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Abstract

The Resource Rent Tax suggested by Garnaut and Clunies Ross (1975) has been
influential in resource rich countries and in academic literature. Several authors
show that it distorts investments through asymmetric treatment of profits and
losses. Neutrality can only be achieved if authorities commit to treating these
symmetrically, guaranteeing loss offset through payouts if necessary. Risks
are substantial, both in output (technology, geology) and (output and factor)
prices. Many nations will be unable or unwilling to take risks involved in such
guarantees. We analyze optimal rent taxation in this situation, maximizing tax
revenue subject to a constraint of no loss offset.
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1 Introduction

In most countries, nonrenewable natural resources are owned by the nation.1 The net

value of a deposit is called the (resource) rent, and at the outset, it then belongs to the

nation. Governments invite private-sector companies to participate in extraction activities

because these companies have the necessary technology and personnel, perhaps also capital.

After some process, some companies get licenses to explore and extract. In some countries

there are auctions (cash-bonus bidding), in which the nation hopes to receive from the

winning company a payment close to the total rent of a particular area. In other countries,

there is little or no up-front payment for licenses, but companies are subject to rent taxes,

sometimes in addition to corporate income taxes. Some countries combine auctions and

taxation. Boadway and Keen (2010, 2014) and IMF (2012) discuss the pros and cons of

these alternatives, but draw no definite conclusion. Since a large number of countries rely

on rent taxation, we concentrate on this alternative.

The simplest model of optimal rent taxation is a pure cash flow tax at a rate close to

one hundred percent.2 The tax is neutral under the assumption of value additivity, i.e.,

that a company attaches a value to x percent of a (risky) cash flow stream which is equal

to x percent of the value it attaches to the whole cash flow stream. The company will

then make the same decisions (exploration, development, operation, shut-down) under the

pure cash flow tax as if there were no taxes, in order to maximize the total value of the

prospective deposits.

1In federal nations, the ownership may be by the states/regions/provinces. We neglect this distinction
here.

2By a pure cash flow tax, we mean a proportional tax on the company’s non-financial cash flows, as
suggested by Brown (1948). In years with a negative cash flow, this system gives payouts of the negative
taxes. In terms of cash flows, this is similar to equity participation by the government. The government
may prefer the tax over equity participation in order not to have to participate in decision making.
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Such a tax would be optimal if the government attaches the same value to risky future

cash flows as do the companies, and the government is able and willing to commit to the

payouts that it may have to make if output quantities or prices turn out to be low. The

guarantees have to be credible to such a degree that the companies regard them as certain.

Another condition for the system to be optimal, is that the government is able to prevent

transfer problems, i.e., companies using transfer pricing or real transfers to inflate the costs

or deflate the gross revenues in its activities.3

In practice, most governments choose tax systems that do not involve payouts. The

typically large initial costs are not expensed but deducted later through depreciation al-

lowances and similar investment-related deductions. As shown by Fane (1987) and Bond

and Devereux (1995), the tax system can still be neutral if the present value of deduc-

tions are maintained. This can be achieved by carrying forward negative cash flows with

accumulation of interest at a risk free interest rate, provided that eventual deduction is

guaranteed. Norway has tried to implement elements of such a system for its petroleum

sector, cf. Lund (2014b).4 The question is again whether the guarantee is credible. Histor-

ically in Norway, the guarantees only occurred after a sizable sovereign wealth fund had

been accumulated, and the system would perhaps not work for less wealthy nations.

Many countries will be unable or unwilling (or both) to make these payouts or guaran-

tees. Some nations have resource sectors that are large compared to the national economy,

and, in particular, to the government budget. If rent tax rates well above fifty percent

should be applied, the nations would have problems financing these payouts immediately

(under the pure cash flow tax system) or guaranteeing the future payouts credibly (under

systems with deductions carried forward). One such case may be Greenland, as described

3See Lund (2002) for discussion of the transfer problem.
4Something similar was proposed in Australia under the name Resource Super Profits Tax, cf. Lund

(2011).
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in Nielsen (2013). Both kinds of problems (payout now versus guaranteed future payouts)

are clearly related to the country’s ability to borrow at reasonable interest rates. In this

version of the paper, we concentrate on credit constraints as the motivation for not relying

on neutral rent taxes.

There can be many alternatives to neutral rent taxation. One simple alternative would

be to tax positive outcomes, but give (and promise) no payouts in case of negative outcomes.

This is the alternative we explore below. In the next section we give a brief account of the

discussion of such tax systems in the economics literature.

