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Abstract

This paper investigates a pollutant abatement investment under ambiguity in a two-
period setting. We consider there are representative consumer and firm in an economy and
formulate the social welfare maximization problem. Then we numerically derive the optimal
level of abatement investment. Furthermore, we analyze the comparative static effects of
the model’s parameters and find an increase in the degree of ambiguity encourages pollutant
abatement investment.
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1 Introduction

An important factor in environmental policy’s decision making is the treatment of uncertainty.
For example, there exist several kinds of uncertainty. One of these is the scientific uncertainty
concerning the relationship between green house gas (GHG) emissions and temperature rise.
See, for example, ? and ?. This uncertainty raises from the immense complexity of our climate
system. There is also uncertainty regarding the potential impact of climate change on our lives.
Thus, when we develop a model that evaluates a environmental policy like mitigating GHGs,
we need to take this uncertainty into account.

In this paper we use the concept of ambiguity or Knightian uncertainty. ? defines two
kinds of uncertainty: risk, under which the probability of an outcome is uniquely determined;
and uncertainty, under which it is not. The latter is termed Knightian uncertainty or deep
uncertainty. In this paper, following ?, we term Knightian uncertainty ambiguity. For a survey
of decision making under uncertainty, see, for example, ?, ? and ?.

We examine a general and simple pollutant abatement investment under ambiguity in a two-
period setting. We extend the model of ? which examine capital investment under ambiguity in
a two-period setting by including the investments in pollutant abatement capital. ? extends the
model of ?, which investigates optimal consumption under ambiguity in a two-period setting.
Tsujimura analyzed a production economy and derived optimal capital investment in a general
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equilibrium setting. We consider a two-period production economy as in ?. For analytical
simplicity, the number of consumers is equal to that of firms, and consumers own the firms.
This enables us to consider a representative consumer and firm. The representative consumer is
risk averse and has a constant absolute risk aversion utility function. Because there is ambiguity
in future income, the representative consumer considers a set of probability distributions. Then,
we formulate the utility function as the multiple-priors expected utility of ?.

The firm produces output by using production capital. The production process generates,
however, pollutant emissions that are proportional to output. The pollutant emissions cause
damage to the consumer. Then, the firm has to invest in the pollutant abatement capital to
reduce pollutant emissions. To solve the problem of consumer and firm, we formulate their
problems as the central planner’s social welfare maximizing problem and derive the optimal
production and pollutant abatement capital investment and consumption. Furthermore, we
analyze the comparative static effects of the model’s parameters. We find that the production
and abatement capital are increasing in the degree of ambiguity and volatility of income. These
results are consistent with precautionary principle.

The rest of the paper is organized as follows. In Section 2, we describe the setup of the
economy and formulate the central planner’s problem. In Section 3, we solve the central planner’s
problem. In Section 4, we conduct a numerical analysis. Section ?? concludes the paper.

2 The Model

We consider a two-period production economy as in ?. There are a large number of identical
consumers and firms. The number of consumers is equal to that of firms. The firms are owned
by the consumers and produce identical outputs. Then, we consider hereafter a representative
consumer and firm.

The representative consumer receives an endowment Yt in each period t (t = 1, 2). This
endowment is a random variable on (Ω,F ,P). The consumer receives utility from consumption
Ct in each period. The utility function u(Ct) is assumed to be given by:

u(Ct) = −1

θ
e−θCt , (2.1)

where the coefficient θ > 0 is the degree of absolute risk aversion. The consumer also suffers from
pollutant emissions P and the damage is measured by the following disutility/damage function:

D(P ) = eθpP , (2.2)

where θp > 0 is the damage coefficient. Then, the consumer’s welfare is assumed to be multi-
plying by the utility and disutility:

w(Ct, P ) = u(Ct)D(P ) = −1

θ
e−θCteθpP . (2.3)

The representative firm produces output by using capital K. The firm’s production function
f(k) is expressed as:

f(K) = AKα, (2.4)

where A > 0 reflects the level of technology and α > 0 is the output elasticity of capital. This
production generates pollutant emissions P proportional to output. Pollutant emissions P is
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given by:
P = γf(K)g(Ka), (2.5)

where γ > 0 is a constant conversion factor between output and pollutant emission. g is the
pollutant abatement function and Ka is the abatement capital. Following ?, we assume that
g(Ka) > 0, g′(Ka) < 0, and g′′(Ka) > 0. We specify g as:

g(Ka) = bK−λ
a , (2.6)

where b > 0 is the emission abatement coefficient and λ > 0 is the emission abatement elasticity
of abatement capital.

