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Abstract

This paper considers an incumbent-entrant framework, where the incumbent has the option to extend

his current capacity and where the entrant has the option to enter the market by a capacity investment.

Our model explicitly considers both optimal timing of the investment and setting the capacity level

at the moment of investment. Where in the literature entry deterrence is done by overinvestment, we

find instead that entry deterrence takes place by timing: the presence of a potential entrant gives the

incumbent the incentive to invest first. The incumbent only invests a small amount, which is, however,

large enough to delay a larger investment by the entrant.

We also consider the situation where the investment decision involves only timing, i.e. the capacity

decision is given. In such a case we find that the investment order changes, i.e. now the entrant invests

before the incumbent does.

Keywords: Incumbent/Entrant, Capacity choice, Investment under Uncertainty, Oligopoly, Game Theory

JEL classification: C73, D92, L13

1 Introduction

In a traditional set-up, where a two period model is considered, entry deterrence leads to eternal absence of

the competitor on the market. After installing a sufficiently large capacity by the incumbent, the potential

entrant finds the market not profitable enough to undertake an investment. In a continuous time model

with an infinite planning horizon, however, it cannot be expected that potential entrants are perpetually
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deterred from the market. Huisman and Kort (2015) studied this problem for two symmetric entrants on a

new market. In our case an established market exists on which an incumbent operates that faces a potential

entrant.

This paper considers a dynamic model where both an incumbent and an entrant have the option to

acquire some (additional) production capacity. Both firms are free to choose the size of their installment.

As a first result, we find that the incumbent is most eager to undertake the investment first. In this way

the incumbent accomplishes that it delays the investment of the entrant and it extends its monopoly period.

The entrant reacts by waiting until the demand on the market has grown in order to install a larger capacity

than it would install if it preempts the incumbent. This result is always true, except when the incumbent

is initially present on the market with only an extraordinarily small production size and/or when quantity

hardly affects price.

A second important result is that entry deterrence is not achieved via overinvestment, but via timing.

The incumbent invests soon in order to precede investment of the entrant. Since the incumbent’s investment

increases the quantity on the market the output price is reduced, which reduces the profitability of entering

this market, and thus delays entry. Overinvestment is defined as the difference in capacity size between a

firm that expands as a monopolist and a firm that expands due to threat of entry. Where other papers find

that a monopolist sets a smaller capacity than a duopolist facing a threat of entry, we find the opposite

result. Since the incumbent invests early, i.e. in a market with a still relatively small demand, it will only

want to acquire a small capacity expansion. The monopolist, however, could easily wait for a market with

a higher demand and invest in a larger capacity. In other words, when considering deterrence, timing is of

greater importance than overinvesting.

A crucial aspect of these results is that the size of the investment is flexible. We consider an additional

model in this paper where investment sizes are fixed. As a result, the incumbent no longer has the possibility

to undertake a small investment in a small market in order to preempt the entrant. Interestingly, we find

that now the investment order is reversed; the entrant undertakes an investment first. In this situation the

incumbent suffers a larger cost than the entrant, because, while the investment size and thus investment

costs are equal, the entrant suffers no cannibalization. Being able to choose the investment size is thus of

determinative importance for obtaining these results.

This paper has qualitative new results in two main literature streams. In the first place, it contributes

to the studies where incumbent firms try to ward off entrants, i.e. the incumbent-entrant literature. In the

second place, it supplies the literature on strategic real option theory.

A substantial part of the incumbent-entrant literature follows the ”eat your own lunch before someone

else does” theory (Deutschman, 1994), stating that incumbent firms better cannibalize their own demand

to the benefit of staying monopolist in the market. To that extend, incumbents expand their capacity to

deter other firms from the market. Contributions are made in this area by Nault and Vandenbosch (1996),

Robles (2011), Liu et al. (2006), Akcura et al. (2013), Crampes and Hollander (1993) and others. Nault
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and Vandenbosch (1996) show that incumbent firms expand earlier compared to the case where competition

is absent. The main difference between their work and ours is that our model includes an exogenous shock

process. Moreover, in their formulation expansion is done as a result of technological development. Next-

generation advantages are created by launching a new product on the market that is vertically differentiated

from the current product. In our model we assume homogenous products. Robles (2011) develops a 2-period

game where incumbents raise excess capital to deter other firms from the market. This study makes clear that

under certain assumptions there exist sets of parameter values where incumbents deter entry by maintaining

idle capacity. Liu et al. (2006) consider online markets where an incumbent retailer deters online entry of

an e-tailer by either abstaining from participation in this new market or by entering the online market while

differentiating oneself as an independent profit center. The same type of market is studied by Akcura et

al. (2013) where an incumbent firm only expands in case of an impending threat of entry by preempting

the entrant and deterring it from the market through cannibalization. However, when the entrant’s product

differentiation is qualitatively below a certain threshold, entry is accommodated. The incumbent firm defined

by Crampes and Hollander (1993) holds off entrants’ investment by setting sufficiently low prices. In Swinney

et al. (2011) established firms accommodate start-up firms in case of high demand uncertainty and when

costs do not decrease rapidly in future.

Another related analysis is performed by Yang and Zhou (2007). They study the entry deterrence strategy

is when applied by the incumbent firm. They do not consider the capacity choice problem, nor do they

consider the possibility that the entrant preempts the incumbent. Entry accommodation is not taken into

consideration either. They show that the entrant can successfully be deterred by means of excess capacity.

Maskin (1999) carries out a study similar to Yang and Zhou (2007), but then looks at a static model.

Our paper extends, in the second place, the literature on strategic real option models, where firms have

to decide about investing in a stochastic oligopolistic environment. Early work includes Smets (1991) and

Grenadier (1996). Like most of the papers in this field the investment decision only involves the timing

of investment. However, we study a problem where firms are free to choose their capacity levels. To our

knowledge, within a strategic real options framework, investment decisions involving both capacity choice

and timing have first been implemented by Huisman and Kort (2015). Our paper differs from their analysis

by assuming one of the players to have an initial capacity on the market, by which we have obtained an

incumbent-entrant framework.

This paper is organized in the following way. Section 2 explains the model and discusses its assumptions.

Section 3.1 looks at the case of exogenous firms roles, i.e. an individual firm knows beforehand whether it

will be the first or second investor. Then the other firm can choose to invest at the same time or later. This

is followed by Section 3.2 studying the game when endogenizing investment roles, i.e. both firms are allowed

to become the first investor. Section 4 presents some additional studies regarding investment timing and

capacity choice. Robustness checks are performed in Section 5. The last section, Section 6, considers the

problem from the point of view of the social planner. The paper is concluded in Section 7.
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2 Model

Consider an industry where one firm is actively producing. This firm is called the incumbent and is denoted

as firm I. It now faces threat of an entrant, through which it might loose its monopoly position. The inactive

firm is denoted as firm E. Both firms have a one-off investment opportunity in this market. For firm I

this means an expansion of its current capacity, for the entrant, for firm E, an investment means starting

up production and entering this market. Both firms are assumed to be rational and risk neutral and they

are assumed to be value maximizing. The firm that invests first is called the leader. The firm that makes

the final investment is called the follower. The inverse demand function on this market is chosen to be

multiplicative1 and equals

p(t) = x(t)(1− ηQ(t)),

where Q(t) equals the total aggregate quantity made available at time t and where η is a fixed price sensitivity

parameter. x(t) is the value of an exogenous shock process, it follows a geometric Brownian motion, i.e.

dx(t) = αx(t)dt+ σxdz(t).

Here, α and σ are the fixed trend and volatility parameters, z(t) is a Wiener process. It is assumed that,

at present, the market demand is too small to invest for either of the firms, i.e. x(0) is small.2 Discounting

takes place under a fixed rate r > α. The investment costs are linearly related to the investment size, where

the marginal cost parameter equals δ. The inverse demand function is chosen to be in line with Huisman

and Kort (2015), giving a linear relation between the production size and the output price. This relation

is also used by e.g. Pindyck (1988), He and Pindyck (1992), Aguerrevere (2003) and Wu (2007). As of

now, the subscript t shall be omitted unless necessary. In this model firms are fully commited, that is, firms

always produce the amount their capacity allows. This assumption is used throughout the literature (e.g.

Deneckere et al. (1997), Chod and Rudi (2005), Anand and Girotra (2007), Goyal and Netessine (2007) and

Huisman and Kort (2015)).

The investment comprises two decisions: timing and capacity size. The game is solved backwards, first

determining the reaction curves of the final investing firm and then determining the optimal strategies of

the firm that invests first. In this way all subgame perfect equilibria are determined.

Initial capacity size

The incumbent firm is currently active on the market with capacity q1I . We will call this capacity the initial

capacity. The current market, that is, the market before the incumbent expands and the entrant undertakes

the investment, is referred to as the old market or the initial market. In principal, q1I can take any value,

for it is considered to be a parameter. However, one can impose an upper bound to this value.

1In Section 5.2 the robustness of our results will be tested by analyzing a different demand function.
2Throughout the paper the initial value of the process is denoted as x(0) = X.
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Myopic investment is defined as the investment decision when not taking into account any future invest-

ment activity. Here, one assumes that the project will last eternally and no other investment is undertaken

by any firm. Following the analysis from Huisman and Kort (2015), one finds that, when investing myopi-

cally, one ends up with an initial capacity that equals the monopolist’s optimal capacity level. We denote

this as qmyop1I . This value can be considered to be an upper bound to the initial capacity, for firms have no

incentives to invest at a larger capacity when taking into account potential future investment. In this paper

we assume the initial capacity to be equal to the value under myopic investment, unless stated otherwise.

