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Abstract

Policymakers have often backed alternative energy technologies, e.g., nuclear power, due to their

relatively low operating costs and emissions. However, they have also been quick to respond to public

perceptions about the safety of such plants by suspending construction or even decommissioning

existing facilities. We address public concerns about physical plant risks along with stochastic

market prices for energy by modelling investment in and decommissioning of alternative energy

technologies.

1 Objective

We formulate the decision-making problem with respect to the installation and the decommissioning

of an alternative energy technology, e.g., a nuclear power plant, not only under market risk, i.e., price

uncertainty, but also under physical or policy risks. While the former are centrepieces of most real options

models, the latter are increasingly relevant with the adoption of intermittent renewables and investment

in next-generation nuclear plants. In this context, physical risk may refer to unpredictable technological

shutdowns of wind turbines or nuclear plants, while policy risk captures changes in government regulation

or public opinion. Examples of the latter include changes in Nordic support schemes for renewables

([1]) and reversal of German government support for nuclear power plants in response to the physical

catastrophe that occurred at the Fukushima site in 2011. Due to the increasing prevalence of such risks

in the energy sector, we explore their impact on power companies’ investment incentives. In particular,
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we address how local and global risks affect investment timing and option values. Within this framework,

we also assess how decisions change with a subsequent decommissioning option.

The structure of this paper is as follows. First, we describe the model setting and assumptions in this

study. Next, as a benchmark, we derive the optimal investment and decommissioning timing decisions.

Numerical examples then illustrate some of the managerial and policy insights. Finally, the conclusions

summarise the main findings and offer directions for future research in this area.

2 Assumptions

We assume that a single price-taking firm has the perpetual option to invest in an alternative energy

power plant. Upon investment of $I > 0, a plant is able to produce K MWhe of electricity per annum

immediately and forever. From such an active plant, the firm is able to sell electricity at exogenous

price Et (in $/MWhe) at time t ≥ 0 while incurring constant operating costs of k (in $/MWhe). The

electricity price follows a geometric Brownian motion (GBM), i.e.,

dEt = αEtdt+ σEtdzt, E0 ≡ E > 0, (1)

where α is the instantaneous expected growth rate, σ ≥ 0 is the instantaneous volatility, and dzt is a

standard Brownian motion. All cash flows are in real terms and are discounted at the real subjective

rate, ρ > α. No operational flexibilities are assumed, i.e., the plant must be operated at full capacity

once installed, but a decommissioning option may be exercised at any point after investment at cost $D

such that I +D > 0.

Independently of the stochastic price process, the world evolves between two regimes, j = 1, 2, where

regime 1 (2) is associated with an operating (a closed) plant. We assume that independent Poisson

processes govern these transitions. The instantaneous rate out of regime j is λj ≥ 0 and reflects energy

policy due to technological risks or public perception about the alternative energy technology. In regime

1, the plant operates at full capacity, but in regime 2, it is shut down and incurs strengthening costs

of s (in $/MWhe). A plant may be closed due to either local technical faults or changes in energy

policy shaped by a failure of the technology elsewhere, e.g., in the case of the 2011 Fukushima incident.

For now, we assume that the parameters of the underlying electricity price are not affected by such

regime changes, which stem from physical or policy causes rather than market-based ones. Thus, the

instantaneous cash flow from an installed plant in regime j at time t is πj(Et):

π1(Et) = (Et − k)K,

π2(Et) = −sK.
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From the firm’s perspective, there are three states with two regimes as indicated in the state-transition

diagram (Fig. 1). Consequently, the firm’s value function in state i, i = 0, 1, 2 and regime j for a

given electricity price of E is Vij(E). We surmise threshold rules for exercising both investment and

decommissioning options, ϵ∗j and ϵ∗∗j , respectively, that are dependent on the regime. Finally, we assume

that the value function in state 2 is independent of the regime as the firm is no longer exposed to the

risk of any switching.
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Figure 1: State-transition diagram for investment and decommissioning problem with physical and policy

risks

3 Analytical Models

3.1 No Decommissioning Option

We proceed first by ignoring the decommissioning option, i.e., the possibility to transition to state 2.

Thus, we seek the optimal investment thresholds from state 0 in each regime. This is in contrast to [5],

who treats investment under uncertainty with regime switching only in state 0. An analysis of regime

switching that persists after investment has taken place, i.e., the firm is in state 1, is carried out in [3].

In that paper, as in [4], the parameters of the underlying price process are different in each regime. By

contrast, since we treat physical or policy risks, we assume that the electricity price process has the same

parameters in either regime.
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3.1.1 No Regime Switching

First, we ignore regime switching and obtain the standard real options result. Working backward, the

firm’s value function in state 1 is simply the present value (PV) of cash flows from operating the plant

forever:

V11(E) = EE

[∫ ∞

0

π1(E)e−ρtdt

]
⇒ V11(E) = K

(
E

ρ− α
− k

ρ

)
(2)

Via the standard approach of [2], we also obtain the value in state 0 by first setting up the Bellman

equation and invoking Itô’s lemma:

ρV01(E)dt = E [dV01]

⇒ 1

2
σ2E2V ′′

01(E) + αEV ′
01(E)− ρV01(E) = 0

⇒ V01(E) = a0E
β1 (3)

where the boundary condition limE→0 V01(E) = 0 is used, a0 is a positive endogenous constant, and

