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Abstract 

The typical model of investment under uncertainty where firms pay an irreversible 

cost in order to produce is revisited, this time with a novel focus on the recipient of 

this payment. This recipient is modeled as a firm that sells a resource (or a right) 

necessary for the production of the final good. We find the optimal price that the 

resource owner sets for its resource, and study how it depends on the characteristics of 

the market for the final good. The analysis reveals that one of the main results of the 

literature on investment under uncertainty – that firms delay their investment even 

when its NPV is positive – may not survive the endogenization of the investment cost, 

or at least loose much of its plausibility.    
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1. Introduction 

Usually, the models on investment under uncertainty deal with the decisions of a firm 

that has to pay a certain irreversible exogenous cost in order to start producing and 

make profits.
1
 In this article we remain within the traditional framework used in those 

models but shift the focus of attention elsewhere – to the recipient of this cost. We 

model this recipient as a firm that sells a certain resource which is necessary for the 

production of a final durable good. The producers of the final good face the typical 

investment under uncertainty problem studied in the literature, as the cost of each unit 

of the resource is an exogenous irreversible cost from their point of view. The firm 

that sells the resource faces a problem not yet studied – it must decide at what level to 

set the price of its resource in order to maximize the value of its sales. 

The common result in the literature on investment under uncertainty is that the 

optimal policy for the firm is to delay investment until profits from the investment are 

sufficiently large. In particular it has been found that a positive Net Present Value is 

not enough to trigger investment, as the firm seeks to cover not only its direct 

investment cost but also the opportunity cost of the forgone option to delay 

investment. Clearly, these results cannot survive a full endogenization of the 

investment cost in which the resource owner can change the price of its resource at 

any time and with no cost. In that case the resource owner changes the price of the 

resource in response to any swing in the demand for the final good and thus strips the 

producers of the final good from any profit and keeps them at constant indifference as 

to whether to invest immediately or delay investment.  

Abstracting therefore from full endogenization and assuming that there are 

some exogenous components to the investment costs revives the delay results, 

                                                 
1 For detailed surveys of this literature see Pindyck (1991) or Dixit and Pindyck (1994). 
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although its relevancy is nonetheless weakened as the set of parameter values and 

market conditions it requires is narrowed.  

Specifically, we assume that the resource owner cannot continuously change 

the price of its resource, possibly due to technical limitations or to costs on doing so. 

Due to that, the price the resource owner sets for its resource is fixed for at least a 

certain amount of time. In setting this price the resource owner faces the following 

dilemma: Pushing the price up yields, on the one hand, more upon selling, but on the 

other hand it may delay the timing of these sales because it may induce the producers 

of the final good to delay their purchases until the demand they face sufficiently rises.     

For simplicity, we take the assumption of non-continuous changes in the price 

of the resource to the extremity in which once the resource owner sets the price of the 

resource it cannot change it anymore. Although extreme, this assumption is in fact the 

standard one in the relevant literature as all models in that literature assume that the 

potential investor faces an investment cost that is fixed over time. 

We find that if buying this resource is the only cost for the producers of the 

final good then wishing to receive payments early is the overriding consideration and 

the resource owner sets its price low enough to induce immediate investment. This 

occurs for all levels of the demand for the final good. In particular, when this demand 

is very low the resource owner sets an accordingly low price for its resource rather 

than set a higher price which it could enjoy later when demand would eventually rise. 

This happens because when the demand is low the probability of a large surge in it is 

accordingly small under the standard assumption of a geometric process taken here 

for the demand dynamics. 

A situation where the producers of the final good delay their investments is 

possible therefore only later on in time if the demand for the final good falls 
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sufficiently below its initial level. Note that this possibility hinges on the assumption 

that the resource owner is limited in its ability to change its price over time. Relaxing 

this assumption and allowing the resource owner to change the price of its resource 

over time will make the occurrence of such delay periods even less plausible.  