3 Capacity choice

This section starts with the study where investment roles are taken exogenously. That means that the order in

which the firms invest is fixed. This is done by first looking at the optimal decisions of the follower. Next, the

leader’s strategies are studied. There are multiple ways the leader’s capacity influences the follower’s decision.

Setting a large capacity as the leader, will result in a low market price, so that immediate investment is

certainly not optimal for the follower. In this way the follower’s investment is temporarily deterred. Likewise,

when setting a sufficiently low leader’s capacity, the follower enters immediately after the leader’s investment.

The tipping point considering the leader’s capacity, i.e. the leader’s capacity below which the follower invests

immediately and above which the follower is deterred, can only be found by first examining the follower’s

strategies. The main difference with the situation where firm roles are endogenized is that the other firm is

obliged to wait for the leader to invest. The firms do not compete to become leader which leads to different

investment triggers.

3.1 Exogenous firm roles

First the general case is studied, where the following firm is denoted as firm F and similarly, the leading firm

is denoted as firm L. The follower’s and leader’s initial capacities are denoted by q1F and q1L respectively.

Expansion of the market size is done by installing extra quantities q2F and q2L. There are two cases possible.

In one case the incumbent is the firm that expands before the entrant undertakes an investment. In that

situation the incumbent takes the role of the leader and the entrant takes the role of the follower, with

q1L = q1I , q1F = 0, q2L = q2I and q2F = qE . In the other case the entrant undertakes an investment before

the incumbent expands, then q1L = 0, q1F = q1I , q2L = qE and q2F = q2I . In this section, both cases are

analyzed simultaneously.

Follower’s decision

Consider the situation where one firm, the leader, has already invested. Suppose the market has grown

sufficiently large for the follower to make an investment, i.e. the current value of the process x, defined

as X = x(0), is sufficiently large. One then obtains the following value function reflecting the follower’s
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aggregate expected total payoff,

VF (X, q1L, q1F , q2L, q2F ) = E

[ ∞∫
t=0

(q1F + q2F )P (t)e−rtdt− δq2F
∣∣∣ x(0) = X

]

=
X

r − α
(q1F + q2F )(1− η(q1L + q1F + q2L + q2F ))− δq2F .

The follower’s value function consists of two terms. The total expected discounted future payoffs are

reflected by the first term. The involved costs, when making the investment, are captured by the second

term. The optimal quantity is found by optimizing the value function.

To determine the optimal moment of investment we derive the investment threshold X∗F (q1L, q1F , q2L).

Investment takes place at the moment the stochastic process X reaches this level for the first time (see, e.g.,

Dixit and Pindyck (1994)). Thereto one first needs the value function of the follower FF (X, q1L, q1F , q2L)

before it invests. The elaborations can be found in the appendix. One then finds,

FF (X, q1L, q1F , q2L) = AF (q1L, q1F , q2L)Xβ +
X

r − α
q1F (1− η(q1L + q1F + q2L)),

where

β =
1

2
− α

σ2
+

√(
1

2
− α

σ2

)2

+
2r

σ2
. (1)

The value function FF consists of two terms. The second term represents the current profit stream. In case

the incumbent is follower, this stream is positive whith q1F = q1I . When the entrant is the follower one has

q1F = 0 leading to zero current profits. The first term is the current value of the option to invest.

The following proposition presents the follower’s optimal investment strategy.3

Proposition 1 Let the current value of the stochastic demand process be denoted by X, and let the initial

production capacity be denoted by q1L and q1F respectively for the leader and the follower. Let the capacities

associated with the investments be denoted by q2L and q2F respectively for the leader and the follower. Then

the value function of the follower can be partitioned into two regions: for small X the firm waits until it

reaches the investment trigger X∗F and for X ≥ X∗F the firm invests immediately. As a result, the follower’s

value function V ∗F (X, q1L, q1F , q2L, q2F ) is given by

V ∗F =

AF (q1L, q1F , q2L)Xβ + X
r−αq1F (1− η(q1L + q1F + q2L)) if X < X∗F ,

X
r−α (q1F + q2F )(1− η(q1L + q1F + q2L + q2F ))− δq2F if X ≥ X∗F ,

(2)

where the optimal capacity level for the follower q∗2F , the investment trigger X∗F and AF are defined by

q∗2F (X, q1L, q1F , q2L) =
1

2η

(
1− η(q1L + 2q1F + q2L)− δ(r − α)

X

)
, (3)

X∗F (q1L, q1F , q2L) =
β + 1

β − 1

δ(r − α)

1− η(q1L + 2q1F + q2L)
, (4)

3Note that all of these formulas are analogous to the ones as obtained in Huisman and Kort (2015), where one assumes

q1L = q1F = 0.
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AF (q1L, q1F , q2L) =
δ2(r − α)

η(β − 1)2

(
1− η(q1L + 2q1F + q2L)

δ(r − α)

β − 1

β + 1

)β+1

. (5)

The follower’s capacity in case the follower invests at the investment trigger equals

q∗2F (X∗F , q1L, q1F , q2L) =
1− η(q1L + 2q1F + q2L)

η(β + 1)
. (6)

There exists, as can be inferred from equation (4), a positive relation between the leader’s investment

quantity q2L and the follower’s investment threshold. The leader thus deters the follower by setting q2L in

such a way that the follower’s trigger X∗F exceeds the current value of x. To that extend, there exists a q̂2L

such that for q2L > q̂2L it holds that X < X∗F . This complies with the deterrence strategy as described

in the introductory section. The accommodation strategy, i.e. the scenario where the follower immediately

joins the leader in making an investment, only applies when q2L ≤ q̂2L. So, if the current value of x falls

below X∗F , in the deterrence case, the follower sets a capacity equal to the quantity given by equation (6).

In any other case, the follower’s capacity equals the amount given by equation (3) evaluated at the value of

X at the investment moment.

Leader’s decision

As stated, the leader’s quantity tipping point is denoted by q̂2L and can be found as the point for which

X = X∗F , when q2L = q̂2L. Rewriting X = X∗F from equation (4), gives that the value of q̂2L equals

q̂2L(X, q1L, q1F ) =
1

η

[
1− η(q1L + 2q1F )− δ(β + 1)(r − α)

(β − 1)X

]
.

It follows that for qL,2 > q̂2L the deterrence strategy is played. Conversely, when qL,2 ≤ q̂2L, the accom-

modation strategy is played. In this section, first the deterrence strategy is examined, followed by the

accommodation strategy.

Entry deterrence

The value function corresponding to investment under the deterrence strategy consists of two separate

integrals. The first one denotes the expected discounted revenue stream obtained by the leader before the

follower has invested. Then, at moment tF ≥ 0 the follower decides to make an investment, where,

tF = inf{t ≥ 0 | x(t) ≥ X∗F }.

The second integral reflects the leader’s expected discounted revenue stream from the moment the follower

starts (additional) production. One then obtains V detL (X, q1L, q1F , q2L) defined by

V detL = E

[∫ tF

t=0

(q1L + q2L)x(t)(1− η(q1L + q1F + q2L))e−rtdt

+

∫ ∞
t=tF

(q1L + q2L)x(t)(1− η(q1L + q1F + q2L + q∗2F ))e−rtdt
∣∣∣x(0) = X

]
− δq2L

=
X

r − α
(q1L + q2L)(1− η(q1L + q1F + q2L))− δ

β − 1
(q1L + q2L)

(
X

X∗F

)β
− δq2L.
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Evaluating the second equation, one can interpret the terms as follows. The first term reflects the total

expected future cash flows in case the follower will never invest. The second term corrects the first term in

that it negatively adapts the cash flow stream from the moment the second firm makes an investment. The

second term includes the stochastic discount factor E [e−rtF ] =
(
X
X∗
F

)β
where the investment moment for

the follower equals t = tF . The final term, as before, consists of the investment costs.

Similar to the case of the follower, one can find the optimal capacity by optimizing the leader’s value

function. The capacity for the deterrence strategy has to satisfy the constraint that the firm invests in a

capacity that is sufficiently large to deter entry, q2L > q̂2L.

Considering the shock process x, there exists a region in which the deterrence strategy is considered to

be feasible. As explained below, this region is denoted by lower bound Xdet
1 and upper bound Xdet

2 .

In principle, the optimal entry deterrence capacity level, qdetL , can be determined for all different values

of x(0). However, considering the lower bound q̂2L on the capacity one can infer that for some values of x

the optimum does not lie within the feasible region, i.e. for some x(0) one has qdetL < q̂2L. Consequently, for

these values of x, the optimum is then attained at the boundary, qdetL = q̂2L, leading already to immediate

entry of the follower. Thus, for these scenarios the deterrence strategy does not apply. One can prove that

there exists a boundary level Xdet
2 such that for x(0) < Xdet

2 it holds that qdetL > q̂2L and vice versa for

x(0) > Xdet
2 . The deterrence region, hence, does not exist for x(0) > Xdet

2 . It would be too costly for the

leader to deter investment, for the demand has grown so large that the incentive for the follower to invest

at the same time as the leader is very high. The gain from temporary deterrence does not weigh out the

involved costs, since the required capacity level is too high to delay the follower’s investment.

The value Xdet
2 is the value of x such that for x(0) < Xdet

2 , one has that qdetL > q̂2L, or put differently,

one has that x(0) < X∗F . It should then hold that for x(0) = Xdet
2 one obtains x(0) = X∗F when evaluating

the latter at the leader’s optimal capacity given the leader invests at that moment. One can conclude that

Xdet
2 can be determined by solving

X∗F (q1L, q2L, q
det
L (X, q1L, q1F )) = X.

