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Risk Sharing with Collar Options in Infrastructure Investments 
 
Abstract 
 

A real option model is formulated for infrastructure investments with collars, which are devised 

to guarantee a floor cash flow for an active real asset while capping any abnormally high cash 

flows. Composed of pairs of put and call American perpetuity options, feasible collars perform 

a similar role as investment subsidies by yielding a lower investment threshold, thereby 

inducing an earlier exercise than the without-collar variant. While the investment threshold for 

the with-collar model is governed only by the floor, the investment option value is influenced 

positively by the floor but negatively by the cap, so by appropriately adjusting the floor and 

cap, the with-collar investment option value can be engineered to equal that for the without-

collar variant, making it effectively “costless”. A volatility increase makes the with-collar 

variant less valuable due to the greater chance of hitting the cap. The “profits” of the 

concessionaire are compared to those of the concession granting government under collar, and 

floor or ceiling only, viewing the arrangement as a real option game between principal and 

agent. The collar analysis is extended to two more complex collar designs, and also compared 

with floor only and ceiling only arrangements. 

 

 

JEL Classifications: D81, G31, H25 

 

Keywords: Decision Analysis, Collar Options, Revenue Floors and Ceilings, Infrastructure 
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1 Introduction 

 

We present a collar option as a suitable policy device for a government (GOV) granting a 

concession to induce Public-Private Partnership (PPP) infrastructure investment by a 

concessionaire (CON) by guaranteeing a floor in the face of adverse circumstances, and 

simultaneously capturing abnormally high returns when the circumstances are sufficiently 

favourable.  Implementing a collar results in an earlier exercise than for an investment 

opportunity without a collar due to the guarantee, while its cost may be partially recouped from 

significantly high profits. The analysis of collars adopts a real option formulation because the 

guarantee on the downside and bonus compensation for the government on the upside are 

expressible as real options, the sunk cost is partly irretrievable, deferral flexibility is present, 

and uncertainty prevails.  Using an American perpetuity model, we show that while the 

minimum revenue guarantee enhances the attractiveness of the with-collar for the CON 

compared to the without-collar opportunity and reduces its threshold resulting in an earlier 

exercise, the compensation ceded to the GOV on the upside only reduces the real option value 

(ROV). This finding produces a straightforward method for engineering a collar because the 

guarantee level can first be ascertained from knowing the desired threshold prompting exercise, 

and the compensation level can then be determined from deriving the appropriate ROV (which 

may, or may not, be paid by the CON for the concession to the GOV).  

 

With a significant decrease in the investment threshold and increase in the investment 

opportunity value, private capital may be motivated not only to undertake these projects but to 

implement them early. However, these policies are alleged to distort the risk-return profile in 

favour of the private party and may be seen to be too generous.  According to Shaoul et al. 

(2012), PPPs are expensive and have failed to deliver value for public money.  

 

Most of the authors considering PPP arrangements as a set of real options embedded in an 

active project adopt numerical techniques like Monte-Carlo simulations, sometimes  

in conjunction with a binomial lattice for obtaining their findings, but a few base their 

conclusions on an analytical real option framework. By evaluating numerically an actual toll  

road concession involving both a guarantee and compensation, Rose (1998) shows that the  

minimum revenue guarantee contributes significant value to the Melbourne CityLink (toll road)  

project. The project reverts to the government if the internal rate of return is very high, which  
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is a type of cap option.  Brown (2005) also provides some details on the CityLink arrangements,  

along with several other Australian toll road PPP, some of which have only ceilings (or an  

increasing share of the revenues past a benchmark which are paid to the government). An  

alternative analysis of CityLink is provided by Alonso-Conde et al. (2007), who show that the  

guarantee not only acts as an incentive but also potentially transfers significant value to the  

investor.  

 

The implied value of several interacting flexibilities for a rail concession are investigated by 

Bowe and Lee (2004), while Huang and Chou (2006) appraise minimum revenue guarantees  

and abandonment rights for a similar concession using a European-style framework. Brandão  

and Saraiva (2008) evaluate the real option value of a minimum traffic guarantee in Brazil  

combined with a limit on government exposure, using a Monte Carlo simulation.  They propose  

and evaluate a floor and ceiling guarantee model (“it is only fair”).  Blank et al. (2009)  

investigate the role of a graduated series of guarantees and penalties incurred when operating  

another Brazilian toll road concession as a risk transfer device for avoiding bankruptcy that  

benefits both the investor and lender. Shan et al. (2010) value sharing of revenue risks in  

transportation, which involve European collars of a revenue guarantee and upside  

compensation to the government.  Carbonara et al. (2014) evaluate the real option value of  

revenue guarantee for an Italian toll road project, also using a Monte Carlo simulation.  

 

Others consider a type of written call option for a successful PPP project which consists of a 

transfer back to the government for a nil, minimum or residual price at the end of the concession 

period. Atlantica (2015) has invested in a Polish toll road which has a profit sharing scheme 

with the State share rising in line with increases in the shareholder returns, and on the 

termination of the concession the infrastructure must have at least 50% of its remaining useful 

life. Other possible benefits for a government are reductions in the feed-in-tariff for electricity 

if construction costs are below expected levels, as in the proposed Hinkley Point C 

arrangements in the U.K., National Audit Office (2016).  Not all authors investigate the 

incentives for the concessionaire, for instance to control construction costs, or to operate just 

short of the level that triggers the upside call option, or to reduce the project volatility by 

hedging or issuing risk sharing debt instruments.  

 

Besides these numerical investigations, there are two key analytical studies. Takashima et al. 

(2010) design a PPP deal involving government debt participation that incorporates a floor on 
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the future maximum loss level where the investor has the right to sell back the project whenever 

adverse conditions emerge. Using an analytical model, they show the effect of such deals on 

the investment timing decision. Also, Armada et al. (2012) make an analytical comparison of 

various subsidy policies and a demand guarantee scheme.  In summary, literature is full of 

examples of floor only, ceiling only, and collar arrangements for PPP projects, which, however, 

are often more complicated than the analytical models presented below.  

 

Several authors focus on the conflict between a principal GOV and agent concessionaire CON 

implicit in contracts.  Chevalier-Roignant et al. (2011) and Azevedo and Paxson (2014) survey 

many real option game problems between principal and agent.  Páez-Pérez and Sándhez-Silva 

(2016) focus on the conflictive roles in a PPP infrastructure arrangement.  Scandizzo and 

Ventura (2010) is the closest paper to ours with a focus on “calculating a baseline to organize 

a concession contract…to measure the balance of power between the public and the private 

party”, especially in Autostrade S.P.A. 

 

Our contribution consists of analytical models for a post-investment (ACTIVE) collar and a 

pre-investment (INVEST) collar, so the costs and benefits to the CON and GOV can be clearly 

identified, initially and as the parameter values evolve over time.  Also, it is easy to see what 

initial parameter values the CON and GOV are likely to over (under) estimate or emphasize, 

and what basic incentives are evident for the two parties to a PPP arrangement.  The basic game 

theory applicable to a principal and an agent is that the incentives for the agent should be allied 

to the objectives of the principal, and that the principal monitors periodically the performance 

of the agent to see whether those objectives are being met. 

 

This paper is organized in the following way. The fundamental investment opportunity model 

(without a collar) is reproduced to act as a benchmark for comparing the qualities of the with-

collar model. We then proceed to formulate the with-collar model analytically and examine its 

key properties. This requires developing the collar representation for an active project and 

incorporating its features within an investment opportunity model. In section 4, further insights 

are gained from performing a numerical sensitivity analysis. Section 5 presents some of the 

more interesting aspects of “who wins, who loses, why” between the CON and GOV as 

parameter values change. The versatility of the analytical representation is demonstrated in 

section 6 through extensions to two additional complex extensions. The last section is a 

conclusion.  
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2 Fundamental Model 

For a firm in a monopolistic situation confronting a single source of uncertainty due to output 

price1 variability, and ignoring operating costs and taxes, the opportunity to invest in an 

irretrievable project at cost K  depends solely on the price evolution, which is specified by the 

geometric Brownian motion process: 

 d d dP P t P W     (1) 

 

where   denotes the expected price risk-neutral drift,   the price volatility, and dW  an 

increment of the standard Wiener process. Using contingent claims analysis, the option to 

invest in the project  F P  follows the risk-neutral valuation relationship: 

  
2

2 21
2 2

0
F F

P r P rF
P P

 
 

   
 

  (2) 

where r   denotes the risk-free interest rate and r    the rate of return shortfall. The 

generic solution to (2) is: 

   1 2

1 2F P A P A P
 

    (3) 

where 
1 2,A A  are to be determined generic constants and 

1 2,   are, respectively, the positive 

and negative roots of the fundamental equation, which are given by: 

 

2

1 1
1 2 2 22 2 2

2
,

r r r 
 

  

    
       
   

  (4) 

In (3), if 2 0A   then F is a continuously increasing function of P  and represents an American 

perpetual call option, Samuelson (1965), while if 1 0A   then F is a decreasing function and 

represents a put option, Merton (1973), Merton (1990) and Alvarez (1999).  