β1 > 1 is the positive root of the characteristic quadratic equationQ(β) = 1
2σ

2β(β−1)+αβ−ρ = 0. Using

value-matching (VM) and smooth-pasting (SP) conditions, we obtain a0 and ϵ∗1 ≡ ϵ∗, the investment

threshold:

V01(ϵ
∗) = V11(ϵ

∗)− I (4)

V ′
01(ϵ

∗) = V ′
11(ϵ

∗) (5)

Hence, we have:

ϵ∗ =

(
β1

β1 − 1

)
(ρ− α)(I + Kk

ρ )

K
(6)

a0 =
K(ϵ∗)1−β1

β1(ρ− α)
(7)

3.1.2 Local Regime Switching

Next, we assume that regime switching occurs due to localised physical faults. This implies that no

regime switching takes place in state 0. Once the firm is in state 1, its plant’s operations are affected by

physical risk, and the regime switches between 1 and 2.
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Starting at the end, we first obtain the firm’s value functions in state 1. Unlike in Section 3.1.1,

we must condition on what happens in the next dt time units to determine value functions V11(E) and

V12(E) in terms of each other:

V11(E) = π1(E)dt+ (1− ρdt) [λ1dtEE [V12(E + dE)] + (1− λ1dt)EE [V11(E + dE)]]

⇒ V11(E) = π1(E)dt+ λ1dt

[
V12(E) + αEV ′

12(E)dt+
1

2
σ2E2V ′′

12(E)dt

]
+(1− (ρ+ λ1) dt)

[
V11(E) + αEV ′

11(E)dt+
1

2
σ2E2V ′′

11(E)dt

]
⇒ 1

2
σ2E2V ′′

11(E) + αEV ′
11(E)− ρV11(E) + λ1 (V12(E)− V11(E)) +K(E − k) = 0 (8)

V12(E) = π2(E)dt+ (1− ρdt) [λ2dtEE [V11(E + dE)] + (1− λ2dt)EE [V12(E + dE)]]

⇒ 1

2
σ2E2V ′′

12(E) + αEV ′
12(E)− ρV12(E) + λ2 (V11(E)− V12(E))−Ks = 0 (9)

As indicated in [3], speculative bubbles must be ruled out as there are no further options, which

leaves only the fundamental value of the power plant in each regime:

V1j(E) = ajE + bj , j = 1, 2 (10)

where aj and bj are constants to be determined. By taking derviatives of the function in Eq. 10 and

substituting them into Eqs. 8 and 9, we obtain the following:

a1 = − K (ρ+ λ2 − α)

λ1λ2 − (ρ+ λ1 − α) (ρ+ λ2 − α)
(11)

a2 = − Kλ2

λ1λ2 − (ρ+ λ1 − α) (ρ+ λ2 − α)
(12)

b1 =
K [λ1s+ (ρ+ λ2) k]

λ1λ2 − (ρ+ λ1) (ρ+ λ2)
(13)

b2 =
K [λ2k + (ρ+ λ1) s]

λ1λ2 − (ρ+ λ1) (ρ+ λ2)
(14)

Working backward, since the firm is not subject to regime switching in state 0, its value function

is again V01(E) = a0E
β1 , where a0 and ϵ∗ are found via VM and SP conditions between V01(E) and

V11(E)− I:

ϵ∗ =

(
β1

β1 − 1

)
(I − b1)

a1
(15)

a0 =
a1(ϵ

∗)1−β1

β1
(16)
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3.1.3 Global Regime Switching

With exposure to global physical or policy risks, the firm now faces two regimes even in state 0 as the

government may respond to physical catastrophes elsewhere in the world by halting construction of new

plants and ordering the suspension of existing ones. However, its value functions in state 1 are still

represented by those in Eqs. 10 through 14. In state 0, there are two possibilities:

• Never invest from regime 2

• Possibly invest from regime 2

In [5], the two possibilities are compared by examining the expected payoffs from two strategies assuming

that the initial regime is 2:

• Invest immediately from regime 2

• Wait until the regime is 1 and then invest immediately

The expected payoff of the first strategy is simply a2E + b2 − I, whereas that of the second strategy

is
∫∞
0

λ2e
−λ2τ21e−ρτ21 (Ea1e

ατ21 + b1 − I) dτ21. We obtain this expression by first writing the expected

NPV of a project that starts at known time τ21 ≥ 0 and lasts forever: e−ρτ21 (Ea1e
ατ21 + b1 − I). Next,

we treat τ21, the time to the arrival of the regime switch as random and use its probability density

function, λ2e
−λ2τ21 , to carry out the expectation. Thus, waiting until the regime switches to 1 is a

better strategy as long as a2E + b2 − I < λ2a1E
ρ+λ2−α + λ2

ρ+λ2
(b1 − I), which simplifies to the condition

−
(

Ks+ρI
ρ+λ2

)
< 0. Since this is always true, we conclude that it is never optimal to invest from regime 2.