The lower bound to the region of the shock process x for which the deterrence strategy can be utilized is

defined as the smallest value of x such that the optimal capacity qdetL , corresponding to this value of x(0), is

non-negative. In other words, Xdet
1 is determined as X such that qdetL (X, q1L, q1F ) = 0. One can prove that

this value is unique. The following proposition summarizes the entry deterrence strategy.

Proposition 2 Let the production capacities be defined as in Proposition 1 and let the current value of the

shock process be defined as X. Then the deterrence strategy leads to value function V detL (X, q1L, q1F , q2L),

V detL =
X

r − α
(q1L + q2L)(1− η(q1L + q1F + q2L))− δ

β − 1
(q1L + q2L)

(
X

X∗F

)β
− δq2L, (7)

where X∗F (q1L, q1F , q2L) is defined as equation (4).
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For large initial values of X the leader invests immediately and chooses optimal capacity

qdetL (X, q1L, q1F ) = argmax{V detL (X, q1L, q1F , q2L) | q2L > q̂2L}, (8)

where,

q̂2L(X, q1L, q1F ) =
1

η

[
1− η(q1L + 2q1F )− δ(β + 1)(r − α)

(β − 1)X

]
.

The entry deterrence strategy is considered for X ∈ (Xdet
1 , Xdet

2 ), where

Xdet
1 = {X | qdet2 (X, q1L, q1F ) = 0},

Xdet
2 =

β + 1

β − 1

2δ(r − α)

1− (β + 3)ηq1F
.

For low initial values of x, that is x(0) < Xdet
L , the leader invests at the moment x reaches the invest-

ment threshold value Xdet
L . The value of the investment threshold and the associated capacity level qdetL are

determined as the solution of the set of equations determined by equation (8) and

Xdet
L (q1L, q1F , q2L) =

β

β − 1

δ(r − α)

1− 2ηq1L − ηq1F − ηq2L
.

The value function before investment is defined as

F detL (X, q1L, q1F , q
det
L ) =

X

r − α
q1L(1− η(q1L + q1F )) +

(
X
XdetL

)β δqdetL

β − 1
− (q1L + qdetL )

(
X
X∗
F

)β δ

β − 1
. (9)

Entry accommodation

The value function of the leader, when applying the accommodation strategy, considers immediate investment

of both firms where the leader becomes the Stackelberg capacity leader. The value function contains two

terms, the accumulated future discounted payoffs resulting from investment and the investment cost,

V accL (X, q1L, q1F , q2L) = E

[∫ ∞
t=0

(q1L + q2L)x(t)(1− η(q1L + q1F + q2L + q∗2F ))e−rtdt
∣∣∣x(0) = X

]
− δq2L

=
X

r − α
(q1L + q2L)(1− η(q1L + q1F + q2L + q∗2F ))− δq2L.

When applying the accommodation strategy the firm chooses its capacity qaccL (X, q1L, q1F ) in such a

way that it optimizes V accL (X, q1L, q1F , q2L), given the restriction qaccL < q̂2L. The latter makes that the

accommodation strategy is restricted to a certain region of x. When the shock process attains a relatively

large value, the optimal quantity qaccL meets the restriction qaccL < q̂2L. However, for small values of x, the

market is too small for two firms to enter at the same time and one observes that qaccL > q̂2L. Therefore,

there exists a Xacc
0 (q1L, q1F ) such that for x(0) < Xacc

0 the accommodation strategy can not be applied for

qaccL > q̂2L. The Appendix includes the derivation of Xacc
0 . There is no upper bound to the accommodation

strategy considering the shock process.

There is a second lower bound to the accommodation region. Similar to the deterrence strategy, ac-

commodation can only be considered to be feasible when capacity takes a non-negative value. As shown

in the Appendix, qaccL is negative for x(0) < δ(r−α)
1−2ηq1L and positive for the complementing region of x.4

4Note that q1F cancels out when substituting the expression for q∗2F in V accL , leaving only q1L to appear in qaccL and V accL .
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This means that investment only takes place for x(0) ≥ δ(r−α)
1−2ηq1L . Therefore, the overall lowerbound to the

accommodation Xacc
1 region is defined as the maximum of the two previously specified bounds.

Proposition 3 Let the production capacities be defined as in Proposition 1 and let the current value of the

shock process be defined as X. Then the accommodation strategy is considered for X ∈ (Xacc
1 ,∞), where,

Xacc
1 = max

{
β + 3

β − 1

δ(r − α)

1− 4ηq1F
,
δ(r − α)

1− 2ηq1L

}
. (10)

The accommodation strategy leads to value function V accL (X, q1L, q1F , q2L),

V accL =
X

r − α
1
2 (q1L + q2L)(1− η(q1L + q2L))− 1

2δ(q2L − q1L). (11)

For large initial values of X the leader invests immediately and chooses optimal capacity

qaccL (X, q1L) = max

{
1

2η

[
1− 2ηq1L −

δ(r − α)

X

]
, 0

}
. (12)

For low values of x(0) = X, that is X < Xacc
L , the leader will invest when x reaches investment threshold

value Xacc
L . The value of the investment threshold and the associated capacity level qaccL are determined as

the solution of the set of equations determined by equation (12) and

Xacc
L (q1L, q1F , q2L) =

δ(r − α)β

β − 1

q2L − q1L
(q2L − q1L)(1− ηq1L)− ηq2L(q2L + q1L))

. (13)

The value function before investment is defined as

F accL (X, q1L, q1F ) =
X

r − α
q1L(1− η(q1L + q1F )) +

(
X

XaccL

)β δqaccL

β − 1
.

Optimal timing

The deterrence and accommodation strategy are both to be considered by the leader. Deterrence can be

considered for X ∈ [Xdet
1 , Xdet

2 ], and the accommodation region is defined for X ∈ [Xacc
1 ,∞). As a result,

there is a region where X ∈ [Xacc
1 , Xdet

2 ]. In this, ever non-empty, region both strategies are available and

the leader chooses the one yielding the largest project value. Then, there exists a point X̂ ∈ [Xacc
1 , Xdet

2 ]

that indicates the point where deterrence no longer yields a larger value and where the region starts in which

accommodation is preferred, i.e. deterrence is optimal for Xdet
1 ≤ X < X̂ and accommodation is chosen for

X ≥ X̂.

Considering the different possible values for q1I ≤ qmyop1I = 1
η(β+1) a single strategy is found for the leader.

Optimally, one waits in the region 0 ≤ X < Xdet
L , plays deterrence in the region Xdet

L ≤ X < X̂ and

finds accommodation the best strategy for X ≥ X̂. Analogous to Huisman and Kort (2015), despite the

accommodation trigger Xacc
L is an increasing function of the initial capacity size, it holds that Xacc

L < X̂.

Figure 1 illustrates the conclusion that

VL(X, q1L, q1F ) =


F detL (X, q1L, q1F ) if X ∈ (0, Xdet

L )

V detL (X, q1L, q1F ) if X ∈ [Xdet
L , X̂)

V accL (X, q1L, q1F ) if X ∈ [X̂,∞),

(14)
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Figure 1: The leader’s curves.

where

X̂(q1L, q1F ) = {X ∈ [Xacc
1 , Xdet

2 ] | V accL = V detL }.5

Optimal capacity equals qdetL when investment is made in the deterrence region and qaccL when investment

is made in the accommodation region. In the region where the firm waits, optimal investment takes place

when x reaches Xdet
L and for that reason the (expected) investment size in the waiting region is the capacity

evaluated at the investment trigger. Taken together, this means that the (eventual) capacity the firm invests

in, viewed for the current value of x, x(0) = X, equals

q∗2L(X, q1L, q1F ) =


qdetL (Xdet

L (q1L, q1F ), q1L, q1F ) if X ∈ (0, Xdet
L )

qdetL (X, q1L, q1F ) if X ∈ [Xdet
L , X̂)

qaccL (X, q1L, q1F ) if X ∈ [X̂,∞).

Hence, for exogenous firm roles, assuming x(0) = X to be sufficiently small, the firm waits until it reaches

Xdet
L and invests. Then the follower is deterred from the market until x reaches X∗F , at which point in time

the follower invests.

3.2 Endogenous firm roles

In the previous section the game was analyzed when the investment order is fixed ex-ante. This section

aims to study a second type of game, where the investment order is endogenized, that is, firms compete in

obtaining the best position in the investment order.

Preemptive investment

Figure 2a shows two curves as functions of the current value of state variable x. The solid curve corresponds

to the outcome where firms take the leader role, equivalent to equation (14). When taking the position of the

5All examples in this paper use the following parameterization: α = 0.02, r = 0.1, σ = 0.1, η = 0.1, δ = 1000, q1I = 1
η(β+1)

.
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Figure 2: Preemption points.

follower, one arrives at the dashed curve, coming from equation (2). For small values of X firms, evidently,

prefer to wait, suggested by the preference for the follower’s investment role. For larger values, though, it

prefers to become leader. The curves are qualitatively similar to both firms. That means that when X is

large enough both firms prefer to become leader. To prevent that the competitor undertakes an investment,

and making the firm gain the follower value instead of the higher leader value, it is best to preempt the other

firm by making an investment just a bit earlier. For this strategy is optimal to both firms, investment is

made as early as possible, provided the leader’s payoff exceeds the follower’s payoff. Hence, the first moment

for firms to invest, that is, when investment as a leader is interesting, is at the point where the leader curve

no longer yields a larger value than the follower curve. This point is called the preemption point XP , which

is illustrated by Figure 2a. Formally, the preemption points of the incumbent and entrant are defined in the

following way,

XPI = min{X > 0 | V detL (X, q1I , 0, q
det
L (X, q1I , 0), q∗2,E) = VF (X, 0, q1I , q

det
L (X, 0, q1I), q

∗
2I)},

XPE = min{X > 0 | V detL (X, 0, q1I , q
det
L (X, 0, q1I), q

∗
2I) = VF (X, q1I , 0, q

det
L (X, q1I , 0), q∗2,E)}.

