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Abstract

Motivated by the need to bolster the resilience of infrastructure, such as bridges,

nuclear power plants, and ports, in face of extreme weather events, we consider two

types of projects: “riskier” and “safer.” Each type of project, once constructed, earns

identical instantaneous cash flows and is subject to the same risk of outage, which

causes its cash flows to diminish. The only difference between the two projects is that

the repair rate of the “safer” project is greater than that of the “riskier” one. Naturally,

the “safer” project is more valuable to an investor due to its greater resilience. However,

how much extra would an investor be willing to pay for this resilience? Under which

circumstances would it be reasonable to replace the outage and repair rates with

average outage factors? Using a real options approach, we show that even though the

proportions of up- and down-times remain fixed, changes in the transition rates affect

the willingness to pay for resilience. This implies that use of average outage factors will

incorrectly inflate the resilience premium. In fact, only in the limit when transitions

occur at infinitely high rates does the use of average outage factors accurately reflect
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the investor’s willingness to pay for resilience. Somewhat paradoxically, very frequent

transitions reflect a situation in which average outage factors may be used.

Index terms— OR in environment and climate change, real options, investment analysis

1 Introduction

The occurrence of extreme weather events, such as floods and hurricanes, driven by climate

change has become frequent. This poses risks for many infrastructure projects, such as

bridges, nuclear power plants, and ports, which are necessarily located in areas prone to

flooding or landslides. In fact, a U.S. Environmental Protection Agency white paper (EPA ,

2008) stressed the need for adaptation measures that would bolster the resilience of ports

specifically. Some of the impacts of climate change that it outlines are increased water

levels and more severe storms. In response to these threats, adaptation measures posited

by the white paper are protective seawalls and reinforcement of existing structures against

stronger winds. Aware of its vulnerability to climate change, the County of Miami-Dade

has invested in such measures as part of its Local Mitigation Strategy (Miami-Dade , 2016).

Out of the $170 million earmarked for projects in 2015, over $10 million went towards the

construction of a new seawall for the Miami Seaport along with the installation of concrete

panels for greater resilience.

Naturally, we would conclude that a safer project, i.e., one that is able to resume

operations more quickly after a contingency such as the newly retrofitted Miami Seaport,

would be more valuable to an investor due to its greater resilience.1 However, how much

extra would such an investor be willing to pay for this resilience? In much of the analysis

of the impacts of climate change and the benefits of adaptation or mitigation measures,

this question is addressed by determining expected welfare based on probability estimates

1Resilience is defined by the Resilience Alliance (Walker et al., 2004) as “...the capacity of a system to
absorb disturbance and reorganize while undergoing change so as to still retain essentially the same function,
structure, identity, and feedbacks.”
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of catastrophes, i.e., regime switches in an ecosystem (Walker et al., 2010). More recent

work takes an experimental economics approach to ascertain consumers’ willingness to

pay for more resilience (Richter and Weeks, 2016).

Yet, in these approaches, adaptation measures simply reduce the impact of damage

from environmental factors. Via a now-or-never net present value (NPV) analysis that

uses average outage factors, we first show that the willingness to pay for more resilient

infrastructure depends only on the ratio of the outage and repair rates. Since adoption

of such infrastructure is likely to be carried out by commercial decision makers (even if

they use public funds) who will be concerned about the timing of the investment, under

which circumstances would it be reasonable to replace the outage and repair rates with

average outage factors in an economic analysis of resilience? Using a real options approach

as suggested in Whitten et al. (2012), we demonstrate that even though the proportion of

up- and down-times remains fixed, changes in the transition rates affect the willingness

to pay for resilience. This implies that use of average outage factors will incorrectly

overestimate the resilience premium. Intuitively, using average outage factors means

complete elimination of the risk, whereas a resilience measure can only mitigate the risk.

In fact, only in the limit when transitions occur at infinitely high rates will the use of

average outage factors accurately reflect the investor’s willingness to pay for resilience.

The rest of this paper is organised as follows. Section 2 discusses related work in order

to provide context for our analysis. We develop the main mathematical model and derive

analytical results in Section 3 for each type of project. Section 4 uses numerical examples

to illustrate the insights, while Section 5 summarises the work and offers directions for

future research. All proofs of the propositions may be found in the appendix.
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2 Related Work

In contrast to the now-or-never NPV approach, the real options framework enables a

decision maker to account for flexibility over investment timing and operations when

undertaking the initial adoption (Dixit and Pindyck, 1994). The canonical setup assumes

that the revenue from the completed project is exogenous, e.g., a geometric Brownian

motion (GBM), and that cash flows from operations continue indefinitely after investment.