Fig. 2 summarises the optimal strategies where we note that in regime 2, there are two waiting regions.
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Figure 2: Optimal strategies from state 0 in the global-risk model without decommissioning
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Based on the preceding argument, there are two regions of interest in state 0 for each regime: E <

ϵ∗1 ≡ ϵ∗ and E ≥ ϵ∗. In the latter, the value function in regime 1 is simply V11(E) − I as identified in

Eq. 10, while V02(E) is governed by the following ODE:

1

2
σ2E2V ′′

02(E) + αEV ′
02(E)− ρV02(E) + λ2 (V11(E)− I − V02(E)) = 0

⇒ V02(E) = c22E
δ2 + c23E + c24 (17)

where limE→∞ V02(E) = c23E + c24 is the boundary condition, c22 is a positive endogenous constant,

and δ2 is the negative root of 1
2σ

2δ(δ − 1) + αδ − (ρ+ λ2) = 0. Using the particular solution of Eq. 17,

we find that:

c23 =
λ2a1

ρ+ λ2 − α
(18)

c24 =
λ2(b1 − I)

ρ+ λ2
(19)

By contrast, for E < ϵ∗, it is optimal to wait in state 0 for both regimes. Thus, V01(E) and V02(E)

satisfy the following pair of ODEs:

1

2
σ2E2V ′′

01(E) + αEV ′
01(E)− ρV01(E) + λ1 (V02(E)− V01(E)) = 0 (20)

1

2
σ2E2V ′′

02(E) + αEV ′
02(E)− ρV02(E) + λ2 (V01(E)− V02(E)) = 0 (21)

We solve the two equations by first multiplying Eqs. 20 and 21 by λ2 and λ1, respectively, and adding

them to obtain the following single ODE:

1

2
σ2E2H ′′

1 (E) + αEH ′
1(E)− ρH1(E) = 0 (22)

where H1(E) ≡ λ2V01(E) + λ1V02(E). Using the boundary condition limE→0 H1(E) = 0, we obtain:

H1(E) = d1E
β1 (23)

where d1 is an endogenous constant. Similarly, by subtracting the ODEs in Eqs. 20 and 21, we obtain

the following ODE:

1

2
σ2E2H ′′

2 (E) + αEH ′
2(E)− (ρ+ λ1 + λ2)H2(E) = 0 (24)

where H2(E) ≡ V02(E)− V01(E). Again, using the boundary condition limE→0 H2(E) = 0, we obtain:

H2(E) = e1E
θ1 (25)
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where e1 is an endogenous constant and θ1 > 1 is the positive root of 1
2σ

2θ(θ−1)+αθ−(ρ+λ1+λ2) = 0.

From the definitions of and solutions to H1(E) and H2(E), we can extract the value functions of interest:

V01(E) =
d1

λ1 + λ2
Eβ1 − λ1e1

λ1 + λ2
Eθ1 (26)

V02(E) =
d1

λ1 + λ2
Eβ1 +

λ2e1
λ1 + λ2

Eθ1 (27)

The endogenous constants, d1, e1, and c22, along with the investment threshold, ϵ∗, may be found

analytically via the following four VM and SP conditions:

V01(ϵ
∗) = V11(ϵ

∗)− I (28)

V ′
01(ϵ

∗) = V ′
11(ϵ

∗) (29)

V02(ϵ
∗−) = V02(ϵ

∗+) (30)

V ′
02(ϵ

∗−) = V ′
02(ϵ

∗+) (31)

Solving, we obtain the following:

ϵ∗ =
c24δ2λ1(θ1 − β1)− (b1 − I) [θ1λ1(δ2 − β1) + β1λ2(δ2 − θ1)]

a1 [λ1(δ2 − β1)(θ1 − 1) + λ2(δ2 − θ1)(β1 − 1)]− c23λ1(θ1 − β1)(δ2 − 1)
(32)

d1 =
(λ1 + λ2)

(θ1 − β1) (ϵ∗)
β1

[a1ϵ
∗(θ1 − 1) + θ1(b1 − I)] (33)

e1 =
(λ1 + λ2)

λ1(θ1 − β1)(ϵ∗)θ1
[a1ϵ

∗(β1 − 1) + β1(b1 − I)] (34)

c22 =
1

δ2(θ1 − β1)(ϵ∗)δ2

[
a1ϵ

∗
(
β1(θ1 − 1) +

θ1λ2(β1 − 1)

λ1
− c23(θ1 − β1)

a1

)
+β1θ1

(
1 +

λ2

λ1

)
(b1 − I)

]
(35)

Finally, it can be shown that in the limiting case where no physical or policy risk exists, the optimal

investment threshold is equal to the one in Eq. 6 since limλ1→0 a1 = K
ρ−α , limλ1→0 b1 = −K

ρ , and

limλ1→0 θ1 = δ1.

3.2 Decommissioning Option

We now consider the firm’s discretion to decommission the plant subsequent to its adoption. Such an

option may also affect the original decision to invest, especially with global regime switching.
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3.2.1 No Regime Switching

Working backward from state 2 without regime switching, we first conclude that the value of the plant

that has been decommissioned is simply zero, i.e.,

V2(E) = 0 (36)

In state 1, the value function is the expected PV of an active plant plus the option value to decommission

that becomes more valuable with a price decrease, i.e.,

V11(E) = K

(
E

ρ− α
− c

ρ

)
+ f2E

β2 (37)

Finally, the value function in state 0 is similar to that in Eq. 3, albeit with a different endogenous

constant.

