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VALUING REPLACEABLE ASSETS 

 

Abstract 

We focus on the time-varying real option value (ROV) of replaceable assets whose operating 

cost and salvage value deteriorate stochastically. As the operating cost approaches the threshold  

justifying an immediate replacement, the ROV increases while the net present value of the 

operating asset declines.  The ROV increases with the number of replacement opportunities, with 

large salvage values and volatile operating costs, possibly enhancing the equity value for those 

replaceable asset owners.  Use of similar one or two factor models may undervalue replaceable 

assets, possibly misleading investors and corporate decision makers.  

HIGHLIGHTS 

 Replacement ROV depends on operating costs, salvage value and tax 

depreciation. 

 Greater ROV if salvage value is large and stable. 

 Greater ROV if numerous replacement opportunities. 

 Greater ROV if volatile operating costs. 

 Cost increases reduce net present value, increase ROV. 

 Practitioner focus on cost & salvage level and volatility, in funding, 

disposals and replacement actions.  

  



3 

 

1. Introduction 

What are the critical aspects of valuing replaceable assets that a chief real options manager 

(CROM) should consider?  What is the current real value of her position, for purposes of selling 

(or acquiring) partial interests (equity) in that position; or disposing of (or buying) those assets in 

the second hand market?  Naturally, a further concern is when to obtain the salvage value and 

buy new assets, the traditional concern of real option authors. As a part of that process, 

forecasting the input parameter values (cost deterioration and volatility, salvage value drift and 

volatility, correlation between cost and salvage) is critical, especially where there is a history of 

second hand equipment prices enabling quantification of expected “market indicated” 

deterioration rates.  

We focus on the value of replaceable assets and the sensitivity of that value to (i) the number of 

replaceable opportunities, (ii) changes in expected critical parameter values, and (iii) whether the 

essential assumptions of the models herein are valid, or if not, what adjustments the CROM 

might make.  Some empirical illustrations are based on a time series of dry bulk cargo ship new 

and second hand values by age, and salvage values.   

For assets with a significant second-hand market value, or a notable scrap value such as ships, 

salvage value may be a crucial ingredient to the replacement decision because of the cash flow 

implications. Adkins and Paxson (2015) provide analytical solutions for the after-tax optimal 

timing boundary and real option value for a replaceable asset characterized by a deteriorating and 

stochastic operating cost and stochastic salvage value. Having determined the optimal 

replacement boundary, and therefore the real option coefficient and power parameter values, we 

focus on the value of owning a replaceable asset prior to reaching that boundary accompanied 

with the opportunity to replace that asset at a given investment cost.  We assume this opportunity 

may be created by an actual arrangement with an equipment supplier (which may be exercised at 

any time in perpetuity) with no penalties for not exercising the option, due to customary 

arrangements and perhaps the owner’s respected market position or operating competence
1
.   

                                                 
1
 Obtaining a delivery option in new building ships and aircraft may require an initial deposit or pre-payment with 

additional deposits over time approaching physical delivery, which could be considered real option premiums.  
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There are several studies of the optimal boundaries for replaceable assets, but few focus on the 

interim real option value prior to the point of optimal replacement.  Zambujal-Oliveira and 

Duque (2011) propose a two-factor model with stochastic operating cost and (autonomous) 

stochastic value, with depreciation following a negative exponential function, but did not 

quantify asset values. Adkins and Paxson (2011) derive real option values of renewable assets 

but only at the renewal boundaries.  Adkins and Paxson (2013a) show the real option value for 

equipment with the possibility of technological progress, but ignore salvage value and taxation 

(and depreciation).  Adkins and Paxson (2013b) consider the real option value of replaceable 

assets along with three different depreciation schemes, but do not quantify these values.  Adkins 

and Paxson (2013c) derive the real option values for replaceable assets in a deterministic setting, 

ignoring salvage value and taxation (depreciation) but do not quantify these asset values.    

There are two main contributions of this article. First, we supplement the existing real option 

literature on replacement by examining the differential impacts of operating cost, salvage value 

and depreciation on the policy and their implications for managers. In a recent literature review, 

Hartman and Tan (2014) note that there only a few asset replacement models which consider 

stochastic deterioration in continuous-time. The second contribution is an empirical evaluation of 

some model parameter values for dry bulk ships, an aspect some theoretical studies ignore. 

The rest of this article is as follows. In Section 2, we summarize a quasi-analytical method for 

identifying the real option value of replaceable assets given some current operating cost level 

(and also salvage value and depreciation level).  Section 3 shows a sensitivity analysis of the real 

option value at some assumed operating cost level to changes in many of the critical parameter 

values.  Section 4 presents a short review of some parameter values from a database of second 

hand ship values. Section 5 suggests some apparent incentives for alert CROMs, and reviews 

which of the critical assumptions may not be entirely realistic, so presenting opportunities for 

further research.  