The finding that the resource owner sets its price low enough to induce 

immediate investment is avoided if the investment costs of the producers of the final 

good contain not just the endogenously set price of this resource but also another 

component, exogenous in its nature. We find that this exogenous component alters the 

relative force of the two factors in the dilemma described above, and thus enables the 

result that the resource owner sets a price which sends the market to a period of 

delayed investments. Specifically, we find that the resource owner does so if the 

demand for the final good is sufficiently low, and then investments take place only 

later on when the demand for the final good sufficiently rises. Only if initially the 

demand for the final good is sufficiently high does the resource owner set a price that 

induces immediate investment.   

As stated above, the subject at the focus of this article has never to our 

knowledge been studied. The study closest to ours is Yu et al. (2007) who examine a 

case where the irreversible investment cost of the firms is subject to the endogenous 

decisions of a government. Yet, it does not share the key element of our study, namely 

that the irreversible cost of the producers of the final good is the cost of a necessary 

resource or right determined endogenously by its owner. Specifically, they compare 

two policy alternatives for a host country wishing to draw in FDI: entry cost subsidy 

and tax rate reduction. Another study that is somewhat close to the current article is de 

Villemeur, Ruble and Versaevel (2014) who analyze a model in which an upstream 

producer is choosing the price it requires from a downstream producer for an input 
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required to the production of a final good. Yet, in that article there is also an 

exogenous investment cost that the upstream producer has to pay in order to produce 

the input it then sells to the downstream producer. The focus of that article is on 

questions of efficiency of this market structure, and by that it strongly differs from our 

study which focuses on the way that endogenizing the investment cost affects the 

main results of the relevant literature. In particular, in their model the upstream 

producer has no knowledge of the current demand and the current price in the market 

for the final good. Therefore, by construction, they cannot study if and how the 

producer of the necessary input adjusts the price it sets for that input according to the 

demand for the final good. 

 Several articles studying the possibility of speeding-up investment by 

subsidizing the investment cost are also close to the current study due to the partly 

endogenous net investment cost they model. The current study differs from them 

mainly in our focus on maximizing profits from receiving the investment costs, rather 

on public welfare from speeding-up investment. See Di Corato (2016) for a typical 

model of that literature, as well as for a survey of its main articles.     

 The article is organized as follows. In section 2 the model is presented and the 

value of the resource to its owner is analyzed. In section 3 the resource owner’s 

choice of the price of the resource and the resulting immediate market situation –  

sales or inaction – is analyzed for the case where the resource owner maximizes its 

profits. Section 4 offers some concluding remarks. 

 

2. The Model 

Consider the market for the durable good X. Production of X requires the resource N. 

The seller of N is a monopoly that sets the price k per each unit of N. Once k is set – it 
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cannot be changed anymore. We assume that the X producers can buy N any time they 

choose and that each time they do so they must transform it to X immediately. All X 

producers are risk-neutral and have the same production process: a unit of N is 

transformed to a unit of X at a cost w. The demand for X is given by: 

 

(1)  
Q

A
P  , 

 

where Q is the aggregate amount of good X and P is the price of X. The parameter  is 

positive and -1/ is the demand elasticity. A is a geometric Brownian motion and its 

dynamics are described by the following rule: 

 

(2) dA = Adt + AdZ, 

 

where Z is the standard Wiener process satisfying at each point in time: 

 

(3) E(dZ) = 0,  E[(dZ)
2
] = 1.  

 

 and  are constants and 0 . By Itô’s lemma and (1), when Q is unchanged the 

evolution of P is governed by: 

 

(4) dP = Pdt + PdZ, 

 

which means that P is a geometric Brownian motion too.   

We denote the discount rate relevant to the X producers and to the resource 
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owner by r. Following Dixit (1989) we assume that r , an assumption that makes 

the expected rate of growth of P smaller than the discount rate, preventing thus the 

value of the firms that produce X from going to infinity.   

Under this modeling, the X market is the same market studied by Leahy 

(1993). As Leahy (1993) shows, under this setup there is a threshold price, HP , that 

characterizes the optimal policy of each single X producer: when HPP   the X 

producer does nothing, when P  hits HP  the X producer buys some N and produces X 

from it. This optimal policy is the same for all X producers since they are identical. 