The representative consumer maximizes the welfare w subject to the following intertemporal
budget constraint:

C1 +K +Ka = Y1, (2.7)

C2 = Y2 + (1− δ)(K +Ka) + f(K), (2.8)

where δ ∈ (0, 1) is the depreciation rate of capital.
Suppose that the representative consumer does not uniquely determine the probability dis-

tribution of future endowments but instead considers a set of probability distributions. Then, we
formulate the representative consumer’s welfare function as the multiple-priors expected utility
of ?:

W (C1, C2, P ) = w(C1) + βmin
Q∈P

EQ[w(C2, P )], (2.9)

where β ∈ (0, 1) is a discount factor and P is a set of priors over (Ω,F). Following ? and ?, we
define P as:

P(P, ϕ) =
{
Q ∈ M(Ω);EQ

[
ln

(
dQ
dP

)]
≤ ϕ2

}
, (2.10)

where M(Ω) is the set of probability measures on Ω, dQ/dP is the Radon–Nikodym derivative
and EQ[ln(dQ/dP)] is the relative entropy index.1 This specification is based on robust control
theory.2 As ϕ increases, the condition of the set of priors P is eased and becomes larger. This
implies that the decision-maker will accept wider range of ambiguity. Then, the parameter ϕ > 0
represents the degree of ambiguity. ϕ indicates how the decision-maker is ambiguity averse. See,
for example, ?.

We assume that P is the probability measure of the normal distribution with mean µ and
variance σ2. All probability measures in P(P, ϕ) have normal distributions. Q is the probability
measure of the normal distribution with mean µ−h and variance σ2, where h > 0 represents the
mean distortion chosen by the decision maker. Then, the relative entropy of P and Q is given
by:

EQ

[
ln

(
dQ
dP

)]
=

h2

2σ2
. (2.11)

The derivation of (2.11) is in Appendix A.
The representative firm maximizes profits, given prices and technology. Then, we formulate

the central planner’s problem as:

max
{C1,C2,K,Ka}

W (C1, C2, P ), (2.12)

1This is also termed the Kullback–Leibler divergence.
2See, for example, ?.
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s.t. (2.7) and (2.8).

Rewriting the central planner’s problem yields:

max
{K,Ka}

{
−1

θ
e−θ(Y1−K−Ka) + βmin

Q∈P
EQ

[
−1

θ
e−θ[Y2+(1−δ)(K+Ka)+AKα]eθp(BKαK−λ

a )

]}
, (2.13)

where B := γAb. In the next section, we solve the problem (2.13) and derive the optimal level
of production capital and abatement capital investments.

3 Optimal Capital Investment

In this section, we derive optimal production capital and abatement capital investments.
Since the welfare function w is strictly concave, the first order conditions of optimality are

sufficient. Then, putting δ = 1 and taking the logarithm of the first order conditions, we obtain
the following equations:

−θ(Y1 −K −Ka) = ln

(
β

{
[αAKα−1]− θp

θ
αBKα−1K−λ

a

})
− θAKα + θpBKαK−λ

a + ln

(
max
Q∈P

EQ[e
−θY2 ]

)
,

(3.1)

−θ(Y1 −K −Ka) = ln

(
β

{
θp
θ
λBKαK−λ−1

a

})
− θAKα + θpBKαK−λ

a + ln

(
max
Q∈P

EQ[e
−θY2 ]

)
.