Variations to the latter assumption posit that physical risk may cause the installed project

to depreciate with subsequent re-investment options available to the decision maker. Ch.

6 of Dixit and Pindyck (1994) demonstrates that closed-form analytical solutions are

possible in this context when physical outages occur according to a Poisson process. In

the context of technology adoption under uncertainty, Farzin et al. (1998) and Doraszelski

(2001) determine the optimal strategy of a firm that may upgrade to a new version given

that technological performance advances randomly. Grenadier and Weiss (1997) exam-

ine alternative adoption strategies under both economic and technological uncertainty

with finite upgrade opportunities, whereas Malchow-Møller and Thorsen (2005) extend

the framework to consider infinite upgrade opportunities. Motivated by the problem

of replacing wind turbines, Chronopoulos and Siddiqui (2015) extend the analysis of

Grenadier and Weiss (1997) to derive further insights about the impact of the economic

and technological uncertainties on the value of alternative adoption strategies. Likewise in

the context of renewable energy investment, Boomsma et al. (2012) and Adkins and Paxson

(2016) examine the impact of policy risk on technology choice.

A more general treatment of alternative investment strategies under uncertainty is

taken up by Décamps et al. (2006). Considering two mutually exclusive projects with

values depending on a common underlying price following a GBM, they show that, in

contrast to an earlier analysis by Dixit (1993), the waiting region may be dichotomous. In

particular, for an intermediate price range and with a relatively low level of volatility in

the underlying price, it may be desirable to wait for more information before investing in
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the larger (smaller) project if the price increases (decreases) sufficiently. The analysis of

alternative investment strategies (direct and stepwise) is conducted by Kort et al. (2010) for

the same project. Somewhat surprisingly, although the stepwise strategy is more valuable,

its relative advantage over the direct strategy diminishes as uncertainty increases. In effect,

relatively high volatility in the underlying payoff tends to delay investment of any kind,

thereby narrowing the benefit of using a stepwise strategy. Siddiqui and Takashima (2012)

extend such an analysis to a duopolistic setting.

Our contribution to the literature is similar in spirit to that of Kort et al. (2010): we aim

to determine the premium that an investor would be willing to pay in order to select one

type of project over another. The main difference is that while two investment strategies

were their focus, our aim is to determine an investor’s the willingness to pay for resilience.

Thus, in addition to modelling economic uncertainty via a GBM, we include the physical

risk to an infrastructure project via a Poisson process. Consequently, we are able to cast the

value of resilience in terms of an investment premium and illustrate why it is important to

model physical risk explicitly in project valuation as opposed to via average outage factors.

3 Mathematical Model and Analytical Results

3.1 Assumptions

Consider two types of infrastructure projects, i ∈ {R,S}, where R stands for “riskier” and S

for “safer.” Each type of project, once constructed, earns identical instantaneous cash flows

of πi (Pt) = Pt − k in state 1 (Fig. 1) at time t ≥ 0, where dPt = αPtdt + σPtdzt is the GBM

describing the exogenous revenues earned from operations, k > 0 is the operating cost, I i

is the investment cost for project type i, α ≥ 0 is the annual drift rate, σ ≥ 0 is the annual

volatility, and ξ i is the optimal investment threshold for project i. All cash flows and rates

are in real terms.

Each project is subject to the same physical outage at rate λ1, which causes its cash
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State 0

Investment
cost: I i

Optimal
investment
threshold: ξ i

State 1

Outage
rate: λ1

State 2

Repair
rate: λi2

Figure 1: State-transition diagram for a project with physical risk

flows to diminish to πi (Pt) = −s in state 2, where s > k represents the costs associated with

repairs. The only difference between the two projects is that the repair rate of project S,

λS2 > 0, is greater than that of project R, λR2 > 0. In the analysis, we assume no switching

options after a project of a certain type has been constructed. This is because infrastructure

projects such as bridges, nuclear power plants, and ports cannot be easily modified once

constructed, especially for purely economic reasons.