2.  Replacement Opportunity with Salvage and Tax Depreciation 

                                                                                                                                                             
There are examples of free options (without premiums) such as some hotel and other accomodation and even 

educational reservations over limited periods of time. 
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Three similar but distinct formulations of the replacement model involving stochastic operating 

cost and salvage vale and deterministic depreciation are presented based on a contingent-claims 

style of analysis and maximizing expected cash flows. Model 1 (identified by subscript 1) 

examines the replacement policy under multiple replacements while Model 1s restricts its scope 

to a single replacement. Model 2 (identified by subscript 2) investigates the effects of excluding 

depreciation on the replacement policy.  

 2.1 Valuation Function 

Following Adkins and Paxson (2015) we determine the real-option replacement policy for a 

durable perpetual productive asset, without technological innovations, subject to operating cost 

decay and a deteriorating salvage value in a monopolistic situation whose output yields a 

constant revenue
2
 P, assuming other flexibilities are inadmissible. The relevant cash flows 

crucial to the replacement decision are those associated with the operating costs, the depreciation 

charge and the salvage value. While annual operating cost and salvage value, denoted by C  and 

S , respectively, are treated as stochastic factors following geometric Brownian motion 

processes, the annual depreciation charge, denoted by D , is a deterministic factor. The 

replacement policy, represented by an optimal timing boundary separating the decision regions 

of continuance and replacement, is defined over a three-dimensional cost-salvage-depreciation 

(C-S-D) space. The tax rate   is applicable to all cash flows, both positive and negative, and 

regardless of whether they represent income or capital gains. At replacement, the operating cost, 

salvage value and depreciation level for the newly installed succeeding asset are set to their 

known initial levels of IC , IS  and ID , respectively. The replacement re-investment cost is a 

known constant K . To avoid round-tripping, IS K .  

The asset value together with its embedded replacement option depends on the prevailing factor 

levels and is denoted by  1 1 , ,F F C S D . Following standard analysis, the replacement 

contingent claim is expressed by the following partial differential equation: 

                                                 
2
 It is straightforward to recast the model in terms of net revenue instead of operating costs. 
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  

2 2 2
2 2 2 21 1 11 1

2 22 2

1 1 1
1 1 0,

C C S S

C S D I

F F F
C CS S

C C S S

F F F
C S D rF P C D

C S D

   

    

  
 

   

  
        

  

 (1) 

where 0r   is the constant risk-free rate of interest, PI is the revenue assumed to be constant,C 

and S are the constant volatilities, C,S is the correlation of C and S, and 
C  and 

S  are the 

respective risk-neutral drift rates, assumed to be equal to the expected C deterioration and S drift 

rates
3
. Following Adkins and Paxson (2011), the function satisfying (1) is: 

 
   

1 1 1

1 1

1 1I

C D

P C D
F AC S D

r r r

     

 

 
   

 
. (2) 

In (2), the expression 1 1 1

1 0AC S D     represents the replacement real option value (ROV) , so 

1 0A  .  The last three terms represent the net present value (NPV) of operating the asset.  

Substituting (2) in (1) yields the characteristic root equation: 

 
     2 21 1

1 1 1 1 1 1 1 1 1 12 2

1 1 1

, , 1 1

0.

C C S S

C S D

Q

r

            

     

    

    
 (3) 

Replacement is optimally triggered when the factor levels , ,C S D  attain their threshold levels 

1 1 1
ˆ ˆ ˆ, ,C S D , respectively, where 1 1 1

ˆ ˆ ˆ, ,I I IC C S S D D   . This occurs when at exercise, the 

incumbent value and the successor value less the replacement cost net of salvage value and any 

depreciation recapture are in exact balance. After eliminating the constant PI from both sides, the 

value matching relationship is: 

 

 

 
 

1 1 1

1 1 1

1 1
1 1 1 1

1 1 1

ˆ ˆ1ˆ ˆ ˆ

1 ˆ ˆ1 / .

C D

I I
I I I D

C D

C D
AC S D

r r

C D
AC S D S D K

r r

  

  

 

 

 
  

 


 

 


      

 

 (4) 

                                                 
3
 Adjustments for risks is an important research topic.  We assume the discount rates are independent of cost 

volatility. Possibly the sensitivities for changes in interest rates indicate the significance of this research area. 
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Optimality is assured by the smooth-pasting conditions, one for each factor , ,C S D ,  which can 

be expressed in a reduced form by: 

 
 

 
1 1 1 1

1 1 1 1

1

ˆ 1ˆ ˆ ˆ 0
C

C
AC S D

r

   

 


 


, (5) 

 
 

 

 1 1

1 1

ˆ ˆ1 1
0

C

C S

r

 

  

 
 


, (6) 

 
 

   
1 1

1 1

ˆ ˆ1
0

C D D

C D r

r r

 

   


 

 
. (7) 

A reduced form value matching condition is: 

 
 

 

 1 1 1

1 1 1

1

1 1 1

1 1 1 1

ˆ 1 1
1

ˆ ˆ ˆ
II I I I

C C D

C CC S D D
K

r r rC S D

  
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  
  

   

  
       

   

. (8) 

The C-S-D model 1 is composed of four simultaneous equations: the reduced form value 

matching relationship, two reduced form smooth pasting conditions, and the characteristic root 

equation. The optimal timing boundary and real option value can be determined by solving 

simultaneously four equations for 
1Ĉ , 1 , 1  and 1 , given assumptions about 

1Ŝ and 
1D̂ , and 

using these values in (2) along with some current C, S and D to determine F1=ROV1+NPV1. 

