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Abstract 

Wind farms must periodically take their turbines offline in order to perform scheduled 
maintenance repairs. Since this interruption impacts the generation of energy and any shortfall in 
production must be covered by energy purchases in the spot market, determining the optimal 
time to begin maintenance work in a wind farm is a function of both the expected wind speeds 
and electricity spot prices. In this article we develop a model to determine the optimal 
maintenance schedule in a wind farm based on forecasted wind speeds and energy prices. We 
analyze a window of opportunity in the most likely period of the year, and perform weekly 
updates of expected wind speeds and energy price forecasts. Wind speeds are forecasted with an 
(ARMAX) model, where monthly dummies are used as exogenous variables to capture the 
seasonality of wind speeds, while spot prices are simulated under the Newave dual stochastic 
programing model. The decision to defer maintenance to a future date is modeled as an 
American real option. We test the model with actual data from a wind farm in the Brazilian 
Northeast, and compare our results with current practice and with maintenance scheduling 
considering perfect information in order to determine the benefits of the model. The results 
suggest that this model may provide significant advantages over a stopping decision that 
randomly chooses a week to begin maintenance within the opportunity window and is close to 
the optimal stopping date considering perfect information on future wind speeds and electricity 
prices.  
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1 - Introduction  

Wind energy production in Brazil has grown substantially in recent years and has been 
gaining importance in the Brazilian energy matrix. With only 27.1 MW in 2005, by 2016 the 
installed capacity had increased to 10,747 MW, ranking third in total energy produced in the 
matrix, and is expected to reach 17,257 MW by 2020 (ABEEólica, 2017; ANEEL, 2016). Under 
this scenario, more accurate forecasting models have become increasingly important for the 
system operator and also for planning purposes and applications of private power companies. 

One such application is the determination of the optimal moment for the maintenance 
stops of the wind farm equipment, considering the opportunity cost of the park´s energy 
generation. Wind farms must periodically take their turbines offline in order to perform 
scheduled maintenance repairs, which negatively affect the energy production of the wind farm. 
All things equal, the cost of going offline when the park is producing high volumes of energy is 
greater than when the park is undergoing low winds periods. Rainfall is also negatively 
correlated with wind speeds, so ideally, interruptions should be planned for periods of high 
precipitation and low wind speeds. 

In addition, wind farms must deliver the amount of energy agreed upon in their sales 
contract, so any shortfall must be purchased in the short-term spot market, which adds an 
additional uncertainty to the scheduling decision. Thus, the optimal maintenance schedule will 
be the one that minimizes stoppage costs, which are a function of future wind speeds and 
electricity spot prices. Given that the flexibility of choosing the optimal stopping time has option 
like characteristics, option pricing methods will be used to determine the decision trigger curve. 

We develop a model to determine the optimal maintenance scheduling for a wind farm 
based on forecasted wind speeds and future energy spot prices during the most likely period of 
the year, and perform weekly updates of wind speed and price forecasts. Wind speeds are 
forecasted as an (ARMAX) model, where monthly dummies are used as exogenous variables to 
capture the seasonality of wind speeds and spot prices are simulated under the Newave dual 
stochastic programing model. The optimal stopping decision is modeled as an American type 
real option using a Monte Carlo simulation model. We use actual data from a wind farm in the 
Brazilian Northeast and compare our results with current practice and considering perfect 
information. The results suggest that the model may provide significant advantages over a 
stopping decision that randomly chooses a week to begin maintenance, and is close to the 
optimal stopping date considering perfect information on future wind speeds and electricity 
prices.  

This paper is organized as follows. After this introduction we provide a brief review of 
the relevant literature in real options and wind and energy forecasting models. In section 3 we 
develop the wind forecasting model, and in section 4 we show how the optimal scheduling 
problem can be modeled under the real options approach. In section 5 we apply the model to the 
case of an actual wind farm using regional weather data and show the results. Finally we 
conclude. 
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2 – Literature Review  

Wind Energy 
The generation of energy worldwide through wind farms has grown significantly in the 

last decade, reaching 456,486 MW as of June 2016 (WWEA, 2016), with China, United States, 
Germany, India and Spain being the largest wind power producers in the world (Table 1), 
accounting for 67% of this source of energy. 

