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We consider investment in energy transmission capacity between two region with uncertain demand in 

both regions. We show that even though an investor may learn about future price differences by 

waiting to invest, increased uncertainty also increases the value of the investment, and dominates the 

learning effect. As a consequence it is optimal to invest earlier the higher the uncertainty. 

 

1 Introduction 

Real option models demonstrate that uncertainty and learning often makes it optimal to delay 

irreversible investments. Early theory demonstrated that even when an investment has positive 

expected net present value it may be optimal to delay investment, as the stochastic variables may 

develop more favourably in the future. 

But uncertainty may affect different types of investment very differently. Some investments are simply 

undertaken to enhance the ability to meet uncertainty. An example is people investing in a fire 

extinguisher in their home in case of fire. If the time of the fire was known, the optimal solution would 

be to rent one for that day and stop the fire at the outset. Or if we only knew in which homes fires 

would start this year, we could limit the investment to those homes. When we don't have this 

information it is optimal to install the equipment everywhere in case fire. In this case it is the 

uncertainty that justifies the investment, uncertainty is not an argument to dealy.   

In this paper we consider investment in infrastructure, and transmission capacity in particular. We 

argue that this shares some which shares some similar features. If energy is produced by a known 

technology so the unit cost is the same in all regions, and we knew the exact demand in advance, we 

could build to demand. Daily variation in demand also tend to be similar across regions. But there are 

also fluctuations that are asymmetric and these are often due to unpredicted events. in demand also 

tend to be similar o But energy also has to be transported; Electricity require a transmission line from 

the producer to the consumer. Gas is often transported in pipelines. While transmission is needed also 

without uncertainty, it also has an element of the fire extinguisher. When it is cloudy and little sun 

power generated, or on cold days with high demand for heating, the electricity can be transported from 

places with excess supply.  

In the following we will first discuss some simple theoretical model highlighting this element of 

infrastructure investment, that is, the benefits of infrastructure as a mean to meet uncertainty. The 

model is set up to focus on this effect, and leaves open the question as to how important this will be in 



reality. To address that question we present results from a general equilibrium model of the energy 

market in Western Europe, where we have both investment in capacity and infrastructure, and where 

there is uncertainty.  

 

2. A simple model of transmission 

We first consider the simplest possible model of transmission, simple enough to allow an analytical 

solution.  

Let  

Xt  x  Bt
 

denote the price difference between two regions, and consider the investment in a unit of transmission. 

We assume that the investment is sufficiently small that the price difference can be considered 

exogenous. (Or the X may be thought of as the price difference when the transmission is in place.)  

The transmission line can charge a price equal to the absolute value of the price difference, then the  

value of a unit trasmission line will be.  

fx  E 
0


|X t|e

rtdt
 

The deterministic case is straightforward, as the difference will be x forever, thus  

r

x
(x)fσ 0  

With a unit investment cost C it is optimal to invest if and only if  
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x
C     is  that  

With uncertainty the value of an investment is less straightforward. 
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Proof: See appendix. 

 

To find the optimal investment criterion we next need to solve the optimal stopping problem: 

  




 reC)X(fEmax  

Let D denote the continuation area for this optimal stopping problem, then  

Theorem   [0, )D rC  

Proof: See appendix. 

 

The result implies that the fact that )x(f)x(f 0 dominates the waiting to learn. That is, although 

there still is an argument for delaying investment due to learning when uncertainty increases, 

uncertainty also increases the value of the investment, and this effect dominates. 

 

3  Three period information in two period model.  



Representing the value of transmission as an exogenous price difference is admittedly a 

considerable simplification, still the model above is challenging to solve. To be able to solve 

more realistic models, I revert to a numerical model. I will here present a model that I will 

interpret as essentially a three period model with uncertainty, although it is formally a two 

period model. To explain the idea, consider first how a static equilibrium model may be given 

a two period interpretation. Essential to this construction is the presence of uncertainty, and 

we represent uncertainty in the simplest way possible, as two possible states of the world. And 

we also consider a very simple economy, with firms investing in production capacity to 

produce a homogenous good consumed by consumers.  

