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ANALYTICAL INVESTMENT CRITERIA  

FOR SUBSIDIZED ENERGY FACILITIES   

  

 

 

Abstract 

 

We derive the optimal investment timing and real option value for an investment opportunity in a 

subsidized energy facility with possible price, quantity and subsidy uncertainty.  The general 

model is for three stochastic variables, from which several other models can be easily derived, 

where some (or all) of the variables are constant or deterministic. Simple analytical  solutions are 

suggested for all of the models.  Sensitivity of the thresholds justifying immediate investment 

and the real option values to changes in the important variables are also provided.  Notable 

findings are that the initial subsidies justifying immediate investment ) are lowered by subsidies 

unlikely to be withdrawn, but decreasing over time , and by reducing the output price volatility, 

and interest rates.  

 

 

JEL Classifications: D81, G31, Q42, Q48 

Keywords: government or customer subsidies, investment incentives, real option values, 

thresholds. 
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1 Introduction 

What type of subsidy (“S”) will have the greatest effect on reducing the subsidy threshold that 

justifies immediate investment?  We assume that in evaluating a perpetual opportunity to invest 

in an energy facility possibly subsidized, an investor uses modern investment criteria, allowing 

for volatility and drift over time of the market price of energy (“P”), and the quantity produced 

(“Q”).  She may then consider what volatility and drift characteristics of proposed subsidies (or 

other government guarantees) justify commencing an investment expenditure, given the physical 

characteristics of the energy facility.   

 

Our approach is consistent with other multi-factor models in solving several equations 

simultaneously to derive the solutions, usually given the assumption that the price and/or 

quantity threshold is equal to the current price or quantity.  However, we provide novel 

analytical solutions using a simple quadratic equation (with complex but identifiable ingredients 

like expected volatility, drift and correlations for the energy factors).  We also illustrate that the 

analytical solution actually solves the partial differential equation which governs the optimal 

investment timing, showing the deltas and gammas for the price, quantity and subsidy elements.  

Finally we identify some interesting aspects of the sensitivity of both the thresholds and the real 

option value of investment opportunities, which deserve the focus of both investors and 

governments. 

 

There are numerous examples of government subsidies provided to encourage early investments 

in renewable energy, see Lesser and Su. (2008), Yang et al. (2008), Blyth et al. (2009), Couture 
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and Gagnon  (2009), Kettunen et al.(2011), Borenstein (2012),  Mosiño (2012), Linerrud et al. 

(2014), and Abolhosseini and Heshimati (2014).   

 

Lesser and Su (2008) suggest a two-part FiT (so called Feed-in-Tariffs) scheme where potential 

investors specify what level of FiT they will accept through an auction process, along with the 

acceptable duration of fixed payments, both possibly adjusted for an actual capacity factor.  Also 

some FiT reduce payments over time.   Couture and Gagnon (2009) review some seven types of 

FiTs, divided into market independent and dependent policies.  The common independent 

scheme is a fixed, minimum S (replacing P), perhaps with a full or partial inflation adjustment. A 

variant on this scheme is a front-loaded model with specified reductions over time, “stepped 

tariff designs”.  The “spot gap tariff” is a variable subsidy equal to the difference between P and 

S threshold, so a fixed revenue is obtained by the investor.  Three market dependent schemes are: 

(i) a constant premium over or under P, (ii) a “corridor” premium, which  is a subsidy declining 

as P increases, and (iii) S= %P, where the % could exceed or be below one.  Abolhosseini and 

Heshimati (2014) review some 55 articles on subsidies, divided into FiT, tax incentives, and RPS 

(so-called renewable portfolio standard).  RPS  is quantity-based with tradeable certificates 

awarded for qualifed units of renewable energy produced.  We discuss how some of these 

subsidy design varieties can be incorporated into our analytical models at the end. 

 

The nearest papers apparently to ours offering some models are Boomsma et al. (2012), Abadie 

and Chamorro (2013), Adkins and Paxson (2014), Ritzenhofen and Spinler (2015), and 

Boomsma and Linerrud (2015), but their solutions are either numerical (and often more realistic) 

or based on somewhat different assumptions and objectives.  We note in the appropriate model 
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section, or the numerical illustrations, some incidents where a solution for the models of some of 

these authors can be analytical.  

 

We consider that the instantaneous cash flow from a facility is the respective commodity price of 

the output times the quantity produced, and either there is no operating cost, or there is a fixed 

operating cost that can be incorporated into the investment cost.  There are no other options 

embedded in the facility such as expansion, contraction, suspension or abandonment. We assume 

that the opportunity for making or acquiring the investment is perpetual, but the lifetime of the 

facility is finite, there are no taxes or competition, and facility construction or acquisition is 

instantaneous. Moreover, the typical assumptions of real options theory apply, with drifts, 

interest rates, convenience yields, volatilities and correlations constant over time, ignoring the 

seasonality and unreliability of prices and quantities.  Many of these strong assumptions may be 

required for an analytical solution.  Relaxation of some of these assumptions may lead to greater 

realism, but may then require much more complex analytical solutions or numerical solutions
1
.  

 

We assume the primary government objective is to reduce the subsidy threshold that justifies 

making an irreversible, instantaneous investment, given the market price of energy and the 

physical aspects of the facility including output and construction cost, instead of creating a high 

real option value for any allowable prospective facility or concession.  There are some eight 

different combinations of P, S, Q being constant or stochastic with the most general model 

assuming all  , ,P Q S  are stochastic, Model I, and the net present value model, assuming all 

, ,P Q S are constant or deterministic.  

                                                 
1
 For instance, a positive or negative abandonment value would require another set of equations.   
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The next section suggests an analytical solution for the general model.  Then easy analytical 

solutions are given for the other combinations where P is stochastic, and where there is no 

subsidy, excluding the three scenarios where P is constant and S and/or Q are not.  The third 

section compares the subsidy or price thresholds and real option values using comparable base 

parameter values, and illustrates the sensitivity of these models to changes in some important 

variables such as the level, volatility and drifts of the price, quantity and subsidy, and interest 

rates.  The final section concludes.  

2 Models 

2.1 Model I   Stochastic Price, Subsidy and Quantity 

We consider a perpetual opportunity to construct a renewable energy facility, such as a hydro-

electric plant or a solar PV farm or another renewable energy facility at a fixed investment cost 

K . This investment cost is treated as irreversible or irrecoverable once incurred. The value of 

this investment opportunity, denoted by 1F , depends on the amount of output sold per unit of 
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time, denoted by Q, the market price per unit of output, denoted by P
2
, and the subsidy per 

output unit, S.  In the general model, all of these variables are assumed to be stochastic and are 

assumed to follow  geometric Brownian motion processes (gBm): 

 d d dX XX X t X Z    (1) 

for  , ,X P S Q , where   denotes the instantaneous drift parameter,   the instantaneous 

volatility,  and dZ  the standard Wiener process. Potential correlation between the variables is 

represented by  . It may be reasonable to assume the price per unit of output follows such a 

stochastic process if it is a traded commodity, while treating the amount of output generated per 

unit of time as stochastic may reflect the random nature of demand or supply. 

 

Assuming risk neutrality and applying Ito’s lemma, the partial differential equation (PDE) 

representing the value to invest for an inactive firm with an appropriate perpetual investment 

opportunity (based on perhaps approval for the facility or a concession for infrastructure) is: 

 

2 2 2
2 2 2 2 2 21 1 1

2 2 2

2 2 2

1 1 1

1 1 1
1

1 1 1

2 2 2

0.