The firms’ purchases of N increase the supply of X and prevent P from rising above

HP . As Leahy (1993) shows, the value of HP  is:
2
 

 

(5)  HP  =   wkr 







1
, 

 

where  is the positive root of the quadratic: 

 

(6)     02
2

122
2

1  rYY  . 

 

 Applying Y = 0 and then Y = 1 and using the assumption that r  shows that 

one root of this quadratic (denoted ) is negative and the other one, denoted , 

exceeds unity.  

 Given the initial values of A and Q the resource owner sets a value of k 

                                                 
2
Throughout most of his paper, Leahy (1993) studies a more general case than the one presented here. 

In page 1119, though, the analysis takes several assumptions that make it entirely equivalent to the 

current model. The second equation in p.1199 is equation (5) of the current paper. Some notational 

differences should be mentioned: the investment threshold is denoted PH here and P  there; the 

irreversible cost of producing a unit is denoted there by k while here it is  k + w; the positive root of 

equation (6) is denoted   here while denoted by Leahy as . All the other notations are identical. 
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optimally. In the following sub-section 2.1 we start with the case where this value of k 

is sufficiently high to make the producers of X delay their purchases of N, i.e., the 

case where  kPQA H/ . By (5), in this case k is in the range: 

 

(7)  k  
 
 

w
Qr

A







 1
  k

* 

 

Next, in sub-section 2.2, we analyze the case where the resource owner sets a 

value of k in the range 0 < k < k
*
. This leads to A/Q


 > PH(k) and induces immediate 

purchase of N by the X producers, purchases that increase Q until A/Q

 = PH(k).  

 

2.1 Delaying purchases of N  

In this case, the X producers delay their purchases of N because the resource owner 

sets a value of k that leads to an investment threshold, PH, which is above the market 

price. P. 

Throughout the article we use the term "the value of the resource" for the 

present value of the stream of revenues that the resource owner extracts from selling 

N to the X producers. Let V(A, Q, k) denote this value in the range defined by (7) 

given the current levels of A and Q and given a value of k. By Itô’s lemma,   

 

(8)           dV(A, Q, k) =        AdZkQAVdtAkQAVAkQAV AAAA  ,,,,,, 22

2
1   

 

and due to (3): 
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(9)  
 

dt

kQAdVE ,,(
 =     22

2
1 ,,,, AkQAVAkQAV AAA    

 

Equation (9) captures the resource owner's expected capital gain due to the change in 

A over time. The no-arbitrage condition implies that this expected capital gain should 

equal the normal return to the resource. This implies: 

 

(10)  
 

dt

kQAdVE ,,(
 = rV(A, Q, k) 

 

Applying (9) in (10) and rearranging yields: 

 

(11)        0,,,,,, 22

2
1  kQArVAkQAVAkQAV AAA   

 

(11) is a second-order homogenous differential equation. Trying a solution of the form 

V(A, Q, k) = C(Q, k)A
Y
 yields the quadratic captured by (6). Recall that the two roots 

of this quadratic satisfy   < 0 and  > 1. Thus: 

 

(12)  V(A, Q, k) = H(Q, k)A

 + B(Q, k)A


 

 

where H(Q, k) and B(Q, k) are to be determined using two benchmark requirements. 

To do so recall that V(A, Q, k) captures the value of future sales of Q that occur each 

time A is sufficiently high so that P hits the investment threshold PH. However, if A is 

close to 0 then the probability of A ever rising so high is zero as well. In that case, 

therefore, the value of the resource is 0. Formally:   
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(13)    kQAVLim
A

,,
0

 = 0   

 

Since   is negative, (13) implies that H(Q, k)  0.  

We now turn to finding B(Q, k). As appendix A shows, the condition for a no-

arbitrage evaluation of the value of the resource in the time instants when there are 

changes in Q, i.e., when A/Q

 = PH, is the following Value Matching Condition: 

 

(14)  VQ(A, Q, k) = - k. 

 

Thus, by (12), (14) and H(Q, k)  0, when A/Q

 = PH : 

 

(15)  BQ(Q, k)A

 = - k.  