 

In the absence of other forms of optionality and a fixed output volume Y , a firm optimally 

invests when the value matching relationship linking the call option value and the net proceeds 

PY K   holds: 

 1

0A P PY K
   . (5) 

 

                                                 
1 This model can easily be altered to involve quantity (Y) uncertainty, for toll roads with stochastic traffic and 

tolls, where R=X=P*Y, as in CON vs. GOV and Case A and B. 
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Following standard methods, the without-collar optimal price threshold level triggering 

investment 0P̂  is: 

 1
0

1

ˆ
1

P K
Y

 





 , (6) 

and the value function is: 

  

1

0

1 0
0

0

ˆfor
ˆ1

ˆfor ,

K P
P P

PF P

PY
K P P







  
  
    

  


  (7) 

with: 

 
1 11

0 0
0

1 1

ˆ ˆ
.

1

P Y KP
A

 

 

 

 


  (8) 

 

3 Investment and Collar Option 

3.1 Real Collar Option for an ACTIVE Project 

A collar option is designed to confine the output price for an active project to a tailored range, 

by restricting its value to lie between a floor 
LP  and a cap 

HP . Whenever the price trajectory 

falls below the floor, the received output price is assigned the value 
LP , and whenever it 

exceeds the cap, it is assigned the value 
HP . By restricting the price to this range, the firm 

benefits from receiving a price that never falls below 
LP  and obtains protection against adverse 

price movements, whilst at the same time, it is being forced never to receive a price exceeding 

HP  to sacrifice the upside potential. Protection against downside losses are mitigated in part by 

sacrificing upside gains. If a government offers a firm a price collar in its provision of some 

output Y , the government compensates the firm by a positive amount equalling  LP P Y  

whenever 
LP P , but if the cap is breached and 

HP P , then the firm reimburses the 

government by the positive amount  HP P Y . It follows that for an active project, the revenue 

accruing to the firm is given by     min max ,C L HP P P P Y   and its value 
CV  is described 

by the risk-neutral valuation relationship: 
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    
2

2 21
2 2

0C C
C C

V V
P r P rV P

P P
  

 
    

 
.  (9) 

The relationship (9) and (2) are identical in form except for the revenue function. 

 

The valuation of a with-collar active project is conceived over three mutually exclusive 

exhaustive regimes, I, II and III, specified on the P  line, each with its own distinct valuation 

function. Regimes I, II and III are defined by ,LP P
L HP P P   and 

HP P , respectively.  

Over Regime I, the firm is granted a more attractive fixed price LP  compared with the variable 

price P , but also possesses a call-style option to switch to the more favourable Regime II as 

soon as P  exceeds LP . This switch option increases in value with P  and has the generic form 

1AP
 , where A  denotes a to be determined generic coefficient. Over Regime III, the firm is 

not only obliged to accept the less attractive fixed price HP  instead of P  but also has to sell a 

put-style option to switch to the less favourable Regime II as soon as P  falls below HP . This 

switch option decreases in value with P  and has the generic form 2AP
 . Over Regime II, the 

firm receives the variable price P , possesses a put-style option to switch to the more favourable 

Regime I as soon as P  falls to LP , but sells a call-style option to switch to the less favourable 

Regime III as soon as P  attains 
HP . The various switch options are displayed in Table 1, where 

A  denotes a generic coefficient. 

 

Table 1: The Various Switch Options 

 

From – To Option Type Value Sign of A  

I – II Call 1AP
  + 

II – I Put 2AP
  + 

II – III Call 1AP
  - 

III – II Put 2AP
  - 

 

If the subscript C  denotes the with-collar arrangement, then after paying the investment cost, 

the valuation function for the firm managing the ACTIVE project is formulated as: 
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  

1

1 2

2

11

21 22

32

                  for 

   for 

                  for .

L
C L

C C C L H

H
C H

P Y
A P P P

r

PY
V P A P A P P P P

P Y
A P P P

r



 






 




    



 


  (10) 

In (10), a coefficient’s first numerical subscript denotes the regime  1 ,2 ,3I II III   , while 

the second denotes a call if 1 or a put if 2. The coefficients 11 22,C CA A  are expected to be positive 

because the firm owns the options and a switch is beneficial. In contrast, the 21 32,C CA A  are 

expected to be negative because the firm is writing the options and is being penalized by the 

switch. The real collar is composed of a pair of both call and put options. The first pair 

facilitates switching back and forth between Regime I and II, which results in an advantage for 

the concessionaire, while the second pair facilitates switching back and forth between Regime 

II and III, which results in a disadvantage for the firm. The real collar design differs from the 

typical European collar, which only involves buying and selling two distinct options. 

 

A switch in either direction between Regime I and II occurs when LP P . It is optimal 

provided the value-matching relationship: 

 1 1 2

11 21 22
L

C C C

P Y PY
A P A P A P

r

  


      (11) 

 

and its smooth-pasting condition expressed as: 

 1 1 2

1 11 1 21 2 22C C C

PY
A P A P A P

    


     (12) 

 

both hold when evaluated at LP P . Similarly, a switch in either direction between Regime II 

and III occurs when 
HP P . It is optimal provided the value-matching relationship: 

 1 2 2

21 22 32
H

C C C

P YPY
A P A P A P

r

  


      (13) 

 

and its smooth-pasting condition expressed as: 

 1 2 2

1 21 2 22 2 32C C C

PY
A P A P A P

    


     (14) 
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both hold when evaluated at 
HP P .  A novel expression for the option coefficients is: 

 

 
 

 
 

 
 

 
 

1 1 1

2 2 2

2 2 2 2

11 21

1 2 1 2

1 1 1 1

22 32

1 2 1 2

0, 0,

0, 0.

HH L
C C

H L H

L H L
C C

L H L

r r P Y r rP Y P Y
A A

P P r P r

P Y r r r rP Y P Y
A A

P r P P r

  

  

   

     

   

     

    
      

  

     
      

  

  (15) 

 

The signs of the four option coefficients comply with expectations. Other findings can also be 

derived. The coefficient 22CA  for the option to switch from Regime II to I, which depends on 

only LP  and not on HP , increases in size with LP . This switch option becomes more valuable 

to the firm as the floor level increases. Similarly, the coefficient 21CA  for the option to switch 

from Regime II to III, which depends on only HP  and not on LP , decreases in magnitude with 

HP . This switch option becomes less valuable to the government as the cap level increases. 

The coefficients 
11CA  and 32CA  for the switch option from Regime I to II and from Regime III 

to II, respectively, depend on both LP  and HP . 

3.2 Investment Option 

We conjecture that the with-collar optimal price threshold ˆ
CP  triggering an investment lies 

between the floor and cap limits, ˆ
L C HP P P  . The floor limit holds because no optimal 

solution exists in its absence, that is for ˆ
C LP P . We subsequently demonstrate that ˆ

CP  attains 

a minimum of LP rK Y  and a maximum of 0P̂  for 0LP  , so the introduction of a price floor 

always produces at least an hastening of the investment exercise and never its postponement. 

The cap limit holds because of the absence of any effective economic benefit from exercising 

at a price exceeding the cap. Initially the price can be presumed to be near zero and the 

investment option treated as out-of-the-money. With the passage of time, the price trajectory 

can be expected to reach the cap HP  before reaching some level exceeding HP , and since the 

value outcome HP Y r  is the same for both 
HP P  and 

HP P , there is no gain in waiting. 

