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Abstract

Applying the real options framework, this article investigates the investment decision of the

entrant given that an incumbent is already active. Both firms have an option to exit this market if

the demand level falls too low. The combination of three decision components, capacity choice, entry

and exit timing, results into multiple trigger strategies for the entrant and generates a hysteresis

region. In particular, in the presence of a large incumbent it can either choose to coexist with its

rival in a duopoly or (eventually) monopolize the market by installing a sufficiently large capacity.

The former scenario is realized when the market is large, while the latter occurs when the market

is small. When the market is of intermediate size, a hysteresis region emerges where the entrant

does not take any actions and prefers to postpone investment.
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1 Introduction

Traditional real options models address the question of the investment timing in uncertain markets

applying the optimal stopping technique. Most of these models associate stopping with the decision

to enter the new market by undertaking an irreversible investment. The common assumption in such

models is that firms can temporarily suspend their operations in the case of negative profit flow and

later resume it at no cost if the market profitability increases. This means that after investment firms

stay in the market irrespectively of the realized demand patterns. In reality resumption of the firms’

operations is rarely costless and sometimes even impossible.1 As a result the negative demand shock

may trigger their decision to exit the market forever. Irreversibility of exit decisions in uncertain

markets allows to treat them as real options.

Exit options have received limited attention in the literature. Ghemawat and Nalebuff (1985)

and Fudenberg and Tirole (1986) analyze the exit game in a duopoly with asymmetric firms in the

deterministic setting. The early literature on stochastic monopoly models includes Dixit (1989), that

focuses on combined entry and exit strategies, and Alvarez (1998), Alvarez (1999) studying optimal

exit strategy of a firm operating with a fixed capacity.

The continuous time duopoly setting with the option to exit was investigated among others by

Lambrecht (2001), who presents a model of strategic interactions of firms that have both entry and

exit options. He explicitly derives entry and exit thresholds and investigates how the exit order is

influenced by different economic factors. He shows that consistent with earlier findings the firm that

has a lower monopoly exit threshold leaves the market last. Additionally, he modifies the model by

assuming that financially distressed firms can decrease their debt through debt exchange offers. As a

result a reversed bankruptcy order of the firms may appear. Murto (2004) examines the exit decisions

under uncertainty in a duopoly game with asymmetric firms in a declining market. He shows that

when market uncertainty is sufficiently low, there is a unique equilibrium where the larger firm exits

the market earlier. However, in a highly uncertain environment there exists an empty span between

the exit regions of the firms, within which neither of them leaves the market and a reversed exit order

may appear. As a result, the equilibrium is no longer unique and it is not clear which firm is first

to exit the market. Ruiz-Aliseda (2006) studies an entry/exit game in a duopoly market that first

expands until some random moment in time and then starts declining. He finds that the monopolist

does not exit as long as the market grows. After the market matures and starts declining no firm

enters the market anymore and the incumbent ultimately leaves. In case both players are active when

the market reaches maturity the firm with higher sunk costs exits first. Bayer (2007) presents a model

where firms consider an option to increase their capacity in order to stimulate sooner exit of the

1For example due to the loss of technology or the team of professionals.
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opponent. He shows that such predatory behavior occurs in a more competitive and a less uncertain

market.

Similarly to Lambrecht (2001) we investigate the combination of firms exit and entry decisions in

a duopoly. The main difference, however, is that in our model capacity choice is considered. Namely,

in order to become active in the market firms can freely choose the scale of their investment. This,

in turn affects not only their investment decision, but also the exit order. We adopt the approach for

capacity optimization used in the monopoly model of Dangl (1999) and later extended by Huisman

and Kort (2015) to a duopoly scenario. In the setting where firms are able to choose both timing and

size of their investment, Huisman and Kort (2015) show that the firm with a larger capacity invests

at a higher investment threshold. Moreover, they demonstrate that the market leader overinvests in

capacity in order to ensure that its rival enters the market later and installs smaller capacity.

Here we extend Huisman and Kort (2015) by incorporating the exit option into the model. In

that way there exists a second mover advantage for the firm that enters the market last, the entrant,

as it can influence the exit game. In this paper we focus on the analysis of the investment strategies

of the entrant given that the first investor is already active in the market with a certain capacity.

We demonstrate that the firm with the larger capacity level exits the market first. As a result, in

the presence of a sufficiently large incumbent the entrant has an incentive to drive the incumbent out

of the market by installing a relatively large capacity. This may result in a non-monotonicity in the

entrant’s threshold with respect to the size of the incumbent. In particular, the entrant’s threshold

first increases as a result of the decrease in the output price similarly to Huisman and Kort (2015),

yet then starts declining as the entrant anticipates sooner exit of the incumbent.

In addition, we show that the introduction of an exit option leads to a multiple trigger strategies

of the entrant. This result is associated with the existence of so called region of hysteresis. This region

corresponds to a gap between the investment regions of the entrant. In particular, if the market is

large enough, or in other words the exit is far away, the entrant chooses to coexist with his opponent

in a duopoly. In a small market, however, given that it is already optimal for the monopolist to enter,

the entrant has an incentive to monopolize the market by driving its rival out. For the case of an

intermediate market size it is optimal to wait until either of the scenarios is profitable. As a result,

the entrant, does not take any actions and prefers to postpone investment.

The hysteresis region can be related to the gap equilibrium of Murto (2004), where exit in a

reversed order may occur, or the inaction region of Decamps et al. (2006). The latter extends Dixit

(1993) and studies a single firm’s decision to invest in alternative projects with an uncertain cash flow.

For each project there is a certain region of the output price that triggers the firm’s investment. The

main similarity with our finding is associated with the fact that the optimal investment intervals of
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two projects do not intersect, creating the inaction region. In an inaction region the firm does not

invest yet and it is unknown in which of the two projects it will eventually invest.

The remainder of this paper is organized as follows. Section 2 is devoted to the analysis of the

investment decisions of the monopolist that has an option to exit the market. Section 3 discusses

the exit order of the firms and specifies the solution for the entrant’s entry-exit problem. Section 4

summarizes the main results and concludes the paper. The proves of the propositions are presented

in the Appendix.

2 Monopoly

Consider the investment problem of a monopolist, that faces a possibility to undertake an irre-

versible investment in a plant with a certain capacity. Once the investment is made the firm becomes

active on the market and launches the production process. The market for the final output is charac-

terized by uncertain demand, specified by a multiplicative inverse demand function:

Pt = Xt(1− ηQt), (1)

with η > 0 , Qt total market output and Xt the stochastic shock which follows a Geometric Brownian

Motion:

dXt = αXtdt+ σXtdZt, (2)

where α and σ are the drift and volatility parameters respectively, and Zt is a Wiener process. The

firm is assumed to be risk neutral with a discount rate r. Moreover, it should hold that r > α,

otherwise the discounted value of the future revenue stream is infinite and the firm always prefers to

invest in the future.

We assume that the firm that becomes active on the market always produces up to capacity and,

thus, henceforth we will refer to Q as the capacity level. The investment costs the firm bears are

proportional to the capacity and are given by δQ, where δ is the sensitivity parameter. Apart from

the investment costs that are incurred only at the moment of investment the fixed production costs

proportional to capacity, cQ, are paid by the firm in each period.2 Moreover, once invested the firm

faces the possibility to exit the market at no cost when the demand level is too low. The exit decision

is assumed to be irreversible, i.e. the production cannot be resumed once being shut down. Hence, the

problem of the potential market entrant consists of the optimal choice of investment timing, capacity

level and exit timing.

2Here we can think of the costs for regular maintenance of machinery or rent for production spaces, laboratories, etc.
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In the presented setting the firm holds an option to exit the market when it is active, while if the

firm has not entered the market yet an investment option. For the idle firm there exists an optimal

investment trigger, which we denote by XI
M (Q), such that once it is equal to the current value of the

stochastic process, X, the firm is indifferent between investing and waiting. Thus, for X ≥ XI
M the

monopolist enters the market, forgoing its investment option, V0, for the operating project value, V1,

and pays sunk investment costs δQ. After the firm has entered the market it possesses the option

to abandon the project, i.e. exit the market. The optimal level of X to exercise such an option is

denoted by XE
M (Q). First, consider the situation where the capacity level of the firm is given. The

value of the firm and the optimal thresholds in this case are summarized by the following proposition.

Proposition 1 The value of the idle and active monopolist for a given level of the stochastic process,

X, and capacity, Q, are given by (3) and (4) respectively:

VM
0 (X,Q) =

β2

β2 − β1

(
X

XI
M

)β1(XI
M (1− ηQ)Q

r − α

(
1− 1

β2

)
−
( c
r

+ δ
)
Q

)
, (3)

VM
1 (X,Q) =

(
X

XE
M (Q)

)β2 cQ

r(1− β2)
+
X(1− ηQ)Q

r − α
− cQ

r
, (4)

where exit and investment thresholds for a given capacity choice satisfy (5) and (6) respectively:

XE
M (Q) =

β2c(r − α)

r(β2 − 1)(1− ηQ)
, (5)

(β1 − β2)c

(1− β2)β1r

(
XI

XE
M (Q)

)β2

+

(
1− 1

β1

)
XI(1− ηQ)

r − α
− c

r
− δ = 0, (6)

and β1, β2 are given by

β1 =
1

2
− α

σ2
+

√(
−1

2
+

α

σ2

)2

+
2r

σ2
> 1, (7)

β2 =
1

2
− α

σ2
−

√(
−1

2
+

α

σ2

)2

+
2r

σ2
< 0. (8)

In the more realistic setting the firm is free to choose its capacity level at the moment of in-

vestment. Intuitively, the monopolist chooses its capacity such that the investment yields the highest

possible value until it is optimal to exit, i.e. for X > XE
M (Q). Using (5) we can express the later

condition in terms of Q, namely as Q < Q̃M , defined by

Q̃M (X) =
1

η

(
1− β2(r − α)c

r(β2 − 1)X

)
. (9)
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This means that if the capacity of the firm is too large, Q ≥ Q̃M (X), the firm is not able to bear

the production costs for a given market profitability and it will exit the market immediately. Thus,

the optimal capacity level of the monopolist is found maximizing the value of an operating project

V1(X,Q) with respect to Q such that Q < Q̃M (X). This results in the following proposition.