 

Applying A/Q

 = PH in (15) and rearranging it, yields that when A/Q


 = PH: 

 

(15’)  BQ(Q, k) = 


HPQ

k
 . 

 

Straightforward integration of BQ(Q, k) leads to: 

 

(16)  B(Q, k) = 
   HPQ

k
11 

 + C 

 

As Q goes to infinity P goes to 0 and the probability of P ever reaching PH 

goes to zero as well. This implies that the resource owner is not going to sell any N in 
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the future and its value is therefore 0, i.e.:  

 

(17)  LimQ→B(Q, k) = 0. 

 

This benchmark dictates a distinction between two cases based on the value of . We 

start with a case in which  < 1/. In this case, Q in the denominator of the first term 

at the RHS of (16) is raised by a negative power and as it goes to  the entire term 

goes to -. This, taken together with (17), implies that C goes to , and therefore that 

so are B(Q, k) and V(A, Q, k) for each finite level of Q.  

 The economic logic underlying the infinite value of the resource in this case is 

based on the relation between  and the elasticity of demand which is -1/. The 

smaller , the larger the demand elasticity and therefore the larger the increase in Q 

each time that P hits PH. Thus, the smaller , the faster the process of sales of the 

resource N and the less heavily discounted are its revenues. This drives the value of 

future sales of N to infinity when  is sufficiently small, namely – below 1/. This 

case is not in the focus of this study and from here on we assume  > 1/. 

 Returning to (16) and (17), now with >1/, the first term at the RHS of (16) 

goes to zero as Q goes to infinity, implying that C=0. Applying (5), C=0, (7), (16) and 

H(Q, k)0 in (12) yields:  

 

(18)  V(A, Q, k) = 
 

 



 wk

kQwk








1

*

, 

 

From the first order condition   0,, kQAV k  it follows that the value of k  

that maximizes V(A, Q, k) is: 
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(19)  k1  
1

w
. 

 

Applying (19) in (7) shows that k1 is in the range k>k
*
, in which V(A, Q, k) represents 

the value of the resource, iff  the following condition holds: 

 

(20)  
Q

A
 < 

 
 

*

2

2

1
P

wr









. 

 

(20) implies that the resource owner will set a value of k that is sufficiently 

large to make the X producers delay their purchases N if current demand in the X 

market is sufficiently low so that the market price is below P
*
.  

Note that if w=0, i.e., if the X producers do not face costs except for the 

purchase of N, then condition (20) cannot hold. In that case the function V(A, Q, k) is 

strictly decreasing and maximized at the lower boundary of its definition range, 

namely at k=k
*
, implying that the resource owner does not set k high enough to send 

the market to an inaction period.  

 From continuity it follows, by applying (7) in (18), that at instants in which 

A/Q

 = PH and the x producers invest, the value of the resource is: 

 

(21)  V(A, Q, k) =  Q
k

1
.  

 

2.2 Inducing immediate purchases of N 

The X producers immediately purchase N when the market price, P = A/Q

, exceeds 
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the threshold PH. This investment immediately raises Q to Q1 so that the price 

becomes P = A/Q1
 

= PH. This rise from Q to Q1 rewards the resource owner with 

 QQk 1
.  

Let G(A, Q, k) denote the value of the resource in the range where immediate 

investment takes place, k < k
*
, given the current levels of A and Q and also for a given 

value of k. Equation (22) below shows G(A, Q, k) as the sum of two factors: First, the 

immediate proceeds  QQk 1
; Second, the value of the resource after the quantity 

immediately becomes Q1, as described by (21).  

 

(22)  G(A, Q, k) =  QQk 1 + 1
1

Q
k


,  

 

Note that Q1 > Q and therefore G(A, Q, k) > 0 throughout the range k < k
*
 in 

which G(A, Q, k) is defined. Simplifying (22) and applying Q1 = (A/PH)
1/

 and (5) in it 

yields: 

 

(23)  G(A, Q, k) = 

 
Qk

wk

k
JA 

 


1

1

, 

 

where:  

 

(24)  J  
 

   







11
1

1

1

1







r

 > 0.   

