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NORDIC NUGGET: MOSSIN MOTHBALLING  MODEL 

 

1. INTRODUCTION 

Jan Mossin published possibly the first real option scale model in 1968, with optimal thresholds for  

mothballing an active ship, and for reactivating a mothballed ship, assuming revenues follow a 

stationary random walk with reflecting barriers, and constant operating, maintenance, layup and 

reactivation costs.  This characteristic stochastic process has not been commonly adopted in the real 

option literature, nor has Mossin been universally acknowledged as the Nordic godfather of real options.  

Indeed in the classic Nordic sponsored real options symposium of 1990, Mossin was not included in the 

author index or cited by any of the authors in Lund and Øksendal  (1991)1. 

 

Perhaps Mossin conceived his mothballing and reactivation decisions as somewhat similar to transfers 

from securities to and from cash balances, given stochastic net cash flows.  Miller and Orr (1966) (cited 

by Mossin) assume net cash flows for a firm follow a stationary random walk, characterized as a 

sequence of independent Bernoulli trials, with a probability p of an increase of “m” dollars, or a 

decrease with probability (1-p) over a fraction of a day (1/t).   Securities earning an interest rate of “r” 

are sold and transferred instantaneously when the cash balances fall to a lower bound, and purchased 

when cash reaches an upper bound at a transfer cost “  ”  in order to restore cash to the same average 

level.  Similar discussions for random walks might have been available for Mossin in Cox and Miller 

(1965), along with transition matrixes and reflecting barriers.  Mossin’s critical solution for the decision 

thresholds is similar to Miller and Orr (1966) of multiples of 
12

3
3

( )
4

m t

r


  (see equation 8 below).  

In any case, assuming geometric Brownian motion, the optimal thresholds as the simultaneous solution 

to a set of value matching and smooth pasting conditions for perpetual scale (entry/exit) real options 

were eventually developed by Tourinho in 1978, with instantaneous investments at a constant 

irrecoverable investment cost, or abandonment when prices reach a zero bound.  Holding costs for the 

investment opportunity (perhaps similar to the mothballing maintenance cost in Mossin) were required 

                                                           
1
 However, Mossin (1968) is cited in Dixit and Pindyck (1994).  But Wikipedia does not (yet) include the 1968 article 

in the partial bibliography of Jan Mossin. Google notes 4787 citations for the Mossin capital asset pricing article in 
Econometrica (1966) but only 46 citations for the lay-up decisions article, as of 13 Jan 2016. 
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for a solution, see Adkins and Paxson (2013) on Tourinho.  Brennan and Schwartz (1985) extended this 

model further by considering initial idle states, then investment for an active state, which could be 

suspended, and then also reactivated.  Tvedt (2000) provided analytical solutions to entry/exit problems 

in shipping assuming no switching costs, with implications for equilibrium freight rates. Paxson (2005) 

further extended these real scale options to a total of eight states, including expansion, which involves 

solving 16 equations simultaneously.    Adkins and Paxson (2012) provided quasi-analytical solutions for 

start-up and shut-down switching options with stochastic inputs and outputs and constant switching 

costs.   

While reflecting barriers might result in a type of mean reverting pattern, Bjerksund and Ekern (1995) 

suggested that freight rates follow an Ornstein-Uhlenbeck process, and provided analytical models for 

time charter contracts and European options on these contracts.  Biekpe et al. (2003) demonstrated that 

power series expansions can be used for analytical solutions for optimal costly entry/exit thresholds 

based on mean reversion and other similar processes. Sødal et al. (2008) valued the flexibility to switch 

between dry and wet freight for combination carriers assuming a mean-reverting freight spread and a 

constant discount rate.  Tsekrekos (2010) and several others have modeled entry/exit also assuming 

mean-reversion, but always at constant entry/exit costs.  Adkins and Paxson (2016) consider stochastic 

abandonment costs, but in a geometric Brownian motion context.   

The next section presents the Mossin model, along with spreadsheet solutions and sensitivity analysis.  

Section three reviews the contribution of Dixit (1988) with a less than satisfactory arithmetic Brownian 

motion approach, and also a standard geometric Brownian motion model (which is not easy to solve if 

the interest rate approaches zero, as in Mossin).  The last section concludes. 

2. THE MOSSIN MODEL 

The advantage of Mossin’s approach is its simplicity and completely analytical solution for the 

thresholds that justify laying-up of an operating ship, and reactivation from layup.  The stochastic 

process for revenue (freight) is a stationary random walk (a Bernoulli process) with an equal probability 

of an increase or decrease for each unit of time (so there is no time varying drift), with a lower reflecting 

barrier “a” and an upper reflecting barrier “b”.  Although Mossin does not provide an economic reason 

for these reflecting barriers, it is reasonable that at some upper barrier laid-up ships will be reactivated 

and also new ships built, and at some lower barrier ships will be laid-up and older ships demolished for 

scrap.  At the upper barrier increased supply of ships will tend to depress freight rates eventually, and at 
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the lower barrier decreased supply will eventually result in increased freight rates.  Mossin derives the 

upper and lower thresholds based on an average duration of lay-up and operating periods, which is 

combined with the average revenue during operation, and constant cost during lay-up, to derive the 

average profit “R” over any period. 

 1 2 3(1 )( )R c c c         (1) 

where  is the proportion of time laid up,   is the average revenue when operating,  the average 

number of lay-ups per period, c1 is the operating cost, c2 the maintenance cost when laid up, and c3 the 

combined  mothballing and reactivation costs. 