In order to determine the constant f2 and the optimal decommissioning threshold ϵ∗∗1 ≡ ϵ∗∗, we first

use VM and SP conditions between states 1 and 2:

V11(ϵ
∗∗) = V2(ϵ

∗∗)−D (38)

V ′
11(ϵ

∗∗) = V ′
2(ϵ

∗∗) (39)

Solving these two equations analytically, we obtain the following:

ϵ∗∗ =

(
β2

β2 − 1

) (ρ− α)
(

Kk
ρ −D

)
K

(40)

f2 = −K(ϵ∗∗)1−β2

β2 (ρ− α)
(41)

From state 0, there are VM and SP conditions with state 1 as in Eqs. 4 and 5. Together, these lead

to the following non-linear equation that may be solved numerically to yield the optimal investment

threshold, ϵ∗:

Kϵ∗

ρ− α

(
1− β1

β1

)
+ f2(ϵ

∗)β2

(
β2 − β1

β1

)
+

Kk

ρ
+ I = 0 (42)

Since the second term is negative, it may be shown that the optimal investment threshold is reduced

relative to that in Section 3.1.1. Intuitively, the subsequent option to decommission facilitates investment

in the first place. Finally, a0 may be obtained as follows:

a0 =
K(ϵ∗)1−β1

β1(ρ− α)
+

β2f2(ϵ
∗)β2−β1

β1
(43)
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3.2.2 Local Regime Switching

With local regime switching, we first consider the decommissioning decision from state 1. Intuitively,

it would make more sense not to decommission from regime 1 and to wait for a switch to regime 2.

We can, thus, check whether it is ever optimal to decommission directly from state 1 when in regime 1

by comparing the payoff of immediate decommissioning (−D) versus that from waiting until a regime

switch and subsequent decommissioning. In order to calculate the latter payoff, we first fix the time to

the regime switch, τ12, and obtain the payoff as:

EE

[∫ τ12

0

K(Et − k)e−ρtdt− e−ρτ12D

]
=

∫ τ

0

K(EE [Et]− k)e−ρtdt− e−ρτ12D

=

∫ τ12

0

K(Eeαt − k)e−ρtdt− e−ρτ12D

=
KE

ρ− α

(
1− e−(ρ−α)τ12

)
− kK

ρ

(
1− e−ρτ12

)
− e−ρτ12D (44)

After letting τ12 be an exponential random variable with parameter λ1, we take expectations to obtain

the following: ∫ ∞

0

λ1e
−λ1τ12

KE

ρ− α

(
1− e−(ρ−α)τ12

)
dτ12 −

∫ ∞

0

λ1e
−λ1τ12

kK

ρ

(
1− e−ρτ12

)
dτ12

−
∫ ∞

0

λ1e
−λ1τ12e−ρτ12Ddτ12 =

KE

ρ+ λ1 − α
− kK

ρ+ λ1
− λ1D

ρ+ λ1
(45)

Hence, immediate decommissioning from regime 1 is dominated by the strategy of waiting for a regime

switch as long as:

KE

ρ+ λ1 − α
− kK

ρ+ λ1
− λ1D

ρ+ λ1
≥ −D

⇒ E ≥ (ρ+ λ1 − α)

(ρ+ λ1)

[
k − ρD

K

]
(46)

From now on, we assume that this condition holds, which implies that the optimal strategy is to decom-

mission only from regime 2 (see Fig. 3), i.e., only ϵ∗∗2 exists.

There are two parts to the value functions for each regime: one for E > ϵ∗∗2 ≡ ϵ∗∗ and another one

for E ≤ ϵ∗∗. In the former case, we have similar ODEs as in Eqs. 8 and 9. However, the solutions are

not restricted to the particular ones as the option value of decommissioning must also be considered.

Therefore, the homogenous solutions, V 11(E) and V 12(E), are found by first multiplying the homogenous

parts of the analogous ODEs by λ2 and λ1, respectively, and adding them to obtain the following single

ODE:

1

2
σ2E2F ′′

1 (E) + αEF ′
1(E)− ρF1(E) = 0 (47)
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Figure 3: Optimal strategies from state 1 in the local-risk model with decommissioning

where F1(E) ≡ λ2V 11(E) + λ1V 12(E). Using the boundary condition limE→∞ F1(E) = 0, we obtain:

F1(E) = h2E
β2 (48)

where h2 is an endogenous constant. Similarly, by subtracting the homogenous parts of Eqs. 8 and 9,

we obtain the following ODE:

1

2
σ2E2F ′′

2 (E) + αEF ′
2(E)− (ρ+ λ1 + λ2)F2(E) = 0 (49)

where F2(E) ≡ V 11(E)− V 12(E). Again, using the boundary condition limE→∞ F2(E) = 0, we obtain:

F2(E) = ℓ2E
θ2 (50)

where k2 is an endogenous constant and θ2 is the negative root of 1
2σ

2θ(θ− 1) +αθ− (ρ+ λ1 + λ2) = 0.