Country 2013 2014 2015
June 
2016 

China 91,324 114,763 148,000 158,000 

United States 61,108 65,754 73,867 74,696 

Germany 34,660 40,468 45,192 47,420 

India 20,150 22,465 24,759 27,151 

Spain 22,959 22,987 22,987 22,987 

United Kingdom 10,711 12,440 13,614 13,940 

Canada 7,698 9,694 11,205 11,298 

France 8,254 9,296 10,293 10,861 

Brazil 3,466 5,962 8,715 9,810 

Italy 8,551 8,663 8,958 9,101 

Rest of the World 50,033 58,826 67,354 71,222 

Total 318,914 371,317 434,944 456,486 

Table 1: Wind Energy Capacity (MW): June 2016. Source: WWEA, 2016 

 
In Brazil, in 2016, there was an increase in installed capacity of 2,564 MW, with states of 

Rio Grande do Norte and Ceará, in the Northeast region, which has the greatest wind energy 
potential in the country due to the quantity and constancy of the winds, contributing with 1,520 
MW (ANEEL, 2016).  

On the other hand, one of the problems with wind energy is the difficulty in predicting 
wind speeds, and consequently, power generation, which makes wind farm valuation and 
maintenance scheduling a challenge. Therefore, models that can more accurately forecast future 
wind speeds can be useful for optimal wind farm management. 

 

Reliability and Maintenance 
The purpose of maintenance is to extend equipment life and increase the medium time 

between faults. Reliability and maintenance are connected, and the numerical relationship 
between these two concepts has been shown by Patra, Mitra, and Earla (2006).Wind farm 
equipment requires maintenance and when a wind turbine is taken offline there is a loss of 
generation an opportunity cost involved. Thus, ideally, equipment shut down for maintenance 
should be done in such a way as to minimize any financial losses.  
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Maintenance programs must be able to ensure good reliability indexes for the system and 
its component, but this only one of the tools required to ensure the high reliability of a system 
and its components. The observed time between intrinsic device failures can be controlled by 
internal maintenance programs directed to the device (Endrenyi, Anders, Bertling, & 
Kalinowski, 2004).  Endrenyi et al. (2001) describe maintenance management by comparing the 
maintenance program's impact on system reliability through the deterministic and probabilistic 
approaches. Optimal maintenance policies should minimize downtime but also unsure lower 
costs. Both loving care and emergency replacement lead to higher costs and excessive 
breakdowns. Complex systems, higher costs of labor and materials and increased quality 
requirements made the need of proper maintenance techniques been emphasized by many 
authors (Sherif & Smith, 1981) 

Dynamic programming has been the primary method for maintenance models, where the 
stochastic element is time-to-failure. Maintenance models may be divided into two categories: 
the class in which the equipment fails stochastically and its actual state is not known and the 
class of preventive maintenance models in which the state of the equipment is always known 
(McCall, 1965). 

Wind Forecasting 
Wind energy is generated through the passage of air flow through the blades of wind 

turbines. This airflow varies widely and is influenced by factors such as weather conditions, 
seasonality, terrain and nearby turbines (Ahlstrom, Jones, Zavadil, & Grant, 2005). Wind 
forecasting is challenging due to generation variation over the time horizon and low 
predictability of wind speeds. Even advanced forecasting models can generate vastly different 
forecasts due to the non-linear characteristics of the atmospheric system (Archer, Simão, 
Kempton, Powell, & Dvorak, 2017). Pinto, Martins, Pereira, Fisch, and Lyra (2014) emphasize 
that both speed and wind direction are variables that are difficult to accurately simulate due to 
their large variability in time and space, due to the effects of surface ruggedness, type of 
landscape, vegetation and soil cover throughout the year. Several other meteorological 
phenomena also influence the atmospheric dynamics in northeastern Brazil, such as the location 
of the Area of Intertropical Convergence (ZCIT), which impacts the direction and intensity of the 
winds, anomalies in the temperatures of the Pacific Ocean. 

The operating strategies of the systems are based on generation forecasts. Sophisticated 
algorithms are used to provide this prediction and when there is a divergence between the 
predicted value and the actual value, the costs to provide the energy to the consumer are likely to 
grow compared to the optimized plan (Ahlstrom et al., 2005). 

Real Options 

Financial options are contracts that provide the holder the right, but not the obligation, to buy or 
sell an asset for a pre-established price at a certain future date. A wind farm has the flexibility to 
delay the start of maintenance if it deems this is not the best time to do so. This flexibility has 
option like characteristics, and thus, can be modeled as a problem of real options, as it involves 
real, rather than financial assets.  