 1

1 2




 



  (2) 

     
1 2

1


 



 (3)  

where 1  is the average duration of lay-up periods, and 2  is the average duration of operating periods.  

Using a transition matrix for proceeding from “y” (the layup threshold) as a starting state with “z” as the 

reactivation threshold, Mossin shows that the sum of the mean number of times in each state is   

 
1

2

( )( 2 1)

( )(2 1)

z y z y a

z y b z y





    

    
 (4)(5) 

The undiscounted average revenue when operating is not exogenous but a function of the upper barrier 

and the thresholds: 

  

2 2 21
( )

3

2 1

b b z y zy

b z y


   


  

  (6) 

Substituting (4) and (5) into (2) and (3), and with (6) into (1) provides an alternative expression for R. 

 2 2 2 3
1 2 1 2 1

1 1
( )(2 1) ( ) ( )( )

2( 1) 3

c
R b b c c a z y zy c c z y c

b a z y

 
             

   
              (7)  
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Taking the first derivative of (7) with respect to z and then y and setting each equal to zero, the optimal 

thresholds are   1/3

1 2 3

3
( ) ( )

4
z c c c     (8) 

 1/3

1 2 3

3
( ) ( )

4
y c c c     (9) 

Finally with k=number of steps during a period (k=2 implies doubling of the variance in periodic changes) 

2

1/33
1 2 3

3
( ) ( )

4
z c c k c               (10) 

2

1/33
1 2 3

3
( ) ( )

4
y c c k c               (11) 

These expressions are easily incorporated into a spreadsheet with simple analytical solutions, as shown 

in Figure 1, with k=1 or 2   Figure 1 

 

These results are the same as in Mossin (page 176).  So with a lower bound of 10, the threshold for lay-

up is 14, and with an upper bound of 50, the threshold for reactivation is 26. Note that the upper and 
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A B C D E

MOSSIN 1968  
INPUT EQ

  

   

c3a Reactivation Cost 288.0000

c1 Operating Cost 25.0000

c3b Mothballing Cost 0.0000

r Risk Free Rate  

 Asset Yield  

s Volatility  

c2 Maintenance cost during lay-up 5.0000

a Lower reflecting barrier 10.0000

b Upper reflecting barrier 50.0000

k Number of steps 2.0000

OUTPUT

 Proportion time laid up 0.2561 2 C20/(C20+C21)

 Average revenue when operating 35.0492 6 (C14^2+C14-(1/3)*(C25^2+C26^2+C25*C26))/(2*C14-C25-C26+1)

 Average number of lay ups 0.0010 3 1/(C20+C21)

1 Average duration of lay-ups 252.0000 4 (C25-C26)*(C25+C26-2*C13+1)

2 Average duration of operating 732.0000 5 (C25-C26)*(2*C14-C25-C26+1)

R Average profit over any period 5.9024 1 (1-C17)*(C18-C6)-C11*C17-(C5+C7)*C19

R Average profit over any period 5.9024 7

z Threshold for reactivation 26.0000 8 MIN((C6-C11)+(0.75*(C5+C7))^(1/3),C14)

y Threshold for lay-up 14.0000 9 MAX((C6-C11)-(0.75*(C5+C7))^(1/3),C13)

z k 29.5244 10 MIN((C6-C11)+(C15^(2/3))*(0.75*(C5+C7))^(1/3),C14)

y k 10.4756 11 MAX((C6-C11)-(C15^(2/3))*(0.75*(C5+C7))^(1/3),C13)

R (1/(2*(C14-C13+1)))*(C14^2+C14-(C6-C11)*(2*C13-1)-(1/3)*(C25^2+C26^2+C25*C26)+(C6-C11)*(C25+C26)-(C5+C7)/(C25-C26))-C6
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lower reflecting barriers do not enter into the threshold formulae (8) and (9), except that these barriers 

are also the upper and lower bounds on the thresholds.  

As Mossin points out, the sensitivities of the thresholds to changes in the critical parameter values are 

intuitive.  An increase in c3 (combined lay-up and reactivation cost) increases the spread between z and 

y, as shown in Figure 2.                 Figure 2     Figure 2 

  

Even though Mossin believes “the optimal values of z and y depend only upon the difference c1-c2”, 

more precisely the difference between z and y depends only on 
2

1/33
3

3
2 ( )

4
z y k c  , as shown in Figure 

3.  Both z and y increase as the difference between c1-c2 increases, but z-y remains the same. 

Figure 4 shows that the spread between thresholds, and also the level of the z threshold increases as the 

proxy for volatility increases (by a multiple of 
2

3k ).  “Increased variability of revenues require revenue 

to fall to a lower level before lay-up is effected, and to rise higher before the ship is put back in 

operation” (page 177) a positive “vega” effect on thresholds (consistent with many other real option 

models). 

   Figure 3 

c3a Reactivate 0 48 96 144 192 240 288

c3b Layup 0 0 0 0 0 0 0

z 20.02 23.30 24.16 24.76 25.24 25.65 26.00

y 19.98 16.70 15.84 15.24 14.76 14.35 14.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

0 48 96 144 192 240 288

Reactivation Costs

Thresholds as function of Reactivation 
Costs (Layup =0)

z

y
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     Figure 4 

 

c1-c2 20 22.5 25 27.5 30 32.5 35

z 26 28.5 31 33.5 36 38.5 41

y 14 16.5 19 21.5 24 26.5 29
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Thresholds as function of operating costs 
less layup maintenance costs

z

y

k 1 1.5 2 2.5 3 3.5 4

z k 26.00 27.86 29.52 31.05 32.48 33.83 35.12

y k 14.00 12.14 10.48 8.95 7.52 6.17 4.88
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Other observations are that  is independent of c3, and  is independent of c1-c2, but entirely dependent 

on a and b, the lower and upper reflecting barriers.   