Another possible motivation for not relying on neutral rent taxes could be risk aversion

on part of the government. This could be imagined as the government representing the

median citizen, who is risk averse. It is difficult for poor nations to diversify well in

international capital markets. Thus it may be reasonable to model the nation as risk

averse when it comes to investment in its resource sector. This possibility is not treated in

the current version of the paper.

In order to discuss what is the best achievable rent tax system for a government, we

need to formalize the valuation, by the government, of its future risky rent tax revenues.

In the current version of the paper, the government attaches values to its tax claims in

accordance with theories from financial economics, and these values are the same (but

with opposite sign) as those that are attached to the same claims by the companies. This

simplifying assumption is not completely satisfactory, since the valuation model assumes

that there are no credit constraints. It also assumes spanning and complete diversification,

so it is not compatible with the risk averse behavior by a government that would have liked

to diversify away some of the risk from its resource tax revenue.

Nevertheless, this is the approach of this first version of the paper, since we would like to

analyze the simplest version of our problem first. If we had introduced different valuation
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functions for governments and companies, a neutral tax system would be sub-optimal, and

an important function of the tax system would have been to correct for this deviation.

Instead, in the present version, a neutral tax would have been optimal if the government

could afford it.

Clearly, the word “optimal” in the title should be interpreted with caution. Our results

will only be optimal under the set(s) of assumptions we use, and some of these are overly

simplified or controversial. But this paper differs from most of the literature in trying to

find some criteria for optimality, instead of presenting neutrality as the aim, or criticizing

neutrality.

2 Neutral taxation versus the Resource Rent Tax

We use the Resource Rent Tax (capitalized, as a proper name) (RRT) to denote the tax

system proposed by Garnaut and Clunies Ross (1975, 1979). The tax base is defined on

the basis of a company’s yearly cash flow (from a license area or from the whole resource

sector in a country). When the cash flow is negative, it is carried forward with interest

accumulation and deducted in next year’s cash flow. When the cash flow is positive after

deduction of such accumulated losses, it is taxed at a constant, proportional rate.5 If

the company never gets sufficient revenues to deduct the accumulated negative cash flows,

nothing is paid out from the government. This is an important asymmetry, and differs from

the neutral systems mentioned above (Fane, 1987, Bond and Devereux, 1995). Garnaut

and Clunies Ross (1975) suggest to use the company’s cost of capital as the interest rate

for accumulation.

5The multi-tier version of the RRT is not considered here.

4



Several authors (Mayo, 1979, Ball and Bowers, 1983, Smith, 1999) notice that the sys-

tem is a disincentive for investment because the deductions are not guaranteed. One could

imagine that a higher interest rate would be appropriate to achieve neutrality when deduc-

tions are risky. Smith (1999) shows in some detail why different circumstances (geology,

prices, costs, time lags) will lead to different appropriate rates, so that neutrality cannot

be achieved in practice.

This is an important criticism of the RRT, which was not taken well care of in the

original articles by Garnaut and Clunies Ross (1975, 1979). But the theoretical satisfactory

remedy, to guarantee the deductions and use the risk free interest rate, is only available

to countries that can afford it. When they cannot, the RRT may be the best achievable

system. The design of such a system should be made under the assumption that the

companies realize that deductions are risky and act accordingly. In the next section, a very

stylized model is used, with only one production period. In such a model, the firm’s optimal

investment (under decreasing returns to scale) is found analytically. The government will

choose the tax parameters in order to maximize the value of the tax claim, given the

assumed behavior of the companies. When parameters vary across many companies and

licenses, it may be informationally, politically and/or legally impossible to differentiate the

tax system accordingly. The best solution will then be some kind of average, but this is

not explicitly solved for in the current version.

Even though there is only one year with extraction, we refer to the system as the RRT,

since it has the important asymmetry mentioned above. But the present model exaggerates

the effect of asymmetry, since the possibility of loss carry-forward to later years is ignored.

The system will have two parameters, the tax rate and the deduction rate, i.e., the “rate”

at which an investment can be deducted from future income (in one year). A nice feature

5



of the model is that it gives an explicit solution for the optimal tax rate, which is not often

found in models of resource rent taxation, cf. Lund (2009, section 6.5).

3 The model

The government will maximize the value of taxes using the Resource Rent Tax (RRT)

system, under the condition that the taxpaying firm maximizes the value of its net after-

tax profits. The firm chooses investment I in a production process with decreasing returns

to scale, i.e., more is invested up to a point where the value of the marginal product of an

additional unit of money invested is equal to one unit of money.

