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SUBSIDIES FOR RENEWABLE ENERGY FACILITIES 

UNDER UNCERTAINTY   

  

 

 

Abstract 

 

We derive the optimal investment timing and real option value for a renewable energy facility 

with price and quantity uncertainty, where there might be a government subsidy proportional to 

the quantity of production.  We also consider the possibility that the subsidy is retracted 

sometime subsequent to the investment.  The easiest case is where the subsidy is proportional to 

the multiplication of the joint products (price and quantity), so the dimensionality can be 

reduced.  Then quasi-analytical solutions are provided for different subsidy arrangements: a 

permanent subsidy proportional to the quantity of production; a retractable subsidy; a sudden 

permanent subsidy; and finally a sudden retractable subsidy.  Policy is considered certain only in 

the first case of a permanent constant subsidy.  Whether policy uncertainty acts as a disincentive 

for early investment, and thereby offsets the advantages of any subsidy, depends on the type of 

subsidy arrangement.  

 

JEL Classifications: D81, G31 

Keywords: Renewable energy, investment incentives, retractable or permanent subsidies, real 

options 
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1 Introduction 

Do permanent or retractable government subsidies such as direct payments per unit revenue or 

per quantity produced, or specified feed-in-tariffs, or a renewable energy certificate or freedom 

from taxation, encourage early investment in renewable energy facilities?  Does the size of the 

possible government subsidy reduce the price threshold that justifies investment significantly, 

when both unit prices and the units of production are stochastic, if the subsidy might be 

retracted? 

 

The issue of the effect of government subsidies or charges on investment timing, when output 

prices are stochastic, is the original consideration in the first real option model of Tourinho 

(1979).  Tourinho poses the dilemma that without a holding cost being imposed on the owner of 

an option to extract natural resources, the owner would never have a sufficient incentive to 

commit an irreversible investment to produce the resource.  Other incentives to encourage early 

investment are the imposition (or presence) of an escalating investment cost, or as in Adkins and 

Paxson (2011b) the existence of a convenience (or similar) yield for future prices of the 

underlying resource. 

 

There are numerous examples of government subsidies provided to encourage early investments 

in renewable energy, see Wohlgemuth and Madlener (2000), Menanteau et al. (2003), Blyth et 

al. (2009), Kettunen et al.(2011), Borenstein (2012), and Lapan and Moschini (2012).  There are 

several authors who examine the macro-economic effects of uncertainty in the costs and benefits 

of taxing pollution, or subsidizing pollution reduction, and also the likely impact on the 

production and consumption of electricity, see Bajona and Kelly (2012).  Several authors have 
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studied separate price and quantity uncertainty, and correlation in environmental problems, see 

Stavins (1996).  Pindyck (2012) notes that Pindyck (2002) and Pindyck (2007) use single factor 

real option models in addressing similar problems in environmental economics.  But there appear 

to be no models solving the investment equation for separate price and quantity uncertainty, or 

for subsidies on one factor rather than the other.   

 

Wind farms in Spain and Portugal  have received different types of government subsidies 

including specified feed-in tariffs and investment tax credits.  In January 2012, some of these 

subsidies were retracted in Spain.  The Troika second review for Portugal in November 2011 

raised the issue of retracting similar subsidies, see EU (2011)
1
.  Domestically produced ethanol 

received both a direct subsidy in the US, benefitted from a tariff on imported ethanol, and also 

from EPA requirements regarding minimum quantities of ethanol in the gasoline mix.  Finally, 

governments in both Norway and Sweden have considered various types of subsidies for hydro-

facilities, see Linnerud et al. (2011). 

 

We use a Poisson (jump) process to model sudden provision or permanent or alternatively 

retractable subsidies.  Several authors have incorporated jump processes into real investment 

theory.  Dixit and Pindyck (1994) discuss Poisson jump processes, and apply upward jumps to 

the expected capital gain from the possible implementation of an investment tax credit.   Brach 

and Paxson (2003) consider Merton-style jumps in accounting for gene discovery and drug 

                                                 
1
 EU (2011) required Portugal to “review in a report the efficiency of support schemes for renewable(s), covering 

their rational, their levels, and other design elements [January 2012]…For existing contracts, assess in a report the 

possibility of agreeing renegotiating of the contracts in view of a lower feed-in tariff [Q4-2011]…For new contracts 

in renewable(s), revise downward the feed-in-tariffs. [Q3-2012]”, p. 118. 
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development failures and successes. Martzoukos (2003) models exogenous learning as random 

information arrival of rare events (jumps resulting from technological, competitive, regulatory or 

political risk shocks) that follow a Poisson process.  