The following analysis treats the threshold  ˆ
CP  as lying between the lower and upper limits. 
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When ˆ
L C HP P P  , the optimal solution is obtained from equating the investment option value 

with the active project net value at the threshold ˆ
CP P .  The optimal solution is determined 

from both the value-matching relationship as in Clark and Easaw (2007): 

 1 1 2

0 21 22C C C

PY
A P A P A P K

  


      (16) 

 

and its smooth-pasting condition expressed as: 

 1 1 2

1 0 1 21 2 22  C C C

PY
A P A P A P

    


     (17) 

 

when evaluated for ˆ
CP P . This reveals that: 

 21 1 2
22

1 1

ˆ
ˆ

1 1

C
C C

P Y
K A P

  

  


 

 
  (18) 

 

 

1

2 1

1

2
0 22 21

1 1

2 2 21

1 2

ˆ 1 ˆ
1 1

ˆ1 ˆ1 .

C
C C C C

C
C C

KP
A A P A

P Y
K P A


 





 

 
  






 
   

  

 
    

  

  (19) 

The absence of a closed-form solution requires ˆ
CP  to be solved numerically from (18), and 

0CA  from (19). The investment option value INVEST  0CF P  for the project is: 

  

1

1 2

0

0

21 22

ˆ                  for 

ˆ   for ,

C C

C

C C C H

A P P P

F P PY
K A P A P P P P



 



 


 
    



  (20) 

 

where ˆ
L C HP P P  . 

 

From (18), the threshold ˆ
CP  depends only on the floor LP   through 22CA , but not on the cap 

HP . Adjusting the cap of the collar has no material impact on the threshold, so the timing 

decision is affected by the losses foregone by having a floor but not by the gains sacrificed by 

having a cap. Since 22CA  is non-negative, the with-collar threshold ˆ
CP  is always no greater 

than the without-collar threshold 0P̂ , and an increase in the floor produces an earlier exercise 
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due to the reduced threshold level. However, the floor cannot increase without bound and 

consequently the with-collar threshold has a lower limit. In (18), if 0,LP   then 22 0CA   and 

0
ˆ ˆ
CP P , the optimal investment threshold without a floor. Further, if ˆ

C LP P , then 
LP Y rK  

and consequently the investment threshold equals the zero NPV (Net Present Value) solution, 

since the project remains being viable whatever price trajectory emerges subsequent to exercise 

due to the presence of the floor level. It follows that the corresponding bounds for the optimal 

investment trigger level ˆ
CP  and the price floor level LP  are  0

ˆ,LP P  and  0, rK Y , 

respectively, and that ˆ
CP  is a decreasing function of  LP . 

 

An investment opportunity with a collar having only a floor is always more valuable than one 

without, and this value increases as the floor becomes increasingly more generous. We show 

this by establishing that the investment option coefficient 
0CA  with 

21 0CA  , (19), is always 

at least greater than 
0A , (8), and that 

0CA  is an increasing function of ˆ
CP . Since 0

ˆ ˆ
CP P   then 

from (19): 

  
1

10 0
0 2 2 0

1 2 1

ˆ ˆ1 ˆ1
1

C

PY KP
A K P


 

   




 
    

  
  

In the absence of a cap, having a floor is always at least as valuable as not having a floor. 

Further, by differentiating (19) with respect to ˆ
CP , 

0CA  is an increasing function of ˆ
CP . 

However, if a collar contains both a floor and a cap, then the sign and magnitude of the switch 

option coefficient 
21CA  have to be taken into account. This coefficient is negative and its 

magnitude decreases towards zero as 
HP  becomes increasingly large, so the negative effect of 

a cap on 
0CA  is strongest and most significant for relatively low 

HP  levels. This means that for 

sufficiently low 
HP  levels, 

0 0CA A  implying that an investment opportunity without a collar 

is more valuable than one with a collar despite the latter having a lower investment threshold 

and an earlier exercise time. 

3.3 Floor and Cap Options 

The analogous results, investment threshold and investment option value, for the floor only and 

the cap only are reproduced in the Appendix. 
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4 Numerical Illustrations 

Although the analytical results reveal some interesting properties, further insights into model 

behaviour are obtainable from numerical evaluations. The base case parameter values are 

K=100, Y=1, =25%, r=4%, and =4%. The evaluated power parameters for these values are 

1 1.7369   and 
2 0.7369    from (4), with 0

ˆ 9.4279P   and 0 2.7547,A   from (6) and (8)

, respectively. In this section, we consider first the behaviour of the switch options for the collar 

model before proceeding to the properties of the investment threshold and option value of the 

investment opportunity for the collar model, and ending with an investigation of changing 

volatility on the investment decision. 

 

4.1 Collar ACTIVE Switch Options 

Using the base case parameter values, we illustrate in Table 2 the evaluated switch option 

coefficients, 
11 21 22 32, , ,C C C CA A A A  in Panels A-D, respectively, for various floor and cap levels. 

The floor levels are chosen to vary between a minimum 0LP   and a maximum 4LP rK Y 

, and the cap levels between a minimum 10HP  , slightly in excess of 0P̂ , and a maximum 

HP   . As expected, all the four coefficients adopt the correct sign, 
21CA  is independent of 

LP  and 
22CA  of 

HP , while 
11 32,C CA A  depend on both. Further, 

11CA , the coefficient for the 

option to switch from Regime I to II, decreases with 
LP  but increases with 

HP , since for any 

feasible Regime I price level, the switch option is more valuable for lower 
LP  levels because 

of the time value of money and that the price level is closer to 
LP , and for higher 

HP  levels 

because less is being sacrificed. Similarly, 
32CA , the negative coefficient for the option to 

switch from Regime III to II  increases in magnitude with 
HP  because of the time value of 

money and decreases with 
LP  because less is being sacrificed. Finally,  

21CA , the negative 

coefficient for the option to switch from Regime II to III decreases in magnitude with 
HP  

because less is being sacrificed at higher 
HP  levels, while 

22CA , the coefficient for the option 

to switch from Regime II to I increases with 
LP  because more is being gained for higher 

LP  

levels. Note that the coefficients for the price floor are also available from Table 2 in the rows 

where 
HP   , while those for the price cap model are available from the columns where 

0LP  . 
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***Table 2 about here*** 

 

The switch option value  CF P  is derived from the active asset value  CV P , (10) (15): 

  

1

1 2

2

11

21 22

32

                  for 

  for 

                  for .

C L

C C C L H

C H

A P P P

F P A P A P P P P

A P P P



 



 


   




  (21) 

 

The difference between 
CV , (10), and 

CF , (21), is the present value in the absence of any 

optionality. Since 
C CV F  differs for each of the 3 regimes, 

CF  would normally experience a 

discontinuity jump at 
LP P  and 

HP P . However, in our case, since r  and   are selected to 

be equal, the discontinuity jumps are absent. Figure 1 illustrates the effect of 
LP  and 

HP  

variations on  CF P  for constant 
HP  and 

LP , respectively. These profiles tend to follow a 

similar pattern, being positive for P  values around 
LP  where the owned option to switch 

between Regime I and II dominates, and negative around 
HP  where the sold option to switch 

between Regime II and III dominates. In Figure 1 where 
HP  is held constant, a 

LP  increase 

shifts the profile upwards for 
LP P  that reflects the enhanced switch option value due to the 

gain in downside protection.  

*** Figure 1 about here*** 

4.2 Investment Option 

Using base case values, the investment threshold and investment value option coefficient 

solutions for variations in 
LP  and 

HP , where 
LP  varies between 0 and rK Y  and 

HP  between 

10 and infinity are illustrated in Table 3.  Panel A exhibits the threshold ˆ
CP , (18), and Panel B 

the option coefficient 0CA  from (19). As expected, the threshold declines as 
LP  increases 

within its allowable range, showing that an earlier exercise is achievable only for improvements 

in the floor. The locus relating the threshold ˆ
CP  with the floor 

LP  defined by (18) is illustrated 

in Figure 2, which reveals not only the feasible limits of ˆ
CP  and 

LP , but also their  negative 

relationship. In contrast, the choice of cap 
HP has no effect on the threshold and the timing 

decision. In Panel B of Table 3, the option coefficient is observed to move in line with positive 

changes in 
LP   or .HP  A 

LP  increase raises the extent of the downside protection thereby 
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making the investment option more attractive, while a 
HP  increase reduces the extent of the 

upside sacrifice thereby making it more valuable. In Table 3, the results for the floor model are 

obtainable from the row where 
HP   , and for the cap model from the column where 0LP 

.  