Mossin’s basic reflecting barriers model does not directly produce a real switching option value, but 

instead provides an “average profit per period” R.  The “pure ROV” could be interpreted as the 

difference between the perpetual value of R when there is no switching cost (c3=0) and an extremely 

high switching cost, that is a high level compared to operating costs and maintenance costs.   But as 

Figure 5 shows R is not very sensitive to increases in c3, here consisting solely of the reactivation costs 

with lay-up cost of zero, even though the thresholds change significantly.  [Thus the additional value of a 

vessel that can mothballed at c3=0 rather than c3=288 is the present value of 6.34-5.90=.44 per period 

over the remaining lifetime of the vessel].  

     Figure 5 

 

As c3 increases, the average profit when operating hardly changes, but the number of switches  per 

period declines and the average duration of operating 2 increases substantially, and also the duration 

z 20.02 23.30 24.16 24.76 25.24 25.65 26.00

y 19.98 16.70 15.84 15.24 14.76 14.35 14.00

c3 0.00 48.00 96.00 144.00 192.00 240.00 288.00

 35.25 35.19 35.15 35.12 35.10 35.07 35.05

 0.312 0.002 0.001 0.001 0.001 0.001 0.001

1 0.82 138.68 174.73 200.01 220.14 237.14 252.00

2 2.39 402.84 507.54 580.99 639.46 688.84 732.00

R 6.34 6.21 6.13 6.06 6.01 5.95 5.90

5.90

6.00

6.10

6.20

6.30

6.40

0.00 48.00 96.00 144.00 192.00 240.00 288.00

C3

Average Net Revenue as function of c3

(Reactivation Costs)
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of lay-ups 1 increases.  As expected R is highly sensitive to increases in operating costs c1 as shown in 

Figure 6 as the proportion of lay-up time increases especially when operating costs are approaching or in 

excess of the average revenue when operating.    is a derived (endogenous) figure, rather than an 

exogenous freight rate.  (Mossin does not consider that there is any effect of widespread industry 

mothballing on spot freight rates, a consideration also typically ignored in many other real option scale 

models). 

    Figure 6 

 

R is a complex function of changes in c2, maintenance costs during lay-up, since like c1, these also affect 

most of the other parameter values, especially the thresholds and durations, as shown in Figure 7. 

c1 15 20 25 30 35 40 45

z 16 21 26 31 36 41 46

y 10 10 14 19 24 29 34

 0.09 0.15 0.26 0.38 0.50 0.62 0.74

 31.71 32.85 35.05 37.51 39.95 42.35 44.67

 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 42.00 132.00 252.00 372.00 492.00 612.00 732.00

2 450.00 770.00 732.00 612.00 492.00 372.00 252.00

R 14.27 9.92 5.90 2.49 -0.32 -2.51 -4.10

-10.00

-5.00

0.00

5.00

10.00

15.00

20.00

15 20 25 30 35 40 45

C1 Operating Cost

R as function of c1
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     Figure 7 

 

 

 

Figure 8 shows that R is a complex function of Mossin’s proxy for volatility k, since changes in k affect 

the z and y thresholds, which in turn affect most of the other parameter values.   

     

 

 

 

 

c2 0 2.5 5 7.5 10 12.5 15

 0.38 0.32 0.26 0.20 0.15 0.12 0.09

 37.51 36.28 35.05 33.81 32.85 32.29 31.71

 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 372.00 312.00 252.00 192.00 132.00 80.75 42.00

2 612.00 672.00 732.00 792.00 770.00 616.25 450.00

R 7.49 6.62 5.90 5.34 4.92 4.58 4.27

z 31 28.5 26 23.5 21 18.5 16

y 19 16.5 14 11.5 10 10 10

4.00

4.50

5.00

5.50

6.00

6.50

7.00

7.50

8.00

0 2.5 5 7.5 10 12.5 15

C2

R as function of c2, maintenance costs
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Figure 8 

 

R is more or less a linear function of both a and b, as shown in Figures 9 and 10, since the reflecting 

barriers do not affect the thresholds, as noted by Mossin.  If these results represented a continuous time 

stochastic process, the “partial derivative” of R with respect to “a” would be: 

 

The “partial derivative” of R with respect to “b” would be: 

 

k 1 1.25 1.5 1.75 2 2.25 2.5

 0.2561 0.2561 0.2561 0.2561 0.2561 0.2598 0.2689

 35.0492 34.9810 34.9081 34.8310 34.7502 34.7556 34.8928

 0.0010 0.0009 0.0008 0.0007 0.0006 0.0006 0.0006

1 252.0000 292.4201 330.2134 365.9535 400.0251 432.4910 464.2428

2 732.0000 849.4108 959.1914 1063.0078 1161.9776 1232.3081 1262.0290

R 5.9024 5.8922 5.8668 5.8313 5.7883 5.7493 5.7209

z k 26.0000 26.9624 27.8622 28.7132 29.5244 30.3024 31.0521

y k 14.0000 13.0376 12.1378 11.2868 10.4756 10.0000 10.0000

5.7000

5.7500

5.8000

5.8500

5.9000

5.9500

1 1.25 1.5 1.75 2 2.25 2.5

k

R as function of k (volatility)

c1 c2

1 a b

b b
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1 2 a c1 c2
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y z
c1 c2 y z

1

3
y
2

z
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2 1 a b
2

1 2 b

2 1 a b

b b
2

1 2 a c1 c2
c3
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z
2
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Figure 9 

 

      

As shown on the Figures, R=3.22 +.45a and R=4.71b-12.71, with high R2 in both cases.  It is logical that a 

realistic lower bound is probably around the demolition price level, and an upper bound around the new 

building cost, but delays in new building for most types of vessels were surely the basis of second hand 

prices for five and even ten year tankers and dry bulk ships exceeding new build prices in 2007-2008.  