We further assume that different decision are based on different types of information; When 

firms invest they do not know the state of the world, but when they choose how much to 

produce given their capital and when consumers decide on their demand, the state of the 

world is known. One reason why the actors use different information is that their decisions 

have to be taken at different points in time. Firms invest in capacity ahead of time, and thus 

do not yet know the state of the world. When the goods are traded the state of the world is 

known. Firms have perfect foresight and know the prices that will materialize for each 

possible state of the world.  

The example with two scenarios is illustrated in Figure 1, note that while there are two 

decision times, there is only one market clearing: 

 

  

 

 

 

 

 

 

 

 

Figure 1: The information structure within one period. Firms decide investment before 

uncertainty is resolved while consumers decide on demand after observing the scenario. There 

is market clearing within the period. 
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Now, to make a model with three time periods we need markets to clear twice. First firms 

invest, then consumers make their demand based on more information than what was 

available at the time of investment. The investment and consumption decisions are tied 

together in one market clearing condition. While consumers demand goods, the firms also 

demand goods for investment. This is for the capital that will be available when consumers 

demand product in period 2, and are tied together in a second market clearing. This is 

illustrated in figure 2 below.  

Figure 2: With two market clearing periods. Note that consumption in period 1 and 

investment for period 2 is made at the same time, but still belong to two different market 

clearing periods. The investment at t=1 will only affect capital t=2  and hence not influence 

market clearing for t=1.   

 

For simplicity we will use period to denote the time t, and the subscript t will denote the 

market clearing period, thus the capital that is installed at t-1 using the information available 
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at that time, will still be denoted Kt as it determines the supply in year t and hence is set to 

clear markets in year t.  

 

4. Energy demand in two regions, an example 

We now consider a simple example with energy demand in two regions. The main purpose of 

this section is to show how the general idea in Rockafellar and Wets (1991) to find the 

solution of a stochastic problem for a single actor can be used to transform a deterministic 

equilibrium model to a stochastic equilibrium model. To this end we first set up a simple 

deterministic equilibrium model for a two-regions electricity market. We then discuss how to 

extend this to add uncertainty and then two market clearing periods with an information 

structure and Bayesian learning. While the model is simple enough to be transparent, the basic 

formulation is similar to the numerical LIBEMOD model, see Section 3, or more generally to 

a CGE model.  

 

We consider a market where there is only one energy good and only one technology, and 

there is uncertainty about the demand in each region in each period.  To highlight the 

importance of real options as well as the value of flexibility under uncertainty, it turns out to 

be convenient to make some rather unrealistic assumption. These assumptions make the 

deterministic case very simple and the impact of uncertainty very transparent. The key 

assumption is that there is constant unit capital cost in energy production and in transmission, 

and neither production nor transmission has any variable cost. In addition we assume that the 

interest rate is zero and there is no depreciation. 

The simplicity of the model makes the impact of uncertainty more transparent. In the 

model there is one demand parameter in each region. We show that in the case of no 

uncertainty, there will be no investment in transmission between the two regions, and hence 

no trade in electricity. We demonstrate that this result does not depend on the values of the 

demand parameters. In contrast, with stochastic demand parameters there will be investment 

in transmission in the stochastic equilibrium. This capacity will be utilized if the realizations 

of the two stochastic demand parameters differ, which means that one region has higher 

demand for electricity than the other. 

We consider a very simple model of electricity production and consumption in two 

regions. In each region i, i=1,2, there is a representative producer i. Initially a producer has no 

production capacity, but he can invest in capacity at a constant unit cost c. There is no cost of 



operating the capacity, so production ( )ix  will equal capacity ( )iK . There is also a 

transmission company which may invest in a transmission line between the two regions. 

Initially, there is no transmission capacity, but the transmission company can invest in 

capacity ( )  at a constant unit cost ( ) .  

In each region there is one representative consumer. His gross utility of consuming 

electricity ( )ix  is lni ix  where i  is the utility parameter of the representative consumer in 

market i. The consumers in region i maximize his net utility ln .i i i ix p x   

We will consider a stochastic model where markets clear in two periods. But to 

introduce one idea at the time, we start first with the static model, just to describe the standard 

complementary slackness conditions for such a problem. Then we add uncertainty and discuss 

how this will change the complementary slackness conditions. Finally, we extend the model 

to two periods with learning.  