***Table 3 and Figure 2 about here*** 

 

The relationship between the before and after exercise investment value, with and without a 

collar, and price is illustrated in Figure 3. We select the collar levels as 4.0LP   and 20.0HP 

, which yield a threshold of ˆ 4.000CP    and option coefficient 
0 2.5270CA  . Despite having 

a higher threshold level, which suggests an earlier exercise for the collar variant if exercised, 

the collarless variant is always more favourable for the concessionaire by having a greater 

option coefficient.  

***Figure 3 about here*** 

 

The cost of the subsidy can be neutralized and the collar made “costless” by suitably 

engineering its floor and cap levels. For the ACTIVE concessionaire, or for an investor owning 

an ACTIVE project, a “costless collar” might be obtained from a third party equating the 

written call and protective put 1 2

21 22   for C C L HA P A P P P P
 
   .  For instance, for base case  

parameter values when P=6, PL=4, PH=15.6,  1 2

21 22 .C CA P A P
 

   

 

For the INVEST opportunity, a “costless collar ” might be designed in the following way: (i) 

the without-collar option coefficient 
0A  is evaluated from (8), (ii) for some pre-specified value 

of the collar threshold ˆ
CP , perhaps equalling the prevailing price, the implied floor 

LP  can be 

determined from (18) (19) because of its invariance with 
HP , and finally (iii), by setting 

0 0CA A  the implied cap is determined from (19). Some illustrative “costless” 
LP  and 

HP  pairs 

are presented in Table 4. The pairs are inversely related, as expected, since for the collar to 

remain “costless”, any increase in the floor and reduction in downside risk has to be 

compensated by an additional sacrifice in upside potential. 

***Table 4 about here*** 

In the presence of a stochastic output price, a collar option can be designed that protects the 

investor from downside risk by limiting adverse prices to a floor while simultaneously 
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compelling the investor to forego favourable prices above a cap. This trade-off between upside 

potential and downside risk can be engineered to make the collar-variant to be more valuable 

as well as supporting an earlier exercise. The floor and cap affect the solution in distinct ways. 

Variations in 
HP  have no effect at all on the investment threshold, but the sacrifice of additional 

upside potential is reflected in decreases in the investment option coefficient. In contrast, an 

improvement in 
LP  and reduction in downside risk produces both a fall in investment threshold 

prompting an earlier exercise and a rise in the investment option coefficient making it more 

valuable. When designing a collar, initial attention focuses on the floor in determining the 

threshold for ensuring the investment has a timely exercise, and then on the cap in assessing 

the extent of the value created by the floor is to be sacrificed. While a viable floor increase for 

a collar motivates early exercise as well as enhancing its attractiveness, a cap decrease incurs 

a sacrifice leading to a reduction in its attractiveness. 

4.2.1 Changes in Volatility 

In the absence of a collar, a volatility increase is known to accompany a rise in both the 

investment threshold and investment option value, Dixit and Pindyck (1994). By using base 

case values except that the volatility   varies incrementally up to a maximum of 50%, we 

compare the impact of volatility changes on the with- and without-collar solutions for 3LP   

and 500HP  .  The threshold for the without-collar variant is shown in Figure 4 to increase at 

a faster rate as volatility increases as expected because 0LP   and 0
ˆ ˆ
CP P  , so the with-collar 

variant possesses a lower threshold and an earlier timing for all positive  .  

 

The comparative timing decisions for the with- and without-collar variants remain essentially 

unaltered in the presence of a volatility change, because if 0LP   then 0
ˆ ˆ
CP P  while if 0LP   

then 0
ˆ ˆ
CP P  for all positive  . However, a volatility increase can produce a distinctive change 

in the with-collar option value, which can result in a change of the more preferred variant. If 

for low , the chance of a price trajectory penetrating the cap is insignificant, then the 

magnitude of the switch option coefficient 
21CA  is similarly insignificant and consequently the 

option coefficient is virtually unaffected. However, as   increases, the chance of penetrating 

the cap becomes increasingly significant and likewise the coefficient 
21CA , with the 

consequence that increases in the with-collar option coefficient begin to retard and falter 

enabling the without-collar option coefficient to assume dominance. In the design of a collar, 
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if a concessionaire perceives a likely volatility increase to be imminent, then the cap has to be 

adjusted upwards to ensure its acceptance by the investor community. 

*** Figure 4 about here *** 

5 Who Wins, Who Loses, Why? 

 

In the principal-agent problem (GOV-CON) and risk-sharing aspects of collar and floor or 

ceiling only arrangements, who wins, and who loses, as parameter values change are likely to 

be the indicators for CON versus GOV incentives after the initial transaction.  For an ACTIVE 

project post-investment with various PPP arrangements, it is assumed that the CON pays the 

“fair value” of the concession to the GOV initially.   In the base case, we also assume that the 

GOV has offered the CON a “costless” real collar arrangement, where the value of a CALL 

written by the CON to the GOV on upside revenues higher than the ceiling RH and a PUT 

written by the GOV to the CON on downside revenues lower than a floor RL are equal and 

RL<R<RH.  Both the CON and the GOV agree on the initial parameter values. The effect of 

changes in the parameter values can be divided generally into zero-sum games (where the CON 

gain/loss is equal to the GOV loss/gain, so that the CON plus GOV profit is zero), constant-

sum games, and variable-sum games (where the CON gain/loss less the GOV loss/gain varies).  

Changes in revenue volatility, interest rates, floor level, and ceiling level are zero-sum games, 

while changes in revenue and yield are variable-sum games, that is both CON and GOV benefit 

or both lose as the parameter values change, but not always by the same magnitude.  

ACTIVE 

We show here six examples of CON versus GOV results, as parameter values change (see a 

complete description of these and other  results in the Supplementary Appendix A (ACTIVE) 

and B (INVEST).  In Figure 5, from an initial “costless” collar if RL=4 and RH =15.6 and R=6, 

if R increases, both CON and GOV benefit in a variable-sum game, but on the upside the CON 

benefit less than the GOV due to the negative CALL increasing more than the PUT.  But, the 

CON loses less than the GOV on the downside due to the minimum revenue guarantee. 

*** Figure 5 about here *** 
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In Figure 6, from an initial volatility of 25%, if volatility increases, in a zero-sum game (where 

the benefits and costs change, but remain equal to each other) the CON suffers from the 

negative CALL increasing more than the PUT, and GOV benefits.  If volatility decreases from 

25%, CON benefits from the negative CALL decreasing less than the PUT, but when the 

volatility is close to zero, neither is of any value, thereby reverting to a costless collar.  

*** Figure 6 about here *** 

Since the GOV profit is increased when volatility increases past 25%, the GOV should 

welcome R volatility increases, and the CON strive for decreased volatility, perhaps through 

dynamic pricing or issuing debt instruments tied to revenue or traffic levels, or through hedging 

if possible.  

In Figure 7, from an initial interest rate of 4%, if the interest rate decreases, CON benefits from 

the negative CALL decreasing and the PUT increasing significantly.  If the interest rate 

increases from 4%, CON suffers from the negative CALL increasing and the PUT decreasing 

, and GOV experiences the opposite effect. So the CON might seek to protect herself from 

interest rate increases by entering into fixed rate loans to fund infrastructure investments, but 

with prepayment conditions which allow refinancing if interest rates decrease.  

*** Figure 7 about here ** *  

In Figure 8, changes in the asset yield result in a highly variable-sum game for the CON and 

GOV.  From an initial yield of 4%, if the yield  decreases, CON benefits from the PV (R/) 

increasing less the negative CALL increasing (which benefits the GOV).   If the yield increases 

from 4%, CON benefits from the negative CALL decreasing and the PUT increasing , offset 

by the PV decreasing.  GOV suffers from the negative CALL decreasing. The so-called asset 

yield, dividend, or convenience yield, or return “shortfall” is a difficult concept to interpret in 

most applications, illustrated in this case.  The GOV might seek to benefit protect herself by 

restricting the payouts of the CON, or by hedging using a term structure of revenue futures, but 

since the revenue is probably not a traded security, it is hard to imagine how GOV could realize 

this benefit practically.  

