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Abstract

In this work, we build on a previous real options approach that utilizes managerial cash-

flow estimates to value early stage project investments. The model is developed through the

introduction of a market sector indicator, which is assumed to be correlated to a tradeable market

index, and is used to drive the project’s cash-flow estimates. Another indicator, assumed partially

correlated to the market, is used to account for timing risk. This provides a mechanism for valuing

real options of the cash-flow in a financially consistent manner under the risk-neutral minimum

martingale measure. The method requires minimal subjective input of model parameters and

is very easy to implement. Furthermore, we couple simulation with the results of our model to

provide managers with a visualization of potential outcomes.

1 Introduction

Real option analysis (ROA) is recognized as a superior method to quantify the value of real-world

investment opportunities where managerial flexibility can influence their worth, as compared to

standard net present value (NPV) and discounted cash-flow (DCF) analysis. ROA stems from the

work of Black and Scholes (1973) on financial option valuation. Myers (1977) recognized that both

financial options and project decisions are exercised after uncertainties are resolved. Early techniques

therefore applied the Black-Scholes equation directly to value put and call options on tangible assets

(see, for example, Brennan and Schwartz (1985)). Since then, ROA has gained significant attention

in academic and business publications, as well as textbooks (Copeland and Tufano (2004), Trigeorgis

(1996)).

While a number of practical and theoretical approaches for real option valuation have been

proposed in the literature, industry’s adoption of real option valuation is limited, primarily due to the

inherent complexity of the models (Block (2007)). A number of leading practical approaches, some

of which have been embraced by industry, lack financial rigor, while many theoretical approaches are

not practically implementable. Previously, we developed a real options analysis framework where we

assumed that future cash-flow estimates are provided by the manager in the form of a probability

density function (PDF) at each time period (Jaimungal and Lawryshyn (2015)). As was presented,

the PDF can simply be triangular (representing likely, optimistic and pessimistic scenarios), normal,

log-normal, or any other continuous density. Second, we assumed that there exists a market sector

indicator that uniquely determines the cash-flow for each time period and that this indicator is a
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Markov process. The market sector indicator can be thought of as market size or other such value.

Third, we assumed that there exists a tradable asset whose returns are correlated to the market

sector indicator. While this assumption may seem somewhat restrictive, it is likely that in many

market sectors it is possible to identify some form of market sector indicator for which historical

data exists and whose correlation to a traded asset/index could readily be determined. One of

the key ingredients of our original approach is that the process for the market sector indicator

determines the managerial estimated cash-flows, thus ensuring that the cash-flows from one time

period to the next are consistently correlated. A second key ingredient is that an appropriate

risk-neutral measure is introduced through the minimal martingale measure (MMM) (Föllmer and

Schweizer (1991)), thus ensuring consistency with financial theory in dealing with market and private

risk, and eliminating the need for subjective estimates of the appropriate discount factor typically

required in a discounted cash-flow (DCF) calculation. We then expanded our methodology to be

able to account for managerial risk aversion. Furthermore, we developed an analytical approach for

the case where the cash-flows are assumed to be normally distributed (Lawryshyn (2013)).

After using our method in a few practical settings where we valued early stage projects, we

realized that a key ingredient was missing in much of the real options approaches, including ours

– that of timing risk. In this work we develop a framework that provides a practical way to deal

with timing risk. Furthermore, we allow the timing risk to be (partially) correlated to the market.

We also include Monte Carlo simulation to provide a visualization of potential outcomes for the

managers.