3.2 Project Valuation with Average Outage Factors

Instead of modelling the risk of physical failures in a real options valuation of each project,

suppose that a firm were to use average outage factors. Specifically, this means that for each

project i, the proportions representing time spent in states 1 and 2, i.e., λi2
λ1+λi2

and λ1
λ1+λi2

,

would be used to determine average cash flows (Fig. 2). Thus, the average instantaneous

cash flow for project i after investment is π̄i (Pt) =
(

λi2
λ1+λi2

)
(Pt − k)−

(
λ1

λ1+λi2

)
s. Consequently,

the expected discounted value of project i at some arbitrary price, P > 0, using a subjective
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discount rate, ρ > α, with average outage factors is:

V̄ i
1 (P ) = EP

[∫ ∞
0
π̄i (Pt)e

−ρtdt

]
⇒ V̄ i

1 (P ) =
(

λi2
λ1 +λi2

)
P

(ρ −α)
−

(
λi2k +λ1s

)(
λ1 +λi2

)
ρ

(1)

Via dynamic programming (Dixit and Pindyck, 1994), the value of the option to invest in

project i from state 0 may be found as:

V̄ i
0 (P ) = āi0P

β1 , (2)

where β1 > 1 is the root of the following characteristic quadratic:

1
2
σ2β (β − 1) +αβ − ρ = 0 (3)

The optimal investment threshold for project i is:

ξ̄ i =
(
β1

β1 − 1

)
(ρ −α)

λi2

I i (λ1 +λi2
)

+

(
λi2k +λ1s

)
ρ

 (4)

The endogenous constant in Eq. (2) is:

āi0 =
1
β1

(
λi2

λ1 +λi2

) (
ξ̄ i

)1−β1

(ρ −α)
(5)

The latter two are obtained via standard value-matching and smooth-pasting conditions

between V̄ i
0 (P ) and V̄ i

1 (P )− I i at P = ξ̄ i .

Suppose now that we would like to determine how much extra an investor would be

willing to pay for project type S rather than R. Keeping constant the investment cost

of project type R and the expected discounted operating costs of the two projects, i.e.,
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Cash flow

t

· · ·

−s

Pt − k

· · ·

Figure 2: Cash flows during a typical cycle

(λi2k+λ1s)
(λ1+λi2)ρ , we have the degree of freedom only to increase IS until it hits a critical threshold,

Ī , such that the investor is indifferent between the two types of projects. In other words,

we force āR0 to equal āS0 and determine the resilience premium, κ̄:

Proposition 1. κ̄ ≡

[
Ī+

(λS2 k+λ1s)
(λ1+λS2)ρ

]
[
IR+

(λR2 k+λ1s)
(λ1+λR2 )ρ

] =


λS2

(λ1+λS2)
λR2

(λ1+λR2 )


β1
β1−1

In a now-or-never NPV analysis, the corresponding resilience premium, κ̄NPV , has a

similar form but does not depend on uncertainty:

Corollary 1. κ̄NPV ≡

[
Ī+

(λS2 k+λ1s)
(λ1+λS2)ρ

]
[
IR+

(λR2 k+λ1s)
(λ1+λR2 )ρ

] =

λS2
(λ1+λS2)

λR2
(λ1+λR2 )

It is also straightforward to prove that the average resilience premium is, indeed, greater

than one (Cor. 2) and that it is increasing as either the volatility of cash flows or project

S’s repair rate increases (Props. 2 and 3, respectively), ceteris paribus. Intuitively, a higher

cash-flow volatility or repair rate of project S also implies a higher expected present value

of revenues, which results in a greater resilience premium.
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Corollary 2. κ̄ > 1

Proposition 2. ∂κ̄
∂σ > 0

Proposition 3. ∂κ̄
∂λS2

> 0

3.3 Project Valuation with Explicit Treatment of Physical Risk

If we treat the risks of outages and repairs explicitly, then we obtain the following expres-

sions for each project i in state j, where j = 1,2 (Makimoto, 2006):

V i
j (P ) = aijP + bij (6)

where

ai1 =
(ρ+λi2 −α)

(ρ+λ1 −α)(ρ+λi2 −α)−λ1λ
i
2

> 0, ai2 =
λi2

(ρ+λ1 −α)(ρ+λi2 −α)−λ1λ
i
2

> 0

bi1 = −
(λ1s+ (ρ+λi2)k)

(ρ+λ1)(ρ+λi2)−λ1λ
i
2

< 0, bi2 = −
(λi2k + (ρ+λ1)s)

(ρ+λ1)(ρ+λi2)−λ1λ
i
2

< 0

Again, through standard dynamic programming methods, the value of the option to invest

from state 0 in plant i is:

V i
0 (P ) = ai0P

β1 , (7)

where

ξ i =
(
β1

β1 − 1

)(
I i − bi1
ai1

)
(8)

and

ai0 =
ai1
β1

(
β1

β1 − 1

)1−β1
(
I i − bi1
ai1

)1−β1

(9)
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are obtained via value-matching and smooth-pasting conditions between V i
0(P ) and V i

1(P )−

I i at P = ξ i as defined in Eqs. (7) and (6), respectively.