(3.2)

It follows from (3.1) and (3.2) that we have the relationship between the production capital and
the abatement capital:

K̂ := K(Ka) =
θ

θp

α

λ

1

γb
Kλ+1

a − α

λ
Ka (3.3)

Now we are in a position to obtain the optimal consumption of period 1, C∗
1 , production capital

K∗, and abatement capital, K∗
a .

Proposition 3.1. Suppose that the representative consumer’s welfare function is given by (2.3)
under uncertain endowment. Assume that the the abatement capital Ka satisfies with the fol-
lowing inequality:

Ka >

(
θp
θ
γb

)1/λ

. (3.4)

Then, the optimal consumption of period 1, C∗
1 and abatement capital, K∗

a are numerically
calculated from the following equation:

−θ(Y1 − K̂ −Ka) = ln

(
β

{
αAK̂α−1 − θp

θ
αBK̂α−1K−λ

a

})
− θAK̂α + θpBK̂αK−λ

a − θ(µ−
√
2σϕ) +

θ2σ2

2
.

(3.5)

and the budget constraint of period 1, (2.7). After K∗
a and C∗

1 are calculated, it follows from
(2.7) or (3.3) that we obtain the optimal production capital K∗.
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Proof. Substituting (3.3) into (3.1) yields:

−θ(Y1 − K̂ −Ka) = ln

(
β

{
αAK̂α−1 − θp

θ
αBK̂α−1K−λ

a

})
− θAK̂α + θpBK̂αK−λ

a + ln

(
max
Q∈P

EQ[e
−θY2 ]

) (3.6)

Given the assumptions about the probability measures P and Q, we obtain

ln

(
dQ
dP

)
= ln

(
1√
2πσ

)
−

(
(y − (µ− h))2

2σ2

)
− ln

(
1√
2πσ

)
+

(
(y − µ)2

2σ2

)
=

−2h(y − µ)− h2

2σ2
.

(3.7)

Then, relative entropy is

EQ

[
ln

(
dQ
dP

)]
=

−2h(EQ[y]− µ)− h2

2σ2
=

h2

2σ2
. (3.8)

Then, from the relative entropy expression, (2.11), we obtain:

ln

(
max
Q∈P

EQ[e
−θY2 ]

)
= ln

(
max
h

[e−θ(µ−h)+θ2σ2/2]

)
= −θ(µ−

√
2σϕ) +

θ2σ2

2
.

(3.9)

Substituting (3.9) into (3.1), we obtain (3.5). Since natural logarithm of negative number
is undefined, we obtain the lower bound of abatement capital Ka, (3.4). Then, the optimal
abatement capital K∗

a and consumption in period 1 C∗
1 are numerically calculated from (3.5)

and the budget constraint of period 1, (2.7). The proof is completed.

Furthermore, it follow the above argument that we obtain the optimal social welfare.

Proposition 3.2. Suppose that C∗
1 , K

∗ and K∗
a are numerically calculated. From (2.3), (2.5),

(2.9) and (3.9) we obtain the following social welfare function:

W (C1,K,Ka) = w1(C1) + βw2(C2(K), P (K,Ka))

= −1

θ
e−θC1 − β

θ
e−θ(µ−

√
2σϕ)+ θ2σ2

2
−θAKα

eθpBKαK−λ
a ,

(3.10)

where wt is the welfare function at period t. Substituting C∗
1 , K

∗ and K∗
a into (3.10), we obtain

the optimal social welfare W ∗ := W (C∗
1 ,K

∗,K∗
a).

Notice that it follows from (3.3) and (3.4) that we obtain the production capital is positive:
K > 0.

In the next section, we numerically derive optimal production, abatement capital and con-
sumption in period 1.
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4 Numerical Examples

In this section, we numerically calculate the optimal production capital, K∗, and abatement
capital, K∗

a , and consumption of period 1, C∗
1 . Furthermore, we investigate their response to

parameter changes. The basic parameter values are as follows: Y1 = 10; A = 1; α = 0.5;
γ = 0.1; b = 1; λ = 0.5 β = 0.95; µ = 10; σ = 2; θ = 1; θp = 1; ϕ = 0.5. Given these
values, it follows from Proposition 3.1 that optimal production capital investment K∗ is 1.2005,
and optimal abatement capital investment is 0.2798 and optimal consumption in period 1 C∗

1 is
8.5197. It follows from Proposition 3.2 the optimal social welfare W ∗ is -0.00073. Furthermore,
the optimal pollutant emissions P ∗ is 0.2071 from (2.5).