2.2 Single Replacement Opportunity 

If there exists only one available remaining replacement opportunity, then the value-matching 

relationship for the multiple replacement model has to be amended to exclude replacement 

option value for the succeeding asset to become: 

 

 

 
 

1 1 1 1 1
1 1 1 1

1 1

ˆ ˆ1ˆ ˆ ˆ

1 ˆ ˆ1 / ,

s s s s s
s s s s

C D

I I
s s D

C D

C D
A C S D

r r

C D
S D K

r r

    

 

 
  

 


 

 


      

 

 (9) 
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where the subscript s  refers to the single replacement opportunity. Since the smooth-pasting 

conditions are identical, except for the inclusion of the subscript s , the reduced form value-

matching relationship is obtained by eliminating 
1sA  from (9): 

 
 

 
 

 1

1 1 1

1

ˆ 1 1
1

s I I
s s s

s C C D

C C D
K

r r r

  
  

   

 
     

  
. (10) 

This reveals that for a single replacement to be economically justified, the after-tax operating 

cost threshold has to exceed the re-investment cost plus the after-tax operating cost value for the 

replica less its depreciation tax shield value. By comparing (10) with (8), then 1 1
ˆ ˆ

sC C  since our 

conjecture treats: 
1 1 1

1 1 1

1 1 1

1
ˆ ˆ ˆ

I I IC S D

C S D

  

  
 .  For any salvage value threshold, 1Ĉ  is always less than 1

ˆ
sC , 

since its re-investment cost can be recouped over multiple replacements instead of only one.  The 

single replacement policy is determined by solving the four equations (i) the reduced form value-

matching relationship, (ii) and (iii) two reduced form smooth-pasting conditions, modified, and 

(iv) the characteristic root equation  1 1 1 1, , 0s s sQ      for 1
ˆ

sC , 1s , 1s  and 1s , given 

assumptions about 
1

ˆ
sS and 

1
ˆ

sD . 

2.3 C-S Model  

The multiple C-S value-matching relationship is found in a similar way by excluding all terms 

involving depreciation: 
   

 2 2 2 22

2 2 2 2 2

ˆ 1 1ˆ ˆ ˆ1 .
I

I I

C C

C C
A C S A C S S K

r r

    


 

 
     

 
      (11) 

Two smooth-pasting conditions, one for each of the two factors, C  and S , are, respectively: 

 
 

 

 
2 2 2 2

2 2 2

2 2

ˆ ˆ1 1ˆ ˆ

C

C S
A C S

r

   

  

 
 


 (12) 

The reduced form value-matching relationship can be expressed as: 
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 

 

 2 2

2 2

2

2 2

2 2 2

ˆ 1 1
1

ˆ ˆ
II I

C C

C CC S
K

r rC S

 

 

 
 

  

  
     

  

. (13) 

The C-S model 2 involves solving three simultaneous equations: (i) the reduced form value-

matching relationship (13), (ii) the reduced form smooth-pasting condition (12), and (iii) the 

characteristic root equation  2 2 2, 0Q    .  

3. Illustrative Real Option Value Results 

A salvage value threshold is initially pre-specified, and then the optimal timing boundary is 

found for the two remaining factors, operating costs and depreciation, by varying the 

depreciation threshold level. If this procedure is repeated for alternative pre-specified salvage 

value thresholds, a representative set of optimal timing boundaries 1Ĉ  can be constructed, along 

with the power parameter values. 

3.1 Multiple Opportunity C-S-D Real Option Value 

The real option values for the C-S-D 1 model given current C, S, D are illustrated in Table 1. The 

Excel formulae are shown below. 