P Q S

PQ P Q PS P S QS Q S

P Q S

F F F
P Q S

P Q S

F F F
PQ PS QS

P Q P S Q S

F F F
P Q S rF

P Q S

  

        

  

  
 

  

  
  

     

  
    

  

 (2) 

where X  denote the risk-neutral drift rates and r  the risk-free rate, (=r-)
3
. Following Adkins 

and Paxson (2011), when P,Q, or S are below ˆ ˆˆ, ,P Q S  that justify immediate investment, the 

solution to (2) is: 

                                                 
2
 Output could be electricity, biodiesel, ethanol or directly useful energies (like heat), each of which are likely to 

follow somewhat different diffusion processes.  Sometimes these specific diffusion processes will not enable 

analytical solutions, see Mosiño (2012).  
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 1 1 1

1 1 1ROV F A P Q S
  

  . (3) 

where 1  , 
1 and 1  are the power parameters for this option value function. Since there is an 

incentive to invest when P , Q and S are sufficiently high but a disincentive when these are 

sufficiently low, we expect that all power parameter values are positive. Also, the parameters are 

linked through the characteristic root equation found by substituting (3) in (2): 

 

       2 2 21 1 1
1 1 1 1 1 1 1 1 12 2 2

1 1 1 1 1 1

1 1 1

, , 1 1 1

0

P Q S

PQ P Q PS P S QS Q S

P Q S

Q

r

           

             

     

      

 

    

. (4) 

We assume that there is no operational flexibility once the investment to construct the plant has 

been made. After the investment, the plant generates revenue equaling PQ  + SQ , with the 

present value factor of parts of this net revenue denoted  kP,  kQ and kS (no operating costs or 

taxes) (life assumed to be T=20 years in the base case)
4
.  

 

( )*( )*1 1
,

( ) ( )

P QP
r Tr T

P PQ

P P Q

e e
k k

r r

 

  

    
 

  
  (5) 

 

( )*
1

( )

Qr T

Q

Q

e
k

r





 





  (6) 

 

( )*( )*
1 1

, ,
( ) ( )

S QS
r Tr T

S SQ

S S Q

e e
k k

r r

 

  

   
 

 
  

 (7) 

The value matching relationship, when the real option value upon exercise is equal to the net 

present value of the investment (NPV), is: 

 1 1 1

1 1 1
ˆ ˆ ˆ ˆ ˆˆ ˆ

PQ SQA P Q S k PQ k S Q K       (8) 

The three associated smooth pasting conditions can be expressed as: 

 1 1 1

1 1 1
ˆ ˆ ˆˆ ˆ

PQA P Q S k PQ     (9)  

                                                                                                                                                             
3
 In sensitivity analysis, we assume s are not affected by changes in the specific parameter value considered. 

4
 This is the methodology in Boomsma  and Linnerud (2015). 
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 1 1 1

1 1 1 1
ˆ ˆ ˆ ˆ ˆˆ ˆ

PQ SQA P Q S k PQ k S Q      (10) 

 1 1 1

1 1 1 1
ˆ ˆ ˆ ˆˆ

SQA P Q S k S Q     (11) 

 

A quasi-analytical solution to the set of five equations 4-8-9-10-11 for 7 unknowns  

1 1 1 1 1
ˆ ˆˆ, , , , , ,P Q S A   is obtained by assuming ˆˆ ,P P Q Q  as in Adkins and Paxson (2014), and 

then finding  
1 1 1 1 1

ˆ , , , ,S A   .  An analytical solution is obtained by recognizing that: 

     1 1 1

1 1 1
ˆ ˆ ˆˆ ˆ/PQA k PQ P Q S            (12) 

and  

1 1 1
ˆ ˆ /PQ SQS k P k            (13) 

This implies that    
1 1 1               (14) 

Eliminating A  from (8) yields: 

 
1 1

ˆ ˆ ˆ ˆˆ ˆ/ ( )PQ PQ SQk PQ k PQ k S Q K     (15) 

So      1 11 1
ˆˆ

PQ

K

k PQ
 

 
   

 
 

                                                     (16) 

  

Eliminating 
1  and 

1  from the characteristic root equation (4) yields the quadratic equation: 

   2

1 1 1{ } { } { } 0Q a b c       (17) 







 

2 21 1
2 2

2
2 2

2 2 2

2

2 21 1
2 2

22

2

[
ˆˆ

[ 2 ]}

[

ˆˆ 2 2

]
ˆˆ2

]

P PS P S S

Q QS Q S S

PQ

PQ P Q PS P S QS Q S S

P S P S PQ P Q PS P S QS Q S

Q

Q S QS Q S

P

Q S

Q

P

QS Q

Q

S

S

a

K

P Q

K

PQk

K

PQk

k

b

c r

    

    

         

            


    

 



  

 

 

   

   

   





      


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This equation has the simple quadratic solution:  

 

2

1

4

2

b b ac

a


  
   (18) 

2.2 Model II    

Stochastic Price and Subsidy with a Deterministic Quantity 

We now modify the analysis to consider the impact on the investment decision of a permanent 

but uncertain government subsidy, denoted by S, but where the output Q sold per unit of time is 

deterministic.  

The PDE is: 

 

2 2
2 2 2 22 2

2 2

2

2 2 2 2
2

1 1

2 2

0.

P S

PS P S P Q S

F F
P S

P S

F F F F
PS P Q S rF

P S P Q S

 

     

 


 

   
     

    

 (19) 

where X  denote the risk-neutral drift rates and r  the risk-free rate, (=r-). The solution to 

(19) is: 

 2 2 2

2 2 2ROV F A P Q S
  

  . (20) 

where 2  , 2 and 2  are the power parameters for this option value function (allowing for a 

deterministic quantity). We expect that all power parameter values are positive. Also, the 

parameters are linked through the characteristic root equation found by substituting (20) in (19): 

 

     2 21 1
2 2 2 2 2 2 22 2

2 2 2 2 2

, , 1 1

0

P S

PS P S P Q S

Q

r

        

          

    

      . (21) 



  

11 

 

The value matching relationship becomes:    

 2 2 2

2 2 2
ˆ ˆ ˆ ˆ ˆˆ ˆ

PQ SQA P Q S k PQ k S Q K       (22) 

Eliminating 
2  and 

2  from the characteristic root equation (21) yields the quadratic equation: 

   2

2 2 2{ } { } { } 0Q a b c       (23) 

 



 

2
2 2 2 21 1

2 2 2 2 2

2 21 1
2 2

2

[ ] ]
ˆˆ2

[
ˆˆ

[ ]}
ˆˆ 2

P PS P S S S PS P S S

PQ

P S P S PS P S Q S

Q

S

Q

P

Q

P

S

K K

PQk

K

PQk

c r

a
P Q k

b

         

        


 

    





 

 

  



 

 

The solution to this equation is again: 

 

2

2

4

2

b b ac

a


  
   (24) 

The difference between (17) and (23) is that the Q volatility has been eliminated, but not the Q.  

2.3 Model III    

Stochastic Price and Quantity with a Permanent Deterministic Subsidy  

We modify the analysis to consider the impact on the investment decision of a permanent  

deterministic government subsidy, denoted by S, but where the output Q  and market price P are 

stochastic.  

The PDE is: 

2 2 2
2 2 2 23 3 3 3 3 3

32 2

1 1
0.

2 2
P Q PQ P Q P Q S

F F F F F F
P Q PQ P Q S rF

P Q P Q P Q S
       

     
      

        (25) 
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The solution to (25) is: 

 3 3 3

3 3 3ROV F A P Q S
  

  . (26) 

where 3  , 
3 and 3  are the power parameters for this option value function.  The parameters 

are linked through the characteristic root equation found by substituting (26) in (25): 

 

     2 21 1
3 3 3 3 3 3 32 2

3 3 3 3 3

, , 1 1

0

P Q

PQ P Q P Q S

Q

r

        

          

    

     . (27) 

Eliminating 
3  and 

3  from the characteristic root equation yields the quadratic equation: 

   2

3 3 3{ } { } { } 0Q a b c       (28) 

 

 

2
2 21

2 2 2 2

2

21
2

[ ] ][
ˆˆ

[ ]}
ˆˆ 2

ˆˆ2

{

P Q PQ P Q

PQ

Q

P S P PQ P Q

P

Q S

Q

Q

S

PQ

K

PQk

K
a

P Q k

b
K

PQk

c r

    


       

 

 

    



 

    

The solution to this equation is again:  

2

3

4

2

b b ac

a


  
          (29) 

2.4 Model IV   

Stochastic Price, Deterministic Quantity with a Permanent Deterministic 

Subsidy  
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We modify the analysis to consider the impact on the investment decision of a permanent  

deterministic  government subsidy, denoted by S, with a  deterministic  output Q,  when only the  

market price P is stochastic.  