 

The model has two periods (but we neglect discounting between the periods). In period 1 the 

actors may invest in capacity. In the beginning of period 2, the new capacities are available, 

and there is production and consumption like in any standard deterministic model. We assume 

that the electricity producer in market i can sell electricity in this market only, whereas the 

transmission company can buy electricity in one market and sell this electricity in the other 

market. 

In period 1 the electricity producer knows that in the next period the price of 

electricity will be ip . The electricity producer in region i will therefore maximize ( ) .i ip c K  

The first-order condition of this problem is  

 

 0,i ip c K    

 

that is, ip c if it is optimal to invest in production capacity ( 0).iK    

In period 1 the transmission company determines its investment in transmission 

capacity. Let 1z  be electricity bought in market 1 by the transmission company. This quantity 

is exported to market 2 and then sold in market 2 by the transmission company. 

Correspondingly, let 2z  be electricity bought in market 2 by the transmission company and 

then exported to market to 1. Profits of the transmission company are then 

1 2 2 2 1 1( ) ( ) .T Tp p z p p z c K     Of course, exports cannot exceed the transmission capacity, 



and hence in period 2 the transmission company faces the following two restrictions:  

 

 
1 2 1 0Tz z K      

 

 
2 1 2 0Tz z K      

where i  is the shadow price associated with the constraint on the amount of imports to 

market .i  Maximizing profits with respect to transmission capacity and export quantities, the 

first-order conditions are:    
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The last two conditions imply that 1 2 2 1.p p      

In period 2, the electricity producers will use their entire production capacity because 

there are no costs of production, whereas consumers will buy electricity. The first-order 

condition for the consumers is:   

 

 

Finally, the market clearing conditions are:  

 

1 2 1

2 1 2.

K z x
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The market equilibrium. 

The market equilibrium in this case is obvious. For prices approaching zero, demand is 

infinite. Hence, there will be production of electricity, which requires investment in 

production capacity in period 1; 0iK  . With an interior solution for production capacity, we 

have .ip c  Therefore, prices are equal between the two markets, and it will not be profitable 

to invest in transmission capacity to export electricity between the two regions. Hence,

0.TK  Technically, 1 2p p  and 1 2 0.   Thus the equilibrium is characterized as 

follows:  
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Note that no matter the value of 1 2( , ),   the optimal solution is always 0TK  . While 

this may seem like a very robust result, as demonstrated below 0TK   is not the equilibrium 

in the stochastic model. 

 

4.2  Modelling uncertainty 

We now transform the deterministic model to a stochastic model by letting the demand 

parameters be random. Suppose that there are two possible values of { , }i L H    for each 

market. This makes four possible combinations:  

1 2( , ) {( , ),( , ),( , ),( , )}.L L L H H L H H            

We denote each of the four outcomes as a scenario s, {1,2,3,4} .s S   The probability that 

scenario s materializes is sq  where 4
1 1.s sq    

 With uncertainty we need to specify the information available to the decision 

maker at the time of making the decision. We will assume that actors learn the true scenario in 

the beginning of period 2. Hence, investment decisions are taken under uncertainty (in period 

1) whereas trade, consumption and production decisions are taken after the uncertainty has 

been resolved (in period 2).  

Let us now consider the maximization problem of the electricity producer i. The 

straight forward formulation would be to maximize 

 
4

1

( ) .s is i i i

s

q p c K Ep c K


    

This would give the first-order condition  

0.i iEp c K    

 

While this would of course work, we want to use an alternative formulation that makes 

the changes in the model as small as possible when we move from the deterministic case to 

the stochastic. To this end we employ a model formulation from Rockafellar and Wets (1991). 

To explain this approach, suppose we simultaneously solve the deterministic model for each 

of the four scenarios. This would simply amount to specify the first-order conditions four 



times, once of each scenario. We could do this by adding an index s for the scenarios to each 

variable. Thus the first-order condition for the electricity producers would be  

 

0.is isp c K    

 

This condition has to be satisfied for each electricity producer i and each scenario s. 