The real options methodology derives from the financial options pricing methodology developed 
in the 1970s by (Black & Scholes, 1973) and (Merton, 1973) (BSM) which developed an 
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analytical formula for valuing European options. Tourinho (1979) extended the work of BSM to 
the valuation of a natural resource reserve which had a perpetual extraction option, and was the 
pioneer in the application of these methods to the valuation of real assets.  

A real option is the flexibility a manager has to make decisions on real assets. As new 
information emerges and uncertainties about the future cash flows are revealed, the manager can 
make decisions that will positively influence the final value of the project. An investment 
decision that can be deferred is analogous to an American type purchase option, which is one 
that can be exercised at any time up to maturity, and where the underlying asset is the present 
value of the project and the strike price is the investment cost (R. McDonald & Siegel, 1986).  

The option to temporary shutdown an investment is calculated in a way analogous to the 
European option purchase option and the asset is the cash flow produced by the operating 
income and the exercise price is the variable cost of production (R. L. McDonald & Siegel, 
1985). The option to permanently shut down a project was evaluated by Myers and Majd (1983). 
A model in which the expansion option is exercised continuously was developed by Majd and 
Pindyck (1987). The interactions between options and value creation and destruction are 
evaluated by Trigeorgis (1993). Dixit and Pindyck (1994) makes a general and quite complete 
overview of the development of the Real Options Theory in continuous time. Discrete-time 
models are widely discussed in Trigeorgis (1995). 
 

3 – Wind Forecasting Model 

The share of wind sources in the energy matrix worldwide was practically no existent in the 
early 1980s, but has been steadily gaining importance, and is expected to reach 2,600 GW of 
installed capacity by the year 2050, out of a total potential of 70,000 GW (MME, 2016). Wind 
energy, as other renewable energies, has also been gaining importance in Brazil. The 2024 Ten 
Year Energy Expansion Plan (MME, 2015) indicates that wind power generation is expected to 
reach 24 GW/year by 2024, mostly concentrated in the northeast region of Brazil due to high 
incidence of winds, which should generate 90% (21.6 GW) of this total. In this context, wind 
power generation models become increasingly necessary for the industry, in order to schedule 
maintenance activities and manage their generation portfolio. 

For the construction of the forecasting and testing model, generation data from January 2010 to 
December 2016 was selected for a wind farm in operation in the state of Ceará, in the Northeast 
of Brazil. The selected period is long enough to capture the typical seasonality of this type of 
series and econometric models that have been tested. The following exogenous climatic variables 
were also considered: Rainfall levels and timing, and the South Atlantic Convergence Zone 
(ZCAS). The exogenous variable ZCAS has greater influence in the months of December and 
January, while rain influences the series with greater intensity in the months of March to June. 
For this work will model the of the generation series from the months of March to June, and also 
the influence of the exogenous rain variable. 

The wind farm has turbine power metering equipment in place since November 2014, with the 
operating data updated daily. For forecasting purposes, generation data was adjusted to disregard 
the effects of the eventual unavailability of the equipment. To capture the effects of seasonality, 
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a longer historical series is needed, but as the wind farm was not in operation before 2014, no 
prior data is available. However, it was possible to construct a synthetic series based on wind 
data measured at a local measuring station. Figure 1 shows the wind farm energy generation in 
the period since 2010. 

 
Figure 1: Wind farm energy generation 

 

Rainfall data were obtained from the Cearense Foundation for Meteorology and Water 
Resources (FUNCEME). The foundation has several measurement stations in the Northeast and 
the stations with the closest proximity to the wind park were selected for analysis. It can be 
observed that in periods of higher rainfall, the wind and, consequently, the power generation of 
the park, decreases. In order to determine the best stations for the collection of rainfall data for 
the study, a correlation analysis was performed between stations with greater proximity to the 
wind farm and the energy generation. Four stations were considered in the analysis, located in 
the following municipalities, as shown in Table 1: 
 

Station Municipality Distance (Km) 
Pici Fortaleza 135 

Santo Amaro São Gonçalo do Amarante 90 
Fortaleza Fortaleza 135 
Arapari Itapipoca 45 

Table 1: Stations Vs Distances 

 

The correlation between the rain and energy generation series is shown in table 2: 
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Stations / Stations Fortaleza Pici 
Santo 