 

We consider that the instantaneous cash flow from a facility is the respective commodity price of 

the output times the quantity produced, and either there is no operating cost, or there is a fixed 

operating cost that can be incorporated into the investment cost.  There are no other options 

embedded in the facility such as expansion, contraction, suspension or abandonment. Further 

assumptions are that the lifetime of the facility is infinite and there are no taxes. Moreover, the 

typical assumptions of real options theory apply, with drifts, interest rates, convenience yields, 

volatilities and correlation constant over time.  Many of these strong assumptions may be 

required for an analytical solution.  Relaxation of some of these assumptions may lead to greater 

realism, but may then require much more complex analytical solutions or numerical solutions 

with possibly less transparency.  

 

The next section considers some characteristic subsidies for such facilities, first where the 

subsidy is proportional to price times quantity, which is solved by simply scaling P*Q (Model I);  

then assuming there is a permanent subsidy proportional to the quantity generated (Model II); 

then assuming there is a retractable subsidy proportional to the quantity generated (Model III); 

then assuming there is the possibility of a permanent subsidy proportional to Q (Model IV); and 

finally assuming there is the possibility of a retractable subsidy proportional to Q (Model V).  

The third section compares the price thresholds and real option values using comparable base 

parameter values, and illustrates the sensitivity of these models to changes in some important 
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variables such as quantity volatility, price and quantity correlation, the subsidy rate, and the 

intensities of possible sudden permanent or retractable subsidies.  The final section concludes.  

2 Models 

2.1 Model I   Stochastic Price and Quantity 

We consider a perpetual opportunity to construct a renewable energy facility, such as a hydro-

electric plant or a wind farm or another renewable energy process, at a fixed investment cost K . 

This investment cost is treated as irreversible or irrecoverable once incurred. The value of this 

investment opportunity, denoted by 1F , depends on the amount of electricity sold per unit of 

time, denoted by Q , and the price per unit of electricity, denoted by P . Both of these variables 

are assumed to be stochastic and are assumed to follow  geometric Brownian motion processes: 

 d d dX XX X t X Z    (1) 

for  ,X P Q , where   denotes the instantaneous drift parameter,   the instantaneous 

volatility,  and dZ  the standard Wiener process. Potential correlation between the two variables 

is represented by  . It may be reasonable to assume the price per unit of electricity follows such 

a stochastic process if it is a traded commodity, while treating the amount of electricity generated 

per unit of time as stochastic may reflect the random nature of demand or supply. 

 

Assuming risk neutrality and applying Ito’s lemma, the partial differential equation (PDE) 

representing the value to invest is: 

 
2 2 2

2 2 2 21 1 1 1 1
12 2

1 1
0.

2 2
P Q P Q P Q

F F F F F
P Q PQ P Q rF

P Q P Q P Q
     

    
     

     
 (2) 
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where X  denote the risk-neutral drift rates and r  the risk-free rate, (=r-). Following 

McDonald and Siegel (1986) and Adkins and Paxson (2011a), the solution to (2) is: 

 1 1

1 1F A P Q
 

 . (3) 

1  and 1  are the power parameters for this option value function. Since there is an incentive to 

invest when both P  and Q  are sufficiently high but a disincentive when either are sufficiently 

low, we would expect both power parameter values to be positive. Also, the parameters are 

linked through the characteristic root equation found by substituting (3) in (2): 

      2 21 1
1 1 1 1 1 1 1 1 1 12 2
, 1 1 0P Q P Q P QQ r                       . (4) 

 

We assume that there is no operational flexibility once the investment to construct the plant has 

been made. After the investment, the plant generates revenue equaling (1+)* PQ , where  is the 

permanent subsidy proportional to the electricity revenue sold (=0 indicates no possible 

subsidy).  So from (2), the valuation relationship for the operational state is: 

 
2 2 2

2 2 2 21 1 1 1 1
12 2

1 1
(1 ) 0

2 2
P Q P Q P Q

F F F F F
P Q PQ P Q PQ rF

P Q P Q P Q
      

    
       

     
, (5) 

where we ignore the operating cost, which is assumed to be mainly fixed and treated as a 

constant
2
. The solution to (5) is: 

 
(1