The PDE is:  

2
2 2 4 4 4 4

42

1
0.

2
P P Q S

F F F F
P P Q S rF

P P Q S
   

   
    

                       (30) 

The solution to (30) is: 

 4 4 4

4 4 4ROV F A P Q S
  

  . (31) 

where 4  , 
4 and 4  are the power parameters for this option value function. The parameters 

are linked through the characteristic root equation found by substituting (31) in (30): 

    21
4 4 4 4 4 4 4 42
, , 1 0P P Q SQ r                  . (32) 

Eliminating 
4  and 

4  from the characteristic root equation (32) yields the quadratic equation: 

   2

4 4 4{ } { } { } 0Q a b c       (33) 

 
2

21
2

{ } { }
2

P
P P Q Sa b c r


      

 

The solution to this equation is:  

2

4

4

2

b b ac

a


  
            (34) 

2.5 Model V 

No Subsidy, Stochastic P and Q 

We consider now the case where there is no possibility ever of a subsidy, as in Adkins and 

Paxson (2014), (their Model I), following Paxson and Pinto (2005).  The PDE is: 
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: 

 

2 2
2 2 2 25 5

2 2

2

5 5 5
5

1 1

2 2

0.

P Q

PQ P Q P Q

F F
P Q

P Q

F F F
PQ P Q rF

P Q P Q

 

    

 


 

  
    

   

 (35) 

The solution to (35) is: 

 5 5

5 5 5ROV F A P Q
 

  . (36) 

where 5   and 
5 are the power parameters for this option value function. The parameters are 

linked through the characteristic root equation found by substituting (36) in (35): 

 

     2 21 1
5 5 5 5 5 52 2

5 5 5 5

, 1 1

0

P Q

PQ P Q P Q

Q

r

       

        

   

     . (37) 

The value matching relationship becomes: 

 5 5

5 5 5
ˆ ˆˆ ˆ

PQA P Q k PQ K
 

   (38) 

The two associated smooth pasting conditions can be expressed as: 

 5 5

5 5 5 5
ˆ ˆˆ ˆ

PQA P Q k PQ
    (39)  

 5 5

5 5 5 5
ˆ ˆˆ ˆ

PQA P Q k PQ
    (40) 

This implies that 5 5   (41) 

     5 51 1

5 5 5
ˆˆ /PQA k P Q

   
                     (42) 

  

5

5

5

ˆˆ
( 1)

PQKk
PQ







               (43) 

 

Eliminating 5   from the characteristic root equation (37) yields the quadratic equation: 

   2

5 5 5{ } { } { } 0Q a b c       (44) 
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

 

2 21 1
2 2

2 }

{ }

P Q PQ P Q

P Q PQ P Q

a

b

c r

    

    

 

  





 

The solution to this equation is:    

2 2 2

5

1 1
( ) ( ) 2

2 2
b a b a ac

a


    

       (45) 

as in Paxson and Pinto (2005). 

2.6 Model VI    

Stochastic Price and Quantity with a Retractable Stochastic Subsidy  

We now suggest an extension of the Adkins and Paxson (2014) (their Model III) for a subsidy 

that can be withdrawn at any time, and determine its effects on the threshold levels for S, where 

the facility is finite.  We assume that once the subsidy is withdrawn, it will never again be 

provided. 

 

The value of the investment option in the presence of a subsidy, but when there is a possibility of 

an immediate withdrawal, is 6F , and in the absence of a subsidy by 5F , as in the previous sub-

section. We assume that the subsidy withdrawal is well explained by a Poisson process with a 
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constant intensity factor, denoted by . The change in the option value conditional on the 

subsidy withdrawal occurring is    5 6, , ,F P Q F P Q S , so the expected change is given by: 

             5 6 5 6, , , d 0 1 d , , , dF P Q F P Q S t t F P Q F P Q S t       . 

The risk-neutral valuation relationship for 6F  is: 

 

2 2 2
2 2 2 2 2 26 6 6

2 2 2

2 2 2

6 6 6

6 6 6
6

1 1 1

2 2 2

( ) 0.

P Q S

PQ P Q PS P S QS Q S

P Q S

F F F
P Q S

P Q S

F F F
PQ PS QS

P Q P S Q S

F F F
P Q S r F

P Q S

  

        

   

  
 

  

  
  

     

  
     

  

 (46) 

The solution to (46) adopts the form: 

 6 6 6 5 5

6 6 5F A P Q S A P Q
    

  , (47) 

where the parameters 5  and 5  are specified by  5 5, 0Q    , with 5 5   (41), while 6 , 6  

and 6 are related through the characteristic root equation: 

 

       2 2 21 1 1
6 6 6 6 6 6 6 6 62 2 2

6 6 6 6 6 6

6 6 6

, , 1 1 1

( ) 0

P Q S

PQ P Q PS P S QS Q S

P Q S

Q

r

           

              

      

      

 

     

 (48) 

For any feasible values of P , Q  and S, the valuation function 6F  exceeds 5F  because the 

coefficient 6A  is positive. This implies that the option value to invest is always greater in the 

presence of a government subsidy that may be withdrawn unexpectedly than in its absence, 

which suggests that a subsidy, even one having an unexpected withdrawal, comparatively 

hastens the investment commitment, while it is comparatively deferred in its absence. 

 



  

17 

 

If the subsidy is present, then the present value of the plant is 6
ˆ ˆ ˆˆ

PQ SQk PQ k S Q , and if absent, 

then ˆˆ
PQk PQ , so the net present value following the investment commitment is: 

 6
ˆ ˆ ˆˆ (1 )PQ SQk PQ k S Q  . (49) 

The thresholds signaling investment for a retractable subsidy are denoted by 
6P̂ P , 

6Q̂ Q  

(see assumptions below) and 
6Ŝ .  

The value matching condition becomes: 

 6 6 6 5 5

6 6 5 6
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ (1 )PQ SQA P Q S A P Q k PQ k S Q K

          . (50) 

The two associated smooth pasting conditions are, respectively: 

 6 6 6 5 5

6 6 6 5 5
ˆ ˆ ˆ ˆˆ ˆ ˆ

PQA P Q S A P Q k PQ
       , (51) 

 6 6 6 5 5

6 6 6 5 5 6
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ (1 )PQ SQA P Q S A P Q k PQ k S Q

          . (52) 

6 6 6

6 6 6 6
ˆ ˆ ˆ ˆˆ (1 ) SQA P Q S k S Q

              (53) 

The parameter values 5A , 5  and 5  are known from the solution to Model V.

         

A quasi-analytical solution to the set of five equations 48-50-51-52-53 for 7 unknowns  

6 6 6 6 6
ˆ ˆˆ, , , , , ,P Q S A   is obtained by assuming ˆˆ ,P P Q Q  as in Adkins and Paxson (2014), and 

then finding  
6 6 6 6 6

ˆ , , , ,S A   .   

 

3.  Numerical Illustrations 

It is interesting to compare the apparent incentive effectiveness of subsidies given different 

assumptions regarding the stochastic or deterministic nature of P, Q or S. 

Model I   
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The general Model I assumes that P, Q and S are stochastic, with a base case of zero drifts and 

zero correlations.  A numerical illustration that this analytical solution has the same result as 

solving the five equations is shown in Figure 1 compared to Figure 2.  Figure 1 also shows that 

the PDE (2) is also solved assuming correlations are zero, given the Deltas and Gammas for the 

ROV1 (3),  

The PDE is solved, but since the drifts are zero, the deltas are not relevant.  

