 for a fixed n < ∞ if N → ∞. This means that the equation

converges to rI = pn∗. �

Appendix B Thomas Algorithm

The recurrence relation in (2) can be solved using the tridiagonal matrix algorithm, or sometimes called the

Thomas algorithm after Thomas (1949). This algorithm recursively solves the set of equations defined by

aixi−1 + bixi + cixi+1 = yi

for i = 1, . . . , n where a1 = cn = 0. This is equivalent to

Ax =



b1 c1 0 . . . 0

a2 b2
. . .

...

0
. . .

. . . 0
...

. . . cn−1

0 . . . 0 an bn





x1

...

xn


=



y1

...

yn


= y.

Matrices of the kind of A are called tridiagonal matrices. Define

γi+1 =
−ci

aiγi + bi

βi+1 =
yi − aiβi
bi + aiγi

,

xn = βn+1 =
yn − anβn
bn + anγn

,

with γ1 = β1 = 0. The echelon form of the matrix [Ay] is row equivalent to

1 −γ2 0 0 . . . 0 β2

0 1 −γ3
. . .

... β3

0 0
. . .

. . . 0
...

...
. . . 1 −γn−1 0

...
...

. . . 0 1 −γn βn

0 . . . 0 0 0 1 xn


.
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As a result, it follows that, if |bi| > |ai|+ |ci| for all i, then

xi = γi+1xi+1 + βi+1 =
−ci

aiγi + bi
xi+1 +

yi − aiβi
aiγi + bi

is the solution of the set of equations with xn as defined before.
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