 

The following Proposition 1 shows some important properties of G(A, Q, k). 
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Proposition 1:  

(a) There exists a single value of k that brings G(A, Q, k) to a maximum;  

(b) This value of k, denoted by k2, is an increasing concave function of A/Q

;  

(c) k2 is in the range k<k
*
, the range in which G(A, Q, k) represents the value of the 

resource iff A/Q

>P

*
.  

 

Proof:  In the appendix.             

 

3. The optimal k when the resource owner maximizes its profits 

In this section we analyze how the optimal k is chosen in the case where the resource 

owner is a profit maximizing firm. Based on the analysis in the previous sections, the 

value of the resource as a function of A, Q and k can be defined and denoted by: 

 

(25)   
 

 




 



otherwisekQAV

kkifkQAG

kQAVG

,,

0,,

,,

*

 

 

Note that V(A, Q, k
*
) = G(A, Q, k

*
) as follows from applying (7) in (18) and 

then in (23). Two cases should be analyzed now: The case where A/Q

 < P

*
 and the 

case where A/Q

 > P

*
.  

  

3.1 When A/Q

 < P

*
 

In this case k2 > k
*
 as follows from part (c) of Proposition 1. Thus, in the range k < k

*
, 

the value of the resource, represented by G(A, Q, k), is increasing in k. From the 

analysis in sub-section 2.1 it follows that in the range k > k
*
 the value of the resource, 
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now represented by V(A, Q, k), reaches a maximum at k = k1. Thus, since V(A, Q, k
*
) 

= G(A, Q, k
*
), the value of the resource, VG(A, Q, k), reaches its maximum in k = k1.  

 The line marked with circles in Figure 1 below presents VG(A, Q, k) in this 

case. The thin line shows V(A, Q, k) and the thick line shows G(A, Q, k).  

 

 

Figure 1: The resource firm’s value, VG(A, Q, k), when A/Q
 

< P
*
. The thick line shows 

G(A, Q, k), the thin line shows V(A, Q, k) and the circles indicate VG(A, Q, k). In this case 

VG(A, Q, k) is maximized at k = k1 > k
*
 implying that the resource firm sets a value of k 

sufficiently high to delay purchases of N by the X producers. 
 

3.2 When and A/Q

 > P

*
 

In this case, in the range k < k
*
, the value of the resource, which is represented by 

G(A, Q, k), reaches a maximum at k = k2 as follows from parts (a) and (c) of 

Proposition 1. Also, k1 < k
*
, as follows from sub-section 2.1. Thus, in the range k > k

*
 

the value of the resource, represented now by V(A, Q, k), decreases in k. Therefore, 

since V(A, Q, k
*
) = G(A, Q, k

*
), the value of the resource is maximized at k = k2.  

The line marked with circles in Figure 2 below presents VG(A, Q, k) in this 

k 

V(A, Q, k) 
G(A, Q, k) 

k1 
k2 k* 
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case. The thin line show V(A, Q, k) and the thick line shows G(A, Q, k). 

 

Figure 2: The resource firm’s value, VG(A, Q, k), when A/Q
 

> P
*
. The thick line shows 

V(A, Q, k), the thin line shows G(A, Q, k) and the circles indicate VG(A, Q, k). In this case 

VG(A, Q, k) is maximized at k = k2 < k
*
 implying that the resource owner sets a value of k 

sufficiently low to induce immediate purchases of N by the X producers. 
 

Based on the analysis of the two previous sub-sections, Figure 3 below shows 

the optimal k as a function of A/Q

.  

 
Figure 3: The optimal k as a function of A/Q


. 

k

V(A, Q, k)

G(A, Q, k)

k1 k2 k*

A /Q


k
opt

k 1

P
*
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4. Concluding Remarks 

In this study, we returned to the typical model of investment under uncertainty and 

examined it from a new angle – that of the recipient of the investment cost. We 

modeled the recipient of this cost as a firm that sells a resource or a right that is 

necessary for the production of the final good. The focus of our study was on how the 

resource owner sets the price of its resource. Our main results was that the main result 

of the relevant literature, that firms should delay their investments even when their 

NPVs are positive, loses much of its plausibility. The first reason for that, too trivial 

to be analyzed in this study, is that continuous endogenous changes of the investment 

cost shall eliminate the option value of delaying investment. The second reason, 

analyzed here in detail, is that even if the investment cost cannot be changed after it is 

optimally set – the recipient of the cost will set it low enough to induce immediate 

investment and enjoy its receipts sooner.  