2 Methodology

A key assumption of many real options approaches (Copeland and Antikarov (2001), Datar and

Mathews (2004) and Collan, Fullér, and Mezei (2009)), is that the risk profile of the project is

reflected in the distribution of uncertainty provided by managerial cash-flow estimates. In Jaimun-

gal and Lawryshyn (2010), we introduced a “Matching Method”, where, as mentioned above, we

assumed that there exists a market sector indicator Markov process that ultimately drives the

managerial-supplied cash-flow estimates. The value of the method is the riskiness of the cash-flows

are inherently accounted for by the managerial supplied distribution. A broader distribution neces-

sarily implies a more risky cash-flow. As well, the method properly accounts for idiosyncratic and

systematic risk (for full details of our methodology we refer the reader to Jaimungal and Lawryshyn

(2015)). As we develop our method here, we set out two main objectives: 1) that the model be

consistent with financial theory, and 2) that the methodology is easily adapted to managerial esti-

mates.

A depiction of the project cash-flow scenario is provided in Figure 1. During product develop-

ment, regular outlays of cash will be required for the project and these are depicted as K0, occurring

at times T̄j , j = 1, 2, ..., n̄, where n̄ is such that T̄n̄ is less than the total available time for product

development, tmax, as specified by managers1. At some point τm the project will be ready for the

market, at which point a significant investment K will be required, after which cash-flows generated

through revenue and operations are expected to be received. These cash-flows are uncertain and

are estimated by managers. As discussed in Jaimungal and Lawryshyn (2015) the distribution of

1We note that in the current formulation we have assumed these to be equivalent, however in practice this does

not have to be the case.
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Figure 1: Cash-flow scenario. The timing, τm, is uncertain.

the cash-flow estimates can take any form, however, for practical reasons, in this formulation, we

assume them to have a triangular density representing low, medium and high cash-flow estimates.

The cash-flows are assumed to occur at times Tk, k = 1, 2, ..., n, where n is the number of cash-flows.

In the present formulation, we assume these cash-flows are not dependent on τm, however, this as-

sumption can be easily relaxed and in fact, using either fuzzy set theory or probabilistic methods,

it is possible to distort these cash-flows appropriately.

To allow for proper valuation of both systematic and idiosyncratic risk, we assume there exists

a traded index index that follows geometric Brownian motion (GBM),

dIt
It

= µdt+ σdBt, (1)

where Bt is a standard Brownian motion under the real-world measure P. Following Jaimungal and

Lawryshyn (2015) we assume there exists a market sector indicator that is partially correlated to

the traded index and we assume it has a standard Brownian motion,

dSt = ρSdBt +
√

1− ρ2
SdW

S
t , (2)

where WS
t is a standard Brownian motion under the real-world measure P independent from Bt,

and ρS is a constant (−1 ≤ ρS ≤ 1). Next, we introduce a collection of functions ϕk(St) such that

at each Tk, Sk = ϕk(STk). Furthermore, at each cash-flow date Tk we match the the distribution Sk
to the cash-flow distribution supplied by the manager F ∗(x). Thus, we require

P(ST < x) = F ∗(x). (3)

In our previous work (Jaimungal and Lawryshyn (2010)) it was shown that ϕk(St) is determined as

follows

ϕk(x) = F ∗−1

(
Φ

(
x√
Tk

))
, (4)

where Φ(•) is the standard normal distribution. We now have a very simple expression for ϕ which

makes the valuation of risky cash-flows very simple.

As discussed in Jaimungal and Lawryshyn (2010), the real-world pricing measure should not be

used, and instead, we propose the risk-neutral measure Q, corresponding to a variance minimizing
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hedge. Under this risk-neutral measure, we have the following dynamics

dIt
It

= r dt+ σ dB̂t, (5)

dSt = νS dt+ ρS dB̂t +
√

1− ρ2
S dŴ

S
t , (6)

where B̂t and ŴS
t are standard uncorrelated Brownian motions under the risk-neutral measure Q

and the risk-neutral drift of the indicator is

νS = −ρS
µ− r
σ

. (7)

We emphasize that the drift of the indicator is precisely the CAPM drift of an asset correlated

to the market index and is a reflection of a deeper connection between the MMM and the CAPM

as demonstrated in (Cerny 1999). Given this connection, our reliance on parameter estimation

is similar to those invoked by standard DCF analysis when the weighted average cost of capital