Amaro 
Arapari Geração 

Fortaleza 100,00% 73,04% 47,69% 32,28% -36,95% 
Pici 73,04% 100,00% 55,03% 38,05% -35,79% 

Santo Amaro 47,69% 55,03% 100,00% 40,52% -37,83% 
Arapari 32,28% 38,05% 40,52% 100,00% -38,80% 
Geração -36,95% -35,79% -37,83% -38,80% 100,00% 

Table 2: Rain and Generation Correlations 

 

As expected, the station closest to the wind farm (Arapari) is the one with the highest correlation 
with generation (-38.80%). The negative result is also consistent with expectations, indicating 
that rainy periods are correlated to lower generation levels. We also analyzed the correlations of 
the series together to verify if it would be more appropriate to consider the Arapari station, which 
presented a higher correlation with the generation, or another set. The result of the analysis is 
presented in table 3: 

 
Stations Generation 
Fortaleza -36,95% 

Pici -35,79% 
Santo Amaro -37,83% 

Arapari -38,80% 
Arapari +Santo Amaro -45,60% 

Arapari + Pici -44,08% 
Pici + Santo Amaro -41,72% 

Arapari + Pici + Santo Amaro -46,50% 

Table 3: Aggregate Rain and Generation Correlations 

 
As can be observed, the rainfall of the Arapari, Pici and Santo Amaro stations together show a 
higher correlation with generation. In this way, the sum of rainfall in these three locations was 
selected as the exogenous variable. Figure 2 shows simultaneously the generation and rainfall 
curve. We can observe that there is a strong decrease in generation in the periods of greater 
rainfall. 
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Figure 2: Wind farm energy generation and rainfall 

 

The Augmented Dickey Fuller (ADF) Test was performed to both Generation and Rainfall series 
to ensure that we can use these series without any problems or conversions to build the forecast 
model. The test suggests that the series Generation and Rainfall are stationary. Figures 3 and 4 
shows the test results for the lags from 1 to 20: 

Augmented Dickey-Fuller Test for Generation Series (carg): 

Dickey-Fuller = -4.8376, Lag order = 9, p-value = 0.01 

Alternative hypothesis: stationary 

Conclusion: The result suggests that Generation Series is stationary. 

 
Figure 3: ADF and Partial ADF test for Generation (Carg) 
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Augmented Dickey-Fuller Test for Rainfall Series (chuv) 

Dickey-Fuller = -72154, Lag order Rainfall = 9, p-value = 0.01 

Alternative hypothesis: stationary 

Conclusion: The result suggests that Rainfall Series is stationary. 

 
Figure 4: ADF and Partial ADF test for Rainfall (chuv) 

 

To select the best ARIMA model we used the AIC criteria and a maximum lag of 20. The 
function auto.arima of forecast model, on R, was used to select the best model and the results are 
shown on table 4: 
 

MODEL ZERO-MEAN AIC 

ARIMA(2,0,2) NO 5772.049
ARIMA(0,0,0) NO 6476.935
ARIMA(1,0,0) NO 5816.971
ARIMA(0,0,1) No 6043.214
ARIMA(0,0,0) YES 7751.777
ARIMA(1,0,2) NO 5769.855
ARIMA(1,0,1) NO 5812.028
ARIMA(1,0,3) NO 5770.825
ARIMA(2,0,3) NO 5772.924
ARIMA(1,0,2) YES Infinite 
ARIMA(0,0,2) No 5930.969

Table 4: Selection of best ARIMA Model 
 

The best model selected is ARIMA(1,0,2) with non-zero mean, which presented the lower AIC 
indicator. The coefficients and estimators are shown on tables 5 and 6. 
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AR1 MA1 MA2 Intercept 

Values 0.9374 -0.2998 -0.2659 202.769 

s.e. 0.0182 0.0397 0.0375 16.578 

Table 5: ARIMA Coefficients 

 
Estimators Values 

�2 estimated 50.33 

log likelihood -2880.09 

AIC 5770.19 

AICc 5770.26 

BIC 5793.93 

Table 6: Estimators 

 

To generate the errors indicators, the generation series was divided into 2 series: insample and 
outsample series. Insample series was delimited from 2010 to 2015. Data from 2016 was used 
for the outsample series. The results are shown on table 7: 