A key assumption in the model was that the price of the resource cannot be 

changed on a continuous basis. For simplicity, we took this assumption to its 

extremity – i.e., once the price is set, the resource owner may not change it at all 

under any circumstances. While extreme, this is actually the assumption implicitly 

taken in all models of the relevant literature. Relaxing this assumption should not 

change the qualitative results of the analysis, so long as the more general assumption 

– that there are indeed some technical barriers or costs to changing the price of the 

resource continuously – is maintained.  

  

Appendix 

A. Establishing condition (14) 

In this appendix we derive the benchmark condition (14) for the value of the resource 
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at the time instants in which P hits PH. Typically, articles in the relevant literature use  

value matching conditions of this type without providing a detailed derivation of 

them. Instead they merely refer to other articles using this condition in similar models. 

Here, we do offer a full derivation of this condition because under the unique 

viewpoint of the current paper, this condition characterizes the value function of the 

recipient of the investment cost rather then the value function of the investor.  

To derive this condition we use the discrete approximation of a Brownian 

Motion presented in Dixit (1991). Since it is more convenient to perform this 

approximation for a Brownian Motion rather than for a Geometric Brownian Motion, 

the analysis is based on the function: 

 

(A.1 )  F(a, Q, k)  V(A, Q, k) 

 

where a  lnA. Due to this definition, by Itô’s lemma, a is a Brownian Motion since A 

is a Geometric Brownian Motion. The drift and variance parameters of a are denoted 

here by a and a
2
. To approximate the motion of a we divide time to small intervals 

of length  and the variable a space into steps of size . The variable a now ranges 

over a discrete set of values ai such that: 

 

(A.2)  ai+1 – ai =  for all i. 

 

Starting at state ai, time  later the variable a takes with probability p a step 

down to the value of ai-1, or takes with probability q=1-p a step up to the value of ai+1. 

Two conditions relating , , p and q to a and a should be used in order to make this 

process an approximation of the original Brownian Motion. First: 
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(A.3)    = q + p(-), 

 

which leads to: 

 

(A.4)   q = 











1

2

1
,  p = 












1

2

1
 

 

The condition regarding the variance of the process is: 

 

(A.5)   2  =    22
  pq  =    22 2   qp   

         = 222    

 

Eliminating the term with 2 leaves: 

 

(A.6)  
22     

 

When ai is such that P = 
Q

A
 is at the investment threshold PH then, by (1):  

 

(A.7)  


11



























H

a

H P

e

P

A
Q

i

 

 

If time  later a takes a step up, the endogenous investment by the X producers raises 

Q such that P remains at PH. This implies that Q is raised to the level:   
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(A.8)  ...
2

11

1

2

2
1

1
111




















































































H

a

H

a

H

a

H

a P

e

P

e

P

e

P

e

i

iii

 

 

The change in Q during that time is therefore: 

 

(A.9)  





















































1
111

H

a

H

a

H

a

P

e

P

e

P

e
Q

iii

 + o(), 

 

where o() collects all the terms that go to zero faster than , such that o()/   0 as 

  0. Note from (A.6) that  too falls under the category of o().  

 The Bellman equation for the value of the resource when ai and Q are such 

that P = PH is: 

 

(A.10)  F(ai, Q, k) = e
-r

 [pF(ai-1, Q, k) + qF(ai+1, Q + Q, k) + qkQ]  

 

(A.10) shows the value of the resource in this situation as the time  later value of the 

resource discounted by e
-r

. With probability p the variable a takes a step down and 

the value of the resource becomes F(ai-1, Q, k). With probability q the variable a takes 

a step up. In this case, endogenous investment by the producers of X raises Q by Q 

and the value of the resource becomes F(ai+1, Q + Q, k). In addition, in this case the 

resource owner also gains kQ from sales to the X producers. 