  

 

 

Figure 10 

a 0 2 4 6 8 10 12

 0.40 0.38 0.35 0.32 0.29 0.26 0.22

 35.05 35.05 35.05 35.05 35.05 35.05 35.05

 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 492.00 444.00 396.00 348.00 300.00 252.00 204.00

2 732.00 732.00 732.00 732.00 732.00 732.00 732.00

R 3.7647 4.1224 4.5106 4.9333 5.3953 5.9024 6.4615

R = 0.4477a + 3.2222
R² = 0.994

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00

0 2 4 6 8 10 12

a

R as function of a (lower reflecting barrier)



13 
 

  

The advantages of the Mossin model are its simplicity and early vintage.  Some disadvantages are: (i) 

that the real option value is not directly given, and so the extra value implicit in owning a vessel that can 

be mothballed compared to one that cannot (due to physical or contractual constraints) cannot be 

clearly quantified; (ii) the stochastic process is simple requiring a reversion to an unspecified level upon 

hitting the lower or upper barrier, with discrete steps; (iii) there is no guidance on how to calibrate these 

step sizes or frequency consistent with other common measures for volatility; (iv) no discounting is 

considered; (v) the stationary stochastic process is symmetric and with no drift bounds, although 

perhaps ignoring any bounds with the obvious supply and demand economics is also questionable; (vii) 

there are no further states, such as idle and scrapping, which are considered in Brennan and Schwartz 

(1985) and Dixit (1988); (viii) freight rates are discrete and given as more or less undiscounted 

endogenous averages; and (ix) perhaps other stochastic processes should be considered as in Dixit 

(1988).   Further considerations in common with most other scale option models are the assumptions of 

constant operating, maintenance, mothballing and reactivation costs.   

b 20 30 40 50 60 70 80

 0.68 0.50 0.34 0.26 0.21 0.17 0.15

 18.29 24.67 29.95 35.05 40.10 45.13 50.15

 0.01 0.00 0.00 0.00 0.00 0.00 0.00

1 90.00 252.00 252.00 252.00 252.00 252.00 252.00

2 42.00 252.00 492.00 732.00 972.00 1212.00 1452.00

R -7.73 -3.24 1.19 5.90 10.73 15.61 20.52

R= 4.7131b - 12.712
R² = 0.9996

-10.00

-5.00

0.00

5.00

10.00

15.00

20.00

25.00

20 30 40 50 60 70 80

b

R as function of b (upper reflecting barrier)
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3.  DIXIT ON MOSSIN 

Twenty years after Mossin, Dixit (1988) recast this model in continuous time assuming both arithmetic 

(aBm) and geometric Brownian motion (gBm).  Although Dixit first tried to approximate the Mossin 

results using gBm, his appendix “c” provided a continuous time model for assuming that revenue P is 

exogenous and follows a trendless aBm process.  

 dP dt dz s   (12)  

where for Mossin  0  .  Following Shimko (1992), aBm is appropriate for net cash flows (Mossin’s R) 

which may become negative but not for prices, or gross revenue.  Following Dixit (1988) the differential 

equations for trendless aBm are:  

   

 
2

2 1
1 12

1
0

2

V
rV c

P
s


  


  (13) 

for a mothballed vessel with a reactivation option, and for a operating vessel with a mothballing 

opportunity 

2
2 2

2 22

1
0

2

V
rV P c

P
s


   


               (14) 

The solutions are: 

 1
1 1

P c
V H e

r

   (15) 

 2
2 2

P P c
V G e

r

 
    (16) 

 2 /r s   (17) 

 (also see Dixit, 1993, page 41).  The value matching equations are: 

 1 2
1 2 3 0R R

a

c R c
H e G e c

r r

  
      (18)  
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1 2

1
0R RH e G e

r

                              (19) 

    

 1 2
1 2 3 0L L

b

c L c
H e G e c

r r

  
       (20)  

1 2

1
0L LH e G e

r

                               (21) 

where R=z is the reactivation threshold and L=y is the mothballing threshold,   c3a=reactivation costs and 

c3b=mothballing costs. 

     

     Figure 11 
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15
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22

23

24

25

26

A B C D E

MOSSIN 1968 EQ Dixit aBm

V Operating Value -50000.0000 C3/C8-(C5/C7)

P Revenue 20.0000 Revenue Per Ship 

c3a Reactivation Cost 288.0000 Cost to reactivate from mothballed

c2 Operating Cost 25.0000 Operating cost estimation 

c3b Mothballing Cost 0.0000 C4-288

r Risk Free Rate 0.000100

 Asset Yield 0.000100

s Volatility 0.0500 Freight rate spot market volatility

c1 Maintenance cost during lay-up 5.0000

1 0.2828 17 (SQRT(2*C7))/C9

2 -0.2828 -C11

NPV1 -50000.0000 -C10/C7

V1(P) ROV1+NPV1 -32857.4618 15 C17*EXP(C3*C11)-C10/C7

V2(P) ROV2+NPV2 -32717.2506 16 C18*EXP(C3*C12)+(C3-C5)/C7

NPV2 -50000.0000 (C3/C8)-(C5/C7)