For the two firms are asymmetric, their preemption points do not coincide. Assume the incumbent firm

employed the myopic strategy, that is, the initial capacity on the market was chosen without consideration

of future investments. The incumbent’s initial capacity, following the monopoly model at Huisman and

Kort (2015), equals qmyop1I = 1
η(β+1) = 2.37. Implementing this value, one obtains the following values:

XPI = 134 and XPE = 167. This means that for X < 134 both firms prefer to wait, for 134 ≤ X < 167 the

incumbent prefers to be leader and the entrant prefers to wait and for X ≥ 167 both want to invest. For

x(0) is assumed to be small, the incumbent invests first, just before X reaches XPE = 167. The investment

trigger Xdet
LI does not exist in this situation since the incumbent would not undertake an investment in case

12



of exogenous firm roles (see Lemma 1 in the Appendix). Hence, the only reason the incumbent invests is

strategic; investment delays investment by the entrant so that it can stay a monopolist for a longer time.

The same exercise can be done for different values of q1I . Figure 2b shows the resulting preemption points.

The result stays the same: the incumbent invests first and deters the entrant.

To understand this result one must realize that any investment reduces prices, since the inverse demand

function is negatively related with the total market output. Investment by the entrant thus reduces the

incumbent’s value. It is then better for the incumbent to do the, so called, cannibalization itself than let the

entrant eat its demand. To do so, the incumbent will install a small capacity level: small in order not to

make the cannibalization effect too large, but large enough to delay investment of the entrant. To conclude,

the incumbent installs a small additional capacity, protect its demand, and prolongs the period where it can

profit from its monopoly position. The entrant will invest later when demand is higher so it can set a larger

quantity on the market. This leads to the result that the incumbent invests first and expands to delay a large

investment by the entrant. The latter waits until the state variable hits the follower’s investment threshold.

Proposition 4 Let the initial market be myopically determined. Then preemptive investment constitutes an

unique equilibrium. Here, the incumbent undertakes investment first, just before the shock process hits the

preemption trigger of the entrant. The entrant invests at the follower’s trigger.

As Proposition 4 states, preemptive investment yields a unique equilbrium. The Appendix validates the

proposition by proving that other equilibria do not exist.

Sensitivity analysis

The aim of this section is to briefly study the effect of the model parameters on the equilibrium. In this

model there are six parameters to be taken a closer look at. First of all, the sensitivity parameter η capturing

the negative relation between prices and output. The second parameter is the fixed discount rate r. Then,

the drift parameter α and the volatility parameter σ reflecting the market’s uncertainty, both present in

the geometric Brownian motion describing the state variable’s path. Subsequently, we have the marginal

investment cost δ. However, this section will continue with the initial investment by the incumbent firm q1I .

The initial market size is captured by q1I . When this parameter increases, expansion is delayed. A larger

initial market output requires a higher price for investment and therefore the incumbent waits for a larger

value of x. There are two effects on the expansion q2I . A larger initial capacity, makes the expansion

decrease for the cannibalization effect is larger and for the firm already acquired a larger part. However,

since investment is delayed a larger market is observed at investment, which gives the incentive to increase

investment size. The former, however, is dominant and one observes that a larger initial market makes

the expansion decrease. The incumbent’s total capacity increases when the old market is larger, since the

decrease on the expansion is always smaller than the increase on the old market. Section 4.3 takes a deeper

look at the realized capacities, also for the follower.
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η r α δ σ

XPE (q1I = qmyop1I ) 0 + -/+ + +

qdet2I (q1I = qmyop1I ) - +/- +/- 0 +/-

XPE (q1I fixed) + + - + +

qdet2I (q1I fixed) - - + 0 +

Table 1: Effect of an increase in parameter values on triggers and capacities

When η increases the output q2I decreases exactly cancelling out the increase in η, i.e. the product η · q2I
remains constant. Similarly η · qmyop1I and η · qE remain constant. In this way, when assuming q1I = qmyop1I ,

neither the investment threshold Xdet
L , nor the preemption trigger are affected by an increase in η. However,

when one assumes q1I to be fixed, triggers are affected. An increase in η means an increase in ηq1I and

resultingly a decrease in the price, which, hence, makes firms delay investment. Nevertheless, the total effect

on the investment size is negative, considering the different effects. When discounting is done under a higher

rate, one values future revenues relatively less and one becomes more concerned about current profits. If the

interest rate increases, one prefers current profits to be higher and therefore delays investment. In the first

place, this increases the myopic capacity size on the initial market. In the second place, since there are two

effects that influence the optimal investment size for the expansion - i.e. delaying increases the capacity level,

but a larger old market decreases it - it is found that the change is ambiguous. For small r the installment

increases, but for relatively large r it decreases. When one fixes the initial capacity, the effect of the old

market dominantly influences the capacity leading to decreasing installments. As standard in literature, the

drift parameter has an opposite effect: a larger α makes firms invest earlier. The main line of reasoning is the

same, when the drift parameter increases. Market demand, and therefore profits, are expected to increase

more rapidly; one is then prepared to invest earlier to meet the same expectations concerning expected

revenues. Nevertheless, when the initial capacity also changes under a change in parameter values6, a second

effect comes in, similar to the analysis of η: a larger drift increases the initial capacity which leads to a

delay of the investment. Also see Figure 10a. The effect on the optimal capacity is similar to the effect of

r when the old market is taken myopically, but is, as expected, opposite to r when fixing it. The marginal

investment cost has a positive effect on the investment trigger. When investing becomes more expensive,

firms prefer to wait for a market where a larger output is required in order to meet the larger costs. The

optimal capacities, both when fixing the initial market size and taking it myopically, are not affected. Finally,

in a more uncertain market, i.e. a larger σ, future realizations become more important. Waiting gives more

information. This leads to the decision to wait for a higher price, in other words, the firm is only prepared

to invest for a larger value of x. This leads to an increase in the optimal capacity size. However, as in the

6Note that, since the initial capacity equals the myopic investment level, i.e. q1I = 1
η(β+1)

, its level depends on the other

parameter values.
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case of r and α, the effect is ambiguous when assuming a myopic initial market size.

4 Timing & Capacity size

This section includes three analyses showing the importance of timing and capacity size. In the first subsec-

tion it is shown that the investment order reverses whenever the firms do not have free choice of investment

size. Next, a comparison with the monopoly model makes clear that deterring the entrant is done by means

of timing and not by means of overinvestment. Finally we study the effect of the size of the initial capacity.

4.1 Fixed capacity

In most industries the size of an investment is variable. There are, however, industries where the capacity

size is fixed as in e.g. the pharmaceutical industry. This section shows that the endogenization of investment

size drives the investment order.

Consider the same model as presented in section 3.2, but assume investment size is fixed such that

q2I = qE = K. The incumbent’s value functions are then similar to what was found previously,

V detLI (X, q1I , 0,K) =
X

r − α
(q1I +K)(1− η(q1I +K))− X∗FE

r − α
ηK(q1I +K)

(
X

X∗FE

)β
− δK,

X∗FE =
β

β − 1

δ(r − α)

1− η(q1I + 2K)
,

VFI(X, q1I , 0,K) =
X

r − α
(q1I +K)(1− η(q1I + 2K))− δK,

FFI(X, q1I , 0,K) = AdetFIX
β +

X

r − α
q1I(1− η(q1I +K)),

AdetFI (q1I , 0,K) =
δK

β − 1
(X∗FI)

−β
,

X∗FI(q1I , 0,K) =
β

β − 1

δ(r − α)

1− 2η(q1I +K)
.

In a similar way one can determine the value functions of the entrant. Next, one can calculate the

preemption points. In Section 3.2 it was shown that the incumbent invests first, i.e. the incumbent preempts

the potential entrant using entry deterrence. It expands by an adequate amount such that the entrant’s

investment is temporarily hold off. Figure 3a shows the preemption points of the entrant and incumbent

for the model where firms are free to choose their capacity level. Clearly, the preemption points of the

incumbent occur for smaller values of x than the ones of the entrant as illustrated before. Figure 3b shows

the preemption points for the model presented in this section, i.e. where capacity is fixed. Very clearly the

curves are switched: the entrant’s curve now lies below the incumbent’s curve, signifying that in this model

the entrant precedes the incumbent in undertaking an investment. Thus, the entrant takes the leader role

and the incumbent becomes follower.

If firms are free to choose the size of their installment, the incumbent finds most incentives to invest first,

for it can undertake a small investment in order to delay a large investment by the entrant. When fixing
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Figure 3: Preemption triggers

capacity for both firms, this no longer applies: the incumbent cannot make a small investment to delay

a large investment. Moreover, the investment cost, δK, are equal to both firms. Then, the costs for the

entrant are smaller, since it does not suffer cannibalization. As a result, the incumbent is more eager to

delay investment, having the entrant ending up being investment leader. This is observed for most values

of the investment size K, as illustrated by Figure 4. Only very small values of K give the same order as

the one with flexible investment size. For these values the incumbent has an increased incentive to delay

investment by undertaking a small investment, as can be observed in Figure 4.

4.2 Overinvestment

In the literature on entry deterrence incumbents mainly deter entrants by means of overinvestment. That is,

by setting a very large quantity on the market, it becomes unprofitable for other firms to enter this market.