Figures ??–?? illustrate the results of the comparative statics analysis for optimal consump-
tion in period 1, C∗

1 , production capital investment K∗ and abatement capital K∗
a , pollutant

emissions, and social welfare. Figure ?? shows the optimal abatement capital, K∗
a is slightly

increasing in the coefficient of absolute risk aversion, θ, and the optimal production capital K∗

is also increasing in θ. Thus, optimal consumption C∗
1 is decreasing in θ. Figure ?.c) shows

∂P/∂θ > 0 and it yields:
Kθ

Ka,θ
>

λ

α

K

Ka
, (4.1)

whereKθ = ∂K/∂θ andKa,θ = ∂Ka/∂θ. The left-hand side of (4.1) is the ratio of the production
capital change to the abatement capital change to change in θ. The right-hand side of (4.1) is
the marginal rate of technical substitution (MRTS) in the pollutant emissions. This implies
that the increase rate of investing in the production capital is larger than that of the abatement
capital, pollutant emissions are increasing in θ. From these impacts of θ, we naturally predict the
optimal social welfare W ∗ is decreasing in θ. However, it follows from our numerical calculation
that we obtain ∂W ∗/∂θ > 0. Then, W ∗ is increasing in θ. This result is consistent with the
standard comparative static analysis of CARA utility function with respect to the coefficient of
risk aversion3.

An increase in the damage coefficient, θp, causes more damage to the representative con-
sumer. Then, Figure ?? shows the optimal abatement capital, K∗

a is increasing in the damage
coefficient θp, while the optimal production capital K∗ and the optimal consumption in period
1, C∗

1 are decreasing in θp. The results of the both capitals change in θp yield the pollutant
emissions are decreasing in θp and it yields:

Kθp

Ka,θp

<
λ

α

K

Ka
, (4.2)

where Kθp = ∂K/∂θp and Ka,θp = ∂Ka/∂θp. The left-hand side of (4.2) is negative, while the
right-hand side of (4.1), MRTS, is positive. Overall the optimal social welfare W ∗ is decreasing
in θp.

Higher volatility σ means the possibility of having less wealth in period 2. Then, the risk-
averse central planner reduces the consumption in period 1 and invests in production capital
more. Figure ?? shows the behavior, i.e., the optimal production capital, K∗ is increasing in σ,
while the optimal consumption in period 1, C∗

1 are decreasing in σ. Furthermore, the abatement
capital is increasing in σ. An increase in K∗ means more pollutant emissions. To reduce damage

3If a utility function u is of form a constant absolute risk aversion (CARA) utility given by u = −(1/θ)e−θc,
then we have ∂u/∂θ > 0.
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from pollutant emissions, the central planner invests more in the abatement capital. Figure ??.c)
shows that the pollutant emissions are increasing in σ. Then we have:

Kσ

Ka,σ
>

λ

α

K

Ka
, (4.3)

where Kσ = ∂K/∂σ and Ka,σ = ∂Ka/∂σ. This implies that the increase rate of investing in the
production capital is larger than that of the abatement capital, pollutant emissions are increasing
in σ. It follows from these impacts of σ that the optimal social welfare W ∗ is decreasing in σ.

It follow from Figure ?? that the results of comparative-static analysis on the degree of
ambiguity, ϕ, are similar to σ. This result is consistent with precautionary principle. The
ambiguity-averse central planner reduces the consumption in period 1 and invests in production
capital more. Furthermore, she invests in abatement capital more in order to reduce pollutant
emissions. The pollutant emissions are, however, increasing in ϕ and it yields:

Kϕ

Ka,ϕ
>

λ

α

K

Ka
, (4.4)

where Kϕ = ∂K/∂ϕ and Ka,ϕ = ∂Ka/∂ϕ. This implies that the increase rate of investing
in the production capital is larger than that of the abatement capital, pollutant emissions are
increasing in ϕ. Overall the optimal social welfare W ∗ is decreasing in ϕ.