H1 59.8873  

G2 4,947,131.0833  

R  20.8345  

L  19.1943  

R-L 1.6402  

Eq.M1 0.0000 18 C17*EXP(C19*C11)-C18*EXP(C19*C12)-C10/C7-(C19-C5)/C7+C4

Eq.M2 0.0000 19 C17*C11*EXP(C19*C11)-C18*C12*EXP(C19*C12)-1/C7

Eq.M3 0.0000 20 -C17*EXP(C20*C11)+C18*EXP(C20*C12)+(C20-C5)/C7+C10/C7+C6

Eq.M4 0.0000 21 -C17*C11*EXP(C20*C11)+C18*C12*EXP(C20*C12)+1/C7

SUM 0.0000 Set C26=0, Changing C17:C20

34

35

36

37

38

A B C D E

IS r<s
2? yes IF(C7<(C9^2),"yes","no")

MOSSIN Y 20.0000 C5-C10

X 0.8143 (0.75*(C9^2)*(C4+C6))^(1/3)

R 20.8143 C35+C36

L 19.1857 C35-C36
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Dixit notes that if r<s
2 , that is r is small, as r approaches 0 the approximate solution is the same as (8) 

and (9).  Figure 11 shows the spreadsheet solution to the two value matching and two smooth pasting 

equations is consistent with the results for (8) and (9).  Dixit assumes that Mossin’s discrete random 

walk with steps of size 1 might be equivalent to a daily volatility of 5% (=1/20), (20 is the average of L=14 

and R=26 base case in Figure 1).  The apparent aBm solution is R=20.8 and L =19.2, which is consistent 

with Dixit’s approximate solution of Mossin, shown in Cells C37:C38.  Note the solution to these four 

nonlinear equations is very sensitive to very small changes in both r and s, with an enormous G 

(mothballing option coefficient).  It is not necessarily easy to obtain solutions using Excel Solver. Perhaps 

these calculations are problematical due to the interest rate assumption, realistic only in modern 

European times. 

Dixit indicates greater success with replicating the Mossin results assuming gBm (he notes “Mossin’s 

formulae are not rigorously valid for gBm and small r, in practice it seems to fit reasonably well”, page 

6). 

It is assumed that there is a single factor P (revenue per capacity) which follows a geometric Brownian 

motion stochastic process: 

 ( )P P P

dP
dt dz

P
  s                                (22)                     

where P is the drift rate over time, δP is the asset yield or convenience yield, sP is the instantaneous 

standard deviation of the P disturbance, and dz is the standardized Wiener process.  Fixed cost of 

mothballing are c3b and of reactivating c3a.  The constant operating cost is c2, and maintenance cost c1.  

The Brennan and Schwartz (1985) entry/exit models using stochastic dynamic programming solve two 

ordinary differential equations for the optimal entry/exit thresholds, which is very similar to the 

reactivation/mothballing problem. 

All of the costs involved are known and constant, and the riskless rate of interest “r” is fixed, which for 

the Mossin case is assumed r=, so =0, if =r-.   Moreover, the options to alter states are perceived to 

be perpetual, since the asset is assumed to last forever.  Finally, the reactivation cost is considered 

irrecoverable, as are the one-off costs of mothballing.  Output variables are β1,2  = equations 27 and 28, 

R = P threshold that justifies immediate reactivation, and L = P threshold that justifies instantaneous 

mothballing. 
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In a stochastic model allowing for both reactivation and mothballing, there are two differential 

equations that the valuation functions must satisfy: 

LAIDUP          
2 21

2 0 0 0 1( ) ( ) ( ) ( ) 0P V P r PV P rV P cs                                                         (23)                                   

  

ACTIVE       
2 21

2 1 1 1 2( ) ( ) ( ) ( ) 0P V P r PV P rV P P cs                                               (24) 

 

The solutions for each of these equations are: 

                 
1 1

0 1( )
c

V P A P
r

                                                                                                                   (25) 

                
2 2

1 2( )
cP

V P B P
r




                                                                                                              (26) 

The general solution for each state is of the form of some constant (to be determined) times P to the 

power of 
2,1  given by: 

 22

2
122

2
1

1 /2]/)[(/)( sss rrr      >1                                               (27) 

                     22

2
122

2
1

2 /2]/)[(/)( sss rrr     <0                                                      (28) 

Each of the actions must meet value matching and smooth pasting conditions. The first term of 

equation (26) represents the value of the option to mothball, whereas the other two terms represent 

the perpetual value of operating the asset.  Now, there are four unknowns that need to be 

determined, namely the two optimal thresholds R and L, and the two option value coefficients 1A  and 

2B . At the optimal reactivation point R and at the optimal mothballing threshold L the value-matching 

and smooth pasting conditions need to be satisfied.  For instance, L must satisfy: 

 

 1 0 3( ) ( ) bV L V L c                  1 0( ) ( )V L V L                                                                 (29) 

 

After substitutions and simplifications, there are four equations to be solved simultaneously. 

 1 2 2 1
1 2 3 0a

c cR
A R B R c

r

 




                                                                  (30) 

 1 21 1

1 1 2 2 1/ 0A R B R                                                                            (31) 
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    1 2 2 1
1 2 3 0b

c cL
A L B L c

r

 




                                                             (32) 

 1 21 1

1 1 2 2

1
0A L B L  



                                                                       (33) 

 

Using the Mossin inputs but assuming a very small r (perhaps appropriate only recently), the results are 

close to Mossin, as shown in Figure 12, in this case splitting the base case c3 equally between 

reactivation and mothballing costs.  These results are very sensitive to very small changes in r and s. 