The output from investment Q = κIν (where κ, ν are positive constants, ν < 1) will

appear t years later and will be sold then at the uncertain price Pt.
6 The valuation will

rely on standard assumptions in the literature on real options and option-analogous taxes,

cf. references below. We assume that the price process is a geometric Brownian motion

with drift. From the time of investment, both the firm and the tax authorities attach a

value V0(Pt) = P0e
−δt to claims to one unit of output to be received at t, where P0 can

be interpreted as today’s price (at time 0) and δ is a positive constant (the “rate-of-return

shortfall” of the price process).7

The tax will only work in year t. It will allow a deduction c · I then (with c being a

positive constant, known as the “depreciation rate” or (rate of) “allowance for corporate

capital” or the (rate of) accumulated negative cash flow). The tax base will be the difference

6To make the model somewhat realistic, this t could be set to some average time difference between
investment and extraction from an average deposit.

7If extracted units of output had been an investment asset in itself, like gold, one could have imagined
δ = 0 (when all agents are at interior optima in their choices of how much gold to hold, and storage and
insurance costs are negligible). But for most exhaustible resources, there will be a positive rate-of-return
shortfall, and only those agents who have some gain, in addition to a possible price increase, from holding
extracted units of the asset, will do so. That additional gain is called the convenience yield, and it may
be modeled as identical to a rate-of-return shortfall.
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PtQ− cI if the difference is positive. This is taxed proportionally at a rate τ ∈ (0, 1), but

the tax gives no refund if PtQ < cI. The tax is thus τ max(PtQ − cI, 0). The tax claim

is similar to a claim to a European call option. This analogy has been used to find the

value of the tax claim by, e.g., Ball and Bowers (1983), Majd and Myers (1985), Green

and Talmor (1985), MacKie-Mason (1990), Jacoby and Laughton (1992) and Lund (1992).

At time zero, both the firm and the authorities attach a value to the tax payment which

is determined by the McDonald and Siegel (1984) modification of the Black and Scholes

(1973) formula,

τ
[
P0e

−δtQN(z1)− cIe−rtN(z1 − σ
√
t)
]
, (1)

where N is the standard normal cumulative distribution function, and

z1 =
ln(P0Q)− ln(cI) + (r − δ)t

σ
√
t

+
1

2
σ
√
t. (2)

The expression in (1) is, of course, the absolute value, i.e., for the firm, this counts

negatively. The expression can easily be interpreted using the concept of risk-neutral

probabilities which is well-known from financial economics (see, e.g., McDonald (2006,

p. 321)). The second N() expression in (1) gives the risk-neutral probability of the tax

base being strictly positive, so that the deduction is earned. The first N() is a conditional

probability, so that the first term is the expected present value of PtQ under the risk-

neutral price process, conditional on the tax base being positive (which, in itself, depends

on the outcome of Pt).

In standard applications of the model for pricing European call options, and the anal-

ogous tax claims, the probabilities are assumed to be exogenous. Lund (2014a) shows

how to endogenize them. As shown in the appendix, when the production function is as
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described above, and the firm maximizes after-tax value, z1 will be determined implicitly

by the equation

z1 =
1

2
σ
√
t+

1

σ
√
t

{
rt+ ln

[
1− τce−rtN(z1 − σ

√
t)
]
− ln(cν)− ln [1− τN(z1)]

}
. (3)

This follows from the first-order condition for an optimum, which will give the interior

maximum under one additional condition, that 1 > τce−rtN(z1−σ
√
t). This condition can

be interpreted as “no gold plating incentives,” i.e., that the valuation of the additional tax

deduction that follows from an additional investment should not exceed that additional

investment. If it did, there would be incentives for completely unproductive investments.

This will put upper limits on τ (for a given c) and c (for a given τ).8

For the interior solution, the optimal I is then given by

I =

{
P0e

−δtκν [1− τN(z1)]

1− τce−rtN(z1 − σ
√
t)

}1/(1−ν)

. (4)

The formula shows the trade-off at the margin between the after-tax value of the

marginal product of investment, which appears in the numerator, and the after-tax cost of

investing, in which the tax value deduction is subtracted, appearing in the denominator.

The model will be solved numerically. A reasonable vector of exogenous parameters

(P0, δ, t, κ, ν, r, σ) will be specified as a base case. The computer makes a two-dimensional

grid search over the two tax parameters. For each pair (τ, c), the company’s optimal

investment is found analytically, and the value of the tax claim can be calculated (see

above). The government’s optimal (τ, c) is that pair which maximizes the value of the tax

8Whether and when the limits will be binding, come out as results of the simulations below.
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claim. An easy extension would be to consider a pair (τ, c) that maximizes a weighted

average of the tax claim and the after-tax value to the company.