From the definitions of and solutions to F1(E) and F2(E), we can extract the value functions of interest:

V 11(E) =
h2

λ1 + λ2
Eβ2 +

λ1ℓ2
λ1 + λ2

Eθ2 (51)

V 12(E) =
h2

λ1 + λ2
Eβ2 − λ2ℓ2

λ1 + λ2
Eθ2 (52)

Hence, the value functions for E > ϵ∗∗ are as follows:

V1j(E) = V 1j(E) + ajE + bj , j = 1, 2 (53)

For E ≤ ϵ∗∗, we first note that V2(E) = 0. As for V11(E), it follows the following ODE:

V11(E) = π1(E)dt+ (1− ρdt) [λ1dt [−D] + (1− λ1dt)EE [V11(E + dE)]]
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⇒ V11(E) = π1(E)dt− λ1Ddt

+(1− (ρ+ λ1) dt)

[
V11(E) + αEV ′

11(E)dt+
1

2
σ2E2V ′′

11(E)dt

]
⇒ 1

2
σ2E2V ′′

11(E) + αEV ′
11(E)− ρV11(E)− λ1 (D + V11(E)) +K(E − k) = 0

⇒ V11(E) = g11E
γ1 + g13E + g14 (54)

where we use the boundary condition limE→0 V11(E) = g14, g11 is a positive endogenous constant, and

γ1 is the positive root of 1
2σ

2γ(γ − 1) + αγ − (ρ+ λ1) = 0. Using the particular solution of Eq. 54, we

find that:

g13 =
K

ρ+ λ1 − α
(55)

g14 = − (Kk + λ1D)

ρ+ λ1
(56)

Thus, V11(E) is equal to the expected PV of a plant that will die in a mean time of 1
λ1

years plus the

option value of a reprieve if the electricity price increases.

The endogenous constants, h2, ℓ2, and g11, along with the decommissioning threshold, ϵ∗∗, may be

found analytically via the following four VM and SP conditions:

V11(ϵ
∗∗+) = V11(ϵ

∗∗−) (57)

V ′
11(ϵ

∗∗+) = V ′
11(ϵ

∗∗−) (58)

V12(ϵ
∗∗) = V2(ϵ

∗∗)−D (59)

V ′
12(ϵ

∗∗) = V ′
2(ϵ

∗∗) (60)

Solving, we obtain the following:

ϵ∗∗ =
b1 − g14 +

(
D+b2
θ2−β2

) [
θ2λ2(β2−γ1)+β2λ1(θ2−γ1)

γ1λ2

]
(a1 − g13)

(
1−γ1

γ1

)
− a2X

(61)

where X = λ2(β2−γ1)(θ2−1)+λ1(θ2−γ1)(β2−1)
γ1λ2(θ2−β2)

ℓ2 = − (λ1 + λ2)

λ2(θ2 − β2) (ϵ∗∗)
θ2

[a2ϵ
∗∗(β2 − 1) + β2(b2 +D)] (62)

h2 = − (λ1 + λ2)

(θ2 − β2)

[
a2(ϵ

∗∗)1−β2(θ2 − 1) + θ2(ϵ
∗∗)−β2(b2 +D)

]
(63)
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g11 =
1

γ1 (ϵ∗∗)
γ1

[
ϵ∗∗

(
a1 − a2 − g13 −

θ2(β2 − 1)(λ1 + λ2)a2
λ2(θ2 − β2)

)
− θ2(λ1 + λ2)β2(D + b2)

λ2(θ2 − β2)

]
(64)

Finally, the value of the option to invest from state 0 is again V01(E) = a0E
β1 , where VM and SP

conditions between V01(E) and V11(E)− I are used to find a0 and ϵ∗ assuming that ϵ∗ > ϵ∗∗. This time,

only numerical solutions are possible:

h2

λ1 + λ2

(
β2 − β1

β1

)
(ϵ∗)

β2 +
λ1ℓ2

λ1 + λ2

(
θ2 − β1

β1

)
(ϵ∗)

θ2 + a1ϵ
∗
(
1− β1

β1

)
− b1 + I = 0 (65)

a0 =
β2h2

β1(λ1 + λ2)
(ϵ∗)

β2−β1 +
θ2λ1ℓ2

β1(λ1 + λ2)
(ϵ∗)

θ2−β1 +
a1 (ϵ

∗)
1−β1

β1
(66)

3.2.3 Global Regime Switching

With global regime switching and a decommissioning option, we again speculate whether it is ever

optimal to invest from state 0 when in regime 2. We reason as in Section 3.1.3 by comparing the

immediate payoff from investing when in regime 2 (a2E + b2 − I + h2E
β2

λ1+λ2
− λ2ℓ2E

θ2

λ1+λ2
) and that from

waiting until the first passage to regime 1, i.e.,∫ ∞

0

λ2e
−λ2τ21e−ρτ21

(
a1Eeατ21 + b1 − I +

h2E
β2eαβ2τ21

λ1 + λ2
+

λ1ℓ2E
θ2eαθ2τ21

λ1 + λ2

)
dτ21

=
λ2a1E

ρ+ λ2 − α
+

λ2

ρ+ λ2
(b1 − I) +

λ2h2E
β2

(λ1 + λ2)

∫ ∞

0

e−(ρ+λ2−αβ2)τ21dτ21

+
λ1λ2ℓ2E

θ2

(λ1 + λ2)

∫ ∞

0

e−(ρ+λ2−αθ2)τ21dτ21 =
λ2a1E

ρ+ λ2 − α
+

λ2

ρ+ λ2
(b1 − I) +

λ2h2E
β2

(λ1 + λ2)(ρ+ λ2 − αβ2)

+
λ1λ2ℓ2E

θ2

(λ1 + λ2)(ρ+ λ2 − αθ2)
(67)

Although it is not unconditionally the case that the payoff of the second strategy is greater than that of

the first, we assume that it holds and perform subsequent numerical examples with this in mind. Also,

we assume that ϵ∗ > ϵ∗∗ in order to rule out any degenerate cases. Thus, the decommissioning strategy

used here is the same as the one depicted in Fig. 3.