 Expanding e
-r

 to a Taylor series, bearing in mind that that  is o(), yields: 
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(A.11)   e
-r

 = 1 + (-r) + 
   

...
62

32





  rr

 = 1 + o() 

 

Applying this in (A.10) and expanding terms of (A.10) to Taylor series yields: 

 

(A.12)  F(ai, Q, k) = p[F(ai, Q, k) + Fa(ai, Q, k)(-) + o()]  

                  +q[F(ai, Q, k) + Fa(ai, Q, k)() + FQ(ai, Q, k)Q + o()+ kQ]  

 

Using p + q = 1 and the result that  is o() by itself helps simplify (A.12) to:  

 

(A.13)  0 = (q – p)Fa(ai, Q, k) +q FQ(ai, Q, k)Q + qkQ + o() 

 

By (A.4), (q – p) =  = o() which simplifies (A.13) into: 

 

(A.14)  0 = FQ(ai, Q, k)Q + kQ + o() 

 

Dividing by Q and applying (A.9) yields: 

 

(A.15 )  FQ(ai, Q, k) = 
 

 









O

H

a

O

P

e

k

i

















1

1

 

 

By the definition of o(), as   0 the numerator and the second addendum on the 

RHS of (A.15) approach 0 as well.  This, together with FQ(a, Q, k)  VQ(A, Q, k), 

which follows from the definition of F(ai, Q, k) in (A.1 ), concludes establishing (14). 
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B. Proof of Proposition 1 

By (23) the first order condition for a maximum is 

 

(B.1)  Gk(A, Q, k) =   0
1

 kfJAQ  , 

 

where,  

 

(B.2)    
 

  













1

1

wk

wk
kf .  

 

Manipulating (B.1) and applying (1) in it, the first order condition (B.1) becomes: 

 

(B.3)   


1

1

JP

kf  . 

 

To establish existence of a root to (B.3) note from (B.2) that  kf  approaches 

infinity when k approaches –w and approaches 0 when k goes to infinity. Thus, by 

continuity, there exists a level of k in the relevant range (namely k>-w) for which 

 kf  equals the positive term at the RHS of (B.3). To see that there is only one such 

level of k, note from (B.2) that:  

 

(B.4)        kf '  = 
 

  






21

21







wk

wk
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If  ≥ 1 then clearly   0' kf  for each level of k, implying that there can only be a 

single value of k for which  kf  equals the positive term on the RHS of (B.2). If, on 

the other hand,  < 1, then (B.4) reveals that  kf '  can switch from being negative to 

being positive as we look at larger values of k. Yet, the linear numerator of (B.4) 

implies that this switch can occur just once, and therefore  kf , which approaches 0 

as k goes to infinity, can hit the positive term on the RHS of (B.2) only once. Thus, in 

both cases regarding   there is a single root for (B.3). Denoting this single root by k2, 

the result that  2' kf  < 0 also asserts that k2 brings G(A, Q, k) to a maximum since: 

 

(B.5)  Gkk(A, Q, k2) =  2'
1

kfJA  < 0. 

 

 (B.3) presents k2 as an implicit function of P. Differentiating it leads to: 

  

(B.6)  
dP

dk2  = 
 
 2

2

' kPf

kf


   > 0 

 

where the inequality follows from  2kf >0 and  2' kf <0. 

 Applying (7), (24) and (B.2) in (B.3) and simplifying yields that k2=k
*
 if and 

only if P equals either 0 or P
*
. Applying (7), (24), (B.2), (B.4) and (20) in (B.6) yields 

that when P=P
*
 and k=k

*
: 

 

(B.7)  
dP

dk2  = 
  
















12

11

r
 < 

dP

dk *

  

 

The inequality follows from the assumptions that >1. 
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 k2 and k
*
 are both increasing functions of P. They meet one another only when 

P=0 and when P=P
*
 and in that second meeting point 

dP

dk2 <
dP
dk*

. From these 

properties it follows that k2>k
*
 as long as P<P

*
 and vice verse.  
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