XP ,I

X
P ,E

0.2 0.4 0.6 0.8 1.0 1.2 1.4

K

X
P

Figure 4: Preemption triggers XPI (solid) and XPE (dashed) with fixed capacity for different values of K

with q1I = qmyop1I .
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In many cases, the quantity put on the market exceeds the amount that would be optimal for the firm in

case that there is no potential entrant. This section aims to investigate whether the notion of overinvestment

also applies to the model presented in Section 3.

Overinvestment is defined as the difference between the quantity an incumbent sets on the market when

there is a threat of an entrant, to the quantity it would set when this threat would not be present. In

other words, the expansion of the incumbent in the duopoly setting as presented in the previous section is

compared to the expansion of the incumbent in case it is a monopolist. To this end, the monopolist’s model

is presented and analyzed.

The value function of the monopolist, at the moment of investment, is defined in the following way,

V mon(X, q1) = E

[∫ ∞
0

(q1 + q2)X(t)(1− η(q1 + q2))e−rtdt
∣∣∣ x(0) = X

]
− δq2

=
X

r − α
(q1 + q2)(1− η(q1 + q2))− δq2.

Maximizing the monopolist’s value function leads to the optimal expansion size,

q∗2M (X, q1) = max

{
1

2η

(
1− 2ηq1 −

δ(r − α)

X

)
, 0

}
.

Resultingly, one obtains,

VM (X, q1) =


X
r−αq1(1− ηq1) if X < δ(r−α)

1−2ηq1 ,

(X(1−2ηq1)−δ(r−α))2
4η(r−α)X + Xq1(1−ηq1)

r−α if X ≥ δ(r−α)
1−2ηq1 .

The optimal moment of expansion is defined as the value of x for which the option to wait no longer yields

a larger value than immediate investment. Having found the value of the firm before it invests,

FM (X, q1) = AM (q1)Xβ +
X

r − α
q1(1− ηq1),

AM (q1) = (X∗M )−β
δ

β − 1
qmon2 ,

where β is defined as in (1), one can show that for the expansion the optimal threshold and size equal

X∗M =
β + 1

β − 1

δ(r − α)

1− 2ηq1
,

qmon2 =
1− 2ηq1
η(β + 1)

.

To measure overinvestment, the difference between qdet2 and qmon2 needs to be considered. As an illustration

an example is used, given by Table 2. In this table, the optimal investment moment and the optimal

investment size are given for different values of the initial investment size, both with (first pair of columns)

and without (second pair of columns) threat of an entrant. Overinvestment would occur if qdet2 > qmon2 .

However, the table illustrates the opposite. To explain this, one must realize that the investment threshold

values of the monopolist are higher than the ones from the incumbent in a duopoly setting. The incumbent,
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Figure 5: qdet2I (X, q1L, q1F ) (solid) and qmon2 (X, q1) (dashed) for different values of X.

by all force, prefers to keep its monopoly position as long as possible and thereto it delays investment of the

entrant by preempting the entrant’s preferred investment moment. This leads to an investment in a market

that is still small at the moment of investment. For the same reason the capacity level the firm invests in will

be small as well, which is preferred to waiting and investing at a higher demand level, but having a second

investor on the market. The monopolist, however, has all flexibility to wait for a price that has grown to a

considerable level. We conclude that entry deterrence is not so much about the size but more about timing.

Surely, this could only be concluded from a model including capacity choice, which allows for a small and

early investment.

To take a closer look at the investment size, comparison between the two capacities can also be made

when evaluating them at the same value of X. Figure 5 shows that for large values of X the duopolist takes

a larger value. However, for smaller values of X the monopolist sets a larger capacity. In the former case,

i.e. when X is large, demand is large, so that sufficient room may exist on the market to have two firms

present. However, to deter the entrant the incumbent is obliged to increase its capacity size, exceeding the

monopolist’s optimal expansion. This explains why the duopolist sets a larger quantity. In the opposite

case, i.e. when X is small, demand is small. Then the incumbent needs to take into account that eventually

Duopolist Monopolist

q1I Trigger Expansion Trigger Expansion

0 123 1.59 152 2.37

0.5 129 1.26 169 2.13

1 136 0.97 190 1.90

1.5 145 0.71 217 1.66

2 157 0.48 254 1.42

2.5 171 0.29 304 1.19

Table 2: Expansions made by the incumbent and a monopolist for different values of q1I .
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Incumbent (Leader) Entrant (Follower)

q1I Trigger Total Capac. Trigger Capacity

0 123 1.59 180 1.99

0.5 129 1.76 185 1.95

1 136 1.97 190 1.90

1.5 145 2.21 195 1.85

2 157 2.48 202 1.78

2.5 171 2.79 211 1.71

Table 3: Total capacities of the incumbent and the entrant for different values of q1I .

the entrant will invest, which lowers the investment’s profitability. Conversely, the monopolist knows there

will be no other future investment, enabling him to set a larger quantity anticipating expected future market

growth. Therefore, the monopolist expands with a larger amount. In the end, due to the timing effect, the

monopolists always sets a larger capacity.

4.3 Market leadership

This section illustrates that the incumbent does not necessarily maintain its market leader position after the

entrant’s investment. To clarify this, Table 3 shows the total capacity of the incumbent firm (first pair of

columns) and entrant (second pair of columns). As one can observe, for a small initial capacity the follower

becomes market leader. However, when the incumbent starts with a capacity larger than a certain tipping

point qML
1I it keeps its position as market leader after the second firm’s entry. Market leadership thus depends

on the initial market size.

In a framework with two potential entrants, i.e. no firm prossesses an initial capacity, Huisman and Kort

(2015) point out that market leadership is dependent on uncertainty. In particular, they show that for

0.4
Σ0

0.62

q1,I
ML

Incumbent

Entrant

Figure 6: Market leader regions for different σ.
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large demand uncertainty the first investor becomes market leader, while the second investor will invest

in a larger capacity when the demand uncertainty is low. Combining this with our finding, implies that

market leadership thus depends on both initial capacity and demand uncertainty. Recall that qML
1I is defined

as the value of the initial capacity for which the total incumbent’s capacity equals the amount set by the

entrant. As illustrated by Figure 6, qML
1I decreases when uncertainty increases. Larger uncertainty makes

the incumbent delay investment, which results in a larger expansion, making him market leader for smaller

values of q1I relative to the case of smaller uncertainty. In this figure one can clearly observe for which

combinations of the initial capacity and uncertainty the incumbent is market leader and in which region the

entrant becomes market leader. For very large uncertainty, the incumbent always becomes market leader.

However, for small values of uncertainty a certain range q1I ∈ [0, qML
1I ) exists for which the entrant ends up

with the largest market share.

5 Robustness

In this section two types of robustness checks are performed in order to verify the validity of our results.

First, the effects of a change in parameter values is studied. It is shown that the investment order remains

the same for different sets of parameter values, whilst one can find one exception which is concerned with

the strength of the old market and the inverse demand function parameter. Second, we derive the results

imposing a different demand structure.

5.1 Strength of the initial market

In order to inspect the effect of changes in parameter values on the investment order, both preemption points

are drawn in a great variety of graphs in the Appendix. These pictures make clear that the incumbent takes

the leader role to delay the entrant’s investment. There is, however, an exception. When the sensitivity

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Η

0.5

1.0
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Entr.

Figure 7: Regions where the incumbent invests first (upper right) and where the entrant invests first.
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parameter η is taken to be substantially small while being combined with a substantially small initial capacity

size, one observes that the entrant’s preemption trigger falls below the investment trigger of the incumbent.

This, however, is only true for a substantially small initial market. The trade-off between the initial market

and the sensitivity parameter is depicted in Figure 7. This figure shows the two regions where either of

the firms invest first. The line depicts all values of η and q1L for which both firms’ preemption triggers

are identical. We see that the incumbent invests first, except for a small region close to both axes, where

the entrant is the first investor. In fact, it holds that for η · q1L > 0.01413 the incumbent is leader and

the entrant invests first for η · q1L < 0.01413. Intuition behind this result is that for the situation where

η or q1L is small, the incumbent prefers a large expansion. Setting both parameters small makes that the

incumbent’s presence on the initial market is barely noticable: it has little effect on the demand function

and the cannibalization effect is small. The incentives to preempt the entrant vanish the moment there is

not so much to protect.

One might notice that for very small values of η the initial market is allowed to be relatively large, allowing

for a large region where the entrant becomes leader. Then, remind that the optimal investment size increases

for smaller η. As an example, for η = 0.02, is holds that qmyop1I = 11.86 and qmyop1I = 23.17 for η = 0.01.

5.2 Additive demand structure

One characterization of the multiplicative demand function, as chosen in this paper, is that the market size

is bounded. In particular, price is only positive when market quantity is lower than 1
η . In order to check that

this, nor any other characterization, influences our results, we perform the same study on the case where an

additive demand structure is chosen,

p(t) = x(t)− ηQ(t),

where all are defined as before.
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Figure 8: Preemption triggers XPI (solid) and XPE (dashed) under additive demand.
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Figure 9: Preemption triggers XPI (solid) and XPE (dashed) under additive demand.

Similar to the findings before, it is found that the incumbent preempts the entrant and sets a smaller

capacity. For different values of the initial market, Figure 8 shows the resulting preemption triggers7.

The initial capacity under myopic investment equals qmyop1I = 0.0487. In the Appendix, the sensitivity of

the parameter values is tested. Here, we show that for a range of different parameter sets the incumbent

always undertakes an investment first. Figure 9 shows the installed capacities of the incumbent, entrant and

monopolist, illustrating that the results discussed before remain valid. We conclude that the results under

additive demand are the same as under multiplicative demand.

