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1 Introduction

We consider the problem of a typical investor who
has discretion over not only the timing, but also the
sizing of a new plant in sequential manner. We con-
trast the sequential investment strategies for differ-
ent stage numbers in order to the value of flexibility.
Additionally, we analyze the sequential investment
for a case in which there exists a fixed cost in the in-
vestment one. The optimal stage numbers of sequen-
tial investment are obtained for various fixed costs.

2 The Model

We consider a firm which plans to build a new plant
with capacity Q̂ by multi-stage investments regard-
ing to the market condition. Following Huisman and
Kort [1], the price at time t in this market is given
by

Pt = Xt(1 − ηQ), (1)

where Q is total market output, η a constant, and
Xt an exogenous shock process. Since the price is
strictly positive, Q < 1

η is required. We assume that
Xt follows a geometric Brownian motion:

dXt = µXtdt+ σXtdWt, X0 = x, (2)

which µ is the growth rate, dWt is the increment of a
Wiener process, and σ > 0 is the volatility. Suppose
that the firm is risk neutral and the discount rate
r > µ is a risk-free.

Let c be the operating costs for the plant. Instan-
taneous profit for a firm at time t is given by

π(t,Xt, Q) = (Pt − c)Q = (Xt − ηQXt − c)Q. (3)

We consider the problem as a sequence of optimal
stopping problems. Let N denote the number of in-
vestment up to complete the construction. The firm
decides the timing and the size of investment based
on the market price (1). The sequence of the decision
making is as follows: (i) At the time when the k−1th
investment is made, the firm decides a level x̃k and
the size of remaining capacity yk after the k-th in-
vestment. Note that yN+1 ≡ 0. (ii) If the exogenous

Figure 1: A time line of a stepwise investments for
N = 4.

shock Xt exceeds the level x̃k, the firm made k-th
investment and the plant capacity is Q̂ − yk. The
investment needs a fixed cost I > 0 and proportional
cost per unit capacity δ > 0. Figure 1 illustrates the
sequence for the case of N = 4.

Define Vk(x, z) be the value of the project when
the exogenous shock level x and the remaining ca-
pacity z at time period k. The value function can be
expressed as the discounted total expected profit:

Vk(x, z) = sup
τ
E

[∫ τ

0

e−rtπ(t,Xt, Q̂− z)dt

+e−rτMVk+1(Xτ , z)
∣∣∣∣ X0 = x

]
,(4)

where M is the operator defined by

MVk(x, z) ≡ sup
yk

{Vk(x, yk) − I − (z − yk)δ}. (5)

At the beginning of the period N + 1, the construc-
tion of the plant have already been completed and
the plant capacity is QN = Q̂. In this period, it
is not necessary to invest for the plant. Thus, the
boundary condition is given by

VN+1(x, 0) = Ex

[∫ ∞

0

e−rtπ(t,Xt, Q̂)dt
∣∣∣∣ X0 = x

]
= Q̂(1 − ηQ̂)K1x−K2cQ̂ (6)
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where K1 = 1
r−µ , K2 = 1

r .

3 Optimal Investment Policy

In this section, we solve the problem (4) by using it-
erative procedure. To solve this problem, we suppose
the continuation region for k-th investment takes the
form (0, x̃k). The continuation region means that
once the process Xt hits x̃k, we should add the plant.
Denote Fk(x, z), 1 ≤ k ≤ N − 1 as a candidate for
the value function Vk(x, z), and it should solve the
equation

1
2
σ2x2F

′′

k (x, z) + µxF
′

k(x, z) − rFk(x, z)

+ x(Q̂− z) − η(Q̂− z)2x− c(Q̂− z) = 0. (7)

Thus, we can derive a option value of investment
taking into account capacity sizing as follows;

Fk(x, z) =

{
Akx

β +K1κ(z)x− c(Q̂− z)K2, if x < x̃k,
MFk+1(x, z), if x ≥ x̃k,

where κ(z) = (Q̂− z)(1−η(Q̂− z)), Ak is a constant
to determine and β > 1 is a root of the equation

1
2
σ2β(β − 1) + µβ − r = 0. (8)

Proposition 3.1. When the remaining capacity z
at the beginning of the period k, k = 1, · · · , N − 1,
the threshold x̃k and a value Ãk are given by

x̃k(z) =
βψk(z)

K1(β − 1){R2
k+1(yk+1) − κ(z)}

, (9)

Ãk(z) =
1

β − 1
ψk(yk)x̃−β

k (z), (10)

where

R1
k(yk) = D − βψk(yk)

1
x̃k(yk)

∂x̃k(yk)
∂yk

,

R2
k(yk) = ψk(yk)(1 − 2η(Q̂− yk))

1
R1

k(yk)
+ κ(yk),

ψk(z) =
(
z − yk+1 +

1
R1

k+1(yk+1)
ψk+1(yk+1)

)
D + I,

D = K2c+δ and ψN (yN ) = yND+I. Moreover, the
protection level for period k + 1, yk+1, is a solution
of the following equation;

1
β − 1

(
x̃k(z)

x̃k+1(yk+1)

)β

=
K1(1 − 2η(Q̂− yk+1))x̃k(z) −D

R1
k+1(yk+1)

.
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Figure 2: Region of the optimal number of invest-
ment for fixed cost and volatility when variable cost
is δ = 100.

Theorem 3.1. The flexibility of the investment is
attractive relative to the single investment, if and
only if,

xL(Q̂)
x̃1(Q̂)

>

(
Q̂D + I

ψ1(Q̂)

) 1
β

. (11)

Proposition 3.2. If there are no operating and pro-
portional costs, c = δ = 0, then the value of single
investment is larger than the one of stepwise invest-
ment.

4 Numerical Examples

We investigate the effect of the size of fixed cost
on the option value. We set the following base pa-
rameters: r = 0.05, µ = 0.01, σ = 0.2, η = 0.4,
c = 20, δ = 100, Q = 1, N = 4. By comparing
the option value for each N , we will find the opti-
mal number of investment for each volatility σ and
fixed cost I. Define S+ := [0,∞) × [0,∞). The re-
gion that the n-th investment is optimal for I and
σ is defined as Dn = {(I, σ) ∈ S+;Fn(x, Q̂; I, σ) >
Fm(x, Q̂; I, σ), m 6= n} for any x. Figure 2 shows
the region with respect to I and σ. We can see that
the higher volatility makes few investment attractive
relative to the more stepwise investment. Moreover,
the stepwise investment is preferable as the fixed cost
I increases.
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