`                Figure 12 
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21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

A B C D E

DIXIT 1988 EQ

V Operating Value -5494.5055 C3/C8-(C5/C7)

P Revenue 20.0000 Revenue Per Ship 

c3a Reactivation Cost 144.0000 Cost to reactivate from mothballed

c2 Operating Cost 25.0000 Operating cost estimation 

c3b Mothballing Cost 144.0000  

r Risk Free Rate 0.000910

 Asset Yield 0.000910

s Volatility 0.0500 Freight rate spot market volatility

c1 Maintenance cost during lay-up 5.0000

1 1.4889 27

2 -0.4889 28

NPV0 -5494.5055 -C10/C7

V0(P) ROV0+NPV0 5266.5435 25 C17*(C3^C11)-C10/C7

V1(P) ROV1+NPV1 5245.6726 26 C18*(C3^C12)+(C3/C8)-(C5/C7)

NPV1 -5494.5055 (C3/C8)-(C5/C7)

A1 124.3657  

B2 46,466.03  

R 27.4199  

L 15.0039  

R-L 12.4160  

VM1 0.0000 30 (-C18*(C19^C12))+(C17*(C19^C11))-(C19/C8)+((C5-C10)/C7)+C4

SP1 0.0000 31 (-C12*C18*(C19^(C12-1)))+(C11*C17*(C19^(C11-1)))-(1/C8)

VM2 0.0000 32 (-C17*(C20^C11))+(C18*(C20^C12))+(C20/C8)-((C5-C10)/C7)+C6

SP2 0.0000 33 (-C17*C11*(C20^(C11-1)))+(C18*C12*(C20^(C12-1)))+1/C8

SUM 0.0000 Set C26=0, Changing C17:C20

  

ROV0 10761.0490 C17*(C3^C11)

ROV1 10740.1781 C18*(C3^C12)

1 0.5-((C7-C8)/(C9^2))+SQRT(((((C7-C8)/(C9^2))-0.5)^2)+(2*(C7/(C9^2))))

2 0.5-((C7-C8)/(C9^2))-SQRT(((((C7-C8)/(C9^2))-0.5)^2)+(2*(C7/(C9^2))))

Idle DE Laid-up Ship 0.0000 23 0.5*(C9^2)*(C3^2)*C36+(C7-C8)*C3*C35-C7*C14-C10

Active DE Active Ship 0.0000 24 0.5*(C9^2)*(C3^2)*C38+(C7-C8)*C3*C37-C7*C15-C5+C3

D V0 P 801.1272 C11*C17*(C3^(C11-1))
G V0 P 19.5851 C11*(C11-1)*C17*(C3^(C11-2))
D V1 P 836.3366 C12*C18*(C3^(C12-1))+(1/C8)
G V1 P 19.5471 C12*(C12-1)*C18*(C3^(C12-2))
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A more conventional approach is using interest rates not approaching zero.  Dixit uses r=5%, where the 

thresholds are much lower for high mothballing costs, and higher with high reactivation costs, as in 

Figures 13 and 14.  “The split of the fixed costs between lay-up and re-start makes a big 

difference...intuitive, since with a higher interest rate the costs immediately incurred matter more” 

(page 7). With only mothballing costs, both thresholds are low, but especially the mothballing threshold 

(high abandonment costs are an incentive to avoid abandonment), but with only reactivation costs, both 

thresholds are higher, but especially the reactivation threshold (high investment costs deter immediate 

investment).   

Figure 13  Only Mothballing Costs 
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23
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A B C D

DIXIT 1988 gBm

V Operating Value -100.0000 C3/C8-(C5/C7)

P Revenue 20.0000 Revenue Per Ship 

c3a Reactivation Cost 0.0000 Cost to reactivate from mothballed

c2 Operating Cost 25.0000 Operating cost estimation 

c3b Mothballing Cost 288.0000  

r Risk Free Rate 0.0500

 Asset Yield 0.0500

s Volatility 0.0500 Freight rate spot market volatility

c1 Maintenance cost during lay-up 5.0000

1 6.8443

2 -5.8443

NPV0 -100.0000  

V0(P) ROV0+NPV0 -76.7810 C17*(C3^C11)-C10/C7

V1(P) ROV1+NPV1 -99.9962 C18*(C3^C12)+(C3/C8)-(C5/C7)

NPV1 -100.0000 (C3/C8)-(C5/C7)

A1 0.000000029  

B2 153,339  

R 23.4220  

L 4.7819  

R-L 18.6401  

Eq.30 0.0000 (-C18*(C19^C12))+(C17*(C19^C11))-(C19/C8)+((C5-C10)/C7)+C4

Eq.31 0.0000 (-C12*C18*(C19^(C12-1)))+(C11*C17*(C19^(C11-1)))-(1/C8)

Eq.32 0.0000 (-C17*(C20^C11))+(C18*(C20^C12))+(C20/C8)-((C5-C10)/C7)+C6

Eq.33 0.0000 (-C11*C17*(C20^(C11-1)))+(C12*C18*(C20^(C12-1)))+(1/C8)

SUM 0.0000 Set C26=0, Changing C17:C20

  

ROV0 23.2190  

ROV1 0.0038  

1 0.5-((C7-C8)/(C9^2))+SQRT(((((C7-C8)/(C9^2))-0.5)^2)+(2*(C7/(C9^2))))