As in Section 3.1.3, there are two regions to analyse in state 0. First, for E ≥ ϵ∗, V01(E) is simply

V11(E) − I as identified in Eq. 53, while V02(E) is governed by the ODE from Eq. 17. However, the

solution is no longer simply the one in Eq. 17 due to the presence of the decommissioning option in state

1. Thus, its solution must reflect that embedded option:

V02(E) = c22E
δ2 + c23E + c24 +

h2E
β2

λ1 + λ2
+

λ1λ2ℓ2ZEθ2

λ1 + λ2
(68)

where c23 and c24 are defined as in Eqs. 18 and 19, respectively, c22 is an endogenous constant to be

determined, h2 and ℓ2 are defined as in Eqs. 63 and 62, respectively (along with the same ϵ∗∗ as in the

case with local risk because the decision-making problem is identical once state 1 is entered), and Z is a
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forcing term that ensures that Eq. 68 satisfies the ODE. It is obtained by taking the relevant derivatives

of V02(E) and substituting them back into Eq. 17 to yield the following:

Z =
1

(ρ+ λ2)− αθ2 − 1
2σ

2θ2(θ2 − 1)
(69)

Since the solutions to V01(E) and V02(E) for E < ϵ∗ are similar to those in Eqs. 26 and 27, respectively,

the endogenous constants c22, d1, and e1 along with ϵ∗ may be obtained via VM and SP conditions such

as those in Eqs. 28 through 31. Due to the presence of the decommissioning option from state 1, the

resulting system of equations is highly non-linear and must be solved numerically. Facilitating the

solution is the reduction of the four non-linear equations to a single one for ϵ∗:

(b1 − I)

(θ1 − β1)

[
θ1 +

λ2β1

λ1
− β1θ1

δ2
− λ2β1θ1

δ2λ1

]
− c24 − c23

(
δ2 − 1

δ2

)
ϵ∗

+ a1ϵ
∗
[
(θ1 − 1)

(θ1 − β1)
− β1(θ1 − 1)

δ2(θ1 − β1)
+

λ2(δ2 − θ1)(β1 − 1)

δ2λ1(θ1 − β1)

]
+

h2 (ϵ
∗)

β2

(λ1 + λ2)

[
(θ1 − β2)

(θ1 − β1)
−

(
δ2 − β2

δ2

)
− β1(θ1 − β2)

δ2(θ1 − β1)
+

λ2(β1 − β2)(δ2 − θ1)

δ2λ1(θ1 − β1)

]
+

ℓ2 (ϵ
∗)

θ2

(λ1 + λ2)

[
λ1(θ1 − θ2)

(θ1 − β1)
− λ1λ2Z

(
δ2 − θ2

δ2

)
− β1λ1(θ1 − θ2)

δ2(θ1 − β1)
+

λ1λ2(δ2 − θ1)(β1 − θ2)

δ2λ1(θ1 − β1)

]
= 0 (70)

4 Numerical Examples

We use the following parameters for the numerical examples: α = 0, σ ∈ (0.20, 0.40), ρ = 0.10, λ1 = 0.15,

λ2 ∈ (0.15, 1.35), K = 1, I = 10, D = 10, k = 1.10, s = 2, and E0 ≡ E = 1.

4.1 No Decommissioning Option

Figs. 4 through 6 indicate the value functions for the three cases without the decommissioning option.

We note that local risk reduces the expected NPV of the plant in state 1 due to the threat of suspension.

This requires a higher electricity investment threshold price for the firm in order to cover its capital and

opportunity costs. For the local-risk case, there are two value functions in state 1, i.e., one for each

regime. Introduction of global risk further erodes the firm’s option value in state 0 with investment

only ever possible from regime 1. As part of the value of waiting is folded into a regime from which no

investment occurs, the investment threshold with global risk is lower than that with local risk (albeit

still higher than without risk). Intuitively, a firm facing only local risk has the full value of waiting,

which is why it can afford to delay its investment decision relative to a firm facing global risk. In Fig.

6, the value function in state 0 with regime 2 has two parts.
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Figure 4: Value functions without risk or decommissioning option (σ = 0.40, λ2 = 0.15)

0 5 10 15 20

−20

0

20

40

60

80

100

O
pt

io
n 

va
lu

e 
an

d 
N

P
V

 (
$)

Electricity price, E ($/MWh
e
)

 

 
V

11
(E)−I

V
12

(E)−I

V
01

(E)

Figure 5: Value functions with local risk without decommissioning option (σ = 0.40, λ2 = 0.15)
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Figure 6: Value functions with global risk without decommissioning option (σ = 0.40, λ2 = 0.15)
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In order to explore the impact of underlying parameters such as the volatility and the resumption rate

on investment thresholds and option values, we next perform sensitivity analyses in Figs. 7 through 10.