Such a simultaneous solution would only require an extra scenario index on the variables 

relative to the deterministic case. However, this will not be the solution to the stochastic 

problem: with no link between the scenarios, the solution would be as above. In particular, 

production capacity will be /is isK c , and a producer will have a different capital stock for 

each scenario. But this does not make sense: because capital has to be chosen before the 

scenario is revealed, the capital stock must be the same in all scenarios. Or to put it 

differently: a solution with 1 4i iK K   is impossible to implement if capital is chosen before 

the firm knows the scenario. We therefore have to impose the condition that is isK K  for all 

, .s s S  Below this restriction is specified as 
4  for 1,2,3,is iK K s   and it is referred to as 

the implementability constraint. 

The discussion above implies that under uncertainty the investor cannot maximize 

profit for each individual scenario separately. With uncertainty, the aim of the electricity 

producer is to find the production capacity in each scenario ( )isK  that solves the following 

problem:   

4

1

4

max ( ) subject to

 for 1,2,3.
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The first-order condition is  

0

s is s is

is

q p q c 







 


 

where   is the shadow price of the implementability constraint. The second condition 

follows from the fact that 
4iK  enters all side constraints. Now, defining is

sis q






  - the 

probability adjusted shadow prices - the first-order conditions can be rewritten as  

0.

is is

i s is

p c

E q



 

 
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Compared to the first-order condition in the deterministic case ( ip c ), we have only 

added the (probability adjusted) shadow price of the implementability constraint ( )is  and 

indexed all variables by s. In addition, we have a condition for the shadow price; its expected 

value should be zero.  

The first-order conditions for investment in transmission capacity are changed in the 

same way as the conditions for investment in electricity production capacity; the first-order 

condition in the deterministic model is extended by an additive term ,s  which is the 

(probability adjusted) shadow price of the impelemtability constraint 
4  , 1,2,3Ts TK K s  , 

and all variables are indexed by s. In addition, the expected value of the shadow price   is 

zero:  

 

1 2 0
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s s T s Tc K
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Actual transmission (trade) and consumption is decided in period 2, that is, after the 

scenario is known. Thus, to characterize these decisions no implementability constraint is 

needed; the conditions are therefore similar to the ones for the deterministic case, except that 

all variables are indexed by s. The first-order conditions for trade are thus  
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whereas the first-order condition for the consumers is 
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Finally, market clearing requires 

 

1 2 1

2 1 2 .

s s s

s s s

K z x

K z x

 

 
 

 

Again, the only difference to the deterministic case is that all variables have been indexed by 

s. 

 



4.4 The two period extension  

Adding another time period, we assume that the demand for the first period is as 

above;  two possible values of 
1 { , }i l h    for each market. In the second period there are 

also two possible values
2 { , }i L H   . This makes four possible combinations for each 

period, and hence 16 possible paths through the two periods. E.g. if market A start out low 

and becomes High in the second period, while B stay high throughout, the path would be: 

1 1 2 2( , ),( , ) ( , ),( , )A B A B l h H H        . Each path is one possible scenario.  We denote each of 

the four outcomes as a scenario s, {1,2,3,...,16} .s S   The probability that scenario s 

materializes is sq  where 16
1 1.s sq    

Note that in period 1, even if we observe that demand ( , )l h  materializes, we cannot 

yet know if the scenario is ' ( , ),( , )l h H Hs      or some of the other three possible 

realizations of demand in the second period. Let 
( , )l h

S    denote the set of all scenarios starting 

with ( , )l h  . We denote the set 
( , )l h

S    an information set, as the agents know that the true 

scenario is in this set once ( , )l h  is observed. Note that there are four such information set. 

  Let s’ be a scenario starting with ( , )l h  . The probability that s’ materializes 

given that we have observed ( , )l h  is then 

( , )

'
'

ˆ

l h

s
s

s

s S

q
q

q
 




 

As each scenario is in only one information set, the information set in the denominator 

is well-defined for any scenario. 

Note that the investment in the first period last both periods, and hence prices in both 

period enters the first order condition. In the first period there is also no new information, thus  

1 2 1

0.

is is is

i s is

p p c

E q



 

  
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For the second period, the capacity will be used to produce electricity only one period. 

Moreover we only require that investments must be constant over the information set, and not 

over all scenarios, as investors now can tell the different information sets apart. Thus   

( , )1 1

2 2

0 0 for all information sets.

