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Abstract

We derive an optimal decision rule with regards to making an irreversible switch

from oil to gas production. The approach can be used by petroleum field op-

erators to maximize the value creation from a petroleum field with diminishing

oil production and remaining gas reserves. Assuming that both the oil and gas

prices follow a geometric Brownian motion we derive an analytical solution for

the exercise threshold and demonstrate with numerical examples the threshold

for a generic petroleum field. The analytical solution and the general results

may also be relevant for other real options cases with similar features.

Keywords: OR in energy, Switching option, Petroleum, Investment under

uncertainty

1. Introduction

At the Prudhoe Bay field in Alaska, one of the largest oil fields in North

America, operators have increased the recovery factor substantially due to gas

injection, together with other techniques (Szabo and Meyers (1993)). The asso-

ciated gas being produced together with the oil is re-injected into the reservoir.

As oil production from the field falls, a gas pipeline to export the gas is being

discussed; necessary infrastructure for large-scale gas export is not currently

present. In the North Sea, on the Norwegian Continental Shelf (NCS), sub-

stantial investments have been made in the Statfjord Latelife project on the
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Statfjord field. The investments, including a new pipeline which connects the

gas exports of the field to the UK market, have changed the primary function

of the production facilities from predominantly oil production to gas produc-

tion. On the Oseberg field, also located on the NCS, gas injection has also

been used to enhance oil production. The field has been in a phase of declining

oil production for many years, often refered to as the “tail production phase”.

Discussions are ongoing as to what the optimal course for future action should

be and producing the injected gas is one of the considered alternatives.

Injection of natural gas is one of a number of techniques employed by oper-

ators of petroleum fields to increase the recovery rate of oil. The gas used for

injection may be associated gas produced together with the oil, gas transported

to the field from other sources, or a combination of the two. From a business

point of view this makes sense as long as the value of continuing oil production

under the gas injection scheme is higher than the alternative value of stopping

the gas injection and investing in producing and exporting the gas that has

been injected (the term “export” here means the transportation of the gas to

a market). As the oil field matures, and the amount of oil in the reservoir as

well as the oil production rate decline, it may become optimal to export the

gas rather than continuing the injection scheme. This could involve substantial

investments in both the production facilities and in export solutions for the gas,

as well as having a strong adverse effect on the oil production. Therefore, de-

termining the optimal timing to start gas production and export is relevant for

a number of stakeholders in a petroleum field. For the operators and owners of

petroleum fields such models can contribute to maximizing the value of the asset

both for themselves and the society in which they operate. Also, policymak-

ers can make use of such models to avoid value-erosive regulations or approval

decisions.

The type of optionality considered here falls naturally into a category of real

options called switching options. One of the earliest examples of a valuation

model for a switching option is that of Brennan and Schwartz (1985) who, us-

ing a copper mine as an example, value the combined options to temporarily

shut down, re-opening after a temporary shutdown, and abandoning entirely.

Hahn and Dyer (2008), also studying an oil-to-gas switching option, propose a
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binomial lattice approach for modeling real options when the underlying uncer-

tainty factors follow correlated one-factor mean reverting processes. Using the

Prudhoe Bay field previously mentioned as their case, including a research and

development program with uncertain outcome, they apply their proposed ap-

proach to value the asset. The focus in their study is on asset value, rather than

on a tractable decision rule for making a switch. Adkins and Paxson (2011a,b)

and Dockendorf and Paxson (2013) study different types of switching options

and all arrive at what they term a “quasi-analytical solution” to the decision rule

problem. By assuming that asset prices follow geometric brownian motions and

that a smooth pasting condition1 holds, their approach results in an equation set

that the authors solve numerically. Gahungu and Smeers (2011) study the more

general problem of finding the optimal time to exercise an option to exchange a

basket of assets for another, assuming the asset prices follow correlated geomet-

ric brownian motions. They show that an equation set such as the ones Adkins

and Paxson (2011a,b) solve numerically (in their “single switch/renewal oppor-

tunity” cases) can be determined in closed form. Such a solution to another

real-option case is presented in Heydari et al. (2012), who derive the optimal

time in closed form for when to invest in two different emission-reduction tech-

nologies, each with two separate and correlated uncertainty factors as part of

the income stream.