4 Results

The base case will be (P0, δ, t, κ, ν, r, σ) = (10, 0.03, 10, 1, 0.5, 0.05, 0.3). Neither P0 nor κ

will influence the results, apart from the magnitudes of rents and taxes.9 The nominal

interest rate is set at 5 percent, which is not unreasonable by historical standards. The

rate-of-return shortfall, δ, should be less than r, and is set at 3 percent. The elasticity of

the production function, ν, is set at 0.5, which is an intermediate value in the assumed

(0, 1) range, although this does not imply that 0.5 is more reasonable than, say, 0.34.10

When ν is closer to unity, one is closer to a situation with constant returns to scale. There

will be less rent, and the probability of being out of tax position will be higher.11 With

one year as the unit of time, the volatility, σ, is set at 0.3, not unreasonable for, e.g., oil,

while t is set at 10 years. This t could be seen as an average time lag between investment

and oil extraction, perhaps representative for offshore activities. For onshore and smaller

deposits, a shorter time lag would be more representative.

When looking at the results, one should keep in mind that as long as σ > 0, the tax

system can at most be neutral for some particular configuration of parameters. With

uncertainty, there will be some probability that the tax base is negative, in which case

9Neither P0 nor κ appear in equation (3), which determines z1. However, if the government wants to
maximize its tax revenue by using the same tax parameters for a number of different deposits, the average
which was mentioned in section 2 will clearly put more weight on larger deposits, i.e., those with higher
values of κ.

10The value ν = 0.55 is used by Lund (1992) and Blake and Roberts (2006). For a lower number, an
anecdote tells that increasing the number of extraction platforms on the Norwegian Statfjord offshore oil
field from two to three, increased the predicted extraction by 15 percent. If platforms are equal and the
time profile of extraction is unaffected, this suggests an elasticity of about 0.34.

11Consequences of this elasticity for the risk of the tax claim is studied in Lund (2014a).
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there is incomplete loss offset. If we compare this tax system with one that guarantees

full loss offset, the incomplete-loss-offset system will discourage investment, given that the

parameters (τ, c) are the same. If c = ert and τ ∈ (0, 1), the system with full loss offset will

be neutral (Fane, 1987, Bond and Devereux, 1995). For some given τ , it may be possible to

compensate for the lack of loss offset by increasing c to some number greater than c = ert.

If such a c value exists, for which the firm chooses the same I as in the no-tax or neutral-tax

cases, it will clearly depend on the other parameters of the model (Smith, 1999).

4.1 Base case and variation in elasticity and rent

For the base case, the optimal investment in a no-tax situation would be I = 13.7, which

would lead to the maximal before-tax (net) value of 13.7, the same number (which follows

when ν = 0.5). With c = ert = 1.649 and the tax rate set as high as τ = 0.9, the after-tax

optimal investment is I = 3.47, i.e., substantially reduced, but the before-tax (net) value

would only be reduced to 10.33, i.e., to 75 percent of what it would have been in the

absence of taxation. Clearly, decreasing returns means that a very substantial reduction

in investment leads to only a moderate reduction in value. The risk-neutral probability of

a positive tax base, N(z2), is as high as 0.837, even when ten years will pass with σ = 0.3.

If we consider the higher ν = 0.7, but maintain the other parameters from the base case,

as well as the two tax parameters, the optimal investment in a no-tax situation would be

I = 241, which would lead to the maximal before-tax (net) value of 103. There is less rent

relative to investment. The after-tax optimal investment would be I = 17.9, i.e., an even

stronger relative reduction. The before-tax (net) value would be reduced to 37.9, i.e., to 37

percent of what it would have been in the absence of taxation. Clearly, not-so-decreasing

returns means that a very substantial reduction in investment now leads to a substantial
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reduction in value. The risk-neutral probability of a positive tax base is now 0.766, but

this is endogenous. The firm counter-acts the higher risk from lower rent by choosing a

lower investment, resulting in not-too-low rent in relative terms, and not-so-substantial

reduction in risk.

A change of the elasticity of the production function, ν, in the opposite direction, to

ν = 0.3, gives more rent (in relative terms). The optimal investment in a no-tax situation

would be I = 3.13, which would lead to the maximal before-tax (net) value of 7.30. The

after-tax optimal investment would be I = 1.52, i.e., a more moderate reduction. At this

investment, the before-tax (net) value would be 6.88, i.e., 94.2 percent of what it would

have been in the absence of taxation. The risk-neutral probability of a positive tax base is

now 0.908.

The conclusion so far is that the impact of incomplete loss offset depends very much on

the amount of inframarginal rent. Only one parameter has been varied so far, the elasticity,

ν. The tax rate is set high (by international standards), and the effects of changing ν may

look different at lower tax rates. What we have found in the case considered is that a lower

elasticity of the production function means more rent, lower probability of being out of tax

position, and thus lower relative distortion from the tax system. Moreover, the absolute

numbers are difficult to interpret, but relative numbers and probabilities lend themselves

to good, intuitive interpretations.