Insert Figures 1 and 2 Here 

Figure 3 shows that the  ROV and NPV as a function of the subsidy S almost form a 

conventional picture of a call option as a function of the “underlying asset”, with a “NPV 

exercise” price equivalent to S=.1085 (at which point the NPV just >0).  The ROV equals the 

NPV at the S threshold of .2243.    

Insert Figures 3 and 4 Here 

One way to reduce the S threshold that justifies immediate investment is to length the facility and 

subsidy life.  Figure 4 shows that reducing T, the finite life of the facility and subsidy (assumed 

to be coeval),  raises the S thresholds significantly, and lowers the ROV.  Note that much of this 

influence is through the sharp reduction of the PV factors (5-6-7), which then reduces the S and 

P power parameter values, also consistent with (15) and (16).  However, a subsidy which 

continues for a longer time does not benefit the government, and it is questionable whether a 

government can influence the physical life of a facility. 

Insert Figures 5 and 6 Here 
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Figure 5 shows that as the correlation between S and Q increases (greater project volatility), the 

S threshold that justifies investment and the ROV increases, which is logical.  There is hardly 

any relation between the correlation of S and P and the S threshold or ROV. 

 

Ŝ  is a linear function of  P̂ P as shown in Figure 6 so at a high P no subsidy is required.  

Increasing P also increases the ROV of the opportunity to invest, which perhaps is a case for 

considering government support of the market price, say of electricity, if there were not other 

consequences.  

 

Insert Figures 7 and 8 Here 

Figure 7 illustrates that both the S threshold and ROV1 increase as the S drift increases.  (There 

is a constraint that S<r.)  Note thatasS  increases kS (7) increases, and all the power parameter 

values increase.  Delta S increases, but delta P and delta Q decrease. So apparently one of the 

most effective subsidy arrangements which has the objective of reducing the S threshold is a 

subsidy that declines even at a constant rate over time.  A subsidy that reduces over time is also 

beneficial for the government.  

 

Reducing the interest rate is reasonably effective in reducing the S threshold, while at the same 

time increasing the ROV1, as shown in Figure 8.  This appears to be a “winner” on both fronts, 

costing the government little (supposedly) while benefitting both investors and those welcoming 

early investments in renewable energy facilities.  But exactly how the government is supposed to 

lower interest rates for specific energy projects (low interest rate loans, rate swaps for the current 

environment of very low interest rates?) is an important consideration.   
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Insert Figure 9 Here 

Reducing P volatility through price guarantees, or intervention in the energy market, might 

reduce the S thresholds as shown in Figure 9, but also reduces the ROV, which may not be 

welcomed by investors in concessions for future facilities.  Generally this could be an expensive 

way of reducing the S threshold, since a reduction of P volatility from say 12% to 6%, results in 

a reduction of the S threshold from .27 to only .22 (a 21% reduction).   

Model II 

Figure10 is the simple spreadsheet for Model II with a Q volatility of zero, but allowing for Q 

drift.  Note that Q gamma is eliminated from the PDE and solution, Row 44, and from the Q 

function (21) which allows for Q.  The primary effect is to raise the P power parameter value, 

while lowering the S and Q power parameter values.  With less overall volatility, the S2 threshold 

and ROV2 are slightly lower.  This base case is similar to Boomsma and Linnerud (2015), who 

assume that Q is constant rather than deterministic. (As a cross-check, using their methodology 

of solving four equations for four unknowns arrives at exactly the same results as Model II.) 

Insert Figures 10 and 11 Here 

Figure 11 shows the S2 threshold and ROV2 as a function of changing levels of a constant Q.  So 

if the solar efficiency Q for the same K is increased, eventually no subsidy is required to justify 

immediate investment.  Incidentally the last column shows that if Q=1.10 ˆ .1012S  when  the 

real option should be exercised which is close to S=.10.  So if subsidies remain the same, as K 

declines and/or Q for the same K increases due to technological innovation, investors using 
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modern financial models will have sufficient incentives to build immediately energy facilities 

without subsidies.  Perhaps this case holds currently for some solar facilities as K has declined. 

Model III 

Figure 12 is a simple spreadsheet for Model III with a permanent subsidy (FiT) that is  

deterministic, but allowing for stochastic P and Q.  Note in solving the PDE the S is considered 

but not S.  Note that reducing S volatility from 8% to zero reduces the S threshold less than 4%.  

Although the correlation with P and Q is zero naturally, it should be possible to design a subsidy 

that has an opposite trend from P, so compensating if market energy prices fall, and reducing 

government support if P increases over time.  

Insert Figure 12 Here 

Model IV 

Figure 13 is a simple spreadsheet for Model IV with a deterministic subsidy and quantity of 

production, so this ROV4 is driven by the volatility of the market price of energy. 
4Ŝ  is the 

lowest of all the modeled thresholds, but at the cost of eliminating both the S and Q volatility. 

Note the PDE is basic, consisting primarily of P gamma, since the basic parameter drifts are 

zero.  Still this model allows for design variability, for the subsidy and quantity drifts could be 

altered  (declining FiT, and guaranteed production) in order to further reduce the S threshold. 

Insert Figures 13 and 14 Here  

As the level of S increases, one would expect the ROV4 of the opportunity to invest in a facility 

with a permanent subsidy would increase, as shown in Figure 14 with a deterministic subsidy 
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and quantity of production.  In Figure 14 the presumed actual subsidy is increased up to the S 

threshold, when then the ROV4 equals the NPV4, and the investment option is exercised. 

Model V 

One comparison of the function of permanent subsidies is with an environment without any 

possible subsidies, which is Model I of Adkins and Paxson (2014), solved by applying the 

principle of similarity, see Paxson and Pinto (2005) assuming a facility with infinite life.  Figure 

15 shows a finite facility life with equal power parameter values (
5 5  ) (41).  Since in this 

case, there is no subsidy, the objective is to find the P threshold that justifies immediate 

investment.  The additional P is greater than the S threshold because the P volatility is different 

from the S volatility even in Model II.  Model V with no subsidy (so no subsidy volatility or drift 

is considered), forms the reversionary case for a retractable subsidy, where a FiT could be 

withdrawn with no possibility of a subsidy ever again being provided.  

Insert Figures15, 16  and 17 Here 

Model VI 

 

Figure 16 adapts the Adkins and Paxson (2014) retractable subsidy Model III, but provides a 

subsidy threshold rather than an output price threshold that would justify immediate investment, 

Model VI.  Note the S6 threshold result is between the Model II and Model III thresholds, as is 

the ROV6 indicating that even a retractable subsidy is worthwhile. However, Figure 17 shows 

that increasing the probability of withdrawal (logically) raises the S threshold, and reduces the 

real option value.        
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       Figure 18 

 

Model I is the solution to EQs17-18 with ROV EQ 3, Model II is the solution to EQs 23-24 with ROV EQ 20, 

Model III is the solution to EQs 28-29 with ROV EQ 26, Model IV is the solution to EQs 33-34 with ROV EQ 31, 

Model V is the solution to EQs 44-45 and ROV EQ 36, Model VI is the solution to EQs 48-50-51-52-53 and ROV 

EQ 47, with the parameter values as follows: price P=€.40, quantity Q=1.0 KWh, S subsidy=€.10,  investment cost 

K=€7.0, price volatility P=.06, quantity volatility Q=.04, subsidy volatility S=.08, correlations PSPQQS=0, 

P=Q=S=0, and riskless interest rate r=.04. =.10 reflects the possibility of a subsidy being withdrawn.  S^ 

indicates the S threshold that justifies commencing the investment, +P indicates an additional P threshold (over 

P=.40) that justifies commencing the investment if there is no possibility of a subsidy. 