(WACC) is used to discount the cash-flows and the cost of equity is estimated using CAPM. In

DCF analysis the CAPM drift is, however, estimated based on the company’s beta, while in our

approach, the CAPM drift derives from historical estimates of the sector indicator and traded index

dynamics. Furthermore, the riskiness of the project is appropriately captured by the distribution

of the cash-flows. Consequently, our approach is more robust and less subjective. Given the risk

measure Q, the values of the cash-flows can now be computed; i.e. at time τm the cash-flows can be

valued as

UCFτm (Sτm) =

n∑
k=1

e−r(Tk−τm)EQ [ϕk(STk)|Sτm ] , (8)

and the option value accounting for investment K at time t < τm as

UROt (S) = e−r(τm−t)EQ [(UCFτm (Sτm)−K)+|St = S
]
. (9)

Applying the discounted Feynman-Kac theorem, the value of the cash-flows and option U = Ut(s)

for t ∈ [0, Tn] can be determined using the PDE

rU =
∂U

∂t
+ νS

∂U

∂s
+

1

2

∂2U

∂s2
, (10)

where at each t = T+
k we have UT+

k
(ST+

k
) = UTk(STk) + ϕk(STk), at t = τ+

m we have Uτ+m(Sτ+m) =

(Uτm(Sτm)−K)+, and at at t = T̄j we have UT̄j+(ST̄+
j

) =
(
UT̄j (ST̄j )−K0

)
+

. The finite difference

method was used to solve equation (10) where in the implementation we assumed ∂U
∂s is constant as

s → ±∞ and at each time step negative values were set to zero to account for an American style

option where the project would be abandoned as soon as it no longer has value.

As mentioned, a key aspect of the formulation presented here is the timing risk associated with

when the technological development of the project will be ready for revenue generation. As such,

we ask the managers to provide a distribution estimate for τm. We introduce a second Brownian

motion with drift µτ ,

dGt = µτdt+ ρτdBt +
√

1− ρ2
τdW

τ
t , (11)
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where, similar to the cash-flow driver process, W τ
t is another standard Brownian motion under the

real-world measure P independent from Bt and WS
t , and ρτ is a constant (−1 ≤ ρτ ≤ 1). Under the

risk-neutral measure the process in equation (11) becomes

dĜt = ντdt+ ρτdB̂t +
√

1− ρ2
τdŴ

τ
t , (12)

where Ŵ τ
t is another standard uncorrelated Brownian motion under the risk-neutral measure Q and

the risk-neutral drift is

ντ = µτ − ρτ
µ− r
σ

. (13)

By choosing a boundary at at some value a we can calculate the distribution of the hitting time

such that P(τm ≤ t), where τm = min(t ≥ 0, Gt = a), as

Fτm(t) = e2µτaΦ

(
−a− µτ t√

t

)
+ 1− Φ

(
a− µτ t√

t

)
. (14)

We use equation (14) to match the managerial estimated distribution for τm to determine appropriate

values for a and µτ and constrain a > 0.

Applying the Feynman-Kac theorem, the value of the project V = Vt(s, g) can be determined

using the PDE

rV =
∂V

∂t
+ νS

∂V

∂s
+ ντ

∂V

∂g
+

1

2

∂2V

∂s2
+

1

2

∂2V

∂g2
+
∂2V

∂s∂g
, (15)

for t ∈ [0, tmax] and τm ∈ [tmin, tmax], where tmin and tmax are the minimum and maximum times,

as specified by the managers, for product development to be completed. The boundary conditions

are imposed as follows:

• at t = tmax product development has essentially run out of time and therefore we set Vtmax(s, g) =

0,∀s and g < a;

• at the hitting boundary where g = a two conditions are possible:

– for tmin ≤ t ≤ tmax, we set τm = t and we simply calculate the value of the option using

equation (9) so that Vτm(s, a) = UROτm (s),

– for 0 ≤ t < tmin we have reached the boundary but the minimum time required for

development has not yet been realized, therefore, we set τm = tmin and calculate Vt(s, a) =

Ut(s);

• for all t < tmax, as g → −∞ we assume ∂Vt(s,g)
∂g is constant;

• for all t < tmax, as s→ ±∞ we assume ∂Vt(s,g)
∂s is constant;

• for all 0 < t < tmax and g < a, we need to account for ongoing investments at each t = T̄j so

that VT̄+
j

(s, g) = VT̄j (s, g)−K0.

As above, an American option formulation was implemented to account for the fact that the project

would be abandoned as soon as it has no value. Now that the exercise boundaries are known, Monte

Carlow simulation can be used to present managers with possible outcome scenarios. The results

will be presented in the following section.
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Figure 2: Fitted distribution for τm.

3 Results

Here we provide a practical implementation of the methodology. We assume that a company is

interested in investing in an early stage R&D project. The managers estimate that the technology

could be ready for market launch as early as 2 years from now, but if not launched within 6 years,

it will be abandoned. Specifically, the managers estimate a 20% of market launch by year 3, 80%

by year 5 and a 10% chance of no launch within the 6 years. The fitted distribution using equation

(14) is plotted in Figure 2 and the fitted parameters were a = 6.1717 and µτ = 1.499.

The market parameters are assumed to be as follows:

• Risk-free rate: r = 3%

• Expected market growth: µ = 10%

• Market volatility: σ = 10%.

Managers have estimated the cash-flows to be as depicted in Table 1 and the correlation of the cash-

flows to the traded index are estimated to be 0.5. The cost to enter the market for the technology K

was estimated to be $50 million and year per-market expenditures were estimated to be $5 million.

The value of the project was determined to be $72.1 million for the case where the timing had a 0.5

correlation to the market index. The value surface for this case, as a function of St and Gt is plotted

in Figure 3. The exercise boundary with a simulated path is shown in Figure 4. A histogram of

simulated project outcome values is provided in Figure 5. The mean of the simulated results was

$72.9 million. As expected, the possible outcomes consist of either significant value, in the case

where the project is successful, or losses of lower magnitude. The average value for the case of the

project being a success was simulated to be $ 120.6 million at a rate of 66%, whereas the average

value, in the case of an unsuccessful outcome was simulated to be -$19.9 million at a rate of 34%.
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Table 1: Managerial Supplied Cash-Flows (Millions $).

τm + 1 τm + 2 τm + 3 τm + 4 τm + 5 τm + 6

Low 10 20 20 10 10 5

Medium 30 40 50 60 60 50

High 50 70 100 120 130 120
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Figure 3: Project value as a function of St and Gt.
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Figure 5: Simulated project value outcomes.

Figure 6 plots the project value as a function of both ρS and ρτ . As can be seen from the

figure, the project value is more sensitive to ρS however, ρτ does impact the overall project value.

In Figure 7 we plot the project value where the time to reach completion is progressively increased.

As expected, the value of the project diminishes significantly. From a managerial perspective, this

information is valuable, for it allows decision makers to determine various timing scenarios – and is

especially valuable when comparing multiple project investment opportunities.

4 Conclusions

In this work we developed a method to account for timing risk of early stage project investments,

in a real options context. The model is based on previous work where, through the introduction

of a market sector indicator that is assumed to be correlated to a tradeable market index, is used

to drive the project’s cash-flow estimates. Another indicator, assumed partially correlated to the

market, was used to account for timing risk. The methodology provides a mechanism for valuing

real options of the cash-flow in a financially consistent manner under the risk-neutral minimum

martingale measure. The method requires minimal subjective input of model parameters and is

easy to implement. Furthermore, we coupled Monte Carlo simulation with the results of the model

to provide managers with a visualization of potential outcomes.
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