As in Section 3.2, it is possible to define a resilience premium, κ, which here does not

depend on average outage factors. Instead, it uses the actual repair rates and is obtained

by equating the ai0 terms from Eq. (9). Since I i − bi1 may be thought of as the discounted

investment and operating costs of project i and Î is the maximum willingness to pay for

project S, analogous to Prop. 1, we can express the resilience premium as a ratio.

Proposition 4. κ ≡ Î−bS1
IR−bR1

=
(
aS1
aR1

) β1
β1−1

Furthermore, we can prove that the resilience premium here is greater than one, in-

creasing with volatility, and increasing with the repair rate of project S.

Corollary 3. κ > 1

Proposition 5. ∂κ
∂σ > 0

Proposition 6. ∂κ
∂λS2

> 0

Now, suppose that we change all transition rates by some factor η > 0, which clearly

does not affect the proportion of time spent in state 1 or 2. Such a transformation would

not affect any of the results in the previous section concerning ξ̄ i or Props. 1–3. Yet, if

physical risks were explicitly treated, then they would affect not only optimal investment

thresholds but also the resilience premium, which is κ (η) and dependent on the maximum

amount that the investor is willing to pay, Î , for project S. In the limit, as cycles become

more frequent, i.e., η→∞, we can show that the resilience premium converges to κ̄:

Proposition 7. limη→∞κ (η) = κ̄

Intuitively, it is only in a situation with very frequent state transitions that it is ac-

ceptable to determine the resilience premium on the basis of average outage factors. By

contrast, when state transitions hardly occur, i.e., η→ 0, there is no willingness to pay for

resilience:
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Proposition 8. limη→0κ (η) = 1

In general, the resilience premium is an increasing function of the transition rate:

Proposition 9. ∂κ(η)
∂η > 0

The next two propositions and Lemma 1 summarise the economic implications of

simplifying the real options analysis. First, Prop. 10 indicates that the use of average

outage factors postpones investment vis-à-vis the explicit treatment of risk because the

latter recognises that risk has not been eliminated and invests only in an active project that

commences operations in state 1. Thus, real options analysis with explicit treatment of risk

will not require as high of a threshold as one with average outage factors. Second, Prop. 11

states that the value of the investment opportunity when risk is treated explicitly is higher

than when average outage factors are used. The intuition for this result is similar to that

for Prop. 10: explicitly accounting for physical risk means that no project would ever start

in state 2, i.e., the payoff of the option is inherently more valuable. Therefore, an investor

who uses average outage factors in a real options analysis will (incorrectly) be willing to

pay more for resilience as shown in Lemma 1.

Proposition 10. ξ i (η) < ξ̄ i

Proposition 11. ai0 > ā
i
0

Lemma 1. κ̄ > κ(η)

Finally, Prop. 12 reveals that the discrepancy between the resilience premia increases

as uncertainty increases. Indeed, the impact of using average outage factors is magnified

in a more economically volatile situation.

Proposition 12. ∂κ̄/κ(η)
∂σ > 0
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4 Numerical Examples

We use the following parameter values to illustrate the properties of the solutions and

value functions: α = 0,ρ = 0.05,λ1 = 0.5,λR2 = 0.2, IR = 10,λS2 = 0.3, IS = 15, k = 1, s = 2,σ =

0.2, P0 = 1. First, we plot the value functions for the two plant types with average outage

factors (Fig. 3). As expected, for an arbitrarily low initial price, the option to invest in the

“safer” project is more valuable and triggers earlier investment. Next, we do the same when

physical risks are correctly modelled (Fig. 4). Here, there are two sets of post-investment

value functions for each type of project depending on the state of operations. Thus, the

physical risk is reflected in the value of the investment opportunity even as the “safer”

project is worth more than the “riskier” one.