 

Figure 18 is a comparison of the thresholds, ROV (and P) using the six models with common 

parameter values except as specified.  Model I considers P, Q and S stochastic, Model II Q is 

deterministic, indicating either a physical context where the sun always shines, the wind always 

blows equal to Q=1, or alternatively a government or purchaser guarantees a specified Q (or 

compensates if Q<1). Model III assumes S is deterministic, which is indicated for some FiT, 

even those with an amount that constantly declines over time.  Model IV assumes both S and Q 

are deterministic.  Clearly a constant S and Q provide the greatest incentive to invest 

immediately (lowest Ŝ ) but also result in the lowest ROV for the concession.   A constant S is 

SUBSIDY INCENTIVE EFFECT UNDER DIFFERENT MODELS

S S^ ROV   P

MODEL I 0.1000 0.2243 0.3336 2.8806

MODEL II 0.1000 0.1942 0.2623 3.0613

MODEL III 0.1000 0.2158 0.3148 2.9318

MODEL IV 0.1000 0.1848 0.2376 3.1126

+P

MODEL V 0.0000 0.2557 0.2243 2.4974

MODEL VI 0.1000 0.1992 0.3021 3.6658
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less effective than a constant Q alone in motivating immediate investment.  But given the 

relatively low volatility figures for both S and Q, reducing the volatility does not result in 

dramatically lower S thresholds.  Model V shows the high P threshold required to justify an 

immediate investment in the absence of any subsidy.  But a retractable subsidy with only a 

modest probability of withdrawal lowers the S threshold as in Model VI.  

 Many of these conclusions are specific to the assumed parameter values, which can be easily 

changed as illustrated.  Lessons for developers and designers of subsidy arrangements are [A] 

consider 
, 0S Q  as in Figure 5, [B] specify negative S drifts as in Figure 7, [C] lower interest 

rates as in Figure 8, [D] lower P volatility if it doesn’t cost much Figure 9, [E] relate S to K/Q as 

in Figure 11, [F]  lower S volatility if it doesn’t cost much, [G] consider both low S and Q 

volatility if it doesn’t cost much Figure 13, and [H] lower the probability of subsidy withdrawal 

as in Figure 17.   

 

Some of these lessons might enlighten the consideration of different subsidy arrangements as 

outlined in Lesser and Su (2008)  In terms of the factors we consider, possibly the S threshold 

could be adjusted for a particular project by K/Q, or a mixture of P and S assuming the 

correlation of that S and P is negative.  “Stepped tariff designs”could be incorporated into our 

models through the S drift term, and/or kSQ with T=5, 10, 15 or 20.  It may be hard to consider 

some of the non-linear arrangements  like the Couture and Gagnon (2009) “corridor” premium, 

(a subsidy declining as P increases) in an analytical solution.  RPS  (quantity-based with 

tradeable certificates awarded for qualifed units of renewable energy produced) may be 

appropriately modelled as S with volality and drift, with a correlation with P and Q empirically 

measured.   
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4.  CONCLUSION   

We derive the optimal investment timing and real option value for a subsidized renewable energy 

finite facility with possible price, quantity and subsidy uncertainty.  The general model is for 

three stochastic variables, from which several other models can be easily derived, where some 

(or all) of the variables are constant or deterministic. Simple analytical  solutions are suggested 

for most of the models.  Sensitivity of the thresholds justifying immediate investment and the 

real option values to changes in the important variables are also provided.  

 

We illustrate a hierarchy of S thresholds with the highest allowing for volatility in two or three 

variables  
5 1 3 6 2 4

ˆ ˆ ˆ ˆ ˆ ˆS S S S S S     .   There is a different  hierarchy for the real option values, 

ROV1>ROV3>ROV6>ROV2>ROV4>ROV5 all with common parameter values, except for 

volatility.  Within each model there are interesting variations.  Typically the S threshold and 

ROV increase with the volatility of the appropriate stochastic variable in each model.  So price, 

subsidy and quantity guarantees (reduction of volatility) are likely to result in earlier facility 

investments.  Similarly the longer time frame for FiT reduces the S threshold, as do reductions in 

interest rates.   The effects of declining S also increases the S threshold, and reduces the ROV.   

We suggest that a wide variety of support schemes can be evaluated using our framework, 

although eventually complicated arrangements require numerical solutions. Perhaps subsidies 

which grow or shrink at non constant rates can be incorporated into these models, along with 

stochastic investment costs and stochastic renewable energy certificates.   
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Calibrating price and sometimes quantity volatilities and drifts might be feasible for some 

outputs, but calibrating the convenience yields or drifts of some quantities and correlations of 

price and quantities is likely to be a challenge.  Left for future research are uncertain operating 

costs along with technological developments. 
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A B C D

SUBSIDIES MODEL I EQS

INPUT Stochastic  P & Q & S  

P 0.40  

Q 1.00  

S 0.10 per kwh

R 0.50 B3*B5+B4*B5

K 7.00  

P 0.06

Q 0.04  
s 0.08

PQ 0.00

PS 0.00

SQ 0.00

r 0.04

P 0.00

Q 0.00  
s 0.00

OUTPUT   

a1 0.0033 0.5*(B8^2)+0.5*(B10^2)-B12*B8*B10+((B7^2)/(2*B34))*((B9^2)+2*B13*B9*B10+(B10^2))+B35 17

b1 0.0001 B15-B17-0.5*(B8^2)-0.5*(B10^2)+B11*B8*B9+B12*B8*B10-B13*B9*B10+B36 17

1 3.4542 (-B20+SQRT((B20^2)-4*B19*(-B14+B16+B17+B13*B9*B10)))/(2*B19) 18

1 1.9367 1+B21*((B7/(B28*B30*B29))-1) 16

1 5.3908 B21+B22 14

A1 683.0290 B33/(B21*(B28^B21)*(B29^B23)*(B25^B22)) 12

S^1 0.2243 (B22*B28*B30)/(B21*B31) 13

F1(P,Q,S) 0.3336 IF(B5<B25, B24*(B3^B21)*(B4^B23)*(B5^B22),B27) 3

F1(P,Q,S) 1.5942 (B30*B28*B29)+(B32*B25*B29)-B7 RHS 8

P^ 0.4000  

Q^ 1.0000  

P PV  rP 13.7668 (1-EXP(-(B14-B15)*20))/(B14-B15) 5

Q PV  rQ 13.7668 (1-EXP(-(B14-B16)*20))/(B14-B16) 6

S PV  rS 13.7668 (1-EXP(-(B14-B17)*20))/(B14-B17) 7

PQrPQ 5.5067 B28*B29*B30

P^2Q^1rPQ^2 30.3239 (B28^2)*(B29^2)*(B30^2)

a2 -0.0081 (B7/B33)*(B11*B8*B9+B12*B8*B9-B13*B9*B10-(B10^2)) 17

b2 0.0051 (B7/B33)*(B16+B17+0.5*(B9^2)+2*(B13*B9*B10)+0.5*(B10^2)) 17

1 3.4542 B33/(B33+B32*B25*B29-B7) 15

   

PDE 0.0000 0.5*(B8^2)*(B3^2)*B43+0.5*(B9^2)*(B4^2)*B44+0.5*(B10^2)*(B5^2)*B45+B15*B3*B40+B16*B4*B41+B17*B5*B42-B14*B26 2
ROV1,P 2.8806 B21*B24*(B3^(B21-1))*(B4^B23)*(B5^B22)
ROV1,Q 1.7983 B23*B24*(B3^B21)*(B4^(B23-1))*(B5^B22)
ROV1,S 6.4605 B22*B24*(B3^B21)*(B4^B23)*(B5^(B22-1))
GROV1,P 17.6738 B21*(B21-1)*B24*(B3^(B21-2))*(B4^B23)*(B5^B22)
GROV1,Q 7.8961 B23*(B23-1)*B24*(B3^B21)*(B4^(B23-2))*(B5^B22)

GROV1,S 60.5144 B22*(B22-1)*B24*(B3^B21)*(B4^B23)*(B5^(B22-2))