6 Welfare analysis

This section aims to analyze the effect of the initial market from a welfare perspective. In addition, welfare

is analyzed for the situation where a social planner is allowed to make an investment twice. The analysis for

the latter is analogous to Section 3.1: first the final investment moment is determined, i.e. the moment of

the second expansion, together with the optimal investment size. Next the investment moment of the first

expansion is determined, along with the corresponding capacity size. The first part of this section studies

the investment policy of the social planner. The second part of this section looks at the welfare implications.

Consider a social planner that has the option to invest twice in an existing market. It optimizes total

welfare, being the sum of the total expected consumer surplus and expected producer surplus. Concerning

the final investment, the output price after investment equals p(t) = x(t)(1 − η(q0 + q1 + q2)). The total

7The parameter values are chosen differently in this example, for a different inverse demand function requires a different

parametrization. Analogous to Boonman (2014) we set α = 0.01, r = 0.1, σ = 0.05, η = 0.5, and δ = 1.
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expected consumer surplus after the final investment then equals

CS2(X, q0, q1, q2) = E

 ∞∫
t=0

X∫
P=p(t)

D(P ) dP e−rt dt

∣∣∣∣∣ x(0) = X

 =
Xη(q0 + q1 + q2)2

2(r − α)
,

where D(P ) =
1

η

(
1− P

X

)
. The expected producer surplus equals the value of the firm,

PS2(X, q1, q2, q3) =
X

r − α
(q0 + q1 + q2)(1− η(q0 + q1 + q2))− δq2 −

X

r − α
(q0 + q1)(1− η(q0 + q1)).

The total expected surplus is then obtained by adding the two together, leading to

TS2(X, q0, q1, q2) =
X

r − α
q2(1− η(q0 + q1 + 1

2q2))− δq2.

We find that, for a fixed level of q1 cq. q2I , the investment moment of the final investment equals the

investment moment of the follower, but the resulting investment size is twice as large for the case of the

social planner,

XW
2 =

β + 1

β − 1

δ(r − α)

1− η(q0 + q1)

qW2 = 2
1− η(q0 + q1)

η(β + 1)
.

In a similar way, one can determine the optimal moment of the first expansion,

XW
1 =

β

β − 1

δ(r − α)

1− ηq0 − 1
2ηq

W
1

,

where the optimal investment size of the first expansion qW1 is implicitely determined by solving the following

equation for q1,

1− βηq1
2(1− η(q0 + q1))

− 2

(
β

β + 1

1− η(q0 + q1)

1− ηq0 − 1
2ηq1

)β
= 0.

The total expected surplus before any expansion can be divided into two components. The first part,

consisting of one term, reflects the accumulated discounted revenue stream resulting from the initial market.

The second part consists of two terms, reflecting the value of the options to the future expansions,

TSW (X, q0) =
X

r − α
q0(1− 1

2ηq0) +

(
X

XW
1

)β
δ

β − 1
qW1 +

(
X

XW
2

)β
δ

β − 1
qW2 .

Let us denote the first term as TSW0 (X, q0) and the sum of the final two terms TSWopt(X, q0), then we can

rewrite TSW (X, q0) as TSW0 (X, q0) + TSWopt(X, q0).

Tabel 4 shows the investment triggers, the correspondig capacities and the resulting surpluses for both the

social planner and the duopoly. The table also shows the accumulated capacities Qduop and QW . The first

thing one observes is that the first and second investment moment of the social planner are later than the

investment moments in the duopoly model. We moreover observe that the resulting capacities are larger in

the case of a welfare maximizer. So, the preemption effect combined with the cannibalization effect forces the
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Duopoly Social Planner

q0 XP qL XF qF Qduop TSduopopt XW
1 qW1 XW

2 qW2 QW TSWopt
TSduopopt

TSWopt

Qduop

QW

0 123 1.59 180 1.99 3.58 0.3058 135 2.84 212 3.40 6.24 0.3790 0.8069 0.5737

0.5 129 1.26 185 1.95 3.71 0.2258 142 2.70 224 3.23 6.43 0.3052 0.7397 0.5770

1 136 0.97 190 1.90 3.87 0.1647 150 2.55 236 3.06 6.61 0.2423 0.6798 0.5855

1.5 145 0.71 195 1.85 4.06 0.1179 159 2.41 250 2.89 6.80 0.1899 0.6208 0.5971

2 157 0.48 202 1.78 4.26 0.0815 169 2.27 266 2.72 6.99 0.1469 0.5551 0.6094

2.5 171 0.29 211 1.71 4.50 0.0565 180 2.13 283 2.55 7.18 0.1126 0.5020 0.6267

Table 4: Welfare implications for duopoly and social planner.

incumbent to invest too soon in smaller capacity. The entrant also invests sooner compared to the second

investment of the social planner, but this is because it invests in a smaller capacity. The social planner

is interested in larger quantities because they reduce price, and this raises consumer surplus more than it

reduces the producer’s surplus.

Table 4 can also be used to study the effect of the initial incumbent’s capacity size on the welfare. For

both the duopoly model and for the social planner model, additional welfare gained by investing drops

when the initial capacity is larger. Intuitively, the larger the old market, the lower the marginal value of an

additional unit of capital. Additionally, a larger initial capacity is equivalent to a more severe cannibalization

effect. The result that the duopoly is more affected by an increase in the old market can be explained by

the presence of competition that marginalizes surplus as a result of protective behavior towards the firms’

own profit. The social planner just delays investment for a larger old market, since he is not affected by a

potential entrant’s willingness to invest soon.

7 Conclusions

This paper shows that timing is a crucial element in firms’ decision making. Where entry deterrence is

generally understood to ward off entrants by doing an overinvestment, it is our understanding that entrants

are delayed by accelerating the investment. The main contributions are made to the literature streams

concerning incumbent-entrant models and strategic real option theory.

First, it is found that the incumbent has most incentives to invest first. By undertaking a relatively

small investment first, the firm mitigates the cannibalization effect and it prolongs its monopoly period.

The entrant prefers to enter late, in order to set larger capacity. The latter is valid when the incumbent is

noticeably present on the installed market. It is then found that preemptive investment is the sole feasible

strategy in these games and therefore constitutes the games’ equilibrium. Second, despite what some other

papers find, e.g. Spence (1977) and Robles (2011), we do not find any notion of overinvestment. Contrarily,
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incumbent firms set lower capacities in case a second firm considers entry, than when this threat is absent.

This paper also includes a model where the investment size is determined exogenously. Industries where the

capacity size is fixed are for example the pharmaceutical industry, the excavation of raw materials or the

production of intermediate goods, or any other supplies to a fixed set of buyers. Opposite to what was found

for the model with flexible capacity size, it is found that in this equilibrium the entrant makes an investment

first.

Hence, these notions prove the importance to include both capacity choice and to endogenize timing. It,

moreover, proves that deterrence is not related to overinvestment, but to timing.

The model could be extended in different ways. First, one can include the option to leave the market. This

option may influence the strategic behavior of firms and may therefore be of interest. Secondly, the number of

incumbents and/or potential entrants can be extended to investigate whether the results of the incumbents

being first investors would remain valid. Third, like in reality, firms can be given multiple investment

options. Fourth, one could consider innovating firms, either adopting new technologies or performing R&D

themselves.
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Appendix

Proof of Proposition 1 The follower’s value function with respect to the shock process x can be divided

into two regions. For x sufficiently large the firm invests, that is for x ≥ X∗F , this region is called the

stopping region. The complementary region is called the continuation region, for these values the firm waits
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(see e.g. Dixit and Pindyck (1994)). In the stopping region the firm realizes the following accumulated and

discounted expected profits VF (X, q1L, q1F , q2L, q2F ) at the investment moment,

VF = E

[∫ ∞
t=0

x(t)(q1F + q2F )(1− η(q1L + q1F + q2L + q2F )e−rtdt
∣∣∣ x(0) = X

]
− δq2F

= (q1F + q2F )(1− η(q1L + q1F + q2L + q2F )E
[∫ ∞

t=0

x(t)e−rtdt
∣∣∣ x(0) = X

]
− δq2F

= (q1F + q2F )(1− η(q1L + q1F + q2L + q2F )

∫ ∞
t=0

x(0)e(α−r)tdt− δq2F

=
X

r − α
(q1F + q2F )(1− η(q1L + q1F + q2L + q2F )− δq2F .

The firm chooses capacity such that it maximizes its profits, thereto,

∂VF
∂q2F

=
X

r − α
[1− η(q1L + 2q1F + q2L)− 2ηq2F )]− δ

= 0 ⇔

q2F (X, q1L, q1F , q2L) =
1

2η

[
1− η(q1L + 2q1F + q2L)− δ(r − α)

X

]
.

The second order conditions reassure us that this is indeed a maximum, −2η X
r−α < 0.

In the continuation region it is optimal for the firm the delay investment, for waiting yields a larger value

than investment. The waiting value is embodied by the option value. The function FF , following standard

real options analysis (see e.g. Dixit and Pindyck (1994)), equals the sum two terms reflecting the value of

waiting and the value of current production,

FF (X, q1L, q1F , q2L) = AFX
β +

X

r − α
q1F (1− η(q1L + q1F + q2L)),

where β is the positive root following from,

σ2β2 + (2α− σ2)β = 2r ⇔ β = 1
2 −

α
σ2 +

√(
1
2 −

α
σ2

)2
+ 2r

σ2 .

The investment trigger and the value of the parameter AF (q1L, q1F , q2L) can be found by applying the value

matching and smooth pasting conditions,

X

r − α
(q1F + q2F )(1− η(q1L + q1F + q2L + q2F ))− δq2F = AFX

β +
X

r − α
q1F (1− η(q1L + q1F + q2L)),

1

r − α
(q1F + q2F )(1− η(q1L + q1F + q2L + q2F )) = AFβX

β−1 +
1

r − α
q1F (1− η(q1L + q1F + q2L)).