Proposition 2 The optimal capacity level of the monopolist, Q∗M (X), for a given level of X is im-

plicitly determined by(
X

XE
M (Q)

)β2 c (1− ηQ(1 + β2))

r(1− β2)(1− ηQ)
+
X(1− 2ηQ)

r − α
− c

r
− δ = 0. (10)

The optimal investment trigger, XI∗
M satisfies

−
(

rβ1(β2 − 1)XI∗
M

(β1 + 1)β2(r − α)c

)β2 (β1 − β2)c

β1(β2 − 1)r
+

(β1 − 1)XI∗
M

(β1 + 1)(r − α)
−
( c
r

+ δ
)

= 0, (11)

and the corresponding capacity level is equal to

Q∗M ≡ Q∗M (XI∗
M ) =

1

η(β1 + 1)
. (12)

The optimal exit trigger XE∗
M given by

XE∗
M =

β2(β1 + 1)(r − α)c

β1(β2 − 1)r
. (13)

As follows from the above proposition the production costs are crucial for the decision of the firm

to exit the market. Intuitively, the larger are the production costs of the firms, the larger losses it faces

when the demand level becomes low. This causes the exit threshold of the monopolist to increase with

c. Note, however, that the optimal capacity level does not depend on the production costs incurred

by the firm, while the optimal investment threshold increases with c. This is due to the assumption

that the production costs the firm bears in each period are fixed. Therefore, given that there are no

strategic effects involved in the firm’s decision the firm will respond to an increase in the production

costs in a same way as to an increase in the investment costs, namely, by postponing their investment

decision keeping the capacity choice unaffected.

3 Duopoly

In the duopoly we define the incumbent as a firm that has made the first move in the investment

game. That is the firm that has entered the market first and set its capacity level, which we denote

by QL. When the demand is high enough, the second firm, the entrant, also becomes active on the

market. It decides upon its capacity level, QF , given the level acquired by the market incumbent.
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Once both firms have undertaken their investment the exit game starts. It continues until the demand

becomes low enough to trigger the exit of one of the firms. Several papers, e.g. Lambrecht (2001),

demonstrate that the firm with a lower monopoly threshold exists last in the equilibrium. In the

current setting, similarly to Ghemawat and Nalebuff (1985) and Murto (2004), this is the firm with

the lower capacity level.3 Intuitively, such a firm incurs larger production costs, that in the face of

declining demand induce larger losses. As a result such a firm exits earlier. Incorporating this idea

into our model we specify the exit order of the firms according to the following proposition.

Proposition 3 The firm with a larger capacity level exits a market first at the optimal duopoly exit

threshold, XE
D , determined by

XE
D(QL, QF ) =

β2c(r − α)

r(β2 − 1)(1− η(QL +QF ))
, (14)

while the firm with a smaller capacity level exits once X hits optimal monopoly exit threshold, XE
M ,

given by

XE
M (Qi) =

β2c(r − α)

r(β2 − 1)(1− ηQi)
, (15)

with i = L if the smaller firm has entered the market first and i = F if it has entered last.

If the firms install the same capacity level, QL = QF , the game is is characterized by two Nash

equilibria, where either of the firms can exit first.

The crucial feature of the model with both exit and investment option is that the entrant gains a

second mover advantage. Namely, in the case of sufficiently large capacity level of the incumbent for

specific values of the market size the entrant can install a capacity large enough to force the incumbent

out of the market. Hence, in contrast with the model without the option to exit, the incumbent no

longer has ultimate control over the outcome. Thus, the optimization problem of the entrant should

incorporate that the exit order depends on its capacity choice. In particular, the entrant can reply

to a certain capacity level of the incumbent, QL, with either larger, QF > QL, smaller QF < QL,

or equal capacity level, QL = QF . Each of these cases leads to different exit order scenarios. This,

in turn, affects the value functions, because now they incorporate the possibility that in case of the

market decline one firm is going to exit the market, while another becomes a monopolist.

As mentioned earlier, in what follows we concentrate on the entrant’s investment and exit de-

cision for a given capacity choice of the incumbent, which is already operating in the market. This

corresponds to the case of the investment game with exogenous roles. In this setting the entrant

determines both timing of its investment, or in other words its investment threshold, which we denote

3Bayer (2007), however, concludes that the firm with larger capacity exits last. This is because he imposes the

assumption that the production costs are fixed and, unlike in our model, do not depend on capacity level.
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by XI
F , and its capacity size, QF . Before the entrant has become active on the market it holds an

option to invest in the future. The value of this option corresponds to the value of an idle firm, F0,

which together with the investment threshold, XI
F , is defined by the following proposition.

Proposition 4 The value of the idle entrant is given by

F0(X,QL, QF ) = AF (QL, QF )Xβ1 , (16)

where

AF (QL, QF ) =
β2

β2 − β1

(
1

XI
F

)β1( XI
F (1− η(QL +QF ))QF

r − α

(
1− 1

β2

)
−
( c
r

+ δ
)
QF

−
XI
F

β2

∂F1(XI
F , QL, QF )

∂QF

∂QF
∂X

∣∣∣∣
X=XI

F

)
, (17)

XI
F is implicitly determined by h(XI

F , QL, QF ) = 0, where

h(X,QL, QF ) =

(
1− β2

β1

)
BF (QL, QF )

QF
Xβ2 +

(
1− 1

β1

)
X(1− η(QL +QF ))

r − α
− c

r
− δ

− X

β1QF

∂F1(X,QL, QF )

∂QF

∂QF
∂X

= 0, (18)

and BF (QL, QF ) is

BF (QL, QF ) = BB
F χ{QF>QL} + (λBB

F + (1− λ)BS
F )χ{QF=QL} +BS

Fχ{QF<QL}, (19)

with λ being the probability that the entrant exits first in a symmetric game, χ{true} = 1, χ{false} = 0

and

BB
F (QL, QF ) =

(
1

XE
D(QL, QF )

)β2 cQF
r(1− β2)

, (20)

BS
F (QL, QF ) =

(
1

XE
M (QF )

)β2 cQF
r(1− β2)

+

(
1

XE
D(QL, QF )

)β2 XE
D(QL, QF )ηQLQF

r − α
. (21)

Once the entrant has invested, which is when X > XI
F , the exit game starts. Clearly, if the

entrant observes that the incumbent is not active on the market, it directly infers that the incumbent

has already exited given that the roles in the investment game are assigned exogenously and the exit

is assumed to be irreversible. In this case strategic factors do not influence its exit decision as the

entrant ends up being a monopolist and exist at XE
M . In the complementary case, when the incumbent

is active in the market, the location of the entrant’s investment threshold with respect to the monopoly

and duopoly exit triggers may vary. If the entrant is a larger player in the market, it invests only if

XI
F > XE

D , otherwise it is forced to exit immediately. Being a small firm, entrant can in principle enter
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before XE
D . In this case, however, the incumbent, being the larger firm, is immediately displaced from

the market and the entrant becomes a monopolist. As a result, again, there are no strategic effects

involved. In the symmetric case where QL = QF either of the above situations can occur. Since we

are interested in the strategic aspects of the exit model we will concentrate only on the scenario when

both players are present on the market by the time the exit game starts, which is when XI
F > XE

D .

The above observations imply that in the exit game the initial X is larger than the exit thresholds

of the firms and, thus, rule out the possibility of the gap equilibrium shown by Murto (2004). Therefore,

the equilibrium described by Proposition 3 is unique and the entrant’s strategy is specified as follows.

When the entrant enters a market as a larger firm, i.e. QF > QL, it exits last at the duopoly exit

threshold XE
D . Once this threshold is hit the entrant leaves the market. Intuitively, the larger is the

capacity that the entrant acquires the earlier will it exit the market, which is confirmed by (14). This

brings us to the capacity level, Q̃F (X,QL), that leads to the immediate displacement of the entrant

from the market:

Q̃F (X,QL) =
1

η

(
1− β2c(r − α)

r(β2 − 1)X

)
−QL. (22)

When the entrant is a smaller firm, i.e. QF < QL, the incumbent exits first at XE
D and the entrant

enjoys monopoly profits until X hits the monopoly exit threshold, XE
M . In this case Q̃F (X,QF ) has

a different interpretation, namely, it is the capacity level such that once installed by the entrant the

incumbent is forced out of the market.

If QF = QL the game is symmetric, and as shown by Murto (2004), the exit order is not identified.

The described strategies of the entrant are illustrated in Table 1, where we demote by FB1 is the

value larger entrant (B stands for ”big”), by FS1 the value of the smaller entrant (S stands for ”small”)

and by VM
1 the value of the monopolist, defined in the previous section.

Conditions
QF < Q̃F QF ≥ Q̃F

Current X is above XE
D Current X is below XE

D

QF > QL
FB1 − δQF −δQF

entrant exits first

QF < QL
FS1 − δQF VM

1 − δQF
entrant exits last

QF = QL
λFB1 + (1− λ)FS1 − δQF (1− λ)VM

1 − δQF
Exit order unclear

Table 1: Value of the entrant for the different capacity levels of the incumbent, where λ the probability

that the entrant exits first in a symmetric game.
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The above mentioned entrant values are characterized in Proposition 5.