48

49

50

51

52

53

54

55

56

57

58

59

60

A B C D

VM 0.0000 B53*(B28^B54)*(B29^B56)*(B57^B55)-(B30*B28*B29)-(B32*B57*B29)+B7 8

SP1 0.0000 B53*B54*(B28^B54)*(B29^B56)*(B57^B55)-B30*B29*B28 9

SP2 0.0000 B53*B56*(B28^B54)*(B29^B56)*(B57^B55)-(B30*B28*B29)-(B32*B57*B29) 10

SP3 0.0000 B55*B53*(B28^B54)*(B29^B56)*(B57^B55)-(B32*B29*B57) 11

Q 0.0000 10

A 683.0289  4

1 3.4542   

1 1.9367 1+B54*((B7/(B28*B30*B29))-1) 1.9367

1 5.3908  

S^ 0.2243 Find

Revenue 0.6243

SOLVER 0.0000 SUM(ABS)(B48:B52) CHANGE B53:B57

Q 0.5*(B8^2)*B54*(B54-1)+0.5*(B9^2)*B56*(B56-1)+0.5*((B10^2)*(B55*(B55-1)))+B54*B56*B11*B8*B9+B54*B55*B12*B8*B10+B56*B55*B13*B9*B10+B54*B15+B56*B16+B55*B17-B14



  

30 

 

Model I is the solution to EQs17-18 with ROV EQ 3, and also the solution to EQs 4-8-9-10-11 as shown in Figure 2, 

with the parameter values as follows: price P=€.40, quantity Q=1.0 KWh, S subsidy=€.10,  investment cost K=€7.0, 

price volatility P=.06, quantity volatility Q=.04, subsidy volatility S=.08, correlations PSPQQS=0, 

P=Q=S=0, and riskless interest rate r=.04.  S^ indicates the S threshold that justifies commencing the investment.  

 

 

 

 

 

 

 

Figure 3 

 

 

 

 

 

PDE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ROV1,P 0.0000 0.1276 0.4884 1.0711 1.8698 2.8806 4.1005 5.5270 7.1582 8.9923 11.0278 13.2633

ROV1,Q 0.0000 0.0796 0.3049 0.6687 1.1673 1.7983 2.5598 3.4504 4.4687 5.6136 6.8843 8.2799

ROV1,S 0.0000 1.4307 2.7385 4.0037 5.2419 6.4605 7.6636 8.8540 10.0337 11.2040 12.3662 13.5209

GROV1,P 0.0000 0.7828 2.9967 6.5717 11.4722 17.6738 25.1582 33.9105 43.9184 55.1712 67.6598 81.3758

GROV1,Q 0.0000 0.3497 1.3388 2.9360 5.1254 7.8961 11.2398 15.1501 19.6212 24.6486 30.2281 36.3559

GROV1,S 0.0000 67.0059 64.1289 62.5035 61.3754 60.5144 59.8198 59.2388 58.7401 58.3037 57.9161 57.5676

S 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22

ROV1 0.0000 0.0148 0.0566 0.1240 0.2165 0.3336 0.4748 0.6400 0.8289 1.0413 1.2770 1.5359

NPV 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1587 0.4341 0.7094 0.9847 1.2601 1.5354
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Figure 4 

 

 

      Figure 5 

 

 

      

T 4 6 8 10 12 14 16 18 20

S^1 2.0756 1.2843 0.8931 0.6619 0.5108 0.4052 0.3281 0.2697 0.2243

ROV1 0.0000 0.0003 0.0013 0.0049 0.0149 0.0394 0.0908 0.1846 0.3336
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T Facility/Subsidy Life (Years)

Subsidy Threshold and ROV as function of T

S^1

ROV1

SQ 100% 80% 60% 40% 20% 0% 20% 40% 60% 80% 100%

ROV1 0.2230 0.2459 0.2684 0.2905 0.3122 0.3336 0.3546 0.3752 0.3955 0.4154 0.4351

S^1 0.1795 0.1879 0.1966 0.2055 0.2147 0.2243 0.2341 0.2444 0.2549 0.2659 0.2772
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Figure 6 

 

     Figure 7 

 

PDE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ROV1,P 0.0164 0.0276 0.0507 0.1021 0.2250 0.5288 1.2638 2.8806 5.8882 10.3194

ROV1,Q 0.0111 0.0184 0.0331 0.0656 0.1427 0.3321 0.7895 1.7983 3.6887 6.5109

ROV1,S 0.1032 0.1563 0.2552 0.4522 0.8642 1.7347 3.4720 6.4605 10.3898 13.5125

GROV1,P -0.2324 -0.1015 0.0108 0.2493 0.8905 2.6606 7.2590 17.6738 36.8233 63.6202

GROV1,Q 0.0328 0.0591 0.1159 0.2484 0.5773 1.4125 3.4529 7.8961 15.8974 27.0316

GROV1,S 2.7418 4.0356 6.2941 10.3798 17.7758 30.2489 47.3245 60.5144 51.4912 9.3456

P 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

S^1 0.631 0.567 0.504 0.443 0.384 0.328 0.275 0.224 0.176 0.131

ROV1 0.003 0.004 0.007 0.014 0.028 0.063 0.147 0.334 0.695 1.264

NPV 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5717 1.2601
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s -0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02 0.025

S^1 0.1807 0.1865 0.1934 0.2017 0.2117 0.2243 0.2403 0.2616 0.2914 0.3358 0.4095

ROV1 0.2263 0.2423 0.2605 0.2813 0.3054 0.3336 0.3672 0.4078 0.4583 0.5228 0.6089

NPV 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0107 0.0806 0.1551 0.2346
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     Figure 8 

 

 

 

Figure 9 

 

 

 

 

 

 

 

r 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12%

ROV1 2.0415 1.2837 0.7018 0.3336 0.1403 0.0537 0.0192 0.0066 0.0022 0.0007 0.0002 0.0001

S^1 0.1666 0.1647 0.1890 0.2243 0.2662 0.3129 0.3635 0.4171 0.4734 0.5321 0.5927 0.6552
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P 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 22%

ROV1 0.2687 0.2782 0.3026 0.3336 0.3657 0.3961 0.4238 0.4487 0.4709 0.4906 0.5082 0.5238

S^1 0.1966 0.2005 0.2105 0.2243 0.2396 0.2552 0.2706 0.2854 0.2994 0.3126 0.3250 0.3365
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Figure 10 

 

Model II is the solution to EQs 23-24 with ROV EQ 20, with the parameter values as follows: price P=€.40, quantity 

Q=1.0 KWh, S subsidy=€.10,  investment cost K=€7.0, price volatility P=.06, quantity volatility Q=0, subsidy 

volatility S=.08, correlations PSPQQS=0, P=Q=S=0, and riskless interest rate r=.04.  S^ indicates the S 

threshold that justifies commencing the investment.  
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A B C D