*** Figure 8 about here ** *  

It is interesting to compare collar arrangements with different floors and ceilings, and with 

floor only or ceiling only arrangements.  Figure 9 shows the risk sharing collar arrangements 
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between CON and GOV as a function of different levels of the floor. It is natural that the CON 

benefits (and the GOV suffers) from higher floors, in a zero-sum game.  

*** Figures 9 and 10 about here ** *  

Equally dramatic in a zero-sum game is the effect of changes in revenue volatility on risk 

sharing when there is only a floor, or alternatively only a ceiling.  Figure 10 shows the risk 

allocation with a floor only as a function of R volatility, but with the CON benefit increasing 

with volatility up to a certain point (about 45%), when thereafter volatility increases result in a 

decline of the CON benefit. 

6 Two Additional Cases 

We now consider two illustrative cases, case-A and case-B, to investigate whether the findings  

for the plain vanilla collar formulation concerning the nature of the investment threshold and 

option coefficient extend to more complicated collar designs. In case-A, we increase the 

number of regimes by 1 and formulate the shared revenue for the outer regimes of the collar to 

depend on a proportion of the revenue and not on a constant as for the vanilla version. Our 

findings for this revision demonstrate that an analytical solution is obtainable despite the 

increase in complexity.  Some of the sensitivities to changes in parameter values are similar to 

the previous collar model, but some are surprising.  Similarly, the number of regimes for case-

B, is also increased by 1, but there is also the possibility of giving the investor a “sell-out” or 

exit option. This revision does produce a notable change in the resulting solution compared 

with the plain vanilla findings, which is due to the altered switch option structure. The notation 

we use in section 6.1 and 6.2 are specific to each of those 2 sections, except that 1  and 
2  are 

specified by (4). 

6.1 Case-A  Partial Put and Partial Call 

Shaoul et al. (2012) report that for a U.K. rail franchise agreement, investors are reimbursed 

for 50% of any revenue shortfall below 98% of forecast and 80% below 96%, but suffer a claw-

back of 50% of revenue exceeding 102%, equivalent to partial puts and calls.  In case-A, we 

amend this arrangement as follows. The actual revenue generated from operating the franchise 

through making an irrecoverable investment with cost K  is denoted by X . For the purpose of 

determining the revenue to be received by the investor, the agreement with the government 

divides the revenue schedule into 4 distinct exhaustive regimes. The 3 junctions for 

neighbouring regimes occur at 
LLX X , where 

LLX  represents the lowest limit, at 
LX X  



20 

 

where 
LX  is the lower limit, and at 

UX X  where 
UX  is the upper limit, with 

LL L UX X X 

. Under Regime I with 
LLX X , the “revenue received” by the concessionaire is the actual 

revenue X  plus a proportion 1 LLw  of the shortfall below forecast, under Regime II with 

LL LX X X  , revenue received is X  plus a proportion 1 Lw  of the shortfall below forecast, 

where 0 1LL Lw w   , under Regime III with 
L UX X X  , revenue received is X , and 

under Regime IV with 
UX X , the revenue received is X  less a proportion 1 Uw  of the 

excess over forecast where 0 1Uw  . In the absence of any fixed costs and taxation, the 

regime value is determined not only from the revenue schedule but also from the presence of 

any switch options.  

 

For each regime, if there exist opportunities for switching to an upper or lower neighbouring 

regime, then these are represented by options, a call-style option for upward switching and a 

put-style option for downward switching, so both Regime II and III are characterized by both 

call and put options, while Regime I by a call and Regime IV by a put. Also, a switch producing 

a revenue advantage is represented by a positive option value coefficient, while that for a 

revenue disadvantage by a negative coefficient. The specification and associated revenue 

values for each of the four regimes are listed in Table 5. 

Table 5 

Regime Specification and Revenue Schedule for Case-A 

 

Regime Specification Value 

I 
LLX X    

   

1

11

1

I

L L L LL LLLL

V X A X

w X w w Xw X

r r







 
  

  

II LL LX X X     

 

1 2

21 22

1

II

L LL

V X A X A X

w Xw X

r

 



 


 

  

III L UX X X      1 2

31 32IIIV X A X A X

X

 



 


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IV UX X    

 

2

42

1

IV

U LU

V X A X

w Xw X

r








 

  

 

The six unknown switch option coefficients, 
11 21 22 31 32 42, , , , ,A A A A A A , are determined from the 

value matching relationships and associated smooth pasting conditions. The value matching 

relationships, defined at each of the 3 junctions of neighbouring regimes are, respectively: 

     0
LL

II I
X X

V X V X


      (22) 

     0
L

III II
X X

V X V X


      (23) 

     0
U

IV III
X X

V X V X


       (24) 

Equations (22)-(24) together with the 3 associated smooth pasting conditions are sufficient to 

solve for the unknowns. The resulting solutions together with their signs are presented in Table 

6 in their order of calculation. The coefficients having a positive value indicate that the 

corresponding switch options are owned by the investor and contribute to their investment 

value, whilst those having a negative sign are sold and detract from the investment value. 

 

Table 6 

Case-A Solutions and Conditions for the Switch Option Coefficients Partial Collar Model 

 

Coefficient Solution Condition 

    
  2

1 1

22

1 2

1L LL LL

LL

w w X r
A

r X


 

  

  



  22 0A    

    
  1

2 2

31

1 2

1 1U U

U

w X r
A

r X


 

  

  
 


  31 0A    

    
  1

2 2

21 31

1 2

1 1L L

L

w X r
A A

r X


 

  

  
 


  21 0A    

    
  2

1 1

32 22

1 2

1 1L L

L

w X r
A A

r X


 

  

  
 


  32 0A    

   2

1 1
11 21 22

L LL LLLL

LL LL

w w X rX
A A A

X r X



 





 
     11 0A    
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   1

2 2
42 31 32

1 L UU

U U

w X rX
A A A

X r X



 





 
     42 0A    

 

 

The optimal exercise of the investment opportunity is characterized by the unknown revenue 

threshold denoted by 0X̂ , which is derived from the value matching relationship and optimality 

condition. At 0
ˆX X , the opportunity value, 1

0 0
ˆA X


 with unknown coefficient 
0 0A  , is 

sufficient to compensate the value of net revenue generated by the project, less the investment 

cost K, plus the values of any available switch options. For the purpose of analysis, we presume 

that exercise occurs for 
L UX X X  , where the revenue enjoys its greatest incremental rate. 

The value matching relationship is: 

 1 1 20
0 0 31 0 32 0

ˆ
ˆ ˆ ˆX

A X K A X A X
 


      (25) 

Due to the similarity between (16) and (25), it is straightforward to deduce that 0X̂  and 
0 0A   

are given by, respectively: 

 20 1 1 2
32 0

1 1

ˆ
ˆ

1 1

X
K A X

  

  


 

 
  (26) 

 

 

1

2 1

1

0 2
0 32 0 31

1 2 1

0
2 2 0 31

1 2

ˆ 1 ˆ
1

ˆ1 ˆ1 .

KX
A A X A

X
K X A


 





  

 
  






 
   

  

 
    

  

  (27) 

Equations (26) and (27) reveal that while the investment threshold 0X̂  depends only on 
32,A  

the option coefficient 
0A  depends on both 

31A  and 
32A . This result echoes the findings for the 

plain vanilla collar formulation. The investment threshold depends on 
32A , which depends on 

the floor-like attributes 
LX  and 

Lw , and on 
22A , which also depends on the floor-like attributes 

LLX  and 
LLw . The threshold is determined by only floor-like attributes. Similarly, the option 

value depends not only on 
32A  but also 

31A , which depends on the cap-like attributes 
UX  and 

Uw . The investment option value is determined by both floor- and cap-like attributes. A 

systematic approach for a government in deciding suitable values for the floor- and cap-like 

attributes is identify the threshold level, which may be aligned to the prevailing level to ensure 

immediate exercise, in order to determine the floor-like attributes, and then to invoke policy 
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for identifying a subsidy level, which defined by the difference between the without- and with-

collar option values is used to determine the cap-like attributes. It is interesting to note that 

although these findings are based on assuming that 0
ˆ

L UX X X  , they also result when 

assuming that 0
ˆ

LL LX X X  (for numerical illustrations see the Supplementary Appendix). 