Proposition 5 The value of the active entrant is given by

F1(X,QL, QF ) = χ{QF<Q̃F }

(
FB1 χ{QF>QL} + (λFB1 + (1− λ)FS1 )χ{QF=QL} + FS1 χ{QF<QL}

)
+ χ{QF≥Q̃F }

(
(1− λ)VM

1 χ{QF=QL} + VM
1 χ{QF<QL}

)
− δQF , (23)

with λ and χ introduced earlier and where FB1 is the value of the large entrant defined by

FB1 (X,QL, QF ) =

(
X

XE
D(QL, QF )

)β2 cQF
r(1− β2)

+
XQF (1− η(QL +QF ))

r − α
− cQF

r
, (24)

and FS1 is the value of the smaller entrant determined by

FS1 (X,QL, QF ) =

(
X

XE
M (QF )

)β2 cQF
r(1− β2)

+

(
X

XE
D(QL, QF )

)β2 XE
D(QL, QF )ηQLQF

r − α

+
XQF (1− η(QL +QF ))

r − α
− cQF

r
, (25)

and VM
1 is a value of the active monopolist defined earlier.

Note that both FB1 (X,QL, QF ) and FS1 (X,QL, QF ) contain the duopoly revenue net of production

costs, reflected by the last two terms in (24) and (25). When the entrant is the larger firm this revenue

is adjusted by the stochastic discount factor
(

X
XE
D(QL,QF )

)β2
once, due to the fact that it leaves the

market at XE
D , while in the complementary case of the entrant being the small firm it is corrected

twice. First, for becoming a monopolist at XE
D , using the same stochastic discount factor, and second,

for leaving the market at XE
M by means of

(
X

XE
M (QF )

)β2
.

Moreover, it can be shown that if the capacities in the market are given and are not restricted it

is always better for the entrant to exit last4, i.e. it holds that FS1 (X,QL, QF ) > FB1 (X,QL, QF ) for

X < ∞. Note that in the symmetric game the entrant gets a weighted average of the values under

different exit orders. This implies that the entrant prefers to take a chance over exit first with certainty,

while leaving the market last is still its most preferable option. Given that the value functions are

continuous it will be never optimal to choose the exact same capacity as the incumbent, because given

a non-zero probability of being first to exit in a symmetric game the entrant can always improve by

setting an ε-smaller capacity and exit last. Therefore, the symmetric game will never occur. The

value of the active entrant can be rewritten given that χ{QF=QL} = 0 in the following way

F1(X,QL, QF ) = χ{QF<Q̃F }

(
FB1 χ{QF>QL} + FS1 χ{QF<QL}

)
(26)

+ χ{QF≥Q̃F }

(
VM

1 χ{QF<QL}

)
,

4See poof of Proposition 6.
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In order to find the optimal response of the entrant to a given capacity level acquired by the

incumbent, QL, we maximize F1(X,QL, QF )− δQF with respect to QF .

maximize
QF

{F1(X,QL, QF )− δQF }

Even though in the case when the capacity choice is not restricted by the exit order condition

the entrant always prefers to be the last firm to exit the market, it is not always possible. This is

because in our model the exit order is endogenously determined by the firms’ relative capacity size,

namely that the firm with the smaller capacity exits first. Given this capacity restriction the strategy

of being the last firm to exit is not always preferable, as it requires a relatively low capacity level. We

illustrate this situation below.
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(a) Maximum is at QBF for QL = 0.15.
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(b) Maximum is at QSF for QL = 0.25

Figure 1: The value function of the entrant given the capacity level of the incumbent for the parameter

values: r = 0.05, α = 0.02, σ = 0.1, η = 1, δ = 100, c = 50 and X = 66.

Figure 1 shows the values function of the entrant for different values of the incumbent’s capacity.

The lower curves in both figures correspond to the value that the entrant gets if it exits first, while

the upper curves – if it exits last. Note that the later value is not a unimodal function of the capacity,

QF . Instead, it has a spike for the large values of QF . This is because given that the entrant exits

first it becomes a monopolist as soon as QF reaches Q̃F (X,QF ) by construction. Thus, anticipation

of a sooner monopoly position causes the entrant’s value to increase as QF approaches Q̃F (X,QF ).

This value, however, can only be reached for the larger values of incumbent’s capacity. Due to the

exit order constraint the entrant can end up on the upper curve only if it becomes the smallest firm in

the market, QF < QL. The complementary case of QF > QL yields the value that corresponds to the

lower curve. Thus, the solid parts of the curves represent the actual value of the entrant. As it can

bee seen in Figure 1a the capacity of the incumbent is small, meaning that the entrant is relatively

close to the monopoly situation. In this case the value of becoming the last firm to exit is smaller
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than the value of installing a larger capacity and exiting last. On the contratry, when the capacity of

the firm that already operates in the market is large, the exit order becomes more important. Figure

1b shows that for larger QL the entrant prefers to install smaller capacity and exit last. Thus, we can

conclude that the firm faces a trade-off between staying longer in the market and installing a larger

capacity. In fact, if QL is small it brings larger value to extract rents from installing a larger capacity

and the entrant is willing to forgo its potential monopoly position. Proposition 6 shows the entrant’s

capacity choice for each level of the incumbent’s capacity.

Proposition 6 The optimal capacity level of the entrant depending on the capacity level of the in-

cumbent is given by

Q∗F (X,QL) = Q∗F,D(X,QL)χ{QL≤Q̄4(X)} +Q∗F,M (X,QL)χ{QL>Q̄4(X)}, (27)

where Q∗F,D denotes the optimal capacity of the entrant when it enters as a duopolist, while Q∗F,M –

when it becomes a monopolist upon entry. These capacity levels are defined as follows:

Q∗F,D(X,QL) =



QBF (X,QL) if QL < Q̄1(X),

QL − ε if QL ∈ (Q̄1(X), Q̄2(X)] ∪ (Q̄3(X), Q̄4(X)],

QSF (X,QL) if Q̄L ∈ (Q̄2(X), Q̄3(X)],

(28)

with capacity levels of the entrant, QBF (X,QL) and QSF (X,QL) implicitly determined by the first order

conditions (29) and (30) respectively:

∂(FB1 (X,QL, QF )− δQF )

∂QF
= 0, (29)

∂(FS1 (X,QL, QF )− δQF )

∂QF
= 0, (30)

and

Q∗F,M (X,QL) =


Q̃F (X,QL) if Q̄L ∈ (Q̄4(X), Q̄5(X)],

QM (X) if Q̄L > Q̄5(X).

(31)

The expressions for Q̄1(X), Q̄2(X), Q̄3(X), Q̄4(X), Q̄5(X) are given in the Appendix.

A numerical example illustrating the optimal capacity choice of the entrant for a given X is presented

in the Figure 2.
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Figure 2: The optimal reaction of the entrant given the capacity level of the incumbent for the parameter

values: r = 0.05, α = 0.02, σ = 0.1, η = 1, δ = 100, c = 20 and X = 100.

Apart from illustrating the optimal capacity choice of the entrant, Figure 2 also helps to infer

which exit order corresponds to a certain capacity choice of the incumbent. Namely, the entrant will

choose to leave the market first when its optimal capacity level is above 45◦ line, otherwise it acquires

a market share smaller than the incumbent and exits last.

As it can be seen, the entrant prefers to exit first only when the capacity level of the incumbent is

relatively small, i.e. QL < Q̄1(X). Then the entrant can obtain a large revenue by installing a larger

capacity. The large revenue outweighs the advantage of leaving the market last and, consequently, the

entrant behaves as a large duopolist.

On the contrary, if the entrant observes that the incumbent has installed capacity of a considerable

size, it is not possible to obtain such a large revenue that it would be still profitable to leave the market

first. As a result, the entrant chooses to be a small duopolist in order to stay longer on the market

for QL ∈ (Q̄2(X), Q̄3(X)].

Note that for both the large and small duopolist the optimal capacity level decreases with QL,

because in general the larger capacity taken by the first investor reduces the output price for a given

capacity of the entrant However, Figure 2 shows that at some intervals entrant’s capacity increases

with incumbent’s capacity.

The increasing parts of the curves correspond to the scenarios, where the entrant chooses to mimic

the incumbent’s behavior and acquires capacity QF = QL−ε. When QL ∈ (Q̄1(X), Q̄2(X)], the share

of the incumbent is large enough to stimulate the entrant to leave last. However, leaving last would

13



require that the capacity of the entrant satisfies the constraint, QF < QL. As a result the optimum of

the small duopolist cannot be reached. In this case the entrant maximizes its revenue in a constrained

duopoly using a mimicking strategy, with the optimal choice QF = QL − ε.

When QL hits Q̄3 we observe a relatively large discontinuous upward jump in the entrant’s

optimal capacity. This result corresponds to the findings in Kwon and Zhang (2015), namely, that if

the capacity of the one firm is large enough, it becomes optimal for its rival to increase the capacity

to force such a firm out of the market. Thus, in the regions where QL ∈ (Q̄3(X), Q̄4(X)] and QL ∈
(Q̄4(X), Q̄5(X)] the capacity of the incumbent is so large, and, consequently, the output price is so low,

that the entrant acts to force a soon or immediate exit of the incumbent respectively. Anticipating the

incumbent’s (almost) immediate exit, the entrant behaves as a constrained monopolist, i.e. it installs

a capacity level such that on the one hand the incumbent exits first, and, on the other hand, that it

gets the largest possible monopoly value for itself. As a result it chooses either QL − ε or Q̃F for the

two regions respectively5. Note that mimicking strategy arises here for a different reason than in the

case of smaller levels of the incumbent’s capacity. Namely, for QL ∈ (Q̄3(X), Q̄4(X)] the duopoly exit

threshold is relatively close, yet due to the capacity constraint for a small firm the immediate exit of

its rival cannot be triggered. Thus, the entrant installs the largest capacity available to ensure that

this threshold is hit as soon as possible.

In the last region, i.e. where QL > Q̄5(X), the entrant becomes an unconstrained monopolist as

acquiring the monopoly capacity level is enough to ensure the incumbent leaves the market given its

capacity choice.