SUBSIDIES MODEL II EQS

INPUT Stochastic  P & S  

P 0.40  

Q 1.00  

S 0.10 per kwh

R 0.50 B3*B5+B4*B5

K 7.00  

P 0.06

Q 0.00  
s 0.08

PQ 0.00

PS 0.00

SQ 0.00

r 0.04

P 0.00

Q 0.00  
s 0.00

OUTPUT   

a1 0.0020 0.5*(B8^2)+0.5*(B10^2)-B12*B8*B10+((B7^2)/(2*B34))*((B10^2))+B35 23

b1 -0.0009 B15-B17-0.5*(B8^2)-0.5*(B10^2)+B12*B8*B10+B36 23

2 4.6681 (-B20+SQRT((B20^2)-4*B19*(-B14+B16+B17)))/(2*B19) 24

2 2.2659 1+B21*((B7/(B28*B30*B29))-1) 16

2 6.9340 B21+B22 14

A2 3485.9562 B33/(B21*(B28^B21)*(B29^B23)*(B25^B22)) 12

S^2 0.1942 (B22*B28*B30)/(B21*B31) 13

F2(P,Q,S) 0.2623 IF(B5<B25, B24*(B3^B21)*(B4^B23)*(B5^B22),B27) 20

F2(P,Q,S) 1.1796 (B30*B28*B29)+(B32*B25*B29)-B7 RHS 22

P^ 0.4000  

Q^ 1.0000  

P PV  rP 13.7668 (1-EXP(-(B14-B15)*20))/(B14-B15) 5

Q PV  rQ 13.7668 (1-EXP(-(B14-B16)*20))/(B14-B16) 6

S PV  rS 13.7668 (1-EXP(-(B14-B17)*20))/(B14-B17) 7

PQrPQ 5.5067 B28*B29*B30

P^2Q^1rPQ^2 30.3239 (B28^2)*(B29^2)*(B30^2)

a2 -0.0081 (B7/B33)*(-(B10^2)) 23

b2 0.0041 (B7/B33)*(B16+B17+0.5*(B10^2)) 23

2 4.6681 B33/(B33+B32*B25*B29-B7) 15

   

PDE 0.0000 0.5*(B8^2)*(B3^2)*B43+0.5*(B10^2)*(B5^2)*B45+B15*B3*B40+B16*B4*B41+B17*B5*B42-B14*B26 19
ROV2,P 3.0613 B21*B24*(B3^(B21-1))*(B4^B23)*(B5^B22)
ROV2,Q 1.8189 B23*B24*(B3^B21)*(B4^(B23-1))*(B5^B22)
ROV2,S 5.9438 B22*B24*(B3^B21)*(B4^B23)*(B5^(B22-1))
GROV2,P 28.0727 B21*(B21-1)*B24*(B3^(B21-2))*(B4^B23)*(B5^B22)

   

GROV2,S 75.2407 B22*(B22-1)*B24*(B3^B21)*(B4^B23)*(B5^(B22-2))
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Figure 11 

 

 

 

 

 

 

 

 

PDE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ROV1,P 0.0017 0.0091 0.0462 0.2181 0.9037 3.0613 8.0642 16.2705

ROV1,Q 0.0042 0.0153 0.0565 0.2028 0.6621 1.8189 3.9781 6.7953

ROV1,S 0.0140 0.0554 0.2106 0.7502 2.3445 5.9438 11.5028 16.4613

GROV1,P 0.0038 0.0336 0.2412 1.4685 7.3074 28.0727 80.1477 169.4107

         

GROV1,S 0.4108 1.5348 5.3077 16.3162 40.9428 75.2407 89.0613 50.4284

Q 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20

S^2 0.8273 0.6090 0.4559 0.3439 0.2594 0.1942 0.1426 0.1012

ROV2 0.0004 0.0015 0.0060 0.0236 0.0854 0.2623 0.6483 1.2601
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Figure 12 

 

Model III is the solution to EQs 28-29 with ROV EQ 26, with the parameter values as follows: price P=€.40, 

quantity Q=1.0 KWh, S subsidy=€.10,  investment cost K=€7.0, price volatility P=.06, quantity volatility Q=.04, 

subsidy volatility S=0, correlations PSPQQS=0, P=Q=S=0, and riskless interest rate r=.04.  S^ indicates the S 

threshold that justifies commencing the investment.  
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SUBSIDIES MODEL III

INPUT Stochastic  P & Q  

P 0.40  

Q 1.00  

S 0.10 per kwh

R 0.50 B3*B5+B4*B5

K 7.00  

P 0.06

Q 0.04  

s 0.00

PQ 0.00

PS 0.00

SQ 0.00

r 0.04

P 0.00

Q 0.00  

s 0.00

OUTPUT   

a1 0.0031 0.5*(B8^2)+((B7^2)/(2*B34))*((B9^2))+B35

b1 -0.0008 B15-B17-0.5*(B8^2)+B11*B8*B9+B36

3 3.7252 (-B20+SQRT((B20^2)-4*B19*(-B14+B16+B17)))/(2*B19)

3 2.0102 1+B21*((B7/(B28*B30*B29))-1)

3 5.7353 B21+B22

A3 978.6232 B33/(B21*(B28^B21)*(B29^B23)*(B25^B22))

S^3 0.2158 (B22*B28*B30)/(B21*B31)

F3(P,Q,S) 0.3148 IF(B5<B25, B24*(B3^B21)*(B4^B23)*(B5^B22),B27)

F3(P,Q,S) 1.4782 (B30*B28*B29)+(B32*B25*B29)-B7

P^ 0.4000  

Q^ 1.0000  

P PV  rP 13.7668 (1-EXP(-(B14-B15)*20))/(B14-B15)

Q PV  rQ 13.7668 (1-EXP(-(B14-B16)*20))/(B14-B16)

S PV  rS 13.7668 (1-EXP(-(B14-B17)*20))/(B14-B17)

PQrPQ 5.5067 B28*B29*B30

P^2Q^1rPQ^2 30.3239 (B28^2)*(B29^2)*(B30^2)

a2 0.0000 (B7/B33)*(B11*B8*B9+B12*B8*B9)

b2 0.0010 (B7/B33)*(B16+B17+0.5*(B9^2))

3 3.7252 B33/(B33+B32*B25*B29-B7)

   

PDE 0.0000 0.5*(B8^2)*(B3^2)*B43+0.5*(B9^2)*(B4^2)*B44+B15*B3*B40+B16*B4*B41+B17*B5*B42-B14*B26

ROV3,P 2.9318 B21*B24*(B3^(B21-1))*(B4^B23)*(B5^B22)

ROV3,Q 1.8055 B23*B24*(B3^B21)*(B4^(B23-1))*(B5^B22)

ROV3,S 6.3282 B22*B24*(B3^B21)*(B4^B23)*(B5^(B22-1))

GROV3,P 19.9741 B21*(B21-1)*B24*(B3^(B21-2))*(B4^B23)*(B5^B22)

GROV3,Q 8.5499 B23*(B23-1)*B24*(B3^B21)*(B4^(B23-2))*(B5^B22)
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Figure 13 

 

Model IV is the solution to EQs 33-34 with ROV EQ 31, with the parameter values as follows: price P=€.40, 

quantity Q=1.0 KWh, S subsidy=€.10,  investment cost K=€7.0, price volatility P=.06, quantity volatility Q=0, 

subsidy volatility S=0, correlations PSPQQS=0, P=Q=S=0, and riskless interest rate r=.04.  S^ indicates the S 

threshold that justifies commencing the investment. 
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SUBSIDIES MODEL IV

INPUT Stochastic  P  

P 0.40  

Q 1.00  

S 0.10 per kwh

R 0.50 B3*B5+B4*B5

K 7.00  

P 0.06

Q 0.00  

s 0.00

PQ 0.00

PS 0.00

SQ 0.00

r 0.04

P 0.00

Q 0.00  

s 0.00

OUTPUT   

a1 0.0018 0.5*(B8^2)+B35

b1 -0.0018 B15-B17-0.5*(B8^2)+B36

4 5.2405 (-B20+SQRT((B20^2)-4*B19*(-B14+B16+B17)))/(2*B19)

4 2.4211 1+B21*((B7/(B28*B30*B29))-1)

4 7.6616 B21+B22

A4 7626.2185 B33/(B21*(B28^B21)*(B29^B23)*(B25^B22))

S^4 0.1848 (B22*B28*B30)/(B21*B31)

F4(P,Q,S) 0.2376 IF(B5<B25, B24*(B3^B21)*(B4^B23)*(B5^B22),B27)

F4(P,Q,S) 1.0508 (B30*B28*B29)+(B32*B25*B29)-B7

P^ 0.4000  

Q^ 1.0000  

P PV  rP 13.7668 (1-EXP(-(B14-B15)*20))/(B14-B15)

Q PV  rQ 13.7668 (1-EXP(-(B14-B16)*20))/(B14-B16)