 

Q,, 0.5*(B8^2)*B29*(B29-1)+0.5*(B9^2)*B30*(B30-1)+B10*B8*B9*B29*B30+B12*B29+B13*B30-B14*B31-B11

SP1 B32*(1-B18)/(B29*(B11-B12))-B15*(1-B18)/B30

SP2 B32*(1-B18)/(B29*(B11-B12))-(B16*B18*B11)/(B31*B14*(B11+B14))

VM B25*(B29+B30+B31-1+B26)-B27

PART 1 B32*(1-B18)/(B29*(B11-B12))

PART 2 ((B4^B29)*(B6^B30)*(B7^B31))/((B32^B29)*(B15^B30)*(B16^B31))

PART 3 B5+B4*(1-B18)/(B11-B12)-(B7*B18)/(B11+B14)

NPV1 B3*(1-B18)/B11-B19*(1-B18)/(B11-B12)+B16*B18/(B11+B14)

ROV1 B35-B33

F1 IF(B19<B32,B38*((B19^B29)*(B15^B30)*(B16^B31))+B33,B36)

ROV EX B38*((B4^B29)*(B6^B30)*(B7^B31))+B37+B3*(1-B18)/B11

NPV EX -B4*(1-B18)/(B11-B12)+B7*B18/(B11+B14)+B15*(1-B18)+B16*B18/B14-B5

A1 B25/((B32^B29)*(B15^B30)*(B16^B31))

PDE 0.5*(B8^2)*(B19^2)*B41+0.5*(B9^2)*(B15^2)*B43+B12*B19*B40+B13*B15*B42-B14*B16*B44-B11*B35+(B3-B19)*(1-B18)+B16*B18

DF1 C B29*B38*((B19 (̂B29-1))*(B15^B30)*(B16^B31))-(1-B18)/(B11-B12)

G F1 C B29*(B29-1)*B38*((B19 (̂B29-2))*(B15^B30)*(B16^B31))

DF1 S B30*B38*((B19^B29)*(B15 (̂B30-1))*(B16^B31))

G F1 S B30*(B30-1)*B38*((B19^B29)*(B15 (̂B30-2))*(B16^B31))

DF1 D B31*B38*((B19^B29)*(B15^B30)*(B16 (̂B31-1)))+1*B18/(B11+B14)
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The depreciation threshold level can be expressed as an asset age, 1T̂ , that is: 
1

1

1ˆ ln .
ˆ

I

D

D
T

D

 
  

 
   

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

A B C D E F G H I

                                                                               Multi-factor Multiple Replacement Option with Salvage & Depreciation
INPUT Stochastic  S & C & Deterministic D Table 1

PI 30.00 30.00 30.00 30.00 30.00 30.00 30.00

CI 10.00 10.00 10.00 10.00 10.00 10.00 10.00

K 100.00 100.00 100.00 100.00 100.00 100.00 100.00

SI 60.00 60.00 60.00 60.00 60.00 60.00 60.00

DI 10.00 10.00 10.00 10.00 10.00 10.00 10.00

C 0.25 0.25 0.25 0.25 0.25 0.25 0.25

S 0.25 0.25 0.25 0.25 0.25 0.25 0.25

 0.00 0.00 0.00 0.00 0.00 0.00 0.00

r 0.07 0.07 0.07 0.07 0.07 0.07 0.07

C 0.040 0.040 0.040 0.040 0.040 0.040 0.040

S -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050

D 0.10 0.10 0.10 0.10 0.10 0.10 0.10

S* 20.00 20.00 20.00 20.00 20.00 20.00 20.00

D* 1.35 1.35 1.35 1.35 1.35 1.35 1.35

T* 20.0 20.0 20.0 20.0 20.0 20.0 20.0

 0.30 0.30 0.30 0.30 0.30 0.30 0.30

C 16 18 20 22 24 26 28

OUTPUT SOLVER: SET I28=0, CHANGING B29:H32

Q,, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 EQ 3

SP1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 EQ 6

SP2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 EQ 7

VM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 EQ 8

PART 1 467.38 467.38 467.38 467.38 467.38 467.38 467.38

PART 2 0.25 0.25 0.25 0.25 0.25 0.25 0.25

PART 3 315.69 315.69 315.69 315.69 315.69 315.69 315.69 EQ 8 RHS

SUM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 1.3923 1.3923 1.3923 1.3923 1.3923 1.3923 1.3923

1 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300

1 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036

C* 27.889 27.889 27.889 27.889 27.889 27.889 27.889

NPV1 -70.95 -117.61 -164.28 -210.95 -257.61 -304.28 -350.95 Ex K

ROV1 215.62 254.04 294.18 335.93 379.19 423.89 469.97  

F1 144.67 136.43 129.90 124.98 121.58 119.62 119.02 EQ 2

ROV EX B38*((B4^B29)*(B6^B30)*(B7^B31))+B37+B3*(1-B18)/B11119.02 119.02 119.02 119.02 119.02 119.02

NPV EX -297.63 -297.63 -297.63 -297.63 -297.63 -297.63 -297.63

A1 4.147 4.147 4.147 4.147 4.147 4.147 4.147  

PDE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 EQ 1

DF1 C -4.57 -3.68 -2.85 -2.07 -1.34 -0.63 0.04

G F1 C 0.46 0.43 0.40 0.38 0.36 0.34 0.33

DF1 S 0.32 0.38 0.44 0.50 0.57 0.63 0.70

G F1 S -0.02 -0.02 -0.02 -0.02 -0.03 -0.03 -0.03

DF1 D 2.33 2.44 2.54 2.65 2.77 2.89 3.01
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Note C is shown in a range of 16 to 28, which includes a level which is slightly above the C that justifies 

replacement, when then the intrinsic value upon replacement is shown.  The NPV is also shown, the last three terms 

of equation 2, (assuming PI=30> C), assuming the current revenue is PI.  The last few rows show that given the 

calculated deltas and gammas (first and second derivatives of equation 2) equation 1 is solved.  