4.2 Optimal choice of tax parameters

The next experiment is a first attempt at finding optimal tax parameters, starting from

the base case described above. The resulting values of the tax claim are shown in table 1.

The first column shows the tax rate, varying from 0.54 to 0.99. The first three rows show
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c 1.2365 1.4426 1.6487 1.8548 2.0609 2.2670 2.4731 2.6792 2.8853 3.0914
ce−rt 0.7500 0.8750 1.0000 1.1250 1.2500 1.3750 1.5000 1.6250 1.7500 1.8750

ln(c)/t 0.0212 0.0366 0.0500 0.0618 0.0723 0.0818 0.0905 0.0986 0.1060 0.1129
τ

0.5400 7.9266 7.8483 7.6856 7.4583 7.1872 6.8902 6.5811 6.2701 5.9639 5.6670
0.5900 8.3267 8.3343 8.2304 8.0369 7.7792 7.4811 7.1610 6.8326 6.5056 6.1859
0.6400 8.6199 8.7424 8.7224 8.5812 8.3498 8.0588 7.7330 7.3907 7.0447 6.7034
0.6900 8.7787 9.0523 9.1484 9.0836 8.8947 8.6212 8.2960 7.9436 7.5809 7.2195
0.7400 8.7632 9.2333 9.4890 9.5332 9.4083 9.1654 8.8486 8.4906 8.1141 7.7339
0.7900 8.5116 9.2369 9.7141 9.9140 9.8824 9.6875 9.3889 9.0310 8.6436 8.2464
0.8400 7.9210 8.9776 9.7724 10.2003 10.3054 10.1822 9.9147 9.5636 9.1691 8.7570
0.8900 6.8024 8.2801 9.5624 10.3470 10.6588 10.6420 10.4227 10.0872 9.6900 9.2653
0.9400 4.7688 6.6728 8.8242 10.2597 10.9104 11.0554 10.9086 10.5999 10.2057 9.7711
0.9900 1.0396 1.9583 6.0868 9.6599 10.9944 11.4034 11.3662 11.0997 10.7153 10.2740

Table 1
Tax values in base case as function of tax parameters (τ, c)

the deduction rate values, varying from 1.24 to 3.09, and two alternative presentations

of these values, the present value using the risk free interest rate, ce−rt, and the risk-

adjusted interest rate, ln(c)/t that would result in this c. The latter is known from the

RRT system.12

Under the assumptions of the model, it may be reasonable for the government to try to

maximize revenue. This will be particularly relevant if the company is owned by foreigners,

in which case the government may find it reasonable to attach no welfare weight to their

after-tax profits. It was assumed above that the government attaches a value to a risky tax

claim which follows from the models of financial economics, in this case an option value.

This is the ex ante meaning of “tax revenue” in the model, and the government looks for

the highest possible number in the table.

12Let rx = ln(c)/t. Then erxt = c, which means that an interest accumulation at the rate rx is equivalent
to the deduction rate c, assuming that the time lag is known in advance. Notice, in particular, the third
lowest value of c, c = 1.6487. This is chosen to that the present value is unity (for given r = 0.05, t = 10),
and would be a relevant rate if uncertainty was very low (or loss offset was guaranteed). It corresponds to
rx = r = 0.05. The other c values add or subtract eighths of this, but rx does not grow linearly.

12



In the current version of the model, the transfer problem is explicitly ignored. This

opens for the possibility of very high tax rates without the problems of base erosion and

profits shifting (BEPS). In future versions we hope to incorporate a BEPS mechanism

based on convex concealment costs along the lines of Lund (2002).

The numerical results in table 1 can be summarized as follows.

For each of the lower values of c, up to c = 1.85, the tax value is first increasing, then

decreasing as function of τ . For each of the higher values, however, the results suggest that

the tax value is increasing all the way to τ = 0.99.

Looking instead along each row in the table: For each value of τ apart from the lowest,

the tax value is first an increasing, then decreasing function of c. This means that for

a given tax rate, the deduction rate is indeed able to compensate to some extent for the

imperfect loss offset. In the base case, it turns out that when τ is 0.64 or lower, the optimal

deduction rate is even lower than 1.6487, the value for c that would be used in a neutral

system with full, guaranteed loss offset.

The overall maximum in table 1 occurs for (τ, c) = (0.99, 2.47). Of course, this is only

an approximate result, dependent on the chosen grid.13 The fact that the optimum is

a corner solution is an additional motivation for including a BEPS mechanism in future

versions.