A B

is is

i s is is

s S

p c

E q I
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 
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 
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For the transmission company, it is similarly the case that the transmission line built 



the first year will last both period thus the first order condition is  

1 1 2 2 0

0.
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While for the second period, the implementability constraint only apply within each 

information set:In addition, the expected value of the shadow price   is zero:  

 

2 2 2 0

0. (Within each information set)
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5 Results 

We consider a market where there is only one energy good and only one technology, and 

there is uncertainty about the demand in each region in each period.  The above assumptions 

allow us to highlight the importance of real options as well as the value of flexibility under 

uncertainty. These assumptions make the deterministic case very simple and the impact of 

uncertainty very transparent. The key assumption is that there is constant unit capital cost in 

energy production and in transmission, and neither production nor transmission has any 

variable cost. In addition we assume that the interest rate is zero and there is no depreciation. 

 

Note that with zero interest rate and no depreciation there will – under certainty – be no 

reason to invest in period 2, as we noted above. It is costless to move the investment to period 

1, as there is no interest rate, and get the profits from increased capacity one additional period.  

Thus –in the absence of uncertainty – all investments are made immediately and such that 

marginal investment cost equals the return over the two next periods.  

 

The next thing to note is that with a constant unit cost in production, it will always be less 

costly to produce the energy in the region where it is to be consumed. Paying for transmission 

will only add to the cost. With full certainty there is no surprises in where the demand is, so 

capacity will be built to demand and the optimal solution is zero transmission capacity. Again 

any non-zero transmission investment is solely due to uncertainty. 

 

Note finally that the conclusion above is true for any parameter value of demand in the two 

regions. Thus if we do many simulation, drawing the uncertain parameter randomly, the 

deterministic model will find that firms don’t invest in capacity in period two and never in 

transmission. The average of all simulations will also be zero. Hence, a Monte Carlo or 



robustness analysis will not spot the error of this conclusion. 

 

Consider a stochastic version of this model where the uncertainty of demand is as follows. In 

either region the demand is either high (h) or low (l) at t=1, and either High (H) or Low (L) at 

t=2. The two regions are independent. An if the state is h at t=1, it will be H with 80% 

probability at t=2. Similarly state l imply 80% probability of L next period. For t=1, high 

demand means demand 0.2/p while low is 0.1/p while in the last period High/Low is 2/p or 

1/2p respectively. Unit cost of production capacity is 1 and unit cost of transmission capacity 

is 0.3. A more formalized version is given below.  

 

With the given parameters the deterministic solution is to invest 1.4 units of production 

capacity in both regions in period 1. As pointed out above there will be no investment in 

transmission and no investment in period 2. In the stochastic solution however, investment 

depends on the information set at the outset of period 2. There are 4 information sets. 

(hh,hl,lh,ll) whith the state in region A stated first and region B second. The model is simple 

enough to be easily solved in an Excel spreadsheet, and the results are given below. 

 

Full certainty and uncertainty with no learning is presented in the table below. In both cases 

there is no investment in period 2, but for period 1 there are some differences. The main 

difference is that with uncertainty, but no learning, we get a positive investment in 

transmission capacity. The investment in production capacity is also slightly lower than with 

full certainty.  

 Period  1 Period 2 

 No L Cert. Uncert. Cert/No L hh hl lh ll 

Prod. Cap_A 1,34 1.40 1.16 0 0.52 0.26 0 0 

Prod. Cap. B 1.34 1.40 1.16 0 0.52 0 0.26 0 

Transmission 0.42 0 0.22 0 0 0.19 0.19 0 

 

Note that while investment in production capacity amounts to 1.40 under certainty the 

investment drops to 1.16 in the first period. This is consistent with a real option argument. 

Investors delay investment waiting for more information, and only invest in the second period 

when the received information is favourable. The total investment over the two periods is less 

affected. With an expected investment the second period of 0,195, the total is 1.359, only a 

slight reduction from 1.40. 



 

For transmission the picture is very different. Since transmission is useful in the face of 

uncertainty the investment increases in the first period to 0.22 while it would have been 0 

under full certainty. It is still interesting to note that even with a further expected investment 

of 0.095 in period two, the total investment expected investment is 0.315, much lower than 

the 0.42 without learning. The real option takes a larger toll here.  