                                                                

Figure 1 

 

The operating cost threshold levels 1Ĉ  are evaluated for the assumed salvage threshold level 1Ŝ =20 and time 

threshold level 1T̂ =20 years, by solving (3), (6), (7), and (8).  ROV1, F1 and NPV1 are from  (2). 

 

The ROV1 increases as the current operating costs increases, since the replacement option value 

nears exercise, but the NPV1 declines, so the overall function F1 declines, shown in Figure 1.   

3.2 Single Opportunity C-S-D Model 

The real option values for the single opportunity C-S-D (1s) model are illustrated in Table 2. The 

real option values increase as the current operating costs increase, but the overall function F1s 

declines, as the NPV1s declines, as shown in Figure 2.       
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Real option values are evaluated using the base parameter values, for the salvage threshold level 1
ˆ

sS =20 and time 

threshold level 1
ˆ

sT =20, by solving (3s), (6s), (7s), and (8s) for 1s , 1s  and 1s . ROV1s, F1s and NPV1s are from  

(2), assuming the current revenue is PI. 

     Figure 2 
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A B C D E F G H I

                                                                               Multi-factor Single Replacement Option with Salvage & Depreciation
INPUT Stochastic  S & C & Deterministic D Table 2

PI 30.00 30.00 30.00 30.00 30.00 30.00 30.00

CI 10.00 10.00 10.00 10.00 10.00 10.00 10.00

K 100.00 100.00 100.00 100.00 100.00 100.00 100.00

SI 60.00 60.00 60.00 60.00 60.00 60.00 60.00

DI 10.00 10.00 10.00 10.00 10.00 10.00 10.00

C 0.25 0.25 0.25 0.25 0.25 0.25 0.25

S 0.25 0.25 0.25 0.25 0.25 0.25 0.25

 0.00 0.00 0.00 0.00 0.00 0.00 0.00

r 0.07 0.07 0.07 0.07 0.07 0.07 0.07

C 0.040 0.040 0.040 0.040 0.040 0.040 0.040

S -0.050 -0.050 -0.050 -0.050 -0.050 -0.050 -0.050

D 0.10 0.10 0.10 0.10 0.10 0.10 0.10

S* 20.00 20.00 20.00 20.00 20.00 20.00 20.00

D* 1.35 1.35 1.35 1.35 1.35 1.35 1.35

T* 20.0 20.0 20.0 20.0 20.0 20.0 20.0

 0.30 0.30 0.30 0.30 0.30 0.30 0.30

C 16 18 20 22 24 26 28

OUTPUT SOLVER: SET I27=0, CHANGING B28:H31

Q,, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 EQ 3s

SP1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 EQ 6s

SP2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 EQ 7s

VM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 EQ 9

PART 1 788.25 788.25 788.25 788.25 788.25 788.25 788.25

PART 3 315.69 315.69 315.69 315.69 315.69 315.69 315.69 EQ 9 RHS

SUM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 1.3806 1.3806 1.3806 1.3806 1.3806 1.3806 1.3806

1 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178

1 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021

C* 46.640 46.640 46.640 46.640 46.640 46.640 46.640

NPV1 -70.95 -117.61 -164.28 -210.95 -257.61 -304.28 -350.95 Ex K

ROV1 179.96 211.74 244.89 279.33 314.99 351.79 389.69  

F1 109.02 94.13 80.61 68.39 57.38 47.51 38.75 EQ 2

ROV EX 98.69 98.69 98.69 98.69 98.69 98.69 98.69

NPV EX -297.63 -297.63 -297.63 -297.63 -297.63 -297.63 -297.63

A1 3.710 3.710 3.710 3.710 3.710 3.710 3.710  

PDE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 EQ 1

DF1 C -7.80 -7.09 -6.43 -5.80 -5.21 -4.65 -4.12

G F1 C 0.37 0.34 0.32 0.30 0.29 0.27 0.26

DF1 S 0.16 0.19 0.22 0.25 0.28 0.31 0.35

G F1 S -0.01 -0.01 -0.01 -0.01 -0.01 -0.02 -0.02

DF1 D 2.05 2.10 2.15 2.20 2.26 2.32 2.38
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     Figure 3 
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Real option values are evaluated using the base parameter values, for the salvage threshold level 1
ˆ

sS =20 and time 

threshold level 1
ˆ

sT =20, by solving (3s), (6s), (7s), and (8s) for 
1s , 

1s  and 
1s . ROV1s  and ROV1 are from  (2).  