2 0.5-((C7-C8)/(C9^2))-SQRT(((((C7-C8)/(C9^2))-0.5)^2)+(2*(C7/(C9^2))))

Eq. 23 DE Laid-up Ship 0.0000 0.5*(C9^2)*(C3^2)*C36+(C7-C8)*C3*C35-C7*C14-C10

Eq. 24 DE Active Ship 0.0000 0.5*(C9^2)*(C3^2)*C38+(C7-C8)*C3*C37-C7*C15-C5+C3

D V0 P 7.9459 C11*C17*(C3^(C11-1))
G V0 P 2.3219 C11*(C11-1)*C17*(C3^(C11-2))
D V1 P 19.9989 C12*C18*(C3^(C12-1))+(1/C8)
G V1 P 0.0004 C12*(C12-1)*C18*(C3^(C12-2))
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Figure 14 Only Reactivation Costs 

 

These Figures replicate the Dixit (1988) results, but show in addition that (23) and (24) are solved, using 

the apparent first and second derivatives of the solutions (25) and (26), and also show the real option 

value at each stage.  Note with high mothballing costs, the real option to mothball ROV1 is small, while 

with no reactivation costs in Figure 13, the ROV0 is large.  Note with zero mothballing costs, the real 

option to mothball ROV1 is large, while with high reactivation costs in Figure 14, the ROV0 is small.  As 

noted by Dixit, this illustrates a disadvantage of the Mossin model, where R and L are insensitive to the 

distribution between these investment type once-off irrecoverable charges.  Additional comparisons are 

in the Appendix.  
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A B C D

DIXIT 1988 gBm

V Operating Value -100.0000 C3/C8-(C5/C7)

P Revenue 20.0000 Revenue Per Ship 

c3a Reactivation Cost 288.0000 Cost to reactivate from mothballed

c2 Operating Cost 25.0000 Operating cost estimation 

c3b Mothballing Cost 0.0000  

r Risk Free Rate 0.0500

 Asset Yield 0.0500

s Volatility 0.0500 Freight rate spot market volatility

c1 Maintenance cost during lay-up 5.0000

1 6.8443

2 -5.8443

NPV0 -100.0000  

V0(P) ROV0+NPV0 -99.0210 C17*(C3^C11)-C10/C7

V1(P) ROV1+NPV1 -76.6481 C18*(C3^C12)+(C3/C8)-(C5/C7)

NPV1 -100.0000 (C3/C8)-(C5/C7)

A1 0.000000001  

B2 937,383,845  

R 40.2435  

L 17.1090  

R-L 23.1345  

Eq.30 0.0000 (-C18*(C19^C12))+(C17*(C19^C11))-(C19/C8)+((C5-C10)/C7)+C4

Eq.31 0.0000 (-C12*C18*(C19^(C12-1)))+(C11*C17*(C19^(C11-1)))-(1/C8)

Eq.32 0.0000 (-C17*(C20^C11))+(C18*(C20^C12))+(C20/C8)-((C5-C10)/C7)+C6

Eq.33 0.0000 (-C11*C17*(C20^(C11-1)))+(C12*C18*(C20^(C12-1)))+(1/C8)

SUM 0.0000 Set C26=0, Changing C17:C20

  

ROV0 0.9790  

ROV1 23.3519  

1 0.5-((C7-C8)/(C9^2))+SQRT(((((C7-C8)/(C9^2))-0.5)^2)+(2*(C7/(C9^2))))

2 0.5-((C7-C8)/(C9^2))-SQRT(((((C7-C8)/(C9^2))-0.5)^2)+(2*(C7/(C9^2))))

Eq. 23 DE Laid-up Ship 0.0000 0.5*(C9^2)*(C3^2)*C36+(C7-C8)*C3*C35-C7*C14-C10

Eq. 24 DE Active Ship 0.0000 0.5*(C9^2)*(C3^2)*C38+(C7-C8)*C3*C37-C7*C15-C5+C3

D V0 P 0.3350 C11*C17*(C3^(C11-1))
G V0 P 0.0979 C11*(C11-1)*C17*(C3^(C11-2))
D V1 P 13.1762 C12*C18*(C3^(C12-1))+(1/C8)
G V1 P 2.3352 C12*(C12-1)*C18*(C3^(C12-2))
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4. CONCLUSION 

 

Forty-eight years ago Mossin published the first quantified real option model leading to exit/entry and 

other scale models.  The primary contributions of this inaugural “Nordic nugget” are formulating the real 

scale option problem and providing a simple analytical solution for the optimal thresholds.  Extension of 

this model show that the spread between mothballing (temporary suspension) and reactivation 

thresholds is highly sensitive to the combined reactivation and mothballing irrecoverable once-off costs 

and to the proxy for revenue volatility, but invariant to the differences between the operating costs and 

the maintenance costs during mothballing.  Another extension of this model is that the average net 

revenue is not very sensitive to the combined reactivation and mothballing irrecoverable once-off costs 

or to the proxy for revenue volatility (in contrast to more conventional models), but very sensitive to 

changes in both operating costs and the maintenance costs during mothballing, and especially to 

changes in the reflecting barrier levels.   A major contribution (and requirement) of Mossin’s model is 

considering reflecting upper and lower barriers, which are missing from most current popular scale 

models.   

Twenty-eight years ago Dixit recast the Mossin model in continuous time. Approximating Mossin with an 

arithmetic Brownian motion with zero drift and an interest rate approaching zero, does not apparently 

result in the Mossin thresholds using the same parameter values  However, assuming geometric 

Brownian motion with zero drift and an interest rate approaching zero does produce results close to the 

Mossin thresholds, even though the very small discounting rate is problematical in calculations. Using 

normal interest rate levels results in quite different thresholds and real option values, which are 

sensitive to the distribution of reactivation and mothballing costs. 