In the above formulation we concentrated on the capacity strategies of the entrant for a given

X. Naturally, the problem can be reversed and the boundaries of the strategic regions can be defined

in terms of X for a given level of QL using the inverse function of Q̄i(X) with i = 1, .., 5. The

illustration of the capacity choice of the entrant in two dimension, thus a a function of both X and

QL, is illustrated below.

5The difference between these regions arises only due to exit order restriction on the capacity level. For QL ∈
(Q̄3(X), Q̄4(X)] the level Q̃F is not available for the entrant that is willing to exit first, therefore, it chooses the second

best alternative.
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Figure 3: The optimal capacity strategies of the the entrant for the set of parameter values: r = 0.05,

α = 0.01, σ = 0.17, η = 1, δ = 100, and c = 20.

As we can see, for a given level of QL, where QL is relatively large, for X small enough the

entrant chooses capacity to maximize monopoly profits, because the rival leaves the market anyhow.

For X a little larger the entrant overinvests to force the exit of the incumbent. As X increases even

further the market moves away from the duopoly exit trigger and the entrant prefers to capture larger

immediate profits. Thus, it gradually increases its capacity as exit becomes further away and thus

less crucial to take into account in its investment decision. Consequently, apart from a direct effect

on revenues, the market profitability also indirectly influences the firms’ exit strategies through the

firm’s capacity choice. In particular, exit decisions are hastened in less profitable markets and delayed

in more profitable markets.

The piecewise structure of the entrant’s optimal capacity strongly affects its optimal investment

timing. In particular, one of the main implications of the above findings for the entrant value function

is that it can obtain different values corresponding to different capacity strategies. For example, it

can end up either being a duopolist or a monopolist upon entry. Naturally, these cases correspond

to two different value curves with the latter scenario resulting in higher profits. As a result multiple

investment thresholds corresponding to different value functions may be available to the entrant as

long they are consistent with the boundaries for the capacity choice, i.e. capacity at the moment

of entry should fall into the specific regions defined in Proposition 6. In order to find the optimal

strategy of the entrant for each level of X, we first need to establish whether it is optimal to invest

immediately given the available capacity strategy for the particular value of X. If this is not the case

we need to determine until what moment is it optimal to wait with investment, or in other words, the

threshold corresponding to which capacity strategy will eventually trigger the investment. We do this

by comparing the values of the the options to enter the market with capacities given in Proposition 6
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at the corresponding optimal investment thresholds. Figure 4 presents entrant values as functions of

market profitability for different values of the incumbent’s capacity choice.
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Figure 4: The value functions of the entrant for the set of parameter values: r = 0.05, α = 0.2,

σ = 0.1, η = 1, δ = 100, c = 20 and different values of QL.

The solid line in Figure 4 represent the value of an active entrant. As it can be seen, if X is

relatively small the entrant is able to obtain the monopoly value, which corresponds to the increasing

part of the entrant curve before the spike. It is possible because current output price is low, so it

is easier to force the incumbent out of the market. In a large market this strategy is too costly for

the entrant, as a larger capacity is needed to stimulate the incumbent’s immediate exit. Thus, the

entrant operates in a duopoly. The declining part of the duopoly value after the spike is associated

with the mimicking strategy. As stated earlier, under this strategy the entrant’s capacity is given by

QF = QL− ε. Thus, for a given level of QL the capacity of the entrant is also fixed in such a way that

it always exits last. An increase in market profitability has two effects on the entrant value in this case.

On the one hand, a larger X means that exit of its rival is farther in the future, affecting the firm’s
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value negatively. On the other hand, a larger X increases its revenues, leading to an increase in value.

The mimicking strategy enters the optimal capacity of the entrant twice – for small QL ∈ (Q̄1, Q̄2]

and for large QL ∈ (Q̄3, Q̄4]. In the first case an increasing effect prevails as the exit is so far that the

firms care more about higher revenues. In the latter case the exit of the large firm is relatively close,

and therefore the negative effect of an increase in market size dominates. Due to the latter we observe

a decline in the entrant value in the region connecting the strategies of monopolist and duopolist.

The dashed lines in Figure 4 correspond to the values of the idle entrant, or in other words to the

value of waiting until the optimal investment threshold. Intuitively, each capacity strategy results in a

different investment timing. For example, in Figure 4a it is optimal for the entrant to invest as a large

firm. The investment threshold of a large duopolist is denoted by XI,W
F . In this case the capacity of

the incumbent is so small, that waiting for a larger market and capturing a larger market share yields

a higher value. Once the capacity of the incumbent increases, taking into account its exit becomes

a more valuable strategy. Denote the maximal market size such that for a given QL the entrant can

enter as a monopolist by XI
F . Since each strategy is possible only in a particular region in terms of

QL and X it may happen that the optimal investment moment given a particular strategy lies outside

the admissible boundaries.

First consider the case of low initial X , i.e. X ∈ [0, XI
F ]. If the monopoly threshold lies beyond

XI
F , given that it aims at the monopoly position, the entrant chooses to enter the market at the next

best alternative, namely, at XI
F . This happens if the capacity of the incumbent is relatively small,

as in this case the entrant has more incentives to wait for a larger market, as shown in Figure 4b. If

the capacity of the incumbent increases further, it hastens the entrant’s investment decision, making

the optimal thresholds first leading to a constrained and then leading to an unconstrained monopoly

available in the corresponding strategic regions. Thus, for low initial X the entrant waits either until

XI
M in the unconstrained monopoly region, or until X̃I

F – in the case of constrained monopoly. The

latter situation is illustrated in Figures 4c and 4d.

If initial value of X is so large that forcing the incumbent out of the market immediately upon

entry is not possible anymore, i.e. X > XI
F , the entrant has an option to wait either until the market is

large enough to enter as a duopolist or until the market is low enough to enter as a monopolist. Thus,

in Figures 4b and 4c waiting also pays off if X ∈ (XI
F , X

I,S
F ), where XI,S

F is the optimal investment

threshold of a small entrant. If the capacity of the incumbent is larger, the optimal investment

threshold of the small entrant in a duopoly declines and it may occur below the starting point of the

corresponding strategy, which we denote by X
I
F , see Figure 4d. Clearly, in this case for X ∈ (XI

F , X
I
F )

the entrant can either enter with a mimicking capacity, or wait until either XI
F or X

I
F is hit. It turns

out that in this case waiting for either of the thresholds is a preferable strategy as it brings a larger

value.
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Therefore, the introduction of the exit option together with being able to choose the capacity has

the following result concerning the entrant’s investment behavior. If the capacity of the incumbent is

relatively large the entrant has three investment thresholds. Two of them trigger investment providing

a monopoly position for the entrant. The first threshold occurs if the initial market size is so low

that the entrant waits until it is profitable enough to enter as a monopolist. The second one is

present for intermediate market size, where the entrant has an option to wait until the incumbent’s

exit threshold is close enough, so that the incumbent is expected to exit soon. The last investment

threshold corresponds to the standard case in the real options models, i.e. when the market is large

enough for the two firms to operate together in a duopoly. Hence, in the presence of a large incumbent

in a small market the entrant waits until the monopoly threshold is hit and then invests immediately

as long as the monopoly strategy is available. In the case of an intermediate market size it waits until

either monopoly or duopoly threshold is hit, i.e. until the exit is close enough to force the incumbent

out or until the market is large enough to coexist with the incumbent. Following the recent literature,

we will refer to the region between these thresholds as inaction region or hysteresis region (Decamps

et al. (2006)). Lastly, in a large market the entrant invests immediately.

If the incumbent sets its capacity at an intermediate level, the only difference with the previous

case is that the thresholds that lead to the monopoly situation merge in one. Thus, the entrant waits

for the same moment to invest both in the cases of small or intermediate market. At the threshold

the entrant overinvests to trigger immediate exit of the incumbent.

If the capacity of the incumbent is small, stimulating its exit becomes so costly that the entrant

prefers to wait until a duopoly is profitable and we are back in the situation of one investment threshold.

The investment thresholds of the entrant described above are summarized by the following propo-

sition.

Proposition 7 The threshold which leads to the immediate investment in a duopoly is given by

XI
F,D(QL) =


{
X

∣∣∣∣h(X,QL, Q
∗
F,D) = 0

}
if QL ≤ ¯̄Q1,

X
I
F (QL) if QL >

¯̄Q1.

(32)

The entrant monopolization strategy becomes available only if the capacity of the incumbent sat-

isfies QL ≥ Q̂L. In this case the entrant’s investment threshold that leads to the monopoly once

being hit by X from below is

XI
F,M (QL) =


XI
F (QL) if QL ≤ ¯̄Q2,{

X

∣∣∣∣h(X,QL, Q
∗
F,M ) = 0

}
if QL >

¯̄Q2,

(33)

18



while the situation when monopoly is triggered from above corresponds to the threshold

XI
F,M

(QL) = XI
F (QL). (34)

¯̄Q1, ¯̄Q2 and Q̂L defined in the Appendix.

The investment thresholds of the entrant described above as well as the entrant’s strategies for

different capacity levels of the incumbent are illustrated in the following Figure 5. The dark gray

areas in this figure represent the combinations of X and QL such that the entrant only waits for an

increase in X and then enters with the capacity level, indicated below the figure. The light gray area

corresponds to hysteresis region, where the the entrant waits either for a decline in market profitability

or an increase and enters at either of the two investment thresholds. In the white parts of the graph

where the entrant invests immediately with the capacity level indicated above the figure.
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Figure 5: The optimal investment strategy of the the entrant for the set of parameter values: r = 0.05,

α = 0.01, σ = 0.17, η = 1, δ = 100, and c = 20.

Interesting result arises when we allow α, a constant drift in the Brownian motion, to be negative.