 

NPV1=NPV1s, but ROV1>ROVls, so F1>F1s.  It is valuable to have multiple replacement 

opportunities, which also motivates more frequent replacements with lower C thresholds as 

shown in Figure 3. 

 

 3.3 The C-S Model 

A model which does not consider depreciation (but considers taxation on operating profits and 

salvage value gains) is likely to have lower real option replacement values with fewer factors to 

consider in the replacement decision.  This case is illustrated in Figure 4, which shows the ROV1 

for the C-S-D model compared to the ROV2 for the C-S model as the S threshold increases.   

Figure 4 
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3.4 Volatility    

 

Figure 5 

  

 

The real option values are highly sensitive to changes in expected operating cost volatilities, but 

not to changes in expected salvage value volatilities, if the correlation between C and S is not 

high as shown in Figure 5.  

 

3.5 Correlation 
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The changes in the real option value shown in Figure 6 are almost a linear function of increases 

of the correlation of C and S, but the effect is not very significant. NPV1 does not change, so F1 

just increases slightly as the correlation moves from highly negative to highly positive.  This is 

perhaps an example where the assumption of risk neutrality is not realistic, since there is a weak 

“natural hedge” if S changes are not related to C changes, as in some ship values over certain 

times.  

3.6 Cost Deterioration 

Figure 7 shows that the effect of changes in cost deterioration rates is quite dramatic, with the 

real option replacement value increasing substantially as the rate of C deterioration increases,  

ROV1 289.99 291.40 292.80 294.18 295.54 296.88 298.21

NPV1 -164.28 -164.28 -164.28 -164.28 -164.28 -164.28 -164.28

F1 125.71 127.12 128.52 129.90 131.26 132.61 133.93
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but the NPV1 declines.  So the net effect is that F1 declines, showing that cost deterioration is not 

favourable for the CROM, even if the ROV1 increase offsets some of the NPV1 decline
4
.  

 

      Figure 7 

 

 

3.7 Discount Rate 

      Figure 8 
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 There is a constraint in the model that C<r, which also applies to Figure 8. 
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The effect of changes in interest rates is also quite dramatic, but in the opposite direction. The 

real option replacement value decreases substantially (as ROV1 is required to “earn” a higher 

return), but the NPV1 increases as the discount on C increases as in Figure 8.  The net effect is 

that F1 declines, showing that interest rate increases are not favourable for the CROM, even if the 

ROV1 decrease is offset by some of the NPV1 increase.  

3.8  Ŝ and T̂   

 One would expect that the real replacement option value would increase as the level of the 

salvage value increases, as shown in Figure 9, but the ROV1 is not very sensitive to decreases in 

the level of depreciation, here proxied as the asset age. 

ROV1 508.61 294.18 192.62 135.10 98.98 74.75

NPV1 -277.46 -164.28 -120.24 -100.53 -91.30 -87.16

F1 231.15 129.90 72.38 34.57 7.68 -12.41

r 0.06 0.07 0.08 0.09 0.1 0.11

ROV 298.9997 298.6804 298.3609 298.0411 297.7211 297.4009

qS -0.015 -0.02 -0.025 -0.03 -0.035 -0.04
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Figure 9 

 

3.9 Tax Rate      

It is assumed that the owner of the replaceable asset has taxable income, so the net revenue is 

subject to corporation tax, along with the salvage value gain/loss, relieved by the allowable 

depreciation charge.  Figure 10 shows the effect of increases in the tax rate from 0 to 30%, 

assuming that C=16, so there is current taxable income if P=30=PI.  Note that increases in the tax 

rate reduce the ROV1 but increase the NPV1 at these parameter values, so the net effect on F1 is 

tax increases do not benefit the asset owners even with depreciation allowances. 
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4. Empirical Evaluation of Some Parameter Values for Dry Bulk Ships 

From a time series database of monthly dry bulk ship market values for the last fifteen years, it is 

possible to estimate a reasonable range for some Table 1 parameter values for a particular 

industry. Although new build and second-hand prices follow a relatively similar pattern, the new 

build price seems to be less exposed to shocks due to freight rate volatility compared to relatively 

young second-hand ships.  New build prices are heavily dependent on new build costs, primarily 

steel.  Of primary concern is how volatile are operating costs and scrap values, are these 

correlated, and what is a reasonable expectation for the deterioration rates of operating costs over 

time and usage/age.  A first observation from Figure 11 is that ship values are highly volatile, but 

the distribution of volatility by ship age is partly dependent on whether the “abnormal boom 

years” 2006-2008 are considered.  During that period, 5 and 10 year ships were more valuable 

than new buildings, since building typically takes a couple of years.   But in general ship values 