We model the switching option as a perpetual American style option and

the decision to switch is considered irreversible. Although the negative effects

on oil production from starting gas production depend on the characteristics of

the oil field, we assume that the remaining oil is lost if the decision to switch

is made2. This is a conservative assumption which will emphasize the trade-off

effect between the two resources in the model. However, it is possible to relax

this assumption within the same model framework. On the basis of a parameter

1This principle is sometimes called high contact or smooth fit. See Brekke and Øksendal
(1991) for an introduction to the concept as well as a proof of sufficient and necessary con-
ditions for the smooth pasting condition to produce the optimal solution to the stopping
problem.

2The effect of gas injection on the oil production rate is dependent on the reservoir proper-
ties of each field, and placement of injecting and producing wells. Assuming that oil production
drops to zero when the gas is produced might be a fair approximation if the oil layer in the
reservoir is thin, where many wells can move below the oil-water contact if this shifts slightly
upwards. In fields where gas is mostly used for moving the oil towards the wells this might
be a poor approximation and more complex reservoir models may be necessary.
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set that describes a representative large size oil field (initial reserves of 100–

500 mill. barrels of oil) in the North Sea, we derive the region of oil and gas

prices for which it is optimal to undergo a switch. We contribute to the existing

literature by determining and applying an analytical solution to the decision to

change from oil to gas production in the tail production phase of a petroleum

field. In contrast to previous work on this particular type of switching problem,

we focus on the optimal timing of this switch rather than the valuation of the

asset.

2. Price Dynamics and Option Specification

In this section we introduce the model for the dynamics of the prices of oil

and gas, as well as the valuation model that we will use in order to optimize the

value and derive the exercise threshold in the switching case.

Let XI , I ∈ {1, 2}, denote the spot price for oil (I = 1) and gas (I = 2),

respectively. Assuming that both of these prices follow a geometric Brownian

motion, their dynamics under the risk neutral measure are described by the

following stochastic differential equation:

dXI,t = αIXI,tdt+ σIXI,tdZI,t. (1)

Here αI is the risk adjusted drift, σI is the volatility, and dZI,t is the increment

of a standard Brownian process. We allow the prices of oil and gas to be

dependent, introducing the correlation parameter ρ, where Cov[dZ1, dZ2] =

ρσ1σ2dt represents the covariance between the two Brownian motions (Z1 and

Z2), and with |ρ| ≤ 1.

Although the production profile for an oil field depends on the field’s physical

characteristics and the chosen depletion strategy, there are in general three

phases of production; build-up, plateau and decline (see e.g. Wallace et al.

(1987) for a discussion of aggregate production profiles and examples). As

can be seen in Figure 1, both the Oseberg and Prudhoe Bay fields previously

mentioned are examples of fields whose production profiles3 exhibit the typical

3Sources for the production numbers are the Norwegian Petroleum Directorate for the
Oseberg field and the State of Alaska, Department of Revenue for Prudhoe Bay. The Prudhoe
data is for the fiscal year July-June and is converted from daily average in thousand barrels
by assuming it is averaged across 365 days per year.
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characteristics of these three phases. When we consider the option to switch

to gas production we assume that this is only relevant in the decline phase.

Although it is possible to consider stopping oil production during the build-up

or plateau phase, it is highly unlikely. The model we propose therefore needs to

include a decline in the oil production rate in order to capture the characteristics

of a representative field. We assume in the following that the production rate

is exponentially declining, very much in line with the shape of the production

curves in Figure 1. An exponentially declining production rate is a standard

simplifying assumption used in literature addressing decision making related to

petroleum extraction (see e.g. Paddock et al. (1988) for an early example). For

each commodity I, we assume that when production is ongoing the production

rate RI,t is exponentially declining over time, i.e. RI,t = RI,0e
−θIt. Here RI,0

and θI are constants and the former is the initial production rate while the latter

is the exponential decline factor of the production. Furthermore, we assume that

the production costs, EI , are independent of the production rate, i.e. that the

total costs of operation are fixed. Thus, the cash flow from production, when

producing commodity I, is given by (XI,tRI,t − EI)dt. Note that taxes and

royalties are ignored, although this assumption can be relaxed.
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Figure 1: Historical oil production profiles for the Prudhoe and Oseberg fields
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2.1. Switching Option