In this case we observe non-monotonicity in the entrant’s duopoly threshold. If the capacity level of the

incumbent is low and, thus exit is still far away, the duopoly threshold increases with the incumbent’s

capacity as in Figure 5. However, once the incumbent’s capacity becomes sufficiently large the entrant

chooses to be a smaller firm in order to exit last. At the same this means that the exit of the larger firm,

the incumbent, becomes closer. Anticipating sooner bankruptcy of its rival the entrant as an incentive

to enter the market sooner and its investment threshold decreases. This situation is illustrated in the

figure below.
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Figure 6: The optimal investment strategy of the the entrant for the set of parameter values: r = 0.05,

α = −0.03, σ = 0.17, η = 1, δ = 100, and c = 20.

In general, the entrant considers monopolization strategy only if the capacity of the incumbent

exceeds a certain threshold. As stated in Proposition 7 the entrant never has an incentive to become

a monopolist if the incumbent’s capacity is such that QL < Q̂L. This is because given that the market

share of the opponent is small, in order to induce monopoly scenario the entrant either needs to wait

until the market is is low enough or to install a large enough capacity. In both cases the entrant exits

rather soon itself. Therefore, for the small QL the entrant prefers to extract greater duopoly rents to

becoming a monopolist for a short period. The capacity level Q̂L, thus, represents the minimal value

of the incumbent’s capacity for which in the small market benefits of monopolization outweigh the

disadvantages of the sooner exit, or in other words, the first Q̂L for which the hysteresis region occurs.

Figures 7 and 8 illustrate how the capacity level Q̂L changes with respect to different parameter values.
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Figure 7: The capacity level Q̂L for the set of parameter values r = 0.05, α = 0.02, η = 1, δ = 100

and different values of c and σ.
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As it can be seen, an increase in production costs, c, results in a smaller level of Q̂L. This is

because larger production costs increase the exit triggers of the firms, consequently smaller capacity of

the incumbent is needed to ensure that monopolization is profitable. An increase in market uncertainty,

σ has an opposite effect. The standard result in the real options literature (see e.g. Dixit and Pindyck

(1994)) is that the firms delay their decisions for higher uncertainty. In particular, the decision to exit

the market is delayed, that is why larger σ implies that the larger capacity of the incumbent is needed

to trigger the entrant’s monopolization strategy. The effects of α and r are non-monotonic as it can

be see from the next figure.
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Figure 8: The capacity level Q̂L for the set of parameter values σ = 0.1, η = 1, c = 50, δ = 100 and

different values of r and α.

Consider now the effect of a change in a drift constant in Brownian motion, α. When α is positive

the firms expect the market to grow in the future and, as a result, to move away from exit threshold.

Therefore, as α increases the monopolization strategy brings less benefits for the entrant and Q̂L

increases. When α is negative, this means on the one hand that both firms expect to exit the market

soon, while the less negative α becomes, the longer the monopoly period of the entrant is anticipated.

Thus, we can see a decline in Q̂L for the negative α, because the monopolization strategy becomes

more attractive. The similar type of non-monotonicity is to be observed considering the effect of the

discount rate if α is positive. On the one hand, r is large the firms discount their future payoffs

more heavily, or put differently, carry more about the present rather than the exit decisions in the

future. Thus, the entrant needs a larger capacity installed by the incumbent to consider the monopoly

scenario. On the other hand, for relatively small α another effect comes into the picture. Namely, the

exit trigger of the incumbent increases and it becomes easier to drive it out of the market, i.e. less

capacity is needed. Note, that for negative α the latter effect disappears as that would mean that the

entrant expects to exit sooner itself and to stay for a shorter period in the monopoly. As a result, for
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negative α the capacity level Q̂L as a function of the discount rate exhibits only increasing behavior.

4 Conclusion

The paper examines the entry and exit decisions of the firm in the existing market under uncer-

tainty. In the presence of an incumbent the entrant launches its market operations by undertaking an

investment in a certain capacity. In our model the entrant decides not only upon its optimal investment

threshold but also upon the exit threshold and its optimal capacity level. Thus, the duopoly model

with capacity optimization was modified to incorporate an option to exit the market. In this way the

entrant, while observing the existing quantity in the market installed by the incumbent, can use the

second mover advantage in choosing capacity to influence the exit order. We show that the firm with

the larger capacity exits last. Thus, in order to stay longer in the market the entrant has to choose a

capacity below the incumbent’s level. As a result, new strategies are available for the entrant in terms

of its capacity choice. In particular, it can chose to mimic the behavior of the incumbent and install

capacity that is just an ε below the incumbent’s capacity. This happens when extracting higher rents

by installing larger capacity is not possible due to the capacity constrained induced by the exit order.

On the other hand, when the incumbent’s capacity is large enough the constraint becomes redundant

and the entrant is able to boost its capacity such that the incumbent exits immediately. The latter

is crucial for the main result of our paper. Namely, that in contrast with the basic model the entrant

has multiple investment thresholds. Now it not only has an option to enter as a duopolist but also to

monopolize the market by forcing the incumbent out. The first situation appears when the market is

big enough for the firms to coexist. The second scenario occurs when the market is sufficiently small,

so that it is relatively easy to drive the competitor out by installing a large enough capacity. However,

for an intermediate market size a gap between the two strategies is generated. We call this gap the

hysteresis region. Intuitively, within this region the market is too small to coexist in a duopoly, yet

too big to make monopolization of the market profitable for the entrant. Furthermore, for negative

market growth prospects the entrant’s investment trigger exhibits a non-monotonicity with respect to

the capacity of the incumbent. At first the investment trigger increases with the incumbent’s capacity,

however, once the incumbent’s capacity becomes sufficiently large, it starts declining, as the entrant

anticipates sooner exit of the incumbent and is eager to invest sooner.

Lastly, it is important to indicate the possibilities for further research. This paper is focused only

on the decisions of the entrant entering an existing market. However, it is interesting to examine the

case of a new market where both firms have an option to invest. In this way we include the decision

of the incumbent in the analysis. In addition, the obtained results are derived for the specific case

when firms produce up to capacity. This assumption can be relaxed by allowing the firms to leave
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some capacity idle when the demand level decreases. Moreover, different demand functions could be

considered. The firms facing the multiplicative demand function cannot freely increase their capacity

as market profitability grows because it will result in negative prices. Therefore, the presence of an

exit option may affect optimal investment decisions differently in the markets described by alternative

demand structures with unlimited capacity expansion.
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5 Appendix

Proof of Proposition 1 Following Dixit and Pindyck (1994) we define the values of active firm,

VM
0 (X,Q), and idle firm, VM

1 (X,Q), as follows

VM
0 (X,Q) = A1X

β1 +A2X
β2 , (35)

VM
1 (X,Q) = B1X

β1 +B2X
β2 +

X(1− ηQ)Q

r − α
− cQ

r
, (36)

with A1, A2, B1 and B2 being constants, β1, β2 – the roots of the fundamental quadratic equation 6.

To rule out the possibility of speculative bubbles it should hold that A2 = 0, B1 = 0, thus, we can

rewrite (35) and (36) as

VM
0 (X,Q) = A1X

β1 , (37)

VM
1 (X,Q) = B2X

β2 +
X(1− ηQ)Q

r − α
− cQ

r
. (38)

Consider optimal exit threshold, XE
M , and optimal investment threshold, XI

M . The following

boundary conditions must hold

VM
1 (XI , Q))− δQ = VM

0 (XI , Q),

∂VM
1 (X,Q)

∂X

∣∣∣∣
X=XI

M

+
∂V1(XI

M , Q)

∂Q

∂Q(X)

∂X

∣∣∣∣
X=XI

M

=
∂VM

0 (X,Q)

∂X

∣∣∣∣
X=XI

M

,

VM
1 (XE , Q) = 0,

∂VM
1 (X,Q)

∂X

∣∣∣∣
X=XE

D

= 0.

(39)

Plugging in the values of the idle and active monopolist from (37) and (38) we get7

−A1X
Iβ1
M +B2X

Iβ2
M +

XI
M (1− ηQ)Q

r − α
− cQ

r
− δQ = 0,

−β1A1X
Iβ1−1

M + β2B2X
Iβ2−1

M +
(1− ηQ)Q

r − α
= 0,

B2X
Eβ2
M +

XE
M (1− ηQ)Q

r − α
− cQ

r
= 0,

β2B2X
Eβ2−1

M +
(1− ηQ)Q

r − α
= 0.

(40)

6 1
2
σ2β(β − 1) + αβ − r = 0

7Given that ∂V1(X,Q)
∂Q

= 0 for the optimal Q. See proof of Proposition 2.
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Solving for A1, B2, XI
M and XE

M leads to

(β1 − β2)c

(1− β2)β1r

(
XI

XE
M (Q)

)β2

+

(
1− 1

β1

)
XI(1− ηQ)

r − α
− c

r
− δ = 0,

A1(Q) =
β2

β2 − β1

(
1

XI
M

)β1(XI(1− ηQ)Q

r − α

(
1− 1

β2

)
−
( c
r

+ δ
)
Q

)
,

XE
M (Q) =

β2c(r − α)

r(β2 − 1)(1− ηQ)
,

B2(Q) =

(
1

XE
M (Q)

)β2 cQ

r(1− β2)
,

(41)

and the corresponding values of the idle and active monopolist:

VM
0 (X,Q) = A1(Q)Xβ1 , (42)

VM
1 (X,Q) =

(
X

XE
M (Q)

)β2 cQ

r(1− β2)
+
X(1− ηQ)Q

r − α
− cQ

r
. (43)

Proof of Proposition 2 The monopolist maximizes the value of being active on the market:

maximize
Q

VM
1 (X,Q)− δQ

s.t. Q < Q̃M (X).