Two other tables show additional characteristics of the results in table 1. In table 2, the

risk-adjusted probabilities of positive tax bases are shown for the same 100 configurations

of tax parameters for the base case. This shows that the probability N(z2) is as low as 0.54

at the government’s optimum, (τ, c) = (0.99, 2.47). The combination of an extremely high

13In particular, there is no indication that τ = 0.999 should not give a higher tax value. But see the
comment above on BEPS, which makes the results gradually less realistic as τ approaches unity from
below. Even higher values of τ will lead the model to collapse, even under its own assumptions, as the
company will first be indifferent (at τ = 1) and then choose not to produce (at τ > 1).
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c 1.2365 1.4426 1.6487 1.8548 2.0609 2.2670 2.4731 2.6792 2.8853 3.0914
ce−rt 0.7500 0.8750 1.0000 1.1250 1.2500 1.3750 1.5000 1.6250 1.7500 1.8750

ln(c)/t 0.0212 0.0366 0.0500 0.0618 0.0723 0.0818 0.0905 0.0986 0.1060 0.1129
τ

0.5400 0.8199 0.7548 0.6898 0.6278 0.5704 0.5182 0.4713 0.4294 0.3920 0.3587
0.5900 0.8347 0.7691 0.7025 0.6384 0.5789 0.5248 0.4763 0.4331 0.3947 0.3607
0.6400 0.8509 0.7850 0.7166 0.6501 0.5882 0.5320 0.4817 0.4371 0.3976 0.3627
0.6900 0.8687 0.8028 0.7324 0.6631 0.5984 0.5398 0.4876 0.4414 0.4007 0.3648
0.7400 0.8885 0.8231 0.7505 0.6779 0.6099 0.5484 0.4939 0.4459 0.4039 0.3670
0.7900 0.9106 0.8466 0.7716 0.6950 0.6229 0.5580 0.5008 0.4508 0.4073 0.3694
0.8400 0.9353 0.8746 0.7971 0.7152 0.6379 0.5687 0.5084 0.4562 0.4110 0.3718
0.8900 0.9621 0.9091 0.8292 0.7399 0.6555 0.5810 0.5169 0.4620 0.4149 0.3744
0.9400 0.9880 0.9533 0.8735 0.7723 0.6772 0.5954 0.5264 0.4684 0.4192 0.3772
0.9900 1.0000 0.9991 0.9545 0.8210 0.7055 0.6127 0.5374 0.4754 0.4238 0.3802

Table 2
Risk-adjusted probabilities for positive tax bases in base case as function of tax parameters
(τ, c)

tax rate and a fairly high deduction rate induces the company to choose an investment

which makes the government’s tax revenue risky. This is nevertheless the best solution for

the government, because of the high tax rate.

In table 3, the relative distortions in before-tax values are shown. These are the ratios of

the before-tax value when the company maximizes after-tax value, to the maximal before-

tax value. A number just below unity means that the tax system does not distort much,

so that almost the maximal before-tax value is obtained. The table shows that at the

government’s optimum, (τ, c) = (0.99, 2.47), there is just a modest distortion of 5 percent.

The deduction rate is sufficiently high to induce investment not too much below the before-

tax optimum. For the same tax rate, a deduction rate of c = 1.65 would lead to less than

half in before-tax value. The general picture in the table is that distortions are modest,

except for the south-west corner.
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c 1.2365 1.4426 1.6487 1.8548 2.0609 2.2670 2.4731 2.6792 2.8853 3.0914
ce−rt 0.7500 0.8750 1.0000 1.1250 1.2500 1.3750 1.5000 1.6250 1.7500 1.8750

ln(c)/t 0.0212 0.0366 0.0500 0.0618 0.0723 0.0818 0.0905 0.0986 0.1060 0.1129
τ

0.5400 0.9181 0.9412 0.9588 0.9718 0.9810 0.9875 0.9920 0.9950 0.9970 0.9983
0.5900 0.8948 0.9244 0.9472 0.9639 0.9759 0.9842 0.9899 0.9937 0.9963 0.9979
0.6400 0.8659 0.9035 0.9328 0.9543 0.9697 0.9803 0.9874 0.9922 0.9954 0.9974
0.6900 0.8297 0.8773 0.9148 0.9425 0.9621 0.9755 0.9846 0.9905 0.9944 0.9969
0.7400 0.7838 0.8438 0.8921 0.9278 0.9529 0.9699 0.9811 0.9885 0.9933 0.9963
0.7900 0.7242 0.7999 0.8627 0.9092 0.9415 0.9630 0.9771 0.9862 0.9919 0.9956
0.8400 0.6442 0.7402 0.8233 0.8851 0.9271 0.9546 0.9722 0.9834 0.9904 0.9947
0.8900 0.5314 0.6528 0.7671 0.8524 0.9087 0.9442 0.9664 0.9802 0.9887 0.9938
0.9400 0.3597 0.5053 0.6764 0.8049 0.8840 0.9311 0.9593 0.9763 0.9866 0.9928
0.9900 0.0762 0.1435 0.4473 0.7233 0.8487 0.9141 0.9506 0.9718 0.9842 0.9916