0 5 10 15
−60

−40

−20

0

20

40

60

80

P

V̄
i 1
(P

)
−
I
i
,
V̄

i 0
(P

)

V̄ R
1 (P)− IR

V̄ R
0 (P)

V̄
S
1 (P)− I

S

V̄
S
0 (P)

Figure 3: Value functions with average availability factors for σ = 0.20

The optimal investment thresholds and corresponding option value coefficients for

various volatilities, i.e., σ ∈ [0.20,0.40], are plotted in Figs. 5 and 6 to verify Props. 10 and

11, respectively. In particular, the value of the option to invest is higher when modelling

physical risk for each type of project with a lower corresponding investment threshold.
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Figure 4: Value functions with physical risk for σ = 0.20

As argued in Section 3.3, this discrepancy follows from the higher intrinsic value of the

post-investment project in state 1 as opposed to some value based on an average outage

factor.

The next plot in Fig. 7 illustrates Props. 1, 4, 7, 8, and 9, Cors. 2 and 3, and Lemma 1,

where the horizontal line indicates the resilience premium under the assumption of average

outage factors, κ̄ = 1.66. Here, IR is fixed at 10, but IS is varied until the option values of

the two projects are equal. Thus, while κ̄ is unaffected by η, κ(η), which is the resilience

premium in a model with explicit treatment of physical risk, increases monotonically until

it asymptotically approaches κ̄. Finally, Fig. 8 indicates that both resilience risk premia

increase with volatility along with their ratio as proven in Props. 2, 5, and 12. Hence, when

using average factors, the investor typically overvalues the resilience premium except

when cycles become exceptionally short.
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Figure 5: Effect of volatility on the optimal investment thresholds
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Figure 7: Effect of cycle length on the resilience premium, κ (η)
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5 Conclusions

Given the increased occurrence of extreme weather events linked to climate change, owners

of infrastructure are considering investment in more resilient plants. Although policymak-

ers typically offer incentives to improve investment in and retrofit of infrastructure that is

better adapted to climate risk, ultimately, the adoption decision is undertaken by private

investors who aim to maximise the value of their projects. Thus, it is desirable to consider

the willingness of decision makers to pay for enhanced resilience in a market environment

with both economic uncertainty and physical risk.

Drawing upon the real options approach for assessing the premium associated with a

more flexible investment strategy (Kort et al., 2010), we determine the willingness to pay for

resilience in the context of infrastructure projects. Specifically, we include physical risk to

the operations of infrastructure projects as a Poisson process and determine the maximum

additional capital expenditure that an investor would be willing to outlay in exchange

for a more resilient project, i.e., one that resumes operations from an inactive state more

quickly. We show analytically that the resilience premium obtained via explicit treatment

of physical risk is always less than that implied by a simpler real options analysis that uses

average outage factors. Intuitively, the latter analysis with average outage factors assumes

that greater resilience essentially means eliminating all of the risk. However, the analysis

with explicit treatment of risk acknowledges that risk can only be mitigated. Consequently,

its resilience premium is less than that yielded by the analysis with average outage factors.

Yet, sensitivity analysis with respect to cycle lengths indicates that this discrepancy between

the two premia dissipates as frequency of transitions increases. Indeed, in the limit as

cycle lengths become very short, the use of average outage factors becomes acceptable as

an approximation. Hence, our work demonstrates that policy initiatives based on average

outage factors to bolster investment in more resilient infrastructure may overestimate

industry’s willingness to pay.

Our analysis is necessarily stylised in order to obtain analytical results. It is, therefore,
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limited by its choice of stochastic processes capturing both economic uncertainty and

physical risk. Numerical approaches using more realistic stochastic processes applied

to case studies would, thus, be welcome extensions. Likewise, analyses with mutually

exclusive investment between “safer” and “riskier” options (Décamps et al., 2006) or under

rivalry (Siddiqui and Takashima, 2012) would provide richer insights.

Acknowledgements

Siddiqui is grateful to the Japan Society for Promotion of Science (JSPS) Furusato Award

and a Tokyo University of Science Invitational Fellowship for support.

References

Adkins, R. and D. Paxson (2016), “Subsidies for Renewable Energy Facilities under Uncer-

tainty,” The Manchester School 84(2): 222–250.

Boomsma, T.K., N. Meade, S.-E. Fleten (2012), “Renewable Energy Investments under

Different Support Schemes: a Real Options Approach,” European Journal of Operational

Research 220(1): 225-237.

Chronopoulos, M. and A.S. Siddiqui (2015), “When is it Better to Wait for a New Ver-

sion? Optimal Replacement of an Emerging Technology under Uncertainty,” Annals of

Operations Research 235(1): 177–201.

Décamps, J.-P., T. Mariotti, and S. Villeneuve (2006), “Irreversible Investment in Alternative

Projects,” Economic Theory 28: 425–448.