decline with age, the mean shown in the MEAN row, and July 2015 prices by age in the previous 

row.  
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In order to estimate cost deterioration over time and age, an imperfect proxy is “effective market 

deterioration” (EMD) defined as 
5

ln( ) / 5
yearvalue

K
 =% per annum for 5 year old ships, where K 

is the new build price.  Note that this operating cost deterioration sharply rises with ship age, but 

this proxy surely is contaminated with elements other than operating costs (especially for 20 year 

ships with the implicit abandonment option value).  Note that the EMD for 5 year ships is 

positive during the 2006-2008 boom years, and is not “well behaved” for 20 year ships. The 

standard straight-line accounting depreciation over 25 years with some assumed scrap value (in 

this case the average scrap value over the 15 year period) in the last column does not reflect this 

eccentric price behaviour of the past shown in Figure 12.  

 

Figure 12   

CAPESIZE PRICES
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2015-Jul 49.00 32.50 19.50 10.50 8.50 6.78

MEAN 58.45 56.77 41.21 28.88 17.87 8.20

STDEV 16.40 31.15 23.78 21.01 14.59 2.62
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Table 3 shows the historical volatility of ship prices by age over the last fifteen years, and 

the correlation of different aged ships with scrap values. 

              Table 3 

New building ships are not highly correlated with ships of any age, or with scrap value.  

The volatility of ship values increases with age, as does the correlation with scrap values.    

 

EFFECTIVE MARKET DETERIORATION

 New-5 Year 5-10 Year 10-15 Year 15-20 Year 20 Year-Scrap SL DEP

2015-Jul -3.42% -4.26% -5.16% -1.76% -1.88% -7.15%
MEAN -2.09% -6.75% -8.44% -10.36% -12.13% -7.71%

STDEV 4.63% 1.57% 2.69% 3.70% 10.06% 1.07%

-35.00%

-30.00%

-25.00%

-20.00%

-15.00%

-10.00%

-5.00%

0.00%

5.00%

10.00%

2001-2015

EFFECTIVE MARKET DETERIORATION 

NEW- 5Y

5Y-10Y

10Y-15Y

15Y-20Y

20Y-Scrap

Annualized Return

 180K New 180K 5 Year 170K 10 Year 170K 15 Year 150K 20 Year  Scrap Value

MEAN 2.06% 1.63% 1.92% 0.36% 2.86% 6.53%

STDEV 9.08% 28.41% 32.58% 37.08% 42.88% 38.06%

MAX 118.13% 372.19% 354.56% 411.53% 519.44% 382.14%

MIN -110.85% -696.42% -733.09% -1006.92% -1170.46% -1209.57%

COUNT 164 164 164 164 164 164

Correlation Matrix

180K 5 Year 0.3433  

170K 10 

Year 0.3010 0.8795

 170K 15 

Year 0.3505 0.8456 0.8448

150K 20 

Year 0.2666 0.8084 0.7672 0.8025

 Scrap 

Value 0.1218 0.4289 0.4335 0.5629 0.4947
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Table 4 

 

 

1
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3

4
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21
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23
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25

26
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28

29

30

31

32

33

34

35

36

37

38

39

A B C D E F G H

                                                                                                        Multiple Replacement Option with Salvage & Depreciation

INPUT Stochastic  S & C & Deterministic D

PI 16.00 16.00 16.00 16.00 16.00 16.00 Estimate

CI 9.80 9.80 9.80 9.80 9.80 9.80 .2K

K 49.00 49.00 49.00 49.00 49.00 49.00 F9 July 15

SI 8.20 8.20 8.20 8.20 8.20 8.20 F9 Mean

DI 4.90 4.90 4.90 4.90 4.90 4.90
C 0.43 0.43 0.43 0.43 0.43 0.43 T3
S 0.38 0.38 0.38 0.38 0.38 0.38 T3

 0.49 0.49 0.49 0.49 0.49 0.49 T3

r 0.07 0.07 0.07 0.07 0.07 0.07
C 0.061 0.06 0.06 0.06 0.06 0.06 F9 M EMD/2
S -0.065 -0.07 -0.07 -0.07 -0.07 -0.07 T3 July 15
D 0.10 0.10 0.10 0.10 0.10 0.10

S* 6.78 6.78 6.78 6.78 6.78 6.78 F9 July 2015

D* 0.35 0.35 0.35 0.35 0.35 0.35

C 10 11 12 13 14 15

OUTPUT SOLVER: SET H27=0, CHANGING B28:G31

Q,, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 EQ 3

SP1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 EQ 6

SP2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 EQ 7

VM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 EQ 8

PART 1 1675.95 1675.95 1675.95 1675.95 1675.95 1675.95

PART 2 0.60 0.60 0.60 0.60 0.60 0.60

PART 3 1109.07 1109.07 1109.07 1109.07 1109.07 1109.07 EQ 8 RHS

SUM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 1.0585 1.0585 1.0585 1.0585 1.0585 1.0585