Table 3
Relative distortions in base case as function of tax parameters (τ, c)

A second experiment shows the effect of a higher volatility, σ = 0.4. Apart from this

change, all other parameters of the base case are unaltered, as well as the grid for (τ, c)

values. The results are shown in table 4.

With the higher value of σ, the variance of Pt is higher, and one striking feature of

table 4 follows from this: The values in the cells towards the north east of the table, and

in particular also the maximum value in the south east corner, exceed the values in the

corresponding cells in table 1. This is a well known phenomenon from financial economics:

When all else is equal, the value of a European call option is increasing in the volatility.

The intuition here is that the government benefits from the higher outcomes of Pt, but

does not suffer from the lower outcomes. In the present model, there is a complication

that the company chooses I and thus z1 endogenously, so that its unfavorable position can

be partly counteracted by this choice.
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c 1.2365 1.4426 1.6487 1.8548 2.0609 2.2670 2.4731 2.6792 2.8853 3.0914
ce−rt 0.7500 0.8750 1.0000 1.1250 1.2500 1.3750 1.5000 1.6250 1.7500 1.8750

ln(c)/t 0.0212 0.0366 0.0500 0.0618 0.0723 0.0818 0.0905 0.0986 0.1060 0.1129
τ

0.5400 7.7789 7.7603 7.7007 7.6084 7.4909 7.3547 7.2054 7.0473 6.8839 6.7178
0.5900 8.0840 8.1314 8.1252 8.0743 7.9877 7.8734 7.7386 7.5891 7.4295 7.2636
0.6400 8.2728 8.4039 8.4679 8.4732 8.4299 8.3478 8.2359 8.1018 7.9516 7.7904
0.6900 8.3227 8.5580 8.7122 8.7918 8.8073 8.7702 8.6915 8.5810 8.4468 8.2953
0.7400 8.2022 8.5655 8.8349 9.0119 9.1060 9.1301 9.0977 9.0210 8.9107 8.7754
0.7900 7.8644 8.3840 8.8011 9.1066 9.3059 9.4129 9.4437 9.4140 9.3378 9.2265
0.8400 7.2344 7.9440 8.5539 9.0328 9.3762 9.5968 9.7144 9.7495 9.7207 9.6432
0.8900 6.1778 7.1144 7.9868 8.7134 9.2640 9.6467 9.8865 10.0119 10.0488 10.0185
0.9400 4.4016 5.5788 6.8445 7.9772 8.8636 9.4985 9.9209 10.1768 10.3066 10.3422
0.9900 1.0334 1.8379 3.8553 6.1906 7.8779 9.0058 9.7406 10.2013 10.4689 10.5988

Table 4
Tax values as function of tax parameters (τ, c) with σ = 0.4

Another striking feature is that at this high value of σ, we have not found an interior

solution for c at the row for τ = 0.99. Based on the model, the optimal solution is a very

high tax rate and a very high deduction rate.

5 Discussion and directions for further research

There are a number of possible additional analyses that can be made on the basis of the

current model. Of course, the sensitivity of the results to changes in other parameters can

be analyzed, in particular, r, δ, and t. Moreover, there is an interesting question whether

and how the optimal c depends on r and t. Since the deduction in the RRT proposal

(Garnaut and Clunies Ross, 1975) was an accumulation of a risk-adjusted interest rate,

reflecting the company’s cost of capital, one could analyze whether this holds here when

r and t change. This can be linked to the average and marginal systematic risk of the

company’s cash flow, as analyzed by Lund (2014a).
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Extending the model, one may consider the transfer possibilities that are particularly

relevant when the tax rate is high. This can be done, again in a very stylized way, based on

the convex concealment cost in Lund (2002). The solution to the company’s maximization

problem is then perhaps not analytically tractable, but it may be solved numerically. To

keep the model manageable, it will be helpful to restrict the number of tax parameters to

two, which means that the element of “gross taxation” (or royalty) in Lund (2002) could

be represented through the insufficient deduction for costs via c. A richer model might

give even more results, but may be difficult to keep track of.