Together they make

X

r − α
(q1F +q2F )(1−η(q1L+q1F +q2L+q2F ))

(
1− 1

β

)
− X

r − α
q1F (1−η(q1L+q1F +q2L))

(
1− 1

β

)
= δq2F ,

which leads to

XF =
β

β − 1

δ(r − α)

1− η(q1L + 2q1F + q2L + q2F )
.
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Plugging in q2F leads to

X∗F (q1L, q1F , q1L) =
β + 1

β − 1

δ(r − α)

1− η(q1L + 2q1F + q2L)
.

Moreover,

AF (X∗F )β =
X∗F
r − α

q∗2F (1− η(q1L + 2q1F + q2L + q∗2F ))− δq∗2F

=
δq∗2F
β − 1

.

Rewring leads to equation (5). �

Proof of Proposition 2 The leader’s value function from equation (7) is obtained in the following way,

V detL =
X

r − α
(q1L + q2L)(1− η(q1L + q1F + q2L)− ηq∗2F (q1L + q2L)

X∗F
r − α

(
X

X∗F

)β
− δq2L

=
X

r − α
(q1L + q2L)(1− η(q1L + q1F + q2L)− (q1L + q2L)

δ

β − 1

(
X

X∗F

)β
− δq2L

The deterrence region is bounded from below and above by Xdet
1 and Xdet

2 . In this region the leader optimizes

capacity at investment. The optimal amount can be found by solving the first order conditions,

∂V detL

∂q2L
=

X

r − α
[1− η(2q1L + q1F + 2q2L)]− δ

β − 1

(
X

X∗F

)β [
1− ηβ(q1L + q2L)

1− η(q1L + 2q1F + q2L)

]
− δ.

The value of Xdet
2 then follows from first implementing X∗F in the first order conditions,

∂V detL

∂q2L
=

δ

β − 1

1− 2ηq1L + η(β − 1)q1F − 2ηq2L
1− η(q1L + 2q1F + q2L)

= 0⇔ qR2L =
1

2η
(1− 2ηq1L + (β − 1)ηq1F ). (15)

Hence, by plugging the latter expression into X∗F one obtains Xdet
2 ,

Xdet
2 = X∗F (q1L, q1F , q

R
2L) =

β + 1

β − 1

2δ(r − α)

1− (β + 3)ηq1F

The conditions determining Xdet
1 also follow from the first order conditions by setting q2L = 0. To show

that there exists a unique point Xdet
1 , it is sufficient to do the following. Define ψ(X) =

∂V detL

∂q2L
|q2L=0, this

function dictates the first order conditions for the value of X yielding zero capacity,

ψ(X) =
X

r − α
[1− η(2q1L + q1F )]− δ

β − 1

(
β − 1

β + 1

1− ηq1L − 2ηq1F
δ(r − α)

X

)β [
1− ηβq1L

1− ηq1L − 2ηq1F

]
− δ.

Then,

ψ(0) = −δ < 0,

ψ(X∗F ) =
δ

β − 1

1− 2ηq1L + (β − 1)ηq1F
1− ηq1L − 2ηq1F

,

ψ′(X) =
1− η(2q1L + q1F )

r − α

[
1− β

β + 1

(
X

X∗F

∣∣∣
q2L=0

)β−1]
+

β

β + 1

(
X

X∗F

∣∣∣
q2L=0

)β−1
ηq1F + (β − 1)ηq1L

r − α
.
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From (15) it follows that ψ(X∗F ) > 0. Since ψ′(X) > 0 one can conclude that there exists a unique

Xdet
1 ∈ (0, X∗F ) such that q2L(Xdet

1 , q1L, q1F ) = 0.

The value before investment is similar to the one for the follower,

F detL (X, q1L, q1F ) = AdetL Xβ +
X

r − α
q1L(1− η(q1L + q1F )).

Applying the value matching and smooth pasting conditions gives (2) and

AdetL = (Xdet
L )−β

δqdetL

β − 1
− δ

β − 1
(q1L + qdetL ) (X∗F )

−β
.

�

We will now show that Xacc
L > Xacc

1 by showing that there exists no set of parameter values such that

β + 3

β − 1

δ(r − α)

1− 4ηq1F
=
δ(r − α)β

β − 1

ηq2L − ηq1L
ηq2L(1− 2ηq1L − ηq2L)− ηq1L(1− ηq1L − 2ηq1F )

.

Rewriting and substitution of q2L = 2
η(β+3) (1 + (β − 1)ηq1F )− q1L gives:

2(1 + (β − 1)ηq1F )[1− ηq1L −
2

β + 3
(1 + ηq1F (β − 1))]− q1F [2 + (β − 1)ηq1F − 2(β + 3)ηq1F ]

=
β

β + 3
(2 + 2(β − 1)ηq1F − 2η(β + 3)q1L)(1− 4ηq1F ).

We distinguish 2 cases. In the first case the leader is the entrant, i.e. q1L = 0. Then:

1

β + 3
+ ηq1F

2β + 2

β + 3
− ηq1F

2− ηq1F (β + 7)

2(1 + (β − 1)ηq1F )
= 0.

This gives a contradiction since both the first term and the second and third term combined are positive.

The sum of two positive terms can never give 0. In the second case we assume the incumbent to be leader,

i.e. q1F = 0. Then,

1 + (β + 3)ηq1L(β − 1) = 0,

which cannot be true either. �

Proof of Proposition 3 The leader’s value function under entry accommodation is determined in the

same way as before. In this case, however, one needs to substitute the follower’s capacity (3) to obtain

equation (11). The leader chooses capacity such that it optimizes the value function,

∂V accL

∂q2L
=

X

2(r − α)
[1− 2η(q1L + q2L)]− 1

2
δ ⇔ qaccL (X, q1L, q1F ) =

1

2η

[
1− 2ηq1L −

δ(r − α)

X

]
.

It is easily checked that qaccL ≥ 0 if and only if 1− 2ηq1L ≥ δ(r−α)
X , i.e. if

X ≥ δ(r − α)

1− 2ηq1L
.
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The second order conditions again make sure that we obtain a maximum, −2η X
r−α < 0. Solving qaccL = q̂2L

leads to the first term in equation (10), i.e.,

qaccL =
1

2η

[
1− 2ηq1L −

δ(r − α)

X

]
=

1

η

[
1− 2ηq1F − ηq1L −

δ(β + 1)(r − α)

(β − 1)X

]
= q̂2L

⇔

1− 4ηq1F =
δ(r − α)(β + 3)

(β − 1)X
⇔ Xacc

0 =
β + 3

β − 1

δ(r − α)

1− 4ηq1F
.

Since
∂q̂2L
∂X

>
∂qaccL

∂X
> 0 we know that this point is unique. Using value function

F accL (X, q1L, q1F ) = AaccL Xβ +
X

r − α
q1L(1− η(q1L + q1F ))

one can apply the value matching and smooth pasting conditions. This leads to the decription of the

investment trigger Xacc
L (q1L, q1F , q2L). Since q1L · q1F = 0 one can simplify the terms and in this way one

ends op at (13). Moreover,

AaccL · (Xacc
L )β =

Xdet
L

r − α
[(q1L + qaccL )(1− η(q1L + q1F + qaccL + q∗2F ))− q1L(1− η(q1L + q1F ))]− δqaccL

=
δβ

β − 1
qaccL − δqaccL =

δqaccL

β − 1
.

�

Endogenous firm roles In this type of games, there are four different possible strategies, which are

similar to both firms (see e.g. Pawlina and Kort (2006)), each leading tot a different type of equilibrium:

preemptive investment, sequential investment, simultaneous investment and joint investment.

In the first scenario both firms eagerly want to take the investment leader’s role. This results in the

preemptive equilibrium where firms want to preempt each other to precede the other firm’s investment.

Preemptive investment yields an equilibrium.

Figure 10 shows how the preemption points change if there is a change in the drift parameter α. The

left graph shows this for the case in which the initial market is myopic, i.e. q1I = qmyop1I , the second graph

for a smaller initial market, q1I = 0.5. The solid graph reflects the preemption trigger of the incumbent,

the dashed one reflects the preemption trigger of the entrant. Notice that in the former case the capacity

on the old market changes when the parameters change. The same analysis is done for σ in Figure 11, δ

in Figures 12 and 15a and r and η in Figures 13 and 14, 15b respectively. For α, σ, δ and r it is clearly

observed that a change in the parameter values does not change the investment order. There are some

concerns however about the case in which η takes a small value. It appears in Figure 14b that for small

values the sensitivity parameter that the entrant invests first. Figure 15b presents both curves for small

values of η. Here it becomes clear that the investment order reverses indeed for small values of η.
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(b) Investment triggers with q1I = 0.5.

Figure 10: Preemption triggers for different values of α.
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(b) Investment triggers with q1I = 0.5.

Figure 11: Preemption triggers for different values of σ.
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(b) Investment triggers with q1I = 0.5.

Figure 12: Preemption triggers for different values of δ.
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(b) Investment triggers with q1I = 0.5.

Figure 13: Preemption triggers for different values of r.
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Figure 14: Preemption triggers for different values of η.
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(a) Preemption triggers XPI (solid) and XPE (dashed) with

q1I = qmyop1I for different values of δ.
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Figure 15: Preemption triggers for small values of δ and η.
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Lemma 1 Sequential investment does not yield an equilibrium.

Suppose the investment threshold Xdet
L of the leader for the case of exogenous firm roles lies between the

preemption triggers of the incumbent and entrant. Then the incumbent firm invests at the investment

threshold and not just before the preemption trigger of the entrant, since it has no incentive to wait. This

is called sequential investment.