6.2 Case-B 

We now turn to a more sophisticated version of the collar option also having 4 regime layers 

involving a differential tax structure and exit option. Its development combines some aspects 

of the models proposed by Rose (1998) and Takashima et al. (2010). A firm in a monopolistic 

situation possesses the opportunity to invest in an irretrievable project having a capital 

expenditure of K . The revenue generated by the active project denoted by X  is described by 

a geometric Brownian motion process having identical parameter values as before. Out of 

revenue is paid a constant fixed cost f  yielding after-tax net revenue of   01X f   , 

where 
0  is the relevant corporate tax rate. The firm negotiates a contractual agreement with 

the government, which offers the firm protection against adverse revenue movements but at 

the risk that favourable movements incur higher tax rates. If an adverse movement produces a 

net revenue loss   0X f  , initially the government then reimburses the firm for the 

difference so the net revenue is specified by  max ,0X f . For subsequent adverse 

movements, the firm has the right to dispose of the project asset to the government for the 

amount
DK , where 

DK K . Optimal disposal occurs as soon as revenue falls to the exit 

threshold, ˆ
DX  where ˆ

DX f . In contrast, if the movement is favourable, then the project 

attracts a higher tax rate 
1 0   for revenues exceeding some pre-specified upper limit 

UX . 

For subsequent favourable movements where 
UUX X , with 

UU UX X , the revenue is capped 

at the pre-specified top upper limit 
UUX .  

 

There are four identifiable distinct and exhaustive regimes for this collar arrangement, defined 

over  ˆ ,DX  . Regime I is specified by ˆ
DX X f  ; Regime II by the 

Uf X X  ; Regime 

III by 
U UUX X X  ; and Regime IV by 

UUX X . For Regimes II and III, embedded options 

exist for switching to the neighbouring lower and upper regimes, while for Regime I, there 

exists options for switching to Regime II and for disposal, and for Regime IV, an option for 
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switching to Regime III. The regime specifications and values , , , ,JV J I II III IV  are 

reproduced in Table 7. 

 

Table 7 

Regime, Specification and Value for Case-B 

 

Regime Specification Value 

I ˆ
DX X f      1 2

11 12IV X A X A X
 

    

II Uf X X    

   

1 2

21 22

0 01 1

IIV X A X A X

X f

r

 

 



 

 
 

  

III 
U UUX X X    

      

1 2

31 32

1 1 1 01 1

III

U

V X A X A X

X f X f

r r

 

   



 
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At the disposal junction and at each of the three junctions having neighbouring regimes, there 

is a value matching relationship: 

  
ˆ

0
D

I D
X X

V X K


      (28) 

     0II I
X f

V X V X


      (29) 

     0
U

III II
X X

V X V X


      (30) 

     0
UU

IV III
X X

V X V X


      (31) 

The 4 equations (28)-(31) together with the 4 associated smooth pasting conditions are 

sufficient for solving the 8 unknowns 11 12 21 22 31 32 42
ˆ, , , , , , , DA A A A A A A X 2. The solutions, which 

are evaluated in the order of presentation, are presented in Table 8 together with any conditions. 

 

                                                 

2 Note that KD has to be specified so that  ˆ0 DX f  . 



25 

 

Table 8 

Case-B Solutions and Conditions for the Switch Option Coefficients  

 

   

  1

2 2 1

31

1 2

1 1UU

UU

X r
A

r X


  

  

  
 


  0   

   

  1

2 2 1 0

21 31

1 2

1U

U

X r
A A

r X


   

  

  
 


  0   

   

  1

2 2 0

11 21

1 2

1 1f r
A A

r f


  

  

  
 


  0   

 

1

1

2

11 1 2

ˆ D
D

K
X

A




 

 
    

 ˆ0 DX f    

  2

1
12

1 2
ˆ

D

D

K
A

X




 



  0   

    1

2 2

0 1 11 21

22 12

2 2

1f A A f
A A

f f



 

 

  

 
      0    

    1

2 2

1 0 1 21 31

32 22

2 2

U U

U U

X A A X
A A

X X



 

  

  

 
     0   

  1

2 2

1 1 31
42 32

2 2

1UU UU

UU UU

X A X
A A

X X



 

 

  


    0   

 

 

The investment threshold 0X̂  is determined as before. At 0
ˆX X , the opportunity value 1

0 0
ˆA X


 

where 
0 0A   equals the generated net value plus any switching options. The net value depends 

on the relevant regime at exercise, which we presume occurs during Regime II because of its 

higher net revenue and lower tax rate, so the net value is given by  IIV X K . The value 

matching relationship is given by: 

 
   

1 1 20 0 0

0 0 21 0 22 0

ˆ 1 1ˆ ˆ ˆX f
A X A X A X K

r

   



 
       (32) 

From (32) and its associated smooth pasting condition, the investment threshold is obtained 

numerically from: 
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and the option coefficient from: 
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  (34) 

In the absence of any collar arrangement, but retaining the lower tax rate, the investment 

threshold 00X̂  and option coefficient 
00A  are given by standard theory as, respectively: 
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X r X
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  (36) 

From (33) and (34), respectively, the investment threshold 0X̂  depends on 
22A  while 

0A  

depends on both 
22A  and 

21A . This result is similar to the plain vanilla collar formulation, but 

with an important exception. Whilst for the plain vanilla collar, 
21A  depend on the floor and 

cap attributes and 
22A  on floor property alone, respectively, for case-B, they both depend on 

both attributes. The value of 
22A  is composed of 3 components: the first depends on the fixed 

cost, a basis for the floor specification, the second on the difference between 
11A  and 

21A , and 

third on 
12A . The difference 

11 21A A  similarly depends on only the fixed cost, but 
12A  depends 

on 11 21 31
ˆ , , ,DX A A A , where 

21A  and 
31A  depend on 

UX  and 
UUX , bases for the cap specification. 

The values of both the investment threshold and option coefficient are influenced by both the 

floor and cap attributes.  

 

The explanation underpinning the dependence of the case-B investment threshold on both the 

floor and cap attributes hinges on its distinctive collar design. Unlike the plain vanilla variant  

which permits switching between all neighbouring regimes, there is no recourse in the case-B 

design to revert back to operating the active asset following its disposal. The plain vanilla and 

case-B designs are subtly different, a distinction causing the threshold for the latter to depend 

on both the floor and cap attributes (see the Supplementary Appendix). 
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The ACTIVE Case A and B collars have somewhat different sensitivities to changes in P and 

P volatility.  ACTIVE Case B partial collars combined increase more or less linearly with 

increases in P, while Case A partial collars with the parameter values in the Supplementary 

Appendix, the same proportional sharing over the regimes, show a decreasing sensitivity to 

increases in P.  The sensitivity of Case A and B to changes in P volatility (“vegas”) are 

substantially different, with the VC partial collar A hardly changing as volatility increases, but 

the VC partial collar B decreases sharply with volatility increases (see the Supplementary 

Appendix). 

 

The INVEST Case A and B collars have substantially different sensitivities to changes in P and 

P volatility. INVEST Case B partial collars combined increase with increases in P, while Case 

A partial collars first increase and then decrease with increases in P.  The sensitivity of Case A 

and B to changes in P volatility are opposite, with the VC partial collar A increasing as P 

volatility increases, but the VC partial collar B decreases sharply with volatility increases.  The 

implications are that a prospective concessionaire expecting volatility increases in the future 

would not expect to be compensated post-investment in Case A, but would for Case B, but for 

pre-investment combined options the concessionaire would appreciate increased volatility in 

the underlying P in Case A arrangements, but not for Case B schemes (see the Supplementary 

Appendix).   

 

Note that the incentives for volatility management of the concessionaire who is interested in 

maximizing ROV pre-investment are completely different for the case A and B arrangements.  

The concessionaire should prefer to reduce volatility both pre-investment for Case B (increases 

ROV) and post-investment (ACTIVE), but not necessarily for Case A arrangements.  

Governments seeking early investment should prefer reduced volatility in both cases.  