Another extension, which adds realism, would be to consider many deposits and/or

many time periods. Based on limited information the government may have to apply

the same tax parameters to all deposits, and it may have to rely on a simple rule for

interest accumulation to implement a time-varying c. This may lead to trade-offs between

to harsh taxation in some situations and too lenient taxation in others. An overall sector

maximization may show how to arrive at a useful average solution.

6 Conclusion

Based on valuation functions from financial economics, we have shown how to solve the

problem of optimal taxation of a company operating under decreasing returns to scale

when exogenous output price uncertainty is the only source of risk. The model is highly

stylized with only one period of extraction. The optimization of two parameters of the tax

system was made under the assumption that there would be no loss offset. This is quite

common in practice, and can be motivated for some nations by their inability to give a

credible guarantee of payouts in the future in case the output price turns out to be low.

Another motivation could be risk aversion on behalf of citizens, due to lack of international
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diversification. Outside the model, there is also the possibility of quantity uncertainty for

technical or geological reasons.

The numerical results of the current version lead to tax rates approaching one hun-

dred percent from below. This is an unrealistic feature, which will motivate an extension

where the company tries to transfer costs into the sector, either by transfer pricing or real

transfers.

The results also show how the optimal deduction rate for costs will depend on the tax

rate and on the other parameters of the model. The model may be used to investigate

whether the deduction rate can be interpreted as an interest accumulation at a risk-adjusted

rate, which was the original formulation of the Resource Rent Tax.

7 Appendix

This appendix shows how to derive the first-order conditions for the firm’s maximization.

There is also a discussion of the condition to avoid gold-plating incentives.14

The original Black-Scholes formula had five arguments. The value of a European call

option is typically written as

C(S,K, σ, r, t) = SN(d1)−Ke−rtN(d2),

14The derivation is similar to what is found in Lund (2014a, p. 593), but with two changes: In the present
model, there is no immediate deduction when investment is done, unlike the “investment tax credit” at
rate a which is included in the previous model. This could easily have been included here, but is seldom
part of an RRT, and would make equations a bit more complicated. Moreover, in the present model, the
time between investment and output, t, can be varied, while in the previous model, this was fixed at unity,
one year. (A multi-period extension is found in Lu (2012).) Furthermore, there are changes in notation, τ
here was t there. Also, the discount factor was 1/(1 + r) there, but is e−r here.
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where

d1 =
1

σ
√
t

[ln(S/K) + rt] +
1

2
σ
√
t,

d2 = d1 − σ
√
t.

The derivatives of the Black-Scholes formula are well known, but not quite trivial to derive

(see, e.g., McDonald (2006, app. 12B)). Below, we need

∂C

∂S
= N(d1),

and

∂C

∂K
= −e−rtN(d2).

With a rate-of-return shortfall of δ, McDonald and Siegel (1984) show that the option

has a value of C(Se−δt, K, σ, r, t).

When the tax claim is of the form given in the main text, its value as seen from period

0 is thus τC(P0e
−δtQ, cI, σ, r, t), which can be rewritten as equations (1) and (2).

The firm’s maximand is the market value after tax,

P0e
−δtκIν − τ

[
P0e

−δtκIνN(z1)− ce−rtN(z1 − σ
√
t)
]
− I

= P0e
−δtκIν − I − τC(P0e

−δtκIν , cI, r, σ, t).

The first-order derivative of the maximand w.r.t. I is

P0e
−δtκνIν−1 − 1− τ

[
P0e

−δtκνIν−1N(z1)− ce−rtN(z2)
]
.
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The first-order condition sets this to zero, which yields

P0e
−δtκν [1− τN(z1)] I

ν−1 = 1− ce−rtτN(z2).

If the right-hand side is positive, this yields an interior solution, which is a maximum

(assuming that the second-order condition is satisfied). As long as the right-hand side

is negative, however, an interior solution is not yet found, and the firm will gain from

increasing I, since the first-order derivative is positive. If this holds for all values of I, no

interior solutions exist, and the firm will increase I indefinitely.

When the interior solution exists, we can solve for the optimal I, equation (4). This

solution (or, equivalently, an expression for P0e
−δtκIν−1 from the first-order condition) can

be plugged into (2) to obtain (3). Two of the intermediate steps are shown: Equation (2)

can be rewritten as

z1 =
ln(P0e

−δtκIν−1)− ln(c) + rt

σ
√
t

+
1

2
σ
√
t.

The argument of the first logarithm is recognized from the first-order condition above,

which is plugged in, under the assumption that the expression is positive, so that the

logarithm is well-defined, and an interior solution exists:

z1 =
ln(1−ce

−rtτN(z2)
ν[1−τN(z1)]

)− ln(c) + rt

σ
√
t

+
1

2
σ
√
t,

which can be rewritten as (3).
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