1 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040

1 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009

C* 15.966 15.966 15.966 15.966 15.966 15.966

NPV1 -880.48 -991.59 -1102.70 -1213.81 -1324.93 -1436.04 Ex K

ROV1 675.86 747.61 819.74 892.22 965.03 1038.14  

F1 -204.62 -243.98 -282.97 -321.60 -359.90 -397.90 EQ 2

A1 58.663 58.663 58.663 58.663 58.663 58.663

NPV1 B4/B12-B18/(B12-B13)+B17/(B12+B15)

ROV1 B34-B32

F1 IF(B18<B31,B35*((B18^B28)*(B16^B29)*(B17^B30))+B32,B89)

A1 B26/((B31^B28)*(B16^B29)*(B17^B30))



24 

 

The basis of some of the parameter values is described in column H in Table 4. The reversionary 

operating costs are a function of the new build price (K), the operating cost deterioration is at the 

July 2015 EMD rate (even though that price deterioration consists of more than increases in 

operating costs), the current operating costs in row 18 are above the assumed reversionary costs, 

and the revenue row 4 is arbitrarily determined.  Of course, operating shipping companies would 

have better estimates of all of these inputs.  

Figure 13 

 

However, given these inputs, the current assumed operating costs are less than the cost which 

justifies current replacements.  The operating NPV are negative, due to the assumed discount rate 

for operating costs even when there is a positive spread between current revenue and operating 

costs. The replacement option values for ships at all operating costs are significant if treated as 

perpetuities with multiple replacement opportunities and no competition, so the overall value 

function is positive in Figure 13.  F1 appears to decrease as operating costs increase, but this is 

partly dependent on the more or less arbitrary assumptions as to current revenue and operating 
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costs.  Any ship operator CROM can improve on these inputs, and probably on the interpretation 

of the outputs.  Should the value function F1 be considered the equity value of an alert ship 

operator with opportunities to replace repeatedly her ships at these newbuilding prices?  

5. Conclusion 

We apply a quasi-analytical method to find the after-tax timing boundary and real option value 

for replacing an incumbent asset when both its operating cost and salvage value deteriorate and 

are stochastic.  It is intuitive that increases in operating costs enhance the real option value of the 

opportunity to replace assets.  But increases in the ROV1 at best offset some of the loss in NPV1 

from C increases, so the net effect is just to modify the overall “replaceable asset” value function 

F1. Clearly the opportunities to replace assets multiple times are more valuable than either no 

replacement opportunity, or a single opportunity.  Surprisingly, not considering depreciation 

results in lower real option values (although this may be a problem with a model which taxes 

operating profits and salvage values but does not allow for taxation relief on investment 

expenditures).   

There are some assumptions which are logical for the CROM to encourage, such as reducing C 

(Figure 1), increasing the number of replacement opportunities (Figure 7), reducing the rate at 

which operating costs deteriorate (Figure 6), or the general level of interest rates (Figure 8),  all 

of which increase the overall value function F1, either through the ROV1 and/or the NPV1.  

Similarly the CROM should welcome circumstances where the salvage value is high (Figure 9), 

which results in increases in both the ROV1 and the value function F1.  However, increases in 

cost volatility which result in higher real option replacement values is not altogether logical 

(Figure 5).  The “vegas” (increases in call option value as expected future volatility of the 
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underlying asset increases) are positive for traded financial options, where the holder does not 

necessarily own a stake in the underlying asset.  Positive vegas for replaceable assets are perhaps 

another matter.  There is no allowance in these models for risk aversion, but some might believe 

that at least the discount rate should be increased for risky operating costs.  Finally, selling direct 

or indirect interests in these replaceable asset options has not been considered, perhaps because it 

is not obvious that the option value can be detached from the asset, perhaps awaiting innovations 

from real financial engineers. 

There are further qualifications in the proposed replacement methodology, and analysis:  

investment costs are considered constant or deterministic; replacements are assumed to be 

identical so not allowing for technical innovation; no account has been given to alternative 

evolutionary processes; the possibility of sudden failure has been ignored; the replacement 

decision for the asset under consideration is examined in isolation from the other assets of the 

firm; alternatives from infinite multiple to single replacements have not been explicitly 

considered; competition among firms has been ignored; and no empirical comparisons have been 

made with actual replacement decisions, for specific firms or industries. Replacing the 

assumption that these replaceable assets are perpetuities with finite annuities with declining cash 

flows over time is not a problem, but simultaneously determining the annuity age and the optimal 

replacement times is problematical.   Further research is required to investigate these matters, to 

examine the feasibility of a quasi-analytical method for overcoming these shortcomings, such as 

stochastic investment costs, technological innovation and/or failure, and strategic considerations.  

The possibility of revealing new insights in optimal replacement policy is at the risk of raising 

model complexity and lowering transparency. 
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