What are some lessons for future research?  One consideration is the attractiveness of simple real 

option models, even based on somewhat tenuous assumptions.  Surely these models can be adapted to 

emphasize some of the advantages of analytical solutions, while minimizing some of the disadvantages 

especially the distribution of irrecoverable investment type costs.  Economically based reflecting upper 

and lower barriers for revenues could be an important Mossin contribution, complimenting the many 

other scale models (especially mean reverting).  Finally stochastic operating, mothballing and 

reactivation costs should not be too difficult to incorporate in some scale models.   
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APPENDIX  

                     

                                                         Figure 15

 

ROV0 and ROV1 are the LHS of (25) and (26), V the last two terms of (26) as P increases from 5 to 35, 
having derived the real option coefficients A1 and B2 and thresholds R and L as the solution for (30)-(33).  

D and G are the first and second derivatives of (25) and (26) with respect to P used in confirming that 
(23) and (24) are solved.  Inputs are from Figure 12, except for P.  

Logically, the mothballing option value declines and the reactivation option value increases as the 

freight rate P increases. 

 

 

 

Dixit Mothballing and Reactivation gBm Model  

P 5 10 15 20 25 30 35

V -21978.02 -16483.52 -10989.01 -5494.51 0.00 5494.51 10989.01

ROV0 1365.92 3833.89 7011.78 10761.05 15001.95 19680.84 24758.45

ROV1 21153.49 15072.90 12362.29 10740.18 9630.05 8808.74 8169.22

D V0 P 406.75 570.84 696.01 801.13 893.48 976.79 1053.25

G V0 P 39.78 27.91 22.69 19.59 17.47 15.92 14.71

D V1 P -969.65 361.93 695.94 836.34 910.56 955.34 984.78

G V1 P 615.99 109.73 40.00 19.55 11.22 7.13 4.85
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Figure 16 

 

Having derived the real option coefficients A1 and B2, the thresholds R and L are the solution for (30)-
(33). Inputs are from Figure 12, except for c3.  

 

 

 

 

 

 

 

R 21.025 23.726 24.859 25.704 26.407 27.023 27.580

L 21.025 17.047 16.388 15.950 15.616 15.343 15.111

R-L 0.00 6.68 8.47 9.75 10.79 11.68 12.47

Eq.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Eq.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Eq.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Eq.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SUM 0.00 0.00 0.00 0.00 0.00 0.00 0.00

        

ROV1 11102.14 10997.12 10928.60 10870.97 10819.53 10772.29 10728.21

ROV2 11101.48 11018.93 10970.94 10933.13 10900.94 10872.49 10846.79

Eq. 23 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Eq. 24 0.00 0.00 0.00 0.00 0.00 0.00 0.00

       

D V1 P 826.52 818.70 813.60 809.31 805.48 801.96 798.68

G V1 P 20.21 20.01 19.89 19.79 19.69 19.61 19.53

D V2 P 827.50 829.52 830.70 831.62 832.41 833.10 833.73

G V2 P 20.20 20.05 19.97 19.90 19.84 19.79 19.74

15

17
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23
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27

0.00 48.00 96.00 144.00 192.00 240.00 288.00

Reactivation Costs

Thresholds as Function of Reactivation Cost 
(Layup=0)
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Figure 17 

 

ROV0 and ROV1 are the LHS of (25) and (26) as the reactivation cost c3a increases from 0 to 288 having 
derived the real option coefficients A1 and B2 and thresholds R and L as the solution for (30)-(33). Inputs 
are from Figure 12, except for c3.  

 

The reactivation option value ROV0 decreases more than the mothballing option value decreases as the 

reactivation cost increases.  Not shown is that the ROV0 decreases and the mothballing option value 

increases as the reactivation cost increases (if the mothballing cost decreases so the combined cost 

remains constant). 

 

ROV0 11102.14 10997.12 10928.60 10870.97 10819.53 10772.29 10728.21

ROV1 11101.48 11018.93 10970.94 10933.13 10900.94 10872.49 10846.79

R-L 0.00 6.68 8.47 9.75 10.79 11.68 12.47

ROV1-ROV0 -0.67 21.80 42.35 62.16 81.41 100.20 118.58
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Figure 18 

 

ROV0 and ROV1 are the LHS of (25) and (26) as the volatility of the revenue increases from 5% to 9.2% 
having derived the real option coefficients A1 and B2 and thresholds R and L as the solution for (30)-(33). 

Inputs are from Figure 12, except for sP. 

 The reactivation option value ROV0 increases slight more than the mothballing option value increases as 
volatility increases.  The spread between R and L increases as volatility increases, consistent with the 
Mossin basic model, Figure 4. 

sP 0.0500 0.0570 0.0640 0.0709 0.0779 0.0849 0.0919

R 27.420 28.246 29.067 29.885 30.702 31.521 32.341

L 15.004 14.645 14.312 14.002 13.711 13.438 13.180

ROV0-ROV1 20.871 22.773 24.587 26.326 27.998 29.610 31.168

ROV0 10761.049 11852.916 12830.249 13701.079 14474.728 15160.928 15769.233

ROV1 10740.178 11830.144 12805.661 13674.753 14446.730 15131.318 15738.065

R-L 12.42 13.60 14.75 15.88 16.99 18.08 19.16
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