 

 

6 The general case. 

Above we presented a framework extending to two market clearing periods. We argued that 

the basic difference to the deterministic model is that variables will be indexed by scenario, 

we add a implementability constraint that the variable has to be the same within a information 

set and that a shadow price corresponding to this constraint is added to the first order 

condition. In this section we will consider the adjustment of the first order condition in the 

general case with T market clearing periods.   

To extend the method to dynamic models and learning, new information may be 

represented as a gradual refinement of the partition of the set of scenarios. At time t the 

investor knows that the true scenario is in some subset t iS  of the set S , where }{ tiS  is a 

partition of the set S . By partition we mean that sets t iS  do not overlap and their union is the 

total set of scenarios S. To illustrate, suppose that there are four scenarios, and two periods. In 

the first period it would be natural to assume that the agents do not know which scenario that 

will materialize, all scenarios are still possible. But in the second period some information is 

revealed, but not everything, e.g., an agent may know in period 2 that the true scenario is in 

one of two sets, e.g., {1,2}  or {3,4} . Let xt,s denote the vector of decision variables in period  

t  and scenario s. With the given information structure the constraint for this agent becomes 

x1,1=x1,2=x1,3=x1,4 for t=1, but only x2,1=x2,2 and x2,3=x2,4 for t=2.  Note that in the last period 

we do not require that x2,2=x2,3  since the agent knows that the true scenario is either (1 or 2) 

or (3 or 4) and we may use this information to pursue different policies in the different cases. 

As agents learn, the information gets gradually more precise, thus for all t  and all  tiS there is 

a 
1,t jS 

 such that 
 1,ti t jS S  .  

 

For concreteness we consider the first order condition for a firm investing in a capacity 



tsK , where t is (market clearing) period and s is scenario. We assume as above that there is no 

variable cost so actual production will equal capacity and the product is sold a price tsp . The 

maximization problem is then  

 1,

0

max ( (1 ) ) (1 )
T

t

s ts ts ts t s

t s S

q p K c K K r 



 

     

with side constraints 

1,(1 )

 for 

ts t s

ts ti ti

K K

K K s S

  

 
 

 

Let 
tI  denote the set of information sets at time  t   such that  

1

 and  for all ,  and 
tI

ti ti tj t

i

S S S S i j I i j


      

It is further assumed that the information structure gets gradually finer, such that for any tiS   

and any t t   there will be an 
t jS   such that 

ti t jS S   . 

Now, the Lagrangian for the problem is  

 

 

 

1,

0

0 1

1,

0 1

( (1 ) ) (1 )

ˆ

(1 )

t
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t

ti

T
t

s ts ts ts t s

t s S

IT

ts ts ti

t i s S
s i

IT

ti ts t s

t i s S
s i

L q p K c K K r

K K

K K





 





 

  




  


    

 
  
 
 
 

 
   
 
 
 



 

 

 

With first order conditions 

1 ˆ( (1 )) 0
1

s ts ts tiq p c
r


 


    


 

Note further that for the generic element 
ti tii s S  , there is no shadow price, but tiK  

enters in all the other constraints, we can define a shadow price  

ˆ ˆ
i

s Sti
s i

ts ts 



   

to make the above equation apply to all scenarios. Note also that as a consequence  

ˆ 0
s Sti

ts


  



As in Brekke et al (2014) we further divide by sq  and define ˆ( ) /ts ts ti sq     then 

the equation simplifies to  

1
( (1 )) ( ) 0

1 1
s ts ts s ts tsq p c q p c

r r

 
 


      

 
 

with  

1, with 0 if (1 )  for ts ti ti ts t s tiE K K s S          

Thus the traditional complementary slackness condition is replaced by a scenario-specific 

multiplier where the standard condition applies in expectation across the relevant information 

sets.  