Figure ?? shows that although K∗ is initially increasing in the coefficient of the level of
technology, A, once A has reached a certain level, K∗ is decreasing in A. An increasing in A
produces the opposite results for C∗

1 . On the other hand, K∗
a is slightly increasing in A. Despite

the result of K∗, Figure ??.c) shows that the pollutant emissions are increasing in A. Then we
have:

1

A

K

α

1

Ka,A
+

KA

Ka,A
>

λ

α

K

Ka
, (4.5)

where KA = ∂K/∂A and Ka,A = ∂Ka/∂A. Overall the optimal social welfare W ∗ is increasing
in ϕ.

Figure ?? shows that K∗ is increasing in the output elasticity of capital, α, while C∗
1 is

decreasing in α. K∗
a is decreasing in α. These results are not expected. Because output increases

in the output elasticity of capital. Both capital changes generate more pollutant emissions and
we have:

1

α

K

Ka,α
lnK +

Kα

Ka,α
>

λ

α

K

Ka
, (4.6)

where Kα = ∂K/∂α and Ka,α = ∂Ka/∂α. Overall the optimal social welfare W ∗ is initially
decreasing in α, once α has reached a certain level, W ∗ is increasing in α.

Figure ?? shows that K∗ is slightly decreasing in the conversion factor between output and
pollutant emission γ and K∗

a is increasing in γ, while C∗
1 is decreasing in γ. An increasing in

γ means the output generates more pollutant emissions. Figure ??.c) shows the relationship
between γ and pollutant emissions. It follows from the result of pollutant emissions that we
obtain:

1

γα

K

Ka,γ
+

Kγ

Ka,γ
>

λ

α

K

Ka
, (4.7)

where Kγ = ∂K/∂γ and Ka,γ = ∂Ka/∂γ. Overall the optimal social welfare W ∗ is decreasing
in γ.
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Figure ?? shows that an increasing in the emission abatement coefficient, b, results the
similar impacts of γ: C∗

1 and K∗ is decreasing in b, while K∗
a is increasing in b. An increasing

in b generates more pollutant emissions as in Figure ??.c). Then we obtain:

1

bα

K

Ka,b
+

Kb

Ka,b
>

λ

α

K

Ka
, (4.8)

where Kb = ∂K/∂b and Ka,b = ∂Ka/∂b. Overall the optimal social welfare W ∗ is decreasing in
b.

Finally, Figure ?? shows that K∗ and C∗
1 are decreasing in the emission abatement elasticity

of abatement capital, λ, while K∗
a is increasing in λ. It follows from (2.5) and (2.6) that an

increasing in λ generates more pollutant emissions if the amount of both capacities does not
change. Notice that K∗

a is less than 1 in our numerical examples. Figure ??.c) shows, however,
P ∗ is initially increasing in λ. Once λ has reached a certain level, P ∗ is decreasing in λ. Then
we have:

− 1

α

K

Ka,λ
lnKa +

Kλ

Ka,λ
>

λ

α

K

Ka
, (4.9)

where Kλ = ∂K/∂λ and Ka,λ = ∂Ka/∂λ. Overall the optimal social welfare W ∗ is decreasing
in λ.
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Figure 9: Comparative static effects of λ

5 Conclusion

In this paper, we analyzed pollutant abatement investment under ambiguity in a two-period
setting. We solved the social welfare maximizing problem and numerically derived the optimal
level of production and pollutant abatement capital investments. Comparative statics analysis
revealed that an increase in the degree of ambiguity and volatility of income encourage the both
capital investments.

There are several ways to extend this paper. First, we can extend the model to a multi-
period setting by incorporating the dynamics of income or other economic parameters. Next,
productivity is matter for environmental policy makers. Then, we incorporate uncertainty about
technological progress as a next phase of research. Such uncertainty could be formulated by using
the Poisson distribution. These important topics are left to future research.
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