7 Conclusion 

In a mainly analytical way, the properties of a plain vanilla collar, made up of a floor and cap, 

are investigated for an active asset using a real option formulation. The collar is composed of 

pairs of American perpetuity put and call options that confine a focal variable, such as revenue, 

price or volume, to a designated field specified by the floor and cap. We demonstrate that 

provided that the floor is positive and selected from its feasible domain, then the investment 
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threshold for a with-collar is always less than that for a without-collar asset opportunity. Under 

these conditions, the with-collar investment opportunity is exercised earlier and by inducing 

investment, the collar acts in a similar way as an investment subsidy. Whether the with-collar 

opportunity should be exercised in preference to the without-collar alternative depends on the 

relative magnitudes of their investment option values. Although only the floor governs the 

investment timing, both the floor and the cap are crucial in determining the real option value 

of the investment opportunity, but in opposing ways. The floor provides partial if not complete 

protection against the downside risk of the net cash flows rendered by the with-collar asset 

being insufficiently viable, and any feasible increase in the floor is associated with 

improvements in the investment value. In contrast, the cap affects only the investment value 

by controlling the magnitude of the upside potential that the investor foregoes, and any cap 

reduction enhances this sacrifice with a consequential loss in option value.  

 

Only the floor of the collar governs the investment threshold while both the floor and cap 

impact on the option value, but in opposing directions. Normally, the threshold exceeds the 

zero NPV level in order to moderate the extent that future net cash flows are non-viable, and 

greater volatility values are reflected in higher thresholds. Since a floor mitigates this extent, 

its presence necessarily lowers the threshold while simultaneously enhancing the opportunity 

value. In contrast, the cap representing a sacrifice to the investor depresses the opportunity 

value and reduced cap levels are reflected in lower opportunity values. Further, since a 

specified cap level gains in significance as the volatility increases, a with-collar variant may be 

preferred at lower volatilities while the without-collar variant may be preferred by the 

concessionaire at higher volatilities.  

 

As a form of subsidy, the collar can be designed to clawback high profits as well as inducing 

early investment or even immediate investment. The role of the cap is to mitigate the cost to 

the government of guaranteeing a floor, and thereby inhibits the spread of any allegations of 

being over-generous.  Governments can even create a “costless” collar by selecting a floor to 

induce investment and a cap that neutralizes the additional value it creates. A collar shares the 

benefits of a more conventional subsidy-taxation model for inducing investment with the 

additional merit of not having to incur an immediate subsidy payment.  

 

We provide an analytical framework for viewing the real option value of various PPP 

arrangements, ranging from no collar, floor only, ceiling only, and a collar (both floor and 
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ceiling).  One use of this framework is to identify clearly the gains and losses for a principal 

(GOV) and agent (CON) participants in a PPP infrastructure project as parameter values 

change.  Different real option games are envisioned, where changes in the parameter values 

after an initial deal result in zero-sum games, or constant-sum games, or variable-sum games.  

This basic framework may be useful in viewing the intended consequences of different 

appropriate PPP arrangements, and in identifying incentives for the agent in holding an 

investment opportunity or in operating an infrastructure facility. 

 

The plain vanilla collar is extended in two directions. The first considers a design where the 

floor and cap attributes are not constant but depend on the focal variable. This demonstrates 

that the previous findings continue to hold, that the threshold is determined by only the floor 

attributes while the option value is determined by both the floor and cap attributes. This 

facilitates the engineering of the collar design, since adjustments to the floor attributes are first 

made to yield the desired threshold and then the cap attributes are adjusted to meet the desired 

government contribution. The second extension involves an exit option, which does not allow 

any return to operating the active asset following its disposal. For this design, the plain vanilla 

findings do not hold as both the floor and cap attributes influence the threshold and option 

value.  

 

There are several implicit assumptions behind our analytical framework. (i) The arrangements 

are perpetual American call or put options, and a perpetual series of cash flows, viewed in 

continuous time.  Real arrangements may not perpetual, so both the options and the cash flows 

would have to be reformatted as perpetuals less forward start options, or finite annuities, 

especially for short-term arrangements and low discount rates.  This may not be a significant 

problem for 100 year arrangements when discount rates are high.  (ii) Parameter values such 

as interest rates, yield, revenue volatility, revenue floors and ceilings are considered constant 

or deterministic. Relaxing some of these assumptions is an interesting extension.  (iii) 

Sometimes PPP arrangements specify that the concession termination is based on a specified 

achieved internal rate of return, or cumulative net present value, or accumulated net cash flows. 

We do not focus on negotiated exit prices or for CON or GOV determined exit timing, except 

for Case B. (iv) PPPs are assumed to be monopolies, without competition or unexpected 

failures or physical disasters.  (v) The framework models are viewed in continuous time 

whereas revenue (especially traffic), minimum and maximum revenue compensations and 

payments are likely to occur in discrete time.  (vi) We do not allow for operating costs that are 
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not already included in net revenues, or for periodic maintenance requirements. (vii) The 

revenue stream ignores other possible real options such as project cancellation, downsizing, 

renegotiation, expansion and resale, dynamic pricing for times of usage, and extensions into 

other activities such as retail activities for motorway operators. (viii) PPP arrangements are 

envisioned as enforceable, without credit or default risk for either party, and investments are 

irrevocable, immediate, and terms cannot be re-negotiated over time. (ix) While many of the 

PPP infrastructure arrangements cited herein concern transportation, other PPP arrangements 

such as building and operating hospitals and educational establishments may not have clear 

objectives such as sharing revenue risks and benefits.  Suitably designed optional elements may 

incorporate some of same, or conceivably completely different objectives.  Most of these issues 

present interesting aspects for future research. 
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Appendix  

Price Floor Model 

We use the additional subscript f  to indicate a model with only a floor. From (10) the active 

project valuation function becomes: 

  

1

2

11

22

         for 

   for ,

L
Cf L

Cf

Cf L

P Y
A P P P

r
V P

PY
A P P P








 

 
  


  (A1) 

with: 
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The investment option value is specified by: 
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  (A3) 

with ˆ ˆ
Cf CP P  determined from (18) with 22CA  replaced by 

22CfA , and the investment option 

coefficient by: 

   1
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1 2
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. (A4) 

A feasible floor for an active asset yields both a more valuable investment opportunity and one 

that is exercisable at an earlier time. Consequently, a floor represents a government granted 

subsidy, Armada et al. (2012). 

 

Price Cap Model 

We use the additional subscript c  to indicate a model with only a cap. From (10) the active 

project valuation function becomes: 
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The investment option value is specified by: 
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with 
0

ˆ ˆ
CcP P  determined from (6), and investment option coefficient: 
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The imposition of a cap has no effect on the investment threshold and the timing, but it does 

produce a less valuable investment option. It is significantly less desirable for the 

concessionaire than an opportunity without a cap, and consequently it is imposed by, for 

example, a government intent on offering a subsidy while reducing its cost, or by limits to 

growth due to firm or market characteristics. 
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Figure 1 

Effect of Price on Switch Option Value 

at Two Different Floor Levels 

 

 

 

Using the baseline data, the switch option value is evaluated from (21) for the indicated LP  and 

HP  values. 
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Figure 2 

Relationship between Floor and Threshold for the Collar Model 

 

 

 

Using the baseline data, the relationship between LP   and ˆ
CP  is evaluated from (15) and (18).  
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Figure 3 

The Effect of Price on the Investment Value 

for the With- and Without-Collar Variants 
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The selected floor and cap prices for the collar variant are 4.0LP   and 20.0HP 

, respectively. The evaluations for the two variants are based on base case values. 

The solution values for the collarless variant are 0 2.7547A   and 0
ˆ 9.4273P  , 

while those for the collar variant are drawn from Tables 2 and 3. 
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Figure 4 

Effect of Volatility Variations on the Price Thresholds for the  

With- and Without-Collar Variants 

 

 

The evaluations for the two variants are based base case values, and the floor and 

cap prices for the collar variant are 3.0LP   and 500.0HP  , respectively. 
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Figure 5 

 

 

 

 

Figure 6 

 

 

 

 

 

 

Assumes

At R=2, the CON would have lost -150+50=-100 without the Min R guarantee and ROV, but instead loses -42.

At R=18, the CON would have gained 450-150=300 without the ceiling ceded to the GOV, but instead gains 111.

Assumes the GOV has ceded control over a valuable monopoly, so GOV profit deducts the PV when R=6.

ACTIVE infrastructure is sold to Concessionaire (CON) at fair value R/ when R=6 and

Government (GOV) guarantees a minimum R of 4 and receives all R over 15.60.