Note here that the expectation in 
ts tiE  is derived using the original probabilities, 

summing over all tis S . The Bayesian updated probabilities are 

'

'

Pr( | ) Pr( )
Pr( | )

Pr( )
it

it s
it

it s

s S

S s s q
s S

S q


 


 

Here the denominator is the same for all tis S . Thus 
'

'

( | )

it

ts
ts ti

s

s S

E
E S

q









, and it follows that 

the last condition can be restated as  

1, with 0 if (1 )  for ts ti ti ts t s tiE K K s S          

With only an implicit re-normalization of
ti . 

 

6.2 Furhter extensions: Risk averse firms 

In the model in section 2 we assumed that the firms are risk neutral. A problem with risk 

adjustment in this setting is that energy prices are endogenous, and thus we cannot know 

before we run the model how returns to energy investments will correlate with consumption. 

A standard CAPM, consumption based or not, is thus hard to implement. State-price models 

on the other hand, are easy to implement but may be harder to calibrate. This model assumes 

that firms choose investments to maximize the utility of a well diversified owner. It may be 

argued that the manager will have an other attitude to risk, but we will return to this below. 

Each scenario will represent a state of the world. In a complete Arrow-Debreu 

equilibrium model where consumers trade state contingent  commodities, the equilibrium will 

reach a first best where all agents chooses optimally given their preferences which also reflect 

their risk aversion. (Debreu, 1959) The same real allocation emerges in general equilibrium if 

consumers only trade products after the true state is revealed, but are allowed to trade in state 



contingent claims also called Arrow securities (Arrow, 1964),  or equivalently that the 

financial markets are complete. For an introduction se MasCollell et al (1995, Chapter 19), or 

Duffie (1996). 

Reconsider the investment problem of the simple model above, and for the moment 

we ignore discounting as above. The producer maximizes expected profits subject to the latter 

restriction: 

 

 max

s.t.  for all .

s s s s

s S

s

q p K cK

K K s S





 


 

 

Assuming risk neutrality, the return from a unit increase in capital is thus 
s s

s S

q p


  and 

the cost is c . Now, suppose that there is a market for state contingent claims. A contingent 

claim on scenario s ensures a payment of 1$ in period 1 if scenario s materializes. The price of 

the contingent claim in period 0 is on a payment in scenario s is denoted 
sQ , and we will refer 

to them as state prices. Note also that with no discounting, a contingent claim on all scenarios 

must be worth exactly 1, thus 1s

s S

Q


 . If an investor buy sp claims contingent on scenario s, 

and does this for each scenario, that will yield a payoff of sp  in each scenario, exactly as the 

investment in an extra unit of capacity. The value, or market price, of such a portfolio would 

be 
s s

s S

Q p


 .  

For any consumer the state prices 
sQ are proportional to the probability times the 

consumers marginal utility of income in the relevant scenario, '( )s s sQ au c q for some 

constant a. In scenarios with low consumption marginal utility is high, and in these scenarios 

s sQ q , while in scenarios with high consumption 
s sQ q . Low consumption scenarios are 

thus overweighed, and the high consumption scenarios are underweighted relative to 

probability weighing. If consumers are risk neutral, marginal utility will be the same in all 

scenarios and the state prices will equal the probabilities.  The value 
s s

s S

Q p


 would thus take 

the risk aversion of the owners into account. The optimal investment, that is, the one 

maximizing the value of the firm on the market for contingent claims is thus the one 

maximizing.   



 

 max

s.t.  for all .

s s s s

s S

s

Q p K cK

K K s S





 


  

Note that the only difference is that the probabilities sq have been replaced with state 

prices 
sQ , which looks like probabilities in the sense that the prices are non-negative and  

1s s

s S s S

Q q
 

   . There is thus no need to change the model; we only need to recalibrate the 

probabilities.  

The approach readily extends to discounting, which is the standard case in the 

literature. Note that with discounting, a portfolio of one unit of each contingent claim will 

yield a certain return of 1, worth 1/ (1 )r  where r is the risk free rate of return. That is 

1/ (1 )s

s S

Q r


  . Normalizing the state prices to (1 )s sq Q r  we get 1s

s S

q


  and the value 

of an unit of capacity equals  

  / 1s s s s

s S s S

Q p q p r
 

 
  
 

   (0.1) 

That is, after replacing the original probability with the normalized state prices, all 

investments can be discounted at a risk free rate of return.  