We let F (τ, x1, x2) denote the value of a petroleum field if it is decided to

switch to gas production at time t = τ :

F (τ, x1, x2) =E
[ ∫ τ

0

(X1,tR1,t − E1) e−rtdt

+

∫ ∞
τ

(X2,tR2,t − E2) e−rtdt− e−rτS
]

= E
[ ∫ τ

0

X1,te
−θ1tR1,0e

−rtdt+

∫ ∞
τ

X2,te
−θ2tR2,0e

−rtdt

+ e−rτ
(
−S +

E1 + E2

r

)]
− E1

r
.

Here xi
4 is the current price of oil (i = 1) and gas (i = 2), S denotes the

switching cost of converting from oil to gas production, and r is the risk free

rate. For simplicity the switching is assumed to happen instantaneously and all

of the switching costs are incurred immediately if the decision to switch is made.

Note also that as long as oil is being extracted from the field, the oil production

rate declines exponentially (at rate θ1); however, when the switching occurs and

gas production starts, the production rate for gas starts declining exponentially

at rate θ2. This means that the “potential” gas production rate is constant as

long as no gas is being produced.

The optimal value of the field is now given by

V (x1, x2) = supτF (τ, x1, x2), (2)

where V has to satisfy, in the continuation region, the partial differential equa-

tion

−rV (x1, x2) + LV (x1, x2) + x1R1,0 − E1 = 0, (3)

with the infinitesimal generator L given by:

LV (x1, x2) =
1

2
σ2
1x

2
1

∂2V (x1, x2)

∂x21
+

1

2
σ2
2x

2
2

∂2V (x1, x2)

∂x22
(4)

+ ρσ1σ2x1x2
∂2V (x1, x2)

∂x1∂x2
+ (α1 − θ1)x1

∂V (x1, x2)

∂x1
+ α2x2

∂V (x1, x2)

∂x2
.

4In the rest of the paper we denote random variables by an uppercase letter, while their
realizations will be denoted by a lowercase letter.
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We remark again that the production rate for gas only declines when one starts

extracting gas, and therefore in the continuation region (i.e., before the switch-

ing) there is no declining behavior. Consequently, in the continuation region,

the drift for the gas price is just α2, whereas for the oil price it is α1 − θ1.

We propose a solution to (3) with the following functional form:

v(x1, x2) = Axβ1x
η
2 +

x1R1,0

r + θ1 − α1
− E1

r
, (5)

where A, β and η are parameters still to be determined. The first term of the

solution is the switching option value while the second and third terms represent

the present value of perpetual oil production. Computing the derivatives of this

function, and plugging into (3), we conclude that β and η are the roots of the

following characteristic root equation:

1

2
σ2
1β(β − 1) +

1

2
σ2
2η(η − 1) + ρσ1σ2βη + (α1 − θ1)β + α2η − r = 0. (6)

Note that as limx1→∞ v(x1, x2) = 0, it means that β < 0, whereas limx2→∞ v(x1,

x2) =∞ means that η > 0.

We let x∗1 and x∗2 denote the threshold switching values for the processes X1

and X2 respectively. Then the value-matching condition that must hold at the

switching threshold results in:

Ax∗1
βx∗2

η +
x∗1R1,0

r + θ1 − α1
− E1

r
=

x∗2R2,0

r + θ2 − α2
− E2

r
− S, (7)

and the smooth-pasting conditions are

Aβx∗1
β−1x∗2

η +
R1,0

r + θ1 − α1
= 0, (8)

Aηx∗1
βx∗2

η−1 =
R2,0

r + θ2 − α2
. (9)

This implies that

− R1,0x
∗
1

β(r + θ1 − α1)
=

R2,0x
∗
2

η(r + θ2 − α2)
, (10)

and therefore

x∗1 = −β(r + θ1 − α1)

η(r + θ2 − α2)

R2,0

R1,0
x∗2, (11)

A = − R1,0

β(r + θ1 − α1)x∗1
β−1x∗2

η
. (12)
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Using these results in the value-matching condition, we derive the following

useful relation:

x∗1
R1,0

r + θ1 − α1

(
η + β − 1

β

)
+ S − E1 − E2

r
= 0. (13)