Dixit, A.K. (1993), “Choosing Among Alternative Discrete Investment Projects under

Uncertainty,” Economics Letters 41: 265–268.

17



Dixit, A.K. and R.S. Pindyck (1994), Investment under Uncertainty, Princeton University

Press, Princeton, NJ, USA.

Doraszelski, U. (2001), “The Net Present Value Method Versus the Option Value of Waiting:

A Note on Farzin, Huisman and Kort (1998),” Journal of Economic Dynamics and Control

25: 1109–1115.

Farzin, Y.H., K. Huisman, and P. Kort (1998), “Optimal Timing of Technology Adoption,”

Journal of Economic Dynamics and Control 22(5): 779–799.

Grenadier, S.R. and A.M. Weiss (1997), “Investment in Technological Innovations: An

Option Pricing Approach,” Journal of Financial Economics 44: 397–416.

Kort, P., P. Murto, and G. Pawlina (2010), “Uncertainty and Stepwise Investment,” European

Journal of Operational Research 202: 196–203.

The Miami-Dade Local Mitigation Strategy (2016), Whole Community Hazard Mitigation Part

6: Completed Projects, Miami, FL, USA (available at http://www.miamidade.gov/fire/

library/OEM/local-mitigation-strategy-part-6-completed-projects.pdf).

Makimoto, N. (2006), “Optimal Investment Policy for Real Option Problems with Regime

Switching,” in The Sixth International Symposium on Operations Research and Its Applica-

tions, Xinjiang, P. R. China.

Malchow-Møller, N. and B.J. Thorsen (2005), “Repeated Real Options: Optimal Investment

Behaviour and a Good Rule of Thumb,” Journal of Economic Dynamics and Control 29(6):

1025–1041.

Richter, L.-L. and M. Weeks (2016), “Flexible Mixed Logit with Posterior Analysis: Eliciting

Willingness to Pay for Grid Resilience,” EPRG Working Paper 1615 and Cambridge

Working Paper in Economics 1631, University of Cambridge, U.K. (available at http:

//www.eprg.group.cam.ac.uk/wp-content/uploads/2016/05/1615-Text.pdf).

18

http://www.miamidade.gov/fire/library/OEM/local-mitigation-strategy-part-6-completed-projects.pdf
http://www.miamidade.gov/fire/library/OEM/local-mitigation-strategy-part-6-completed-projects.pdf
http://www.eprg.group.cam.ac.uk/wp-content/uploads/2016/05/1615-Text.pdf
http://www.eprg.group.cam.ac.uk/wp-content/uploads/2016/05/1615-Text.pdf


Siddiqui, A.S. and R. Takashima (2012), “Capacity Switching Options under Rivalry and

Uncertainty,” European Journal of Operational Research 222(3): 583–595.

U.S. Environmental Protection Agency (2008), Planning for Climate Change Impacts at

U.S. Ports, White Paper, Office of Policy, Economics, and Innovation Sector Strategies

Division, Washington, DC, USA (available at https://archive.epa.gov/sectors/web/

pdf/ports-planing-for-cci-white-paper.pdf).

Walker, B., C.S. Holling, S.R. Carpenter, and A. Kinzig (2004), “Resilience, Adaptability,

and Transformability in SocialEcological Systems,” Ecology and Society 9(2): 5 (available

at http://www.ecologyandsociety.org/vol9/iss2/art5/).

Walker, B., L. Pearson, M. Harris, K.-G. Maler, C.-Z. Li, R. Biggs, and T. Baynes (2010),

“Incorporating Resilience in the Assessment of Inclusive Wealth: An Example from South

East Australia,” Environmental and Resource Economics 45(2): 183–202.

Whitten, S.M., G. Hertzler, and S. Strunz (2012), “How Real Options and Ecological

Resilience Thinking Can Assist in Environmental Risk Management,” Journal of Risk

Research 15(3): 331–346.

Appendix: Proofs of Propositions

Proof of Proposition 1: Use the definitions of āi0 and equate them:

(
λR2

λ1 +λR2

)β1
IR +

(
λR2k +λ1s

)(
λ1 +λR2

)
ρ


1−β1

=
(

λS2
λ1 +λS2

)β1
IS +

(
λS2k +λ1s

)(
λ1 +λS2

)
ρ


1−β1

⇒ κ̄ =


λS2

(λ1+λS2)
λR2

(λ1+λR2 )


β1
β1−1

(10)
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Proof of Corollary 1: Use the definitions of V̄ i
1(P ), equate them at P = ξRNPV ≡