 

Calibrating 

While the approach only requires a shift in probabilities, the challenge is to calibrate 

the new probabilities. Consider first the case of GDP uncertainty, we may assume that 

aggregate consumption and GDP is perfectly correlated. In the simplest case ii yc  and with 

and the state price should be proportional to marginal utility of income (or aggregate 

consumption). (This is sated as a Theorem in Duffie (1996), chapter 1.C). Assuming 








 1

1

1
)( ccu , it follows that  ccu )(' and the new probabilities are 

 s s
s

s s

q y
q

q y











. 

With GDP different in the different regions of the model, it would be reasonable to 

assume that an investor is well diversified and hence use average GDP, weighted by 

population size.  



Next in the case of oil price uncertainty, it may be argued that oil represent an 

alternative investment opportunity. Let sPo  denote the future price of oil in scenario s while 

0Po  denotes the current price. An investor may buy oil today and keep it into the future 

which yields sPo  in the future. As it is equivalent
1
 to buy a portfolio of sPo  units of the 

contingent claim for each state s it follows, using equation (1.4) that  

 0
1

s sq Po
Po

r





. 

This gives an additional constraint that can be used to calibrate the new probabilities. 

 Consider the latter calibration in the case of two scenarios reflecting high and 

low oil price. If keeping oil give a risk premium, the original return would be higher than the 

risk free rate, and to apply the equation above, we should increase the probability of the low 

price scenario, to make the expected return equal to the risk free rate. We thus put most 

weight on the low price scenario, as oil price is the only source of uncertainty and investors 

will have a low return on their oil investment in this scenario, hence also a low marginal 

utility of income. This takes the perspective of the owner. 

   

Risk averse managers 

A manager running a power company and deciding whether to extend capacity by 

investment in wind or thermal oil power, may think different from the owner. E.g. suppose 

managers’ compensation is proportional to the firms profit. (See Murphy (1999) for more 

elaborate descriptions of executive compensation schemes.)  Managers total wealth would be 

W=+W0, where  is a proportionality factor. A risk averse manager would choose 

investments to maximize an increasing and concave function 
0( )W   of profit. This is 

easily incorporated in our model. To simplify notation let =and W0=0.  

If firms maximize ( )  , their first-order condition would be:  

   ssss cpKcp  ~)('  , 

with the corresponding condition on the multipliers as in (1.3):  

0~ E . 

Due to the shadow price, we cannot eliminate the term   ' s sp c K  .  

                                                      
1
 It may be argued that sitting on oil yields an additional ”convenience yield” (see e.g. Gibson and 

Schwaartz, 1990) which is not earned by the equivalent portfolio. In this case the return to the equivalent 

portfolio should be reduced accordingly.  



Note that we could recalibrate shadow prices, using    ˆ / 's s s s sq p c K     

rather than /s s sq  . This would yield the simple first order condition ˆ
s sp c  

2
. 

Apparently this corresponds to new probabilities   ˆ 's s s sq q p c K  . But these 

probabilities would be firm specific, and not apply throughout the economy. In an equilibrium 

with different kinds of firms such a replacement of probabilities thus does not work.  

 

 

7 Conclusions 

We have shown how a deterministic dynamic model can be made into a stochastic model by adding a 

set of scenarios and with a dynamic information structure, and that this information structure can itself 

be given a timing interpretation.  

We also solved a very simple model with equilibrium investment in production capacity and 

transmission capacity and with uncertain demand. The model is set up such that there will be no 

transmission without uncertainty, to highlight an aspect of infrastructure investment; the flexibility it 

generates. The value of transmission is comes from the price differences generated by different 

stochastic shocks in different regions. This also makes information more valuable, and we see a larger 

difference in first period investment in transmission than in production capacity when we assume that 

there is no learning in the second period, thus the real option is more valuable in this context. 

Numerical results are very dependent on the parameter values used, and we have made no 

effort to make the model realistic. But the approach has already been used to make a static version of 

the model LIEBMOD stochastic, and in the next stage we will extend this to a dynamic version that 

allows us to study the tradeoff between the real option element of investments as well as the different 

kinds of flexibility otherwise generated by different types of investment.  

 

                                                      

2
 The condition on shadow prices would then become     ˆ' 0s s s s

s

q p c K    