This leads to an equation set with the following three equations which must be

solved to find the switching threshold:

1

2
σ2
1β(β − 1) +

1

2
σ2
2η(η − 1) + ρσ1σ2βη + (α1 − θ1)β + α2η − r = 0, (14)

x∗1 = −β(r + θ1 − α1)

η(r + θ2 − α2)

R2,0

R1,0
x∗2, (15)

x∗1
R1,0

r + θ1 − α1

(
η + β − 1

β

)
+ S − E1 − E2

r
= 0. (16)

This equation set is very similar to those stated in Adkins and Paxson (2011a,

eq. 2.4, 3.4 and 3.5) and Adkins and Paxson (2011b, eq. 4, 15 and 20) and these

are solved numerically by the authors. However, as was shown for the general

case by Gahungu and Smeers (2011) and for a particular two-dimensional case

by Heydari et al. (2012), the set should have an analytical solution. Note that

there are four unknowns (x∗1, x∗2, β, and η) and three equations in this equation

set. Although this seemingly makes the solution indetermined that is not the

case. The solution we are looking for is not a particular point, but rather pairs

of critical oil and gas prices. When determining whether it is optimal to switch

it only makes sense to consider the two prices jointly and therefore we can first

assume a critical oil/gas price and find the corresponding critical gas/oil price.

Analytical solutions for η and β could be expressed in terms of either x∗1 or x∗2.

However, one can chose so that the model can be interpreted unambiguously for

all prices. Consider the following expression:

C(x∗1) ≡ 1 +

[
r + θ1 − α1

x∗1R1,0

] [
S − (E1 − E2)

r

]
. (17)

When
[
S − (E1−E2)

r

]
> 0 it means that C(x∗1) > 1 and that the switching

threshold intercepts the gas price axis. Therefore the model is in this case

defined for all oil prices, but not for all gas prices. We assume this condition is

satisfied in the following, but will also show a solution for the alternative case

(C(x∗1) < 1). It can then be shown that the solution to β(x∗1) from the above
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equation set must be

β(x∗1) =
f(x∗1)

2g(x∗1)
−

√(
f(x∗1)

2g(x∗1)

)2

+ 2
(r − α2)

g(x∗1)
, (18)

where f(x∗1) ≡ σ2
1 − 2(α1 − θ1) − 2ρσ1σ2 + C(x∗1)(2α2 + σ2

2) and g(x∗1) ≡ σ2
1 +

σ2
2C(x∗1)2 − 2ρσ1σ2C(x∗1). Assuming that r > α2 (otherwise it is never optimal

to exercise the option) it must always be true that

f(x∗1)

2g(x∗1)
<

√(
f(x∗1)

2g(x∗1)

)2

+ 2
(r − α2)

g(x∗1)
, (19)

when g(x∗1) > 0. Recognizing that g(x∗1) is equivalent to a weighted variance ex-

pression, Var (x2C(x∗1)− x1|x∗1), and that variances for non-constant variables

are stricly positive (i.e. g(x∗1) > 0), then it must also be true that β(x∗1) < 0

for all values of x∗1. Rearranging (16) shows that η(x∗1) = 1 − β(x∗1)C(x∗1) and

that the parameter η no longer needs to explicitly be part of the analytical

solution. It follows that η(x∗1) > 1 (since β(x∗1) < 0 and C(x∗1) > 1) and that

η(x∗1) + β(x∗1) > 1:

η(x∗1) + β(x∗1) = 1− β(x∗1)(C(x∗1)− 1) > 1 (20)

This result is the same as in switching option cases studied by Adkins and

Paxson (2011a,b). The analytical solutions for x∗2(x∗1) and A(x∗1), expressed as

functions of x∗1, are found by substituting η with 1 − β(x∗1)C(x∗1) in (12) and

(15) and rearranging the latter expression:

x∗2(x∗1) = − (1− β(x∗1)C(x∗1))(r + θ2 − α2)R1,0

β(x∗1)(r + θ1 − α1)R2,0
x∗1 (21)

A(x∗1) = − R1,0

β(x∗1)(r + θ1 − α1)x∗1
β(x∗

1)−1x∗2(x∗1)
1−β(x∗

1)C(x∗
1)
. (22)