S PV  rS 13.7668 (1-EXP(-(B14-B17)*20))/(B14-B17)

PQrPQ 5.5067 B28*B29*B30

P^2Q^1rPQ^2 30.3239 (B28^2)*(B29^2)*(B30^2)

a2 0.0000 (B7/B33)*(B11)

b2 0.0000 (B7/B33)*(B16+B17)

4 5.2405 B33/(B33+B32*B25*B29-B7)

   

PDE 0.0000 0.5*(B8^2)*(B3^2)*B43+B15*B3*B40+B16*B4*B41+B17*B5*B42-B14*B26

ROV4,P 3.1126 B21*B24*(B3^(B21-1))*(B4^B23)*(B5^B22)

ROV4,Q 1.8203 B23*B24*(B3^B21)*(B4^(B23-1))*(B5^B22)

ROV4,S 5.7521 B22*B24*(B3^B21)*(B4^B23)*(B5^(B22-1))

GROV4,P 32.9975 B21*(B21-1)*B24*(B3^(B21-2))*(B4^B23)*(B5^B22)
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Figure 14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S^4 0.1848

S 0.100 0.105 0.110 0.115 0.120 0.125 0.130 0.135 0.140 0.145 0.150 0.155 0.160 0.165 0.170 0.175 0.180 0.185

ROV4 0.2376 0.2674 0.2992 0.3332 0.3694 0.4078 0.4484 0.4913 0.5365 0.5841 0.6341 0.6865 0.7413 0.7987 0.8585 0.9209 0.9859 1.0508

NPV4 0.0000 0.0000 0.0211 0.0899 0.1587 0.2276 0.2964 0.3652 0.4341 0.5029 0.5717 0.6406 0.7094 0.7782 0.8471 0.9159 0.9847 1.0508

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

0.100 0.105 0.110 0.115 0.120 0.125 0.130 0.135 0.140 0.145 0.150 0.155 0.160 0.165 0.170 0.175 0.180 0.185

S Actual Constant Subsidy

Values as function of Subsidy

ROV4

NPV4



  

39 

 

Figure 15 

  

Model V is the solution to EQs 44-45 and ROV EQ 36, with the parameter values as follows: price P=€.40, quantity 

Q=1.0 KWh,  investment cost K=€7.0, price volatility P=.06, quantity volatility Q=.04, correlations PQ0, 

P=Q=0, and riskless interest rate r=.04. +P indicates an additional P threshold (over P=.40) that justifies 

commencing the investment if there is no possibility of a subsidy. 
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SUBSIDIES MODEL V EQS

INPUT Stochastic  P & Q  

P 0.40  

Q 1.00  

   

R 0.40 B3*B4

K 7.00  

P 0.06

Q 0.04  

  

PQ 0.00

  

  

r 0.04

P 0.00

Q 0.00  

  

OUTPUT  

a5 0.0052 0.5*(B8^2)+0.5*(B9^2)+2*B11*B8*B9 44

b5 0.0000 B11*B8*B9+B15+B16 44

5 4.4541 (-(B20-0.5*B19)+SQRT((((B20-0.5*B19)^2))-2*(-B14)*B19))/B19 45

5 4.4541 B21 41

+ P 0.2557 Addition P required if no subsidy, to justify immediate investment.  

A5 13.2811 B30*(B28^(1-B21))*(B29^(1-B22))/B21 42

    

F5(P,Q) 0.2243 IF(B3<B28, B24*(B3^B21)*(B4^B22),B27) 36

F5(P,Q) 2.0266 (B30*B28*B29)-B7 RHS 38

P^ 0.6557 (B21/(B21-1))*B7/B30*B29 43

Q^ 1.0000  

P PV  rP 13.7668 (1-EXP(-(B14-B15)*20))/(B14-B15) 5

Q PV  rQ 13.7668 (1-EXP(-(B14-B16)*20))/(B14-B16) 6

PDE 0.0000 0.5*(B8^2)*(B3^2)*B36+0.5*(B9^2)*(B4^2)*B37+B15*B3*B33+B16*B4*B34-B14*B26 35

ROV5,P 2.4974 B21*B24*(B3^(B21-1))*(B4^B22)

ROV5,Q 0.9989 B22*B24*(B3^B21)*(B4^(B22-1))

   

GROV5,P 21.5650 B21*(B21-1)*B24*(B3^(B21-2))*(B4^B22)
GROV5,Q 3.4504 B22*(B22-1)*B24*(B3^B21)*(B4^(B22-2))

PQk
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Figure 16 

 

   

Model VI is the solution to EQs 48-50-51-52-53 and ROV EQ 47, with the parameter values as follows: price 

P=€.40, quantity Q=1.0 KWh, S subsidy=€.10,  investment cost K=€7.0, price volatility P=.06, quantity volatility 

Q=.04, subsidy volatility S=.08, correlations PSPQQS=0, P=Q=S=0, and riskless interest rate r=.04. =.10 

reflects the possibility of a subsidy being withdrawn.  S^ indicates the S threshold that justifies commencing the 

investment.  
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A B C D

RETRACTABLE SUBSIDIES MODEL VI

INPUT Stochastic  P & Q & S 

P 0.40

Q 1.00

S 0.100

R 0.50

K 7.00

P 0.06

Q 0.04

s 0.08

PQ 0.00

PS 0.00

SQ 0.00

r 0.04

P 0.00

Q 0.00

s 0.00

 0.1000 POSSIBILITY OF SUBSIDY WITHDRAWAL

OUTPUT   

F6(P,Q,S) 0.3021 IF(B5<B31, B27*(B3^B28)*(B4^B29)*(B5^B30)+B42*(B3^B43)*(B4^B44),B21) 47

F6(P,Q,S) 0.9745 B35*B32*B33+(1-B18)*B37*B31*B33-B7 RHS 50

VM 0.0000 B27*(B32^B28)*(B33^B29)*(B31^B30)+B42*(B32^B43)*(B33^B44)-B35*B32*B33-(1-B18)*B37*B31*B33+B7 50

SP1 0.0000 B28*B27*(B32^B28)*(B33^B29)*(B31^B30)+B43*B42*(B32^B43)*(B33^B44)-B35*B32*B33 51

SP2 0.0000 B29*B27*(B32^B28)*(B33^B29)*(B31^B30)+B44*B42*(B32^B43)*(B33^B44)-B35*B32*B33-(1-B18)*B37*B31*B33 52

SP3 0.0000 B30*B27*(B32^B28)*(B33^B29)*(B31^B30)-(1-B18)*B37*B31*B33 53

Q 0.0000 48

A6 37278.9426

6 6.0087

6 9.2982

6 3.2895

S^ 0.1992

P^ 0.4000

Q^ 1.0000

SOLVER 0.0000 Set B34=0, changing B27:B31

P PV  rP 13.7668

Q PV  rQ 13.7668

S PV  rS 13.7668

PQrPQ 5.5067

P^2Q^1rPQ^2 30.3239

T 20.0000

Q 0.5*(B8^2)*B28*(B28-1)+0.5*(B9^2)*B29*(B29-1)+0.5*((B10^2)*(B30*(B30-1)))+B11*B8*B9*B28*B29+B12*B8*B10*B28*B30+B12*B9*B10*B30*B29+B28*B15+B29*B16+B30*B17-(B14+B18)

A5 13.2811 13.28

5 4.4541  

5 4.4541  

P^5 0.6557 MV: No subsidy

Q^ 1.00

ROV6,P 3.67 B28*B27*(B3^(B28-1))*(B4^B29)*(B5^B30)+B43*B42*(B3^(B43-1))*(B4^B44)
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Figure 17 

 

      

 

 0.10 0.15 0.20 0.25 0.30 0.35 0.40

ROV6 0.3021 0.2732 0.2548 0.2429 0.2353 0.2314 0.2287

S^6 0.1992 0.2017 0.2078 0.2167 0.2280 0.2441 0.2627
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