(ρ−α)
λi2[

I i
(
λ1 +λi2

)
+ (λi2k+λ1s)

ρ

]
and solve for κ̄NPV ≡

[
Ī+

(λS2 k+λ1s)
(λ1+λS2)ρ

]
[
IR+

(λR2 k+λ1s)
(λ1+λR2 )ρ

] :

λS2
λ1 +λS2

IR +

(
λR2k +λ1s

)(
λ1 +λR2

)
ρ

 =
λR2

λ1 +λR2

IS +

(
λS2k +λ1s

)(
λ1 +λS2

)
ρ


⇒ κ̄NPV =

λS2
(λ1+λS2)
λR2

(λ1+λR2 )

(11)

Proof of Corollary 2: Since κ̄ > 1⇔

λS2
(λ1+λS2)

λR2
(λ1+λR2 )

> 1, we need the following:

λS2(
λ1 +λS2

) >
λR2(

λ1 +λR2
)

⇒ λS2λ1 +λS2λ
R
2 > λS2λ

R
2 +λR2λ1

⇒ λS2 > λR2 ,

which is true by assumption.

Proof of Proposition 2: From Eq. (10), we have:

∂κ̄
∂σ

= − log


λS2

λ1+λS2
λR2

λ1+λR2




λS2
λ1+λS2
λR2

λ1+λR2


β1
β1−1

1
(β1 − 1)2

∂β1

∂σ
.

Since

λS2
λ1+λS2
λR2

λ1+λR2

= λ1λ
S
2+λS2λ

R
2

λ1λ
R
2 +λS2λ

R
2
> 1, log


λS2

λ1+λS2
λR2

λ1+λR2

 > 0. In addition, from


λS2

λ1+λS2
λR2

λ1+λR2


β1
β1−1

> 0, − 1
(β1−1)2 < 0,

and ∂β1
∂σ < 0 (Dixit and Pindyck, 1994), we can obtain ∂κ̄

∂σ > 0.
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Proof of Proposition 3: We partially differentiate Eq. (10) with respect to λS2 :

∂κ̄

∂λS2
=

(
β1

β1 − 1

)
λS2

(λ1+λS2)
λR2

(λ1+λR2 )


1

β1−1 (
λ1 +λR2
λR2

)
λ1(

λ1 +λS2
)2 (12)

Since each term on the right-hand side of Eq. (12) is positive, we have the result.

Proof of Proposition 4: Use the definitions of ai0 and equate them:

aR1
β1

(
β1

β1 − 1

)1−β1
(
IR − bR1
aR1

)1−β1

=
aS1
β1

(
β1

β1 − 1

)1−β1
(
Î − bS1
aS1

)1−β1

⇒ κ ≡
Î − bS1
IR − bR1

=
(
aS1
aR1

) β1
β1−1

(13)

Proof of Corollary 3: Since κ > 1⇔ aS1 > a
R
1 , we need to demonstrate the following:

∂
∂x

(
ρ+ x −α

(ρ+λ1 −α) (ρ+ x −α)−λ1x

)
> 0

⇒
(ρ+λ1 −α) (ρ+ x −α)−λ1x − (ρ+ x −α) (ρ −α)

((ρ+λ1 −α) (ρ+ x −α)−λ1x)2 > 0

⇒
λ1 (ρ −α)

((ρ+λ1 −α) (ρ+ x −α)−λ1x)2 > 0,

which holds because both the numerator and the denominator are positive.

Proof of Proposition 5: From Eq. (13), we have:

∂κ
∂σ

= − log
(
aS1
aR1

)(
aS1(η)

aR1 (η)

) β1
β1−1 1

(β1 − 1)2

∂β1

∂σ
. (14)

In Eq. (14), since we have aS1 > a
R
1 from Eq. (14), we obtain log

(
aS1
aR1

)
> 0. Thus, ∂κ∂σ > 0.

Proof of Proposition 6: Partially differentiating κ in Eq. (13) with respect to λS2 , we
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have:
∂κ

∂λS2
=

(
β1

β1 − 1

)(
aS1
aR1

) 1
β1−1 1

aR1

∂aS1
∂λS2

,

which is greater than zero because each term is greater than zero and ∂aS1
∂λS2

> 0 follows from

the proof of Corollary 3.

Proof of Proposition 7: First, use l’Hôpital’s rule to show that limη→∞ a
i
1 (η) = λi2

(ρ−α)(λi2+λ1) .