Note that if
[
S − (E1−E2)

r

]
< 0 (i.e. C(x∗1) < 1 and the threshold has an

intercept on the oil price axis) the solution is defined for all gas prices, but not

all oil prices. If this is the case, and to make sure that the solution is defined

for all prices, similar expressions can be found for a given x∗2 (see Appendix A

for this version of the solution). In the special case that
[
S − (E1−E2)

r

]
= 0

the problem collapses to a version of the solution derived by McDonald and

Siegel (1986), where all the parameters are constant. Another special version of

the suggested solution is found when the present values of producing oil or gas
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(rather than the prices themselves) are assumed to follow geometric Brownian

motions, and the production decline rates are set to zero (this ensure that the

dynamics of the present value of gas is the same in the stopping and continuation

region). In this scenario, the payout from the option is equal to the difference

between the value of two assets following a geometric Brownian motion, minus a

fixed switching cost. In the finance literature this is often refered to as a spread

option. Using the same approach as outlined above for the switching option,

an analytical solution can be expressed for the exercise threshold of a perpetual

spread option (see Appendix B for this version of the solution).

3. Numerical Examples

The numerical examples are constructed around a base case for the switching

option. Parameter values for the base case are chosen to reflect a “represen-

tative” case for a large size (initial reserves of 100–500 mill. barrels of oil)

oilfield in the North Sea. This means that oil and gas prices from this region

are used to estimate price process parameters. The example case is considered

to be an offshore field in the decline phase. Therefore, the decline rate of pro-

duction should be realistic for a representative offshore field in the North Sea.

The International Energy Agency (IEA (2008)) estimates the average decline

rate post-plateau to 15.5% for OECD Europe (only North Sea fields included).

Based on this study we assume a 15.5% decline rate for both oil and gas in the

base case.

3.1. Price process parameters

The data used for estimating the price process parameters are daily ob-

servations of futures prices from the Intercontinental Exchange (ICE) for the

time period August 12th 2010 to June 16th 2015. For the oil prices the Brent

crude futures are used and for the gas prices we use UK Natural gas futures.

As a proxy for the spot price for oil and gas the front month contract price is

used. The gas prices, which are quoted in GBP, are converted to USD using

USD/GBP forward rates quoted by Thomson Reuters. When annualizing the

volatility estimates, 251 tradings days per year is assumed. Moreover, since the

estimates for volatility are conducted using log returns on the data, we adjust

for rollover effects. Table 1 summarizes the estimation results.
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Table 1: Estimated price process parameters

Estimated values(S.E.)
α1 0.0042(0.0013)
σ1 0.3380(0.0056)
α2 0.0051(0.0007)
σ2 0.2674(0.0054)
ρ 0.1838(0.0278)

To estimate the risk adjusted drifts, a pair of futures were chosen for each

commodity such that the difference in time to maturity between the two con-

tracts is constant. We use the 12th position future relative to the observation

day (approximately one year to maturity) and the 36th position (approximately

3 years to maturity) with a constant 2 year timespan between them in terms

of time to maturity. Using no-arbitrage arguments, it is assumed that futures

prices are equal to the risk adjusted expected spot prices. Since we assume geo-

metric Brownian motion, the following must therefore hold true: αi =
ln (

Fs,T
Fs,t

)

T−t .

Here αi is the risk adjusted drift for commodity i, T and t are times of maturity

with T > t, so that Fs,T is a contract with a longer time to maturity than Fs,t,

and finally s < t is the time of observation. Using this relationship to calculate

observed αi for both oil and gas the risk adjusted drifts α1 and α2 are estimated

as the mean of each observed set respectively.

3.2. Switching Option

For the numerical results a set of parameters, summarized in Table 2, are

assumed in the base case for the switching option. In the following, the effects

of changing key parameters of the model is demonstrated through a sensitivity

analysis. Unless otherwise noted, only one parameter at the time is allowed to

change and the other parameter values are assumed equal to those set in the

base case.