Proof of Lemma 1 We show that the investment trigger does not exist, this is sufficient. Let us rewrite

equation (9) as,

F detL (X, q1L, q1F ) =
X

r − α
q1L(1− η(q1L + q1F )) +AdetL Xβ .

Then AdetL reflects the net gain from investment. Let Xdet
L and X∗F be defined as in equations (2) and (4).

Let q1L = q1I = qmyop1I = 1
η(β+1) and q1F = 0. Then,

Xdet
L

X∗F
=
β − 1 + 1

β+1 − βηq
det
2I

β − 1− (β + 1)ηqdet2I

> 1.

Then,

AdetL = (Xdet
L )−β

δqdet2I

β − 1
− δ

β − 1
(qmyop1I + qdet2I )(X∗F )−β

=
δ

β − 1

[
qdet2I

[(
1

Xdet
L

)β
−
(

1

X∗F

)β]
− qmyop1I

(
1

X∗F

)β]
< 0.

This means that investment will only lead to a lower pay-off, in which case the incumbent will never make

an investment. �

Notice that in case of the entrant being leader we always have X∗F > Xdet
L , irrespective of the value of q1I .

There exists an alternative strategy: tacit collusion. When firms decide to collude, they wait for the

market to expand, that is, wait for a larger value of X, before investment is undertaken together at the same

time. One can discriminate two types of collusion, distinguished by the order in which firms determine their

capacity size. In the first type, one firm is Stackelberg capacity leader and decides upon the amount first

where subsequently the second firm makes an immediate investment. The second investor sets its capacity

after the first firm decided upon its investment scale. This type is called simultaneous investment. The

second type, referred to as joint investment, is the category where there is no colluded investment order.

Firms simultaneously decide upon capacities, leading to a Cournot type of equilibrium.

Lemma 2 Simultaneous investment does not yield an equilibrium.

Proof of Lemma 2 For the resulting value functions, the curves in Figure 2a should be considered. Here,

the Stackelberg leader utilizes the accommodation strategy. As a result, the competitor receives the follower

34



value, being smaller than the leader value. For this reason neither of the firms would prefer to be a follower

in the outcome and they would, consequently, preempt each other in taking the leader role. This forces the

firms to end up in the deterrence region and the sole resulting equilbrium is the preemptive equilibrium.

Hence, simultaneous investment is not an equilibrium. �

Lemma 3 Joint investment does not yield and equilibrium.

Proof of Lemma 3 Let J(X, q1L, q1F , q2L, q2F ) be the firm value for joint investment, then,

J =
X

r − α
(q1L + q2L)(1− η(q1L + q1F + q2L + q2F ))− δq2L.

Optimal capacities equal,

qjoin2L =
1

3η

(
1− δ(r − α)

X

)
− q1L,

qjoin2F =
1

3η

(
1− δ(r − α)

X

)
− q1F .

This leads to,

V accL (X, q1L, q1F , q
acc
L , q∗2F ) =

X

r − α
1

8η

(
1− δ(r − α)

X

)2

+ δq1L

J(X, q1L, q1F , q
join
2L , qjoin2F ) =

X

r − α
1

9η

(
1− δ(r − α)

X

)2

+ δq1L

Hence, it holds that V accL > J . This is sufficient to show that joint investment does not yield an equilibrium.

Intuition behind this result is that when firms are leader they can set a larger capacity which leads to a

higher payoff. �

Proof of Proposition 4 It follows from Lemmas 1, 2 and 3 that preemptive investment is the sole

equilibrium. Moreover, under myopic behavior on the initial market, it is shown that the incumbent always

invests first.

Fixed capacity Suppose X = XPE , then one can show that

V detLE − F detFE =

[
X

r − α
K(1− ηK − ηq1I)− δK

]1−
(X∗

FE)1−β

r−α K(ηq1I + ηK) + δK
β−1 ( 1

X∗
FI

)β

(X∗
FI)

1−β

r−α ηK2 + δK
β−1 ( 1

X∗
FE

)β

 .
One can conclude, if

f1(q1I ,K) = (1− ηq1I − 2ηK)β−1(1− ηq1I(β + 1)− ηK(β + 2))

>

f2(q1I ,K) = (1− 2ηq1I − 2ηK)β−1(1− 2ηq1I − ηK(β + 2)),

then V detLI (XPE) > FFI(XPE) and as a result XPI < XPE .
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Additive demand Here, we first shortly summarize all the obtained propositions. Then, we will show

some graphs to check the robustness of the results.

Proposition 5 Let the current value of the stochastic demand process be denoted by X, and let the initial

production capacity be denoted by q1L and q1F respectively for the leader and the follower. Let the capacities

associated with the investments be denoted by q2L and q2F respectively for the leader and the follower. Then

the value function of the follower can be partitioned into two regions: for small X the firm waits until it

reaches the investment trigger X∗F and for X ≥ X∗F the firm invests immediately. As a result, the follower’s

value function V ∗F (X, q1L, q1F , q2L, q2F ) is given by

V ∗F =

AFX
β + q1F

(
X
r−α −

η
r (q1L + q1F + q2L)

)
if X < X∗F ,

(q1F + q2F )
(

X
r−α −

η
r (q1L + q1F + q2L + q2F )

)
− δq2F if X ≥ X∗F ,

where the optimal capacity level for the follower q∗2F , the investment trigger X∗F and AF are defined by

q∗2F (X, q1L, q1F , q2L) =
r

2η

(
X

r − α
− δ
)
− 1

2 (q1L + 2q1F + q2L), (16)

X∗F (q1L, q1F , q2L) = (η(q1L + 2q1F + q2L) + δr)
β(r − α)

r(β − 2)
, (17)

AF =
η(q1L + 2q1F + q2L) + δr

η(β − 2)β(r − α)
(X∗F )1−β . (18)

The follower’s capacity in case the follower invests at the investment trigger equals

q∗2F (X∗F , q1L, q1F , q2L) =
η(q1L + 2q1F + q2L) + δr

η(β − 2)
.

Proposition 6 Let the production capacities be defined as in Proposition 5 and let the current value of the

shock process be defined as X. Then the deterrence strategy leads to value function V detL (X, q1L, q1F , q2L),

V detL = (q1L + q2L)

(
X

r − α
− η(q1L + q1F + q2L)

r

)
− (q1L + q2L)

η(q1L + 2q1F + q2L) + δr

r(β − 2)

(
X

X∗F

)β
− δq2L,

where X∗F is defined as equation (17).

For large initial values of X the leader invests immediately and chooses optimal capacity

qdetL (X, q1L, q1F ) = argmax{V detL (X, q1L, q1F , q2L) | q2L > q̂2L}, (19)

where,

q̂2L(X, q1L, q1F ) =
r

η

[
X(β − 2)

β(r − α)
− δ

r

]
− (q1L + 2q1F ).

The entry deterrence strategy is considered for X ∈ (Xdet
1 , Xdet

2 ), where

Xdet
1 = {X | qdet2 (X, q1L, q1F ) = 0},

Xdet
2 = {X | qdet2 (X, q1L, q1F ) = q̂2L(X, q1L, q1F )}.
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For low initial values of x, that is x(0) < Xdet
L , the leader invests at the moment x reaches the invest-

ment threshold value Xdet
L . The value of the investment threshold and the associated capacity level qdetL are

determined as the solution of the set of equations determined by equation (19) and

Xdet
L (q1L, q1F , q2L) =

[η
r

(2q1L + q1F + q∗2L) + δ
] β(r − α)

β − 1
.

The value function before investment is defined as

F detL (X, q1L, q1F , q
det
L ) = q1L

(
X

r − α
− η(q1L + q1F )

r

)
+
(

X
XdetL

)β δqdetL

β − 1
− (q1L + qdetL )

(
X
X∗
F

)β δ

β − 1
.

Proposition 7 Let the production capacities be defined as in Proposition 5 and let the current value of the

shock process be defined as X. Then the accommodation strategy is considered for X ∈ (Xacc
1 ,∞), where,

Xacc
1 = max

{
β(r − α)

r(β − 4)
(4ηq1F + δ), δ(r − α)

}
.

The accommodation strategy leads to value function V accL (X, q1L, q1F , q2L),

V accL = (q1L + q2L)

(
X

r − α
− η(q1L + q1F + q2L + q∗2F )

r

)
− δq2L,

= (q1L + q2L) 1
2

(
X

r − α
− η(q1L + q2L)

r

)
− 1

2δ(q2L − q1L).

For large initial values of X the leader invests immediately and chooses optimal capacity

qaccL (X, q1L) =
r

2η

(
X

r − α
− δ
)
− q1L. (20)

For low values of x(0) = X, that is X < Xacc
L , the leader will invest when x reaches investment threshold

value Xacc
L . The value of the investment threshold and the associated capacity level qaccL are determined as

the solution of the set of equations determined by equation (20) and

Xacc
L (q1L, q1F , q2L) =

ηq2L(q2L + 2q1L) + δrq2L
q2L − q1L

2β(r − α)

r(β − 1)
.

The value function before investment is defined as

F accL (X, q1L, q1F ) = q1L

(
X

r − α
− η(q1L + q1F )

r

)
+
(

X
XaccL

)β δqaccL

β − 1
.

Preemptive equilibrium

The following figures show how the preemption triggers change under a change in parameter values.
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(b) Investment triggers with q1I = 0.5.

Figure 16: Preemption triggers for different values of α.
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Figure 17: Preemption triggers for different values of σ.
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Figure 18: Preemption triggers for different values of δ.
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Figure 19: Preemption triggers for different values of r.
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Figure 20: Preemption triggers for different values of η.
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