First, in Fig. 7, we note that greater uncertainty increases the electricity price threshold for investment

in all cases. Intuitively, as long as the marginal benefit (MB) of delaying the investment decision (due to

the possibility of starting the project at a higher price and discounting the investment cost more heavily)

is greater than its marginal cost (MC, stemming from the opportunity cost of forgone revenues), it is

optimal to wait for a higher price. When local risk is introduced, the MC of delaying is reduced as the

expected PV of cash flows in state 1 is lower. Meanwhile, the MB of delaying is not affected as much.

Consequently, it is optimal to delay the investment decision relative to the case without risk. In the

case of global risk, the MC of delaying is similarly reduced, but the MB of delaying is also eroded as

the regime may have switched to 2 as the firm waits for a marginally higher price. For this reason,

the investment threshold price for electricity is lower with global risk than with local risk, which is a

seemingly counterintuitive result.
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Figure 7: Effect of volatility on optimal investment thresholds without decommissioning option (λ2 =

0.15)

For such a continuous-time Markov process, the stationary probability of being in regime 1 is λ2

λ1+λ2
.

Thus, as λ2 becomes large relative to λ1, the long-run probability of being in regime 1 goes to 1. By

varying λ2, we find in Fig. 8 that the investment threshold without risk is unaffected, while those with

local and global risks decrease and converge asymptotically to the former. Intuitively, increasing the

rate of resumption (or equivalently, decreasing the risk of not operating) increases both the MB and the

MC of delaying, which decreases the investment threshold price overall.

As for the option value of the investment opportunity in state 0, Figs. 9 and 10 indicate how it

behaves with volatility and the resumption rate. First, higher uncertainty increases the option value as
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Figure 8: Effect of resumption rate on optimal investment thresholds without decommissioning option

(σ = 0.20)

it is more worthwhile to wait. Nevertheless, the plant without risk is more valuable than the ones with

risk, and, as expected, global risk affects the option value more than the local risk does. Decreasing the

probability of being suspended increases the option values of plants with local and global risk until they

asymptotically approach the value of a plant without risk.
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Figure 9: Effect of volatility on option values at initial price without decommissioning option (λ2 = 0.15)

4.2 Decommissioning Option

A subsequent decommissioning option facilitates the firm’s initial investment decision and increases the

value of the investment opportunity. For the case without risk, the difference is hardly noticeable in Fig.
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Figure 10: Effect of resumption rate on option values at initial price thresholds without decommissioning

option (σ = 0.20)

11. However, the decommissioning threshold is 0.042 (Fig. 14), and the decommissioning option adds

about 0.06% to the option value at E0 (Fig. 18).
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Figure 11: Value functions without risk and with decommissioning option (σ = 0.40, λ2 = 0.15)

The results are more instructive with local risk. In Fig. 12, the presence of the decommissioning

option gives curvature to both value functions in state 1. Since decommissioning occurs only from

regime 2, V12(E) − I equals and is tangent to −D at E = ϵ∗∗. From Fig. 14, the latter threshold is

0.81 for σ = 0.40. As uncertainty increases, this decommissioning threshold decreases, which means

that the firm becomes more hesitant to exit as is the standard result in real options. Although no exit

is optimal from regime 1, V11(E) − I is affected by this decommissioning option because its value for

E < ϵ∗∗ internalises the possibility that exit will be immediate pending a regime switch. As expected,
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the decommissioning option lowers the investment threshold with local risk (Figs. 14 and 15) while

increasing the value of the investment opportunity (Figs. 16 and 17). In particular, the decommissioning

option adds 1.057% when σ = 0.40 and λ2 = 0.15 in value (Fig. 18), which is order of magnitude greater

than that without physical or policy risk. Indeed, it is the presence of such non-market risks that

makes the decommissioning option valuable. Furthermore, this relative value increases (decreases) with

the volatility (resumption rate). Intuitively, more uncertainty means more dispersed electricity prices.

Consequently, the likelihood of more scenarios with low profits adds value to the decommissioning option,

but this also means a greater opportunity cost to exercising the option in the form of higher forgone

profits (lowering the decommissioning threshold). With a higher resumption rate, a plant spends less

time on average in regime 2, which lowers the value of decommissioning as a put option against scenarios

with low profits and makes it less likely for this option to be exercised. We also assess the impact of

uncertainty and the resumption rate on the loss in the investment opportunity’s value relative to the

setting without risk, i.e., the ratio of the respective V01(E) functions evaluated at E0 (Figs. 19 and

21). We find that the discrepancy in value due to local risk diminishes as both uncertainty and the

resumption rate increase. Intuitively, more uncertainty means less likelihood of investment regardless

of the physical/policy risk, while a higher rate of resumption lowers the impact of the physical/policy

risk. The effect of the decommissioning option is to reduce the discrepancy further. Hence, market and

physical/policy risks have subtly different impacts on both the decisions and values of the firm.
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Figure 12: Value functions with local risk and decommissioning option (σ = 0.40, λ2 = 0.15)