The current switching threshold for the base case, as well as the thresholds

one and five years ahead (assuming a deterministic and exponential decline in

the oil production) are shown in Figure 2. The thresholds should be interpreted

such that for a given oil price, it is optimal to switch to gas production if the

market price of gas is above the corresponding critical gas price. Alternatively,

for a given gas price it is optimal to switch from oil to gas production if the

price of oil drops below the critical price.
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Table 2: Base case parameters switching option

Values Units Description
R1,0 2.0 mill. Sm3 Yearly oil production
R2,0 15 bill. Sm3 Yearly gas production
θ1 0.155 Oil production decline rate
θ2 0.155 Gas production decline rate
E1 500 mill. USD Yearly oil production costs
E2 500 mill. USD Yearly gas production costs
r 0.03 Risk free rate
S 1000 mill. USD Cost of switching
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Figure 2: Switching threshold across time/production rate for the base case

The changing threshold across time due to the deterministic decrease in pro-

duction is similar to the effect of changing the initial production R1,0. Changing

the oil production (either the initial production or as an effect of the determinis-

tic decline rate) produces a monotonic change in the entire threshold, decreasing

the size of the continuation region as production decreases. Changing other pa-

rameters of the model can produce more complicated results. Consider the drift

rates α1 and α2 of the oil and gas prices. For the range of values illustrated

in Figure 3 the continuation region always decreases when either of the drift

rates decrease. However, while this monotonic behavior is always true for α1

this is not the case for α2. As the drift rate of gas decreases the continuation

region also always decreases given α2 > 0, but for some negative value of α2

the behavior is reversed. This occurs due to two competing effects when α2 is

decreasing; the present value of gas production decreases (switch “later”), and

expected future gas price decrease (switch “earlier”; standard option pricing re-
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sult). The absolute changes in the threshold values are also much more sensitive

to changes in α2 than in α1.
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Figure 3: Effects on the switching threshold from changing the drift rate parameters

Increasing the volatilities of either the gas or oil price generally increases the

volatility of the payout from the switching option. This is always the case when

the correlation ρ ≤ 0. However, when ρ > 0 increasing one of the volatilities can

have a negative effect for very low volatility values. This effect is due to the fact

that the payout of the switching option is a function of the difference between

two stochastic elements (the present values of gas and oil) and the variance ex-

pression for such a payout has a negative term for the covariance/correlation.

In general, when the volatility of the payout of the function increases the value

of the option increases and consequently the continuation region for the option

should increase. These effects are in line with the observations made by Ad-

kins and Paxson (2011b) and McDonald and Siegel (1986). The effects on the

switching threshold of changing the volatility levels are illustrated in Figure 4,

both for the base case and for ρ = 1.

The effects of changing some of the other key parameters to the model; θ2,

r, S, and ρ, are summarized and depicted in Figure 5. Increasing either the

switching cost S or the gas production decline rate θ2 both increase the size of

the continuation region. The intuition is straightforward; both of these effects

decrease the value received when switching, making a switch to gas less valuable

in general. Increasing the correlation ρ or the risk free discount rate r decreases

the size of the continuation region. The effect from correlation can be interpreted

13
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Figure 4: Effects on the switching threshold from changing the volatility parameters

as a volatility effect; increasing the correlation decreases the volatility of the

payout of the option and therefore the continuation region shrinks. Although

the effect of increasing r is also a monotonically shrinking continuation region,

the interpretation is not straightforward. This effect changes both the present

value of gas production and oil production, as well as the discount rate for the

option payout.

4. Conclusion

We propose a model to determine the optimal time to switch from oil to

gas production. Assuming that the oil and gas prices follow geometric Brow-

nian motions with correlated increments, we derive an analytical solution for

the switching strategy. The analytical solution, or some version of it, can be

14
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Figure 5: Effects on the switching threshold from changing key parameters

applicable to other options with similar features as the switching option con-

sidered here. We implement the model using numerical examples, focusing on

the effects on the threshold prices from changing key parameters to the models.