We now want to show that this function has a single maximum in the feasible region of the

investment problem. We start by considering the first and the second order conditions defined below:

∂(VM
1 (X,Q)− δQ)

∂Q
=

(
X

XE
M (Q)

)β2 c (1− ηQ(1 + β2))

r(1− β2)(1− ηQ)
+
X(1− 2ηQ)

r − α
− c

r
− δ, (44)

∂2(V1(X,Q)− δQ)

∂Q2
=

(
r(β2 − 1)

β2c

)β2−1( X

r − α

)β2 η(2− (β2 + 1)ηQ)

(1− ηQ)2−β2
− 2ηX

r − α
. (45)

In order for the firm to enter the market it should hold that X > XE
M (Q) otherwise it will

immediately exit. Thus, the necessary condition for this problem is X > XE
M (0) = β2c(r−α)

r(β2−1) . Note that

given this and the fact that β2 < 0 it holds that ∂2(V1(X,Q)−δQ)
∂Q2

∣∣∣∣
Q=0

= 2ηX
r−α

((
r(β2−1)X
β2c(r−α)

)β2−1
− 1

)
< 0.

Moreover, limQ→ 1
η

∂2(V1(X,Q)−δQ)
∂Q2 = ∞.8 As ∂3(V1(X,Q)−δQ)

∂Q3 =
(

(β2−1)rX
β2c(r−α)

)β2 cη2β2(−3+(β2+1)ηQ)

r(1−ηQ)3−β2
> 0,

we can conclude that the second order condition is an increasing function in Q with a single root.

This means that the first order condition is first declining with Q, reaches it’s minimum and then

starts increasing. Translating the condition X > XE
M (Q) in terms of capacity level it should hold

8Capacity is defined such that 0 ≤ Q ≤ 1
η

so that the prices cannot be negative.
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that 0 ≤ Q < Q̃M (X). Note that by construction ∂(V1(X,Q)−δQ)
∂Q

∣∣∣∣
Q=Q̃M (X)

= −δ < 0. This implies

that there exist two possibilities depending on the sign of ∂(V1(X,Q)−δQ)
∂Q

∣∣∣∣
Q=0

: either the function

VM
1 (X,Q)− δQ, which takes the value of zero for zero capacity, is first increasing and then decreasing

or is strictly decreasing for the considered range of Q. In the latter scenario the optimal capacity

choice is 0, meaning that the firm will forgo its investment option. In the former scenario there exists

a single maximum defined by the first order condition.9

The resulting optimal capacity level Q∗M (X) is determined by10

(
X

XE
M (Q)

)β2 c (1− ηQ(1 + β2))

r(1− β2)(1− ηQ)
+
X(1− 2ηQ)

r − α
− c

r
− δ = 0. (46)

Optimal capacity level at the investment threshold can be found by solving the following system:
(β1 − β2)c

(1− β2)β1r

(
X

XE
M (Q)

)β2

+

(
1− 1

β1

)
X(1− ηQ)

r − α
− c

r
− δ = 0,

(
X

XE
M (Q)

)β2 c (1− ηQ(1 + β2))

r(1− β2)(1− ηQ)
+
X(1− 2ηQ)

r − α
− c

r
− δ = 0.

(47)

β2 − 1

β2 − β1

X(1− ηQ(1 + β1))

r − α
+

β2

β1 − β2

( c
r

+ δ
)(1− ηQ(1 + β1)

1− ηQ

)
= 0. (48)

From (48) it holds that either Q∗M =
1

η(β1 + 1)
or XI(Q) =

β2(r − α)

(β2 − 1)(1− ηQ)

( c
r

+ δ
)

. Plugging

the latter back into (47) and solving for Q gives Q∗ =
1

η(β2 + 1)
. If β2 < −1 this gives negative

capacity, whereas the complementary case when β2 > −1, leads to the negative prices, P =
Xβ2

β2 + 1
< 0.

Therefore, we conclude that

Q∗M =
1

η(β1 + 1)
. (49)

The corresponding XI∗
M is implicitly defined by11

−
(

β1(β2 − 1)rX

(β1 + 1)β2(r − α)c

)β2 (β1 − β2)c

β1(β2 − 1)r
+

(β1 − 1)X

(β1 + 1)(r − α)
−
( c
r

+ δ
)

= 0. (50)

9This also ensures that the smooth pasting condition is correctly specified as
∂V1(X

I
M ,Q)

∂Q
= 0 for the optimal Q.

10Given that the second order condition for maximum, ∂2(V1(X,Q)−δQ)

∂Q2

∣∣
Q=Q∗

M
(X)

< 0, is satisfied.

11We choose the root such that X > (β1+1)β2(r−α)
β1(β2−1)

(
c
r

+ δ
)
, otherwise A is negative.
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The optimal exit threshold XE∗
M is given by

XE∗
M =

β2(β1 + 1)(r − α)c

β1(β2 − 1)r
. (51)

Moreover,

XI∗ = XE∗
φ(r, α, σ, c, u, δ), (52)

where φ(r, α, σ, c, u, δ) is implicitly determined by

−φβ2
(β1 − β2)

β2

+ (β1 − 1)φ−
(
c
r + δ

)
β1(β2 − 1)
c
rβ2

= 0. (53)

Proof of Proposition 3 Similarly to the monopoly case, the value of the firm i, which constitutes

a duopoly with firm j and possesses an exit option is given by

V D
1 (X,Qi, Qj) = BiX

β2 +
X(1− η(Qi +Qj))Qi

r − α
− cQi

r
, (54)

Applying the boundary conditions
V D

1 (XE
D , Qi, Qj) = 0,

∂V D
1 (X,Qi, Qj)

∂X

∣∣∣∣
X=XE

D

= 0,

(55)

we obtain the following duopoly exit threshold

XE
D(Qi, Qj) =

β2c(r − α)

r(β2 − 1)(1− η(Qi +Qj))
. (56)

As it can be seen the capacity levels of the firms i and j enter the expression for the exit threshold

only as a sum. Thus, we can conclude that both firms have the same duopoly exit threshold. Yet the

monopoly thresholds are different if Qi 6= Qj . This can be seen from the expression for the monopoly

threshold (57), which is derived using (41):

XE
M (Qi) =

β2c(r − α)

r(β2 − 1)(1− ηQi)
. (57)

Moreover, if Qi > Qj , then XE
M (Qi) > XE

M (Qj) and visa versa. It is now easy to show that

if Qi > Qj the firm i will always exit first at the duopoly threshold. This scenario is indeed an

equilibrium, as if j exits at the duopoly threshold, XE
D(Qi, Qj), it is optimal for firm i to leave once X

hits XE
M (Qi). The opposite scenario, however, is not an equilibrium. This is because if j exits at its

monopoly threshold, XE
M (Qj), there is still the region where firm i prefers to stay on the market and

get monopoly profits, namely, when X ∈ (XE
M (Qi), X

E
M (Qj)]. Hence, the firm with a larger capacity

exits market first. Applying this result for the incumbent-entrant setting we obtain (14) and (15).

Note that when the firms are of the same size, QL = QF , both strategies are equilibrium strategies,

and as a result, in a symmetric game it is unclear which firm exits first.
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Proof of Proposition 4 Assuming that the incumbent has already entered the market, we obtain

the values of active and idle entrant similarly to the monopoly case:

F0(X) = AFX
β1 , (58)

F1(X,QL, QF ) = BF (QL, QF )Xβ2 +
X(1− η(QF +QL))QF

r − α
− cQF

r
. (59)

For the investment problem the following boundary conditions must hold
F1(XI

F , QL, QF )− δQF = F0(XI
F , QL, QF ),(

∂F1(X,QL, QF )

∂X
+
∂ (F1(X,QL, QF )− δQF )

∂QF

∂QF (X)

∂X

) ∣∣∣∣
X=XI

F

=
∂F0(X,QL, QF )

∂X

∣∣∣∣
X=XI

F

,
(60)

which can be written as

−AFXIβ1
F +BFX

Iβ2
F +

XI
F (1− η(QF +QL))QF

r − α
− cQF

r
− δQF = 0,

−β1AFX
Iβ1−1

F + β2BFX
Iβ2−1

F +
(1− η(QF +QL))QF

r − α

+

(
∂F1(XI

F , QL, QF )

∂QF
− δ
)
∂QF (X)

∂X

∣∣∣∣
X=XI

F

= 0,

(61)

with
∂F1(XI

F , QL, QF )

∂QF
=
∂BF (QL, QF )

∂QF
+
XI
F (1− η(2QF +QL))

r − α
− c

r
.

Solving the above system we obtain

AF (QL, QF ) =
β2

β2 − β1

(
1

XI
F

)β1
(
XI
F (1− η(QL +QF ))QF

r − α

(
1− 1

β2

)
−
( c
r

+ δ
)
QF

−
XI
F

β2

(
∂F1(XI

F , QL, QF )

∂QF
− δ
)
∂QF (X)

∂X

∣∣∣∣
X=XI

F

)
, (62)

and the investment threshold of the entrant, XI
F , is found by solving(

1− β2

β1

)
BF (QL, QF )

QF
XIβ2
F +

(
1− 1

β1

)
XI
F (1− η(QL +QF ))

r − α
− c

r
− δ

−
XI
F

β1QF

(
∂F1(XI

F , QL, QF )

∂QF
− δ
)
∂QF (X)

∂X

∣∣∣∣
X=XI

F

= 0, (63)

where BF can be inferred from the exit problem.

If the entrant is a larger firm it will leave the market once X hits XE
D(QL, QF ), which is the

optimal exit threshold for a large firm in a duopoly. Thus, it must hold that

F1(XE
D(QL, QF ), QF ) = 0, (64)
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which after plugging in (69) and solving for BF yields

BB
F (QL, QF ) =

(
1

XE
D(QL, QF )

)β2 cQF
r(1− β2)

. (65)

In the complementary case, when the entrant is a smaller firm, it becomes a monopolist as X hits

XE
D(QL, QF ), and then exits at XE

M (QF ) in case X declines further. Hence, the following condition

must be satisfied

F1(XE
D(QL, QF ), QF ) = V1(XE

D(QL, QF ), QF ), (66)

where V1(X,Q) is given by (43). This gives the following expression for BF

BS
F (QL, QF ) =

(
1

XE
M (QF )

)β2 cQF
r(1− β2)

+

(
1

XE
D(QL, QF )

)β2 XE
D(QL, QF )ηQLQF

r − α
. (67)

Let λ be the probability that the entrant exits first in a symmetric game, then

BF (QL, QF ) = BB
F χ{QF>QL} + (λBB

F + (1− λ)BS
F )χ{QF=QL} +BS

Fχ{QF<QL}, (68)

where χ{true} = 1 and χ{false} = 0.