With global risk, the effect of the decommissioning option is qualitatively similar: it facilitates

investment (Fig. 13) and increases the value of the investment opportunity (Fig. 18). As expected, the

impact of risk is more severe because even the investment opportunity from state 0 may be lost with

the arrival of a regime switch. Consequently, the loss in value relative to the no-risk case is about 65%
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here as opposed to 60% with local risk for σ = 0.40 and λ2 = 0.15.
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Figure 13: Value functions with global risk and decommissioning option (σ = 0.40, λ2 = 0.15)
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Figure 14: Effect of volatility on optimal thresholds with decommissioning option (λ2 = 0.15)

4.3 Further Sensitivity Analysis
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Figure 15: Effect of resumption rate on optimal investment thresholds with decommissioning option

(σ = 0.20)
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Figure 16: Effect of volatility on option values at initial price with decommissioning option (λ2 = 0.15)
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Figure 17: Effect of resumption rate on option values at initial price with decommissioning option

(σ = 0.20)
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Figure 18: Effect of volatility on decommissioning value at initial price (λ2 = 0.15)
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Figure 19: Effect of volatility on relative option values from risk exposure at initial price (λ2 = 0.15)
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Figure 20: Effect of resumption rate on decommissioning value at initial price (σ = 0.20)
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Figure 21: Effect of resumption rate on relative option values from risk exposure at initial price (σ = 0.20)
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Figure 22: Effect of volatility on optimal investment thresholds with decommissioning option (λ1 = λ2 =

0.30)

As a first sensitivity, we increase both λ1 and λ2 to 0.30. We would like to explore if the results

depend solely on the ratio of these two rates by keeping the long-run proportion of time spent in each

regime equal to 1
2 as before. This seems to reduce the value of a state-1 plant in regime 1 but to increase

its value in regime 2. However, overall, the value of the option to invest decreases, which increases the

investment thresholds as observed by comparing Figs. 22 and 14. Moreover, the decommissioning value

decreases (compare Figs. 23 and 18), which decreases the decommissioning threshold even though the

ratio λ1

λ2
is unchanged. Although we do not have a verified explanation for this intriguing finding, we

suspect that it is because the revenues of the plant get shifted to later in time while the strengthening

costs are incurred earlier in time as a result of shorter cycle times. Similarly, the effect of physical/policy

risk (whether local or global) is made more severe (compare Figs. 24 and 19). Hence, exploring these

results analytically will be an important next step in our work.

Our second sensitivity keeps the expected discounted cycle cost of strengthening while in regime 2,

i.e., Ks
ρ+λ2

, unchanged while increasing both s and λ2 to 3.2 and 0.30, respectively. We find that this

increases the proportion of time that the plant is on, which increases the option value, increases the

decommissioning value, reduces the investment threshold, mitigates the impact of physical/policy risk,

and increases the decommissioning threshold (compare Figs. 25 through 27 with Figs. 14, 18, and 19,

respectively). The findings here are relatively more clear cut because of the lower opportunity cost of

forgone revenues from a plant that is less frequently suspended; however, we will aim to verify them

analytically before moving on to a more interesting analysis in which we keep expected cycle profits

unchanged while varying underlying parameters.
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Figure 23: Effect of volatility on decommissioning value at initial price (λ1 = λ2 = 0.30)
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Figure 24: Effect of volatility on relative option values from risk exposure at initial price (λ1 = λ2 = 0.30)
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Figure 25: Effect of volatility on optimal investment thresholds with decommissioning option (s =

3.2, λ2 = 0.30)
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Figure 26: Effect of volatility on decommissioning value at initial price (s = 3.2, λ2 = 0.30)
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Figure 27: Effect of volatility on relative option values from risk exposure at initial price (s = 3.2, λ2 =

0.30)

5 Conclusions

In this work, we address the problem of optimal investment and subsequent decommissioning timing of

a power plant that is subject to physical or policy risks. Such an analysis is topical and relevant due

to the prevalence of intermittent alternative energy resources in response to environmental concerns.

Furthermore, decline in public approval for many nuclear power projects after the Fukushima Daiichi

disaster of 2011 means that even plants that have been yet to be built may face such policy risk of

suspension of the license to build. Therefore, we seek to incorporate these features in a real options

approach that can handle embedded timing decisions in order to provide managerial and policy insights.

Taking the perspective of firm investing in plant subject to such physical/policy risks, which we

model as independent regime switches, we find that their impact is more severe when the risk is global

and tapers off as uncertainty increases. Rather counterintuitively, we obtain the result that investment

under local risk is delayed by more than that under global risk. The value of the decommissioning option

is neglible unless there is local or global risk, and it increases with uncertainty. Via sensitivity analyses,

we determine that increasing the rates of regime switching while keeping the long-run proportion of

time in each regime unchanged affects option values and thresholds because it changes how cash flows

are discounted. On the other hand, in increasing the strengthening cost and resumption rate in order

to keep the expected discounted cycle cost of strengthening the same, we find that the option value to

invest increases along with the decommissioning threshold price and value. These insights about how

investment incentives are affected by physical/policy risks can guide policymakers in shaping regulation

that mitigates their impact.
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For future work, we would like to verify some of the numerical findings analytically. Also, besides

a decommissioning option, we would like to explore the value of an upgrade option, i.e., after initial

investment, the firm may retrofit its plant in order to reduce the severity of future suspensions. Other

possibilities for subsequent research include incorporating strategic interactions with other firms, allowing

for operational flexibility, and investigating investment lags.
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