This approach can be used to maximize the value-creation from aging oil fields

with remaining gas reserves.
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Appendix A. Analytical solution expressed in gas prices

Defining

C2(x∗2) ≡ 1 +

[
r + θ2 − α2

x∗2R2,0

] [
(E1 − E2)

r
− S

]
(A.1)

then β(x∗2) is given analytically by

β(x∗2) =
m(x∗

2)
2n(x∗

2)
−
√(

m(x∗
2)

2n(x∗
2)

)2
+

(2(C2(x∗
2)

2r−α2C2(x∗
2))+C2(x∗

2)σ
2
2−σ2

2)
n(x∗

2)
, (A.2)

where m(x∗2) ≡ C2(x∗2)2σ2
1 − 2(α1− θ1)− 2C2(x∗2)ρσ1σ2 + 2α2 +σ2

2 and n(x∗2) ≡

C2(x∗2)2σ2
1 + σ2

2 − 2ρσ1σ2. Assuming that C2(x∗2) > 1 (i.e. C(x∗1) < 1) and

r > α2 then it follows that β(x∗2) < 0 as long as n(x∗2) > 0. Recognizing that

n(x∗2) ≥ Var (x2 − x1|x∗2), and that variances for non-constant variables are

stricly positive (i.e. n(x∗2) > 0), then it must also be true that β(x∗2) < 0 for all

values of x∗2. Using the same assumptions it can be shown that η(x∗2) =
1−β(x∗

2)
C2(x∗

2)

and it then follows that η(x∗2) > 0 and η(x∗2) + β(x∗2) < 1. The analytical

solutions for x∗1(x∗2) and A(x∗2), expressed as functions of x∗2, are:

x∗1(x∗2) = − β(x∗2)(r + θ1 − α1)R2,0

((1− β(x∗2))/C(x∗2))(r + θ2 − α2)R1,0
x∗2 (A.3)

A(x∗2) = − R1,0

β(x∗2)(r + θ1 − α1)x∗1(x∗2)
β(x∗

2)−1x∗2
(1−β(x∗

2))/C2(x∗
2)
. (A.4)
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Appendix B. Analytical solution for the spread option

Assume that two asset prices X1 and X2 follow correlated geometric Brow-

nian motions under the risk neutral measure:

dXI,t = αXI,tdt+ σIXI,tdZI,t, (B.1)

using similar notation as in section 2. Consider an option with no maturity date

that would give a payout of (X2 −X1 − S) if exercised, where S is a constant

strike price. Assume further that the value of such an option can be expressed

in the functional form

vs(x1, x2) = Bxγ1x
ν
2 , (B.2)

where the subscript s is used to signify that this is the value of a spread option.

Following the same type of argument as in section 2, the exercise threshold for

the option can be determined by the characteristic root equation

1

2
σ2
1γ(γ − 1) +

1

2
σ2
2ν(ν − 1) + ρσ1σ2γν + α1γ + α2ν − r = 0. (B.3)

and the value-matching and smooth-pasting conditions:

Bx∗1
γx∗2

ν = x∗2 − x∗1 − S (B.4)

Bγx∗1
γ−1x∗2

ν = −1 (B.5)

Bνx∗1
γx∗2

ν−1 = 1, (B.6)

where x∗1 and x∗2 denote the threshold switching values for the processes X1 and

X2 respectively. Solving this equation set, the analytical solution to γ, given a

value for x∗1, is:

γ(x∗1) =
p(x∗1)

2q(x∗1)
−

√(
p(x∗1)

2q(x∗1)

)2

+ 2
(r − α2)

q(x∗1)
, (B.7)

where p(x∗1) ≡ σ2
1 − 2α1 − 2ρσ1σ2 + (1 + S/x∗1)(2α2 + σ2

2) and q(x∗1) ≡ σ2
1 +

σ2
2(1+S/x∗1)2−2ρσ1σ2(1+S/x∗1). Given the assumption that r > α2 (otherwise

the option is never exercised) it must always be true that γ(x∗1) < 0 for all

values of x∗1. It can also be shown that ν(x∗1) = 1 − γ(x∗1)(1 + S/x∗1) > 1 and

γ(x∗1) + ν(x∗1) > 1. The analytical solutions for x∗2(x∗1) and B(x∗1), expressed as

17



functions of x∗1, are:

x∗2(x∗1) = −1− γ(x∗1)(1 + S/x∗1)

γ(x∗1)
x∗1 (B.8)

B(x∗1) = − 1

γ(x∗1)x∗1
γ(x∗

1)−1x∗2(x∗1)
1−γ(x∗

1)(1+S/x
∗
1)
. (B.9)
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