 
Errors ME RMSE MAE MPE MAPE MASE ACF1 

Trainning 
Set 

-0.01243 7.0774 5.6507 -47.3168 68.5031 0.9231 0.0086 

Table 7: Model Errors 

Where: 
• ME:   Mean Error  
• RMSE: Root Mean Squared Error  
• MAE:  Mean Absolute Error  
• MPE:  Mean Percentage Error  
• MAPE: Mean Absolute Percentage Error  
• MASE:  Mean Absolute Scaled Error  
• ACF1:  Autocorrelation of errors at lag 1 

The figures 5 and 6 show the graph of ARIMA model errors, ACF and PACF with maximum lag 
of 30. The results suggest that the model has an acceptable pattern of errors. 
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Figure 5: ARIMA Errors 

 

 
Figure 6: Series Residuals – ACF 

 

For the construction of optimal scheduling model we used the ARIMA(1,0,2) with rainfall as the 
external variable. The forecast was performed weekly with a horizon of 10 days and the new 
actual data was incorporated to the model every week to increase accuracy. Figures 7, 8 and 9 
show the forecast for the weeks 1, 2 and 18 (the last one). The blue line shows the forecast and 
the black line represents the actual measures values. 
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Figure 7 : Forecast week 0 

 

 
Figure 8: Forecast Week 1 
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Figure 9: Forecast week 17 

 

The proxy for spot market energy price is assumed to be the PLD - Preço de Liquidação de 
Diferenças determined by the Electrical Energy Clearing Chamber (CCEE). We use the monthly 
simulation made by the National System Operator (ONS) for the year of 2016 for the Brazilian 
northeast energy market where the wind farm is located. 
 
4 – Optimal Scheduling Model 

The objective of the model is to minimize downtime costs due to scheduled maintenance 
interruptions. Given that the months of March, April, May and June are historically the periods 
with the lowest wind speeds of the year in the Brazilian Northeast, we focus on an 18 week 
maintenance scheduling window beginning on March 1st, as shown in Figure 3. 

We assume the wind farm has some discretion, within bounds, to decide when this interruption 
will occur, and that 4 maintenance teams will be working simultaneously. Each of these teams 
works on a single wind turbine at a time and is able to perform the required maintenance in 2 
days. Since the wind farm has a total of 28 wind turbines, 14 days are required to carry out the 
maintenance of all the turbines. During the maintenance period, four of the 28 wind turbines are 
taken offline at a time for two days, reducing production by 4/28, or 1/7 of the total. 
Maintenance can begin at any time during this period, and once started, maintenance is carried 
out uninterruptedly during 14 days until all work is completed. We also assume that there are no 
additional costs to postpone the allocation of maintenance teams, that once the decision is made 
the work will begin immediately, and that the loss of generation must be returned to the customer 
through energy purchases in the free market at PLD plus a premium. Thus, ideally, this 
interruption should occur in periods of both low generation and low PLD. 

The generation forecast is divided into a short term and a long term horizon. The short-term 
forecast is considered in the model as deterministic while the long-term forecast is assumed 
stochastic. Each week new forecasts for the remainder of the 18 week period are made, and if the 
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optimal maintenance start moment occurs at any time in the next 7 days, maintenance is 
scheduled. Otherwise, maintenance is deferred for another week and the process is repeated. 

 

 

 

 

 

Figure 10 – Maintenance Model 
 

We assume that all operating costs are fixed, independent of whether the wind farm is operating 
or not. Thus, maintenance interruptions impact only the cost () of spot market purchases, which 
is a function of the energy shortfall (q) and the PLD spot price (), such that  = q x . 

At the beginning of the period ( 0t  ) the managers receive a 1 week ahead wind forecast, from 

which the quantity of energy that will be forgone (q1) can the determined. The spot price for the 
upcoming week (1) is also know at this time, so the opportunity cost for the first week is know 
with certainty. For the second, and all the remaining 17 weeks, expected weekly revenues are 
derived from simulated wind speeds and energy spot prices. Thus, the opportunity cost of 
immediate maintenance stoppage at 0t   is equivalent to the costs of the energy deficit of the 

first two weeks, as shown in Eq. (0). 

 00 ,0 1 1 2 2t q q      
     (0) 

Similarly, the cost of stopping in one week´s time is: 

 0 ,1 2 2 3 3q q      
 

The cost of stopping in two weeks is  

 
0 ,2 3 3 4 4q q          and so on. 
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The cost of the last opportunity to stop as forecasted at time 0t  occurs at time 16. 