Proof of Proposition 5 As it follows from Proposition 4 the value of the active entrant is

F1(X,QF , QL) = BFX
β2 +

X(1− η(QF +QL))QF
r − α

− cQF
r
. (69)

To to obtain the value of the large entrant we plug in BB
F from (65) in the above equation, for

the value of the stong floower – and BS
F from (67), which gives

FB1 (X,QL, QF ) =

(
X

XE
D(QL, QF )

)β2 cQF
r(1− β2)

+
X(1− η(QL +QF ))QF

r − α
− cQF

r
, (70)

FS1 (X,QL, QF ) =

(
X

XE
M (QF )

)β2 cQF
r(1− β2)

+

(
X

XE
D(QL, QF )

)β2 XE
D(QL, QF )ηQLQF

r − α

+
XQF (1− η(QL +QF ))

r − α
− cQF

r
. (71)

The value of the symmetric game, when the incumbent and the entrant are of the same size,

depends on the probability that either of the firms will leave the market first. For the entrant in

this case it is a weighted average of the two scenarios, FB1 and FS1 , with respect to the probability of
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leaving the market first given that the incumbent has already invested (denoted earlier by λ). This

yields the value for the active entrant determined by

F1(X,QL, QF ) =



FB1 (X,QL, QF ) if QF > QL,

FS1 (X,QL, QF ) if QF < QL,

λFB1 (X,QL, QF ) + (1− λ)FS1 (X,QL, QF ) if QF = QL,

(72)

which is equivalent to

F1(X,QL, QF ) = FB1 χ{QF>QL} + (λFB1 + (1− λ)FS1 )χ{QF=QL} + FS1 χ{QF<QL}, (73)

with χ and λ defined earlier.

Proof of Proposition 6 First, it is possible to show that FS1 (X,QL, QF ) = FB1 (X,QL, QF ) if X →
∞. Otherwise it holds that

FS1 (X,QL, QF )− FB1 (X,QL, QF ) =
cQF

r(1− β2)

(
X

XE
D(QL, QF )

)β2
[ (

1− ηQF
1− η(QL +QF )

)β2

− 1

− ηQLβ2

1− η(QL +QF )

]
. (74)

For β2 < 0 and QF > 0, the first two multipliers in the difference are positive, thus, it has the

same the sign as the expression in the square brackets, which we denote by g(QL). Note first that

g(0) = 0. Moreover, taking a derivative with respect to QL gives

∂g(QL)

∂QL
=
−β2η(1− ηQF )

(1− η(QF +QL))2

(
1−

(
1− ηQF

1− η(QF +QL)

)β2−1
)
> 0, (75)

because β2 − 1 < −1 and 1−ηQF
1−η(QL+QF ) > 1. Given this the value of the symmetric game, being a

weighted average of FB1 (X,QL, QL) and FS1 (X,QL, QL), is always smaller or equal than the value of

the small firm. Thus, for some positive probability to exit first in a symmetric game, λ, it is always

possible to find an ε small enough to ensure that installing a capacity QL − ε and, hence, becoming a

small firm, brings a larger value.

Case 1: big follower. Analogous to the monopoly case the follower curve FB1 (X,QL, QF )

as a function of its capacity level, QF , for QF < Q̃F (X,QL)12 and can be proved to have a single

maximum13, which is defined by the following first order condition

∂(FB1 (X,QL, QF )− δQF )

∂QF
= 0, (76)

12The case QF ≥ Q̃F (X,QL) is not relevant for FB1 (X,QL, QF ), because then the large firm exits the market and its

value is equal to 0.
13The proof is completely analogous to the proof in Proposition 2 for the monopoly case.
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or rewritten(
X

XE
D(QL, QF )

)β2 c

r(1− β2)

(
1− β2ηQF

1− η(QF +QL)

)
+
X(1− ηQL − 2ηQF )

r − α
− c

r
− δ = 0. (77)

We denote the capacity level corresponding to (77) by QBF .

Case 2: small follower. The value of the small follower, FS1 (X,QL, QF ) − δQF , is no longer

a unimodal function of its capacity choice. Its shape and, as a result, the location of the maximum

may change depending on the parameter values. In order to describe the behavior of this function we

need to determine the signs of its first and second order derivatives with respect to QF defined below:

∂(FS1 (X,QL, QF )− δQF )

∂QF
=

(
X

XE
M (QF )

)β2 c(1− ηQF (β2 + 1))

r(β2 − 1)(1− ηQF )
+
X (1− ηQL − 2ηQF )

r − α
− c

r
− δ

−
(

X

XE
D(QL, QF )

)β2 cβ2η(1− η(β2QF +QL))

r(β2 − 1)(1− η(QF +QL))2
. (78)

∂2(FS1 (X,QL, QF )− δQF )

(∂QF )2
=

(
X

XE
M (QF )

)β2 β2cη(2− (β2 + 1)ηQF )

r(β2 − 1)(1− ηQF )2
− 2ηX

r − α

−
(

X

XE
D(QL, QF )

)β2 β2cη
2QL(2− 2ηQL − β2QF )

r(1− η(QF +QL))3
. (79)

The sign of the above expressions cannot be uniquely determined. However, it is possible to

describe the behavior of these two functions for the different parameter values. First, we can show

that (79) is a strictly increasing function of QF . Consider the derivative
∂3(FS1 (X,QL,QF )−δQF )

(∂QF )3
given

by expression (80). It is always positive for X > 0 and QL > 0, because β2 < 0 and the price is

non-negative, 1− η(QL +QF ) ≥ 0:

cβ2η
2

r

(
X

XE
M (QF )

)β2
(

(β2 + 1)ηQL − 3

(1− ηQL)3
+

(2− β2)ηQL(β2ηQL − 3(1− ηQL))

(1− η(QL +QF ))4−β2(1− ηQL)β2

)
≥ 0. (80)

Moreover, rewriting (79) as(
(β2 − 1)rX

β2c(r − α)

)β2 β2cη

(β2 − 1)r

(
2− (β2 + 1)ηQF
(1− ηQF )2−β2

− (β2 − 1)ηQL(2− β2ηQF − 2ηQL)

1− ηQF − ηQL)3−β2

)
− 2ηX

r − α
, (81)

it can be seen that lim
QF→−∞

∂2(FS1 (X,QL,QF )−δQF )
(∂QF )2

= −∞ and lim
QF→ 1

η

∂2(FS1 (X,QL,QF )−δQF )
(∂QF )2

= ∞. This

means the second order derivative (79) always has a single root in the interval (−∞, 1
η ]. Thus, we can

conclude that the first order derivative (78) is a convex function of QF with a single minimum reached

in QF ∈ (−∞, 1
η ]. Such function in general may have either two roots (when its minimum is smaller
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than zero), one root (when its minimum value is exactly zero) or none (when the minimum value is

positive). On the other hand, the negative roots will not affect the shape of the value function as it

is only defined for QF ≥ 0. Thus, the sign of the value function to a large extent depends on the

location of the minimum of its fist order derivative. We will now demonstrate how it changes as we

increase QL and/or X.

First, we can show that the first order derivative (78) evaluated at its minimum is an in-

creasing function of QL for QF ≥ 0 and decreasing for QF < 0. Consider first the derivative of
∂(FS1 (X,QL,QF )−δQF )

∂QF
with respect to QL, which equals to

ηX

r − α

(
1− (β2 − 1)η (QF (1− ηQF − β2ηQL) +QL(1− ηQL))

(1− ηQF − ηQL)2

)(
X

XE
D(QL, QF )

)β2−1

− 1. (82)

At the minimum point the second order condition should be satisfied, i.e. (79) should be equal

to zero. Dividing (79) by (−2) and adding it to (82) yields(
(β2 − 1)rX

β2c(r − α)

)β2−1
ηX((β2 + 1)ηQF − 2)

2(r − α)(1− ηQF )2−β2
+

2(1− η(QF +QL))2 + (β2 − 1)ηQF (2ηQF + β2ηQL − 2)

(1− η(QF +QL))3−β2
. (83)

The sign of (83) is the same as (82) given that the latter is evaluated at argmin
QF

∂(FS1 (X,QL,QF )−δQF )
∂QF

.

We can demonstrate now that for QF ≥ 0 the derivative of (83) with respect to QL is positive:

(β2 − 2)(β2 − 1)η
(
3ηQF (1− ηQF )− β2η

2QFQL
)

(1− η(QF +QL))4−β2
+

2(1− β2)η

(1− η(QF +QL))2−β2
> 0, (84)

and that (83) evaluated at minimum QL = 0 is non-negative:

(β2 − 1)η(−QF )(1− ηQF )β2−2 ≥ 0. (85)

This means that for QF ≥ 0 the expression given by (83) is always positive and so is (82)

evaluated at argmin
QF

∂(FS1 (X,QL,QF )−δQF )
∂QF

. Note however that for QF < 0 the sign of the both (84) and

(85) changes and the derivative of (83) with respect to QL becomes negative. Thus, we can conclude

that as QL increases y-coordinate of the minimum of (78) as a function of QF is increasing for QF ≥ 0

and decreases for QF < 0.