At R=6 and the other parameter values, -CALL=PUT for a "costless collar",

so the combined "profit" over the fair value of the CON and GOV is 0.
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GOV Profit -Sale 0.00 -0.98 -3.95 -4.62 -2.99 0.00 3.64 7.49 11.27 14.84 18.13 21.13 23.82 26.23 28.38 30.29

Interpretation

At =.01, the CALL and PUT for both the CON and GOV would have been of little value, when R=6.

At =.75, the CALL would be worth 106.14 for the GOV (and -106.4 for the CON), while the PUT would be worth -75.85 for the GOV.

So with these values, the CON would welcome R volatility below 25%, and the GOV benefit from higher volatility.

Assumes the monopoly over which the GOV cedes control is of no value to the GOV.

ACTIVE infrastructure is sold to Concessionaire (CON) at fair value R/ when

Government (GOV) guarantees a minimum R of 4 and receives all R over 15.60.

At R=6 and the other parameter values, -CALL=PUT for a "costless collar",

so the combined "profit" over the fair value of the CON and GOV is 0.
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Figure 7 

 

Figure 8 

 

 

 

Assumes

Assumes the GOV has ceded control over a valuable monopoly, so GOV profit deducts the PV when R=6.

ACTIVE infrastructure is sold to Concessionaire (CON) at fair value R/ when R=6 and

Government (GOV) guarantees a minimum R of 4 and receives all R over 15.60, interest rate is 4%.

At R=6 and the other parameter values, -CALL=PUT for a "costless collar",

so the combined "profit" over the fair value of the CON and GOV is 0.
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Assumes

Assumes the GOV has ceded control over a valuable monopoly, so GOV profit deducts the PV when R=6.

ACTIVE infrastructure is sold to Concessionaire (CON) at fair value R/ when R=6 and  is 4%.

Government (GOV) guarantees a minimum R of 4 and receives all R over 15.60, interest rate is 4%.

At R=6 and the other parameter values, -CALL=PUT for a "costless collar",

so the combined "profit" over the fair value of the CON and GOV is 0.

-100

0

100

200

300

400

500

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Yield

Risk Sharing as a Function of Project Yield

GOV Profit

CON + GOV

CON Profit



41 

 

Figure 9 

 

 

Figure 10 

 

 

 

 

 

 

Assumes

Assumes the GOV has ceded control over a valuable monopoly, so GOV profit deducts the PV when R=6.

ACTIVE infrastructure is sold to Concessionaire (CON) at fair value R/ when R=6 and  is 4%. Base case is

GOV guarantees a minimum R of 4 and receives all R over 15.60, interest rate is 4%.

At R=6 and the other parameter values, -CALL=PUT for a "costless collar",

so the combined "profit" over the fair value of the CON and GOV is 0.
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Interpretation

At =.01, the CALL and PUT for both the CON and GOV would have been of little value, when R=6 when there is a floor only.

At =.75, the CALL would be worth 46.93 for the GOV (and -46.93 for the CON), while the PUT would be worth -75.85 for the GOV.

So with these values, the CON would welcome R volatility especially around 45%.

Assumes the monopoly over which the GOV cedes control is of no value to the GOV.

ACTIVE infrastructure is sold to Concessionaire (CON) at fair value R/ when
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Table 2 

Switch Option Coefficients for the With-Collar Model for Variations in Floor and Cap Levels  

Panel A: 
11CA       Panel B: 21CA       

HP   0LP   1LP   2LP   3LP   4LP   HP   0LP   1LP   2LP   3LP   4LP   

10 0.0000 8.2537 4.2116 2.6454 1.7862 10 -1.8520 -1.8520 -1.8520 -1.8520 -1.8520 
20 0.0000 8.9944 4.9523 3.3862 2.5270 20 -1.1112 -1.1112 -1.1112 -1.1112 -1.1112 

50 0.0000 9.5400 5.4979 3.9317 3.0726 50 -0.5656 -0.5656 -0.5656 -0.5656 -0.5656 
100 0.0000 9.7663 5.7241 4.1580 3.2988 100 -0.3394 -0.3394 -0.3394 -0.3394 -0.3394 
200 0.0000 9.9020 5.8599 4.2937 3.4346 200 -0.2036 -0.2036 -0.2036 -0.2036 -0.2036 
500 0.0000 10.0020 5.9599 4.3937 3.5345 500 -0.1037 -0.1037 -0.1037 -0.1037 -0.1037 
1000 0.0000 10.0435 6.0013 4.4352 3.5760 1000 -0.0622 -0.0622 -0.0622 -0.0622 -0.0622 
Infinity 0.0000 10.1057 6.0635 4.4974 3.6382 Infinity 0.0000 0.0000 0.0000 0.0000 0.0000 
            

Panel C: 22CA       Panel D: 32CA       

HP   0LP   1LP   2LP   3LP   4LP   HP   0LP   1LP   2LP   3LP   4LP   

10 0.000 10.106 33.685 68.123 112.280 10 -551 -541 -518 -483 -439 
20 0.000 10.106 33.685 68.123 112.280 20 -1838 -1828 -1804 -1770 -1726 
50 0.000 10.106 33.685 68.123 112.280 50 -9027 -9017 -8994 -8959 -8915 
100 0.000 10.106 33.685 68.123 112.280 100 -30090 -30080 -30057 -30022 -29978 
200 0.000 10.106 33.685 68.123 112.280 200 -100299 -100289 -100265 -100231 -100187 
500 0.000 10.106 33.685 68.123 112.280 500 -492596 -492586 -492562 -492528 -492484 

1000 0.000 10.106 33.685 68.123 112.280 1000 -1641948 -1641938 -1641914 -1641880 -1641836 
Infinity 0.000 10.106 33.685 68.123 112.280 Infinity -Infinity -Infinity -Infinity -Infinity -Infinity 

 

Using the baseline data, the coefficients 11 21 22 32, , ,C C C CA A A A  are evaluated from (15) for the various indicated LP  and HP  values.  
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Table 3 

Option Threshold and Coefficient Values for the With-Collar Model for Variations in Floor and Cap Levels 

 

Panel A: ˆ
CP   

    Panel B: 0CA       

HP   0LP   1LP   2LP   3LP   4LP   HP   0LP   1LP   2LP   3LP   4LP   

10 9.4279 9.1627 8.4930 7.3178 4.0000 10 0.9028 0.9434 1.0513 1.2581 1.7862 

20 9.4279 9.1627 8.4930 7.3178 4.0000 20 1.6435 1.6842 1.7920 1.9989 2.5270 
50 9.4279 9.1627 8.4930 7.3178 4.0000 50 2.1891 2.2298 2.3376 2.5444 3.0726 
100 9.4279 9.1627 8.4930 7.3178 4.0000 100 2.4153 2.4560 2.5638 2.7707 3.2988 
200 9.4279 9.1627 8.4930 7.3178 4.0000 200 2.5511 2.5918 2.6996 2.9064 3.4346 
500 9.4279 9.1627 8.4930 7.3178 4.0000 500 2.6511 2.6917 2.7996 3.0064 3.5345 
1000 9.4279 9.1627 8.4930 7.3178 4.0000 1000 2.6925 2.7332 2.8410 3.0479 3.5760 
Infinity 9.4279 9.1627 8.4930 7.3178 4.0000 Infinity 2.7547 2.7954 2.9032 3.1101 3.6382 

 

   
 
    
Using the baseline data, the investment threshold and option coefficient are evaluated from (18) and (19), 

respectively, for the indicated LP  and HP  values. The solutions for the floor and cap models are obtainable from 

(18), and from (6), respectively. 
   

    
    
    

  



 

 

Table 4 

Illustrative Pairs of 
LP  and 

HP  for a Investment Opportunity “Costless” Collar 

 

LP   0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

HP   9430.5 1780.0 649.94 307.02 164.71 93.963 54.011 27.302 
ˆ
CP   9.350 9.163 8.879 8.493 7.986 7.318 6.375 4.000 

0CA   2.755 2.755 2.755 2.755 2.755 2.755 2.755 2.755 

21CA   -0.012 -0.041 -0.085 -0.148 -0.235 -0.355 -0.534 -0.883 

22CA   3.032 10.106 20.437 33.685 49.632 68.123 89.038 112.280 
 