Next, take the limit of the expression in Prop. 4:

lim
η→∞

κ (η) = lim
η→∞

(
aS1 (η)

aR1 (η)

) β1
β1−1

⇒ lim
η→∞

κ (η) =


λS2

(λ1+λS2)
λR2

(λ1+λR2 )


β1
β1−1

(15)

Proof of Proposition 8: First, use l’Hôpital’s rule to show that limη→0 a
i
1 (η) = 1

(ρ−α) .

Next, take the limit of the expression in Prop. 4:

lim
η→0

κ (η) = lim
η→0

(
aS1 (η)

aR1 (η)

) β1
β1−1

⇒ lim
η→0

κ (η) =
{1

1

} β1
β1−1

(16)

Proof of Proposition 9: Using the definition of ai1 from Eq. (6), we have:

∂ai1(η)
∂η

= −
λ1(ρ −α)2[

(ρ+ ηλ1 −α)(ρ+ ηλi2 −α)− η2λ1λ
i
2

]2 < 0 (17)
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∂aR1 (η)
∂η

>
∂aS1(η)
∂η

⇒
∂aS1 (η)
∂η

∂aR1 (η)
∂η

< 1 (18)

∂κ(η)
∂η

=
(
β1

β1 − 1

)(
aS1(η)

aR1 (η)

) 1
β1−1


∂aS1 (η)
∂η aR1 (η)− aS1(η)∂a

R
1 (η)
∂η

(aR1 (η))2


= −

(
β1

β1 − 1

)(
aS1(η)

aR1 (η)

) 1
β1−1

[
1

(aR1 (η))2

](
∂aR1 (η)
∂η

)aS1(η)− aR1 (η)

∂aS1 (η)
∂η

∂aR1 (η)
∂η

 (19)

From Eqs. (17) and (18), −
(
∂aR1 (η)
∂η

)aS1(η)− aR1 (η)
∂aS1 (η)
∂η

∂aR1 (η)
∂η

 in Eq. (19) is positive. Thus, ∂κ(η)
∂η >

0.

Proof of Lemma 1: From κ̄ > 1, limη→0κ(η) = 1 in Prop. 8, limη→∞κ(η) = κ̄ in Prop. 7,

and ∂κ(η)
∂η > 0 in Prop. 9, we can obtain κ̄ > κ(η) for ∀η.

Proof of Proposition 10: Using the definition of bi1 from Eq. (6), we have:

∂bi1(η)
∂η

=
ρ2λ1(k − s)[

(ρ+ ηλ1)(ρ+ ηλi2)− η2λ1λ
i
2

]2 < 0 (20)

lim
η→∞

ξ i(η) = ξ̄ i (21)

lim
η→0

ξ i(η) =
β1

β1 − 1
(ρ −α)

(
I i +

k
ρ

)
< ξ̄ i (22)

From Eqs. (17) and (3),

∂ξ i(η)
∂η

= −
(
β1

β1 − 1

) (
∂bi1(η)
∂η ai1(I i − bi1(η))∂a

i
1(η)
∂η

)
(ai1(η))2

> 0 (23)

Thus, from Eqs. (21)–(23), ξ i (η) < ξ̄ i for ∀η.
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Proof of Proposition 11: From Prop. 10, we know that:

ξ i(η)
1−β1 > ξ̄ i

1−β1 (24)

ai1(η)−
ηλi2

(ηλ1 + ηλi2)(ρ −α)
=

(ρ −α)2ηλ1

(ρ −α)(ηλ1 + ηλi2)
{
(ρ −α)(ηλ1 + ηλi2) + (ρ −α)2

} > 0 (25)

From Eqs. (24) and (25),

ai0(η)− āi0 =
1
β1

(
ai1(η)ξ i(η)

1−β1 −
ηλi2

(ηλ1 + ηλi2)(ρ −α)
ξ̄ i

1−β1

)
> 0 (26)

Proof of Proposition 12: Using Eqs. (10) and (13), we obtain:

κ̄
κ(η)

=



λS2
λ1+λS2
λR2

λ1+λR2

aS1 (η)
aR1 (η)



β1
β1−1

. (27)

When Λ =

λS2
λ1+λS2
λR2

λ1+λR2

/
aS1 (η)
aR1 (η)

, ∂κ̄/κ(η)
∂σ = ∂

∂σΛ
β1
β1−1 = − logΛΛ

β1
β1−1

{
1

(β1−1)2

}
∂β1
∂σ . From Lemma 1, we

can obtain logΛ > 0. Thus, ∂κ̄/κ(η)
∂σ > 0.
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