 
0 ,16 17 17 18 18q q        

Once the cost of stopping in all the possible 16 two week periods is calculated, the period with 
the lowest opportunity cost can be determined as  

 
0 , j 0min 0; 0,1, 2,....16j     

If the lowest cost is 
0min ,0   , then it is optimal to stop now and begin the maintenance 

immediately. Otherwise, if 
0min , j 1, 2,3,...16j    the firm waits another week to decide 

and moves to 1t  . There are now 17 weeks left in the season to perform the maintenance. The 

cost of stoppage for the first week is: 

  1 ,0 1 1 2 2q q     
  

And for subsequent weeks until week 15: 

 1 ,1 2 2 3 3q q      
 

 1 ,2 3 3 4 4q q      
 

 ………………….. 

 1 ,12 13 13 14 14q q      
 

or 

 
1 , j 1 1 2 2 11, 2,3,...16j j j jq q j              

Once the cost of stopping in all the possible 16 two week periods is calculated, the period with 
the lowest opportunity cost can be determined as:  

 
1 , j 1min 0,1, 2,....16j    , 

where: 

 If 1

1

min ,0

min , j 1

stop immediately

1, 2,3,...16 waitj



 

  
   

 

 

In case it is not optimal to stop immediately, then the firm waits for an additional week to time 

3  and repeats the procedure. The final opportunity to stop is in period 16 , when there are only 
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two weeks left for the end of the maintenance opportunity window, so the wind farm must 
necessarily stop then, as this is the last opportunity to do so.  

 
16 ,0 1 1 2 2q q         and  

16 ,0min     

The proposed model will be compared with the current practice and also with the ideal 
hypothetical model considering perfect information. This will be done by comparing our results 
with the ideal maintenance schedule for the year 2016, assuming that all the actual wind and 
energy price data for the year were known at the beginning of the year. 
 

5 – Application and results 

A wind farm in the Brazilian northeast region was selected for the study because of the 
significant importance of this region for the Brazilian energy matrix due to high wind speeds. 
The year of 2016 was used to apply the model and generate the results. We compared these 
results to perfect information model and also to the current practice. 10.000 generation and price 
simulations were performed for each week. 
 
We assume that maintenance will occur if there is at least a 50% probability that it is optimal to 
stop immediately. The optimization model suggests that the best time to stop is on 10th week. 
The estimated stoppage costs related to start maintenance on 10th week is R$ 100,564.27 and the 
probability that this week is the optimal one is 64.3%. Figure 11 shows the calculated 
probabilities for each one of 18 weeks. The model indicates the optimal stop on week 10 which 
is the first week that the probability is above 50% from week 0. 
 

 
Figure 11: Stop Probabilities 
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5.1 – Comparison between proposed optimization model and random stop model 

In order to ensure that the model has a good power of prediction we compared the model results 
to a model where the start of maintenance is randomically selected, what is similar to the current 
maintenance practice for the wind farm. The estimated stoppage costs (lost income) of a random 
stop model is R$ 177,103.18. The optimization model represents a reduction of 43.22% (figure 
12) in stoppage costs, indicating that the proposed optimization model is better than a random 
model. 
 

 
     Figure 12: Optimization model vs. random stop 

 
5.2 – Comparison between proposed optimization model and random stop model 
 
In order to verify how far the proposed optimization model is from a perfect information model, 
the results were compared to a situation where all the wind speed and electricity price 
information for the full period is available before any decision. With perfect information, the 
optimal week to stop is week 9 and the costs associated with the maintenance (lost income) are 
R$ 76,949.76. The proposed optimization model would provide 30.67% greater cost when 
compared to the perfect information model.  
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Figure 13: Optimization model vs. Perfect Information 
 

6 – Conclusions 

In this article, we develop a model to determine the optimal maintenance schedule for a wind 
farm. Actual data from a wind farm in Brazilian northeast region was used to develop and test 
the model, which was built using ARMAX forecast model and simulation techniques to 
determine the optimal schedule for maintenance. 

The results were compared with a random model and also with maintenance scheduling with 
perfect information, in order to determine the predictive power of the model. The results suggest 
that this model may provide significant advantages over a stopping decision that randomly 
chooses a week to begin maintenance within the opportunity window of March to June, and is 
close to the optimal stopping date considering perfect information on future wind speeds and 
electricity prices.  
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