In order to determine how a change in QL affect the x-coordinate of the minimum we set the

second order condition (81) to zero and apply the implicit function theorem. This gives

dQF
dQL

=
−β2ηQF (1− ηQF ) +

(
(β2 − 1)2 + 1

)
η2QFQL + 2(1− ηQL)(1− ηQF − (β2 − 1)ηQL)

(1− η(QF +QL))4−β2
(β2 + 1)ηQF − 3

(1− ηQF )3−β2
+ (β2 − 2)ηQL(3(1− ηQL)− β2ηQF )

< 0. (86)

Hence, an increase in QL results into a decrease in the x-coordinate of the minimum of the first

order derivate (78) together with an increase in its y-coordinate. This allows us to conclude that the
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largest possible value of the minimum of the first order derivative (78) is reached for QF = 0. This

allows to determine the number of roots that the first order derivative has for different values of QL and

X. Namely, if the second order condition is satisfied for QF = 0, i.e. d2

dQ2
F
FS1 (X,QL, QF )

∣∣
QF=0

= 0,

and at the same time

1. d
dQF

FS1 (X,QL, QF )
∣∣
QF=0

≤ 0, then the first order derivative always has two roots (or one when

it touches the x-axis),

2. d
dQF

FS1 (X,QL, QF )
∣∣
QF=0

> 0, then the first order derivative has two roots for small QL (or one

when it touches the x-axis) and none for large QL.

Now it is possible to find a specific value of market size, X, to distinguish these two scenarios.

First, consider the derivative of
∂FS1 (X,QL,QF )

∂QF

∣∣∣∣
QF=0

with respect to QL:

d

dQL

(
∂FS1 (X,QL, QF )

∂QF

∣∣∣∣
QF=0

)
=

ηX

r − α

(
−1 +

(
(β2 − 1)rX

β2c(r − α)

)β2−1
(1− β2ηQL)

(1− ηQL)2−β2

)
(87)

This function is clearly increasing in QL. Moreover, if QL = 0 its value is negative, while for

QL → 1
η it becomes infinitely large. Thus,

∂FS1 (X,QL,QF )
∂QF

∣∣∣∣
QF=0

has a single minimum, that can be found

by setting (87) to zero. This gives us the following expression X =
(

1−β2ηQL
1−ηQL

) 1
1−β2 β2c(r−α)

(β2−1)r(1−ηQL) ,

which we can plug into d
dQF

FS1 (X,QL, QF )
∣∣
QF=0

and get its value at the minimum QL. Setting the

obtained result to zero will give us the value of QL such that this function exactly touches the x-axis

and, thus, has a single root:

β2c

(β2 − 1)r

(
ηQL

1− β2ηQL
− 1

β2(1− β2ηQL)(1− ηQL)β2−1
+ 1

)(
1− β2ηQL
1− ηQL

) 1
1−β2

− c

r
− δ = 0. (88)

Note that the above expression is zero for QL = 0 and goes to infinity as QL → 1
η . Together with

the fact that its derivative with respect toQL is positive,
β2cη(2−β2ηQL)(1−(1−ηQL)1−β2)

(
β2−

β2−1
1−ηQL

) 1
1−β2

(β2−1)r(1−ηQL)(1−β2ηQL)2
>

0, it allows to conclude that the solution of (88) is unique. As a result there exists a unique

X =
(

1−β2ηQL
1−ηQL

) 1
1−β2 β2c(r−α)

(β2−1)r(1−ηQL) , such that for the values above it the condition 2. is satisfied

for all QL, i.e. d
dQF

FS1 (X,QL, QF )
∣∣
QF=0

is always positive.

Numerical experiments show that at the moment of investment X is large enough to satisfy this

constraint for the most of the parameter values. The intuition behinds this is that for smaller X the

option value exceeds the value of investing immediately and the firm waits till the market is large

enough.

Moreover, evaluating (79) at QF = 0 we get

∂2FS1 (X,QL, QF )

(∂QF )2

∣∣∣∣
QF=0

=
2ηX

r − α

(
(β2 − 1)rX

β2c(r − α)

)β2−1
(

1−
(

(β2 − 1)rX

β2c(r − α)

)1−β2

− (β2 − 1)ηQL
(1− ηQL)2−β2

)
, (89)
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which has the same sign as the last expression in the brackets. Note that its last part, (β2−1)ηQL
(1−ηQL)2−β2

,

is monotonically decreasing with QL, because its derivative is negative (β2 − 1)η
(

1−(β2−1)ηQL
(1−ηQL)3−β2

)
< 0.

The other part, 1−
(

(β2−1)rX
β2c(r−α)

)1−β2
, is a constant with respect to QL. Therefore, there exists unique

QL, wihch is denoted by Q̆L such that if QL < Q̆L it holds that
∂2FS1 (X,QL,QF )

(∂QF )2

∣∣∣∣
QF=0

< 0, and if

QL ≥ Q̆L then
∂2FS1 (X,QL,QF )

(∂QF )2

∣∣∣∣
QF=0

≥ 0.

This means that for QL ≥ Q̆L the function FS1 (X,QL, QF ) − δQF is convex. Its first order

derivative with respect to QF is strictly increasing and positive for the considered parameter values.

Hence, keeping in mind that in order to be a small follower the firms capacity should be smaller that

the capacity of the leader, QF < QL, for QL ≥ Q̆L the maximum of FS1 (X,QL, QF ) − δQF will be

always reached at QL − ε.

If QL < Q̆L the sign of the second order derivative changes from negative to positive, so that

the FS1 (X,QL, QF ) − δQF is convex for small values of QF and concave for large values of QF . As

showed earlier the first order derivative may have either two or (one) roots (for small QL) or none

(for large QL). In the latter case FS1 (X,QL, QF )− δQF is again a strictly increasing function of QF .

Thus, there exists a critical value of QL such that for the values above it the first order derivative is

always positive. This QL can be determined by simultaneously setting to zero the first and second

derivatives of FS1 (X,QL, QF )− δQF , given by 78 and 79 respectively. Finally, for QL smaller that the

critical value FS1 (X,QL, QF )− δQF is decreasing for the intermediate values of QF and increasing if

QF is either small or large.

To summarize, the value function of the small follower starts from the origin and has a polynomial

shape. Depending on the combination of the parameter values it can either have two turning points

(e.g. small QL) or none (e.g. for large QL). In the latter case the value function is strictly increasing

and given the constraint QF < QL, its maximum is located at QF = QL − ε. If QL is relatively

small the follower curve increases until the first turning point, then coming to its minimum and from

there on it starts increasing again reaching the boundary at Q̃F (X,QF ). For this case the location

of the maximum can be determined differently depending on the level of QL, which is crucial for the

constraint in the optimization problem. In particular, the follower’s optimum can be reached either

at the first turning point, i.e. at the boundary Q̃F (X,QF ) or according to the following first order

condition:

∂(FS1 (X,QL, QF )− δQF )

∂QF
= 0. (90)

The capacity level that is defined by the above first order condition is denoted in this case by

QSF . It is is implicitly determined by setting (78) to zero and choosing the solution such that (79) is
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negative.
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(a) Maximum is at QBF for QL = 0.1.
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(b) Maximum is at QL − ε for QL = 0.12
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(c) Maximum is at QSF for QL = 0.17
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(d) Maximum is at QL − ε for QL = 0.23
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(e) Maximum is at Q̃F for QL = 0.27
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(f) Maximum is at QM for QL = 0.33

Figure 9: Illustration of possible locations of the maximum for X = 50.

In the cases (b), (c) and (d) the entrant always replies with a smaller capacity and exits last.
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Q̄1(X) =

{
QL < QBF (X,QL)

∣∣∣∣FB1 (X,QL, Q
B
F (X,QL)) = FS1 (X,QL, QL)

}
, (91)

Q̄2(X) =

{
QL

∣∣∣∣QSF (X,QL) = QL

}
, (92)

Q̄3(X) =

{
QL > QSF (X,QL)

∣∣∣∣FS1 (X,QL, Q
S
F (X,QL)) = FS1 (X,QL, QL)

}
, (93)

Q̄4(X) =
1

2η

(
1− β2c(r − α)

r(β2 − 1)X

)
, (94)

Q̄5(X) =

{
QL

∣∣∣∣QM (X) = Q̃F (X,QL)

}
. (95)

Proof of Proposition 7 The threshold which leads to the immediate investment in a duopoly is

given by

XI
F,D(QL) =


{
X

∣∣∣∣h(X,QL, Q
∗
F,D(X,QL)) = 0

}
if QL ≤ ¯̄Q1,

X
I
F (QL) if QL >

¯̄Q1,

(96)

where X
I
F (QL) is the inverse function of the last point in terms of QL where it is still optimal to invest

as a strong entrant instead of mimicking the incumbent’s strategy:

X
I
F (QL) = (Q̄3(X))−1, (97)

while h(XI
F , QL, QF ) is defined by (18) and ¯̄Q1 is found by solving

h
(
X
I
F (QL), QL, Q

∗
F,D

(
X
I
F (QL), QL

))
= 0. (98)

The entrant monopolization strategy becomes available only if the capacity of the incumbent

satisfies QL ≥ Q̂L. In this case the entrant’s investment threshold that leads to the monopoly once

being hit by X from below is

XI
F,M (QL) =


XI
F (QL) if QL ≤ ¯̄Q2,{

X

∣∣∣∣h(X,QL, Q
∗
M (X)) = 0

}
if QL >

¯̄Q2,

(99)

where

X
I
F (QL) =

β2c(r − α)

r(β2 − 1)(1− 2ηQL)
, (100)
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and ¯̄Q2 is found by solving

h

(
β2c(r − α)

r(β2 − 1)(1− 2ηQL)
, QL, Q

∗
M

(
β2c(r − α)

r(β2 − 1)(1− 2ηQL)

))
= 0. (101)

The situation when monopoly is triggered from above corresponds to the threshold

XI
F,M

(QL) = XI
F (QL). (102)

The capacity level Q̂L can be found by solving the following system
VM

(
β2c(r−α)

r(β2−1)(1−2ηQL) , QL

)
− δQL = F0

(
β2c(r−α)

r(β2−1)(1−2ηQL) , QL, Q
∗
F,D (X,QL)

)
,

h(X,QL, Q
∗
F,D(X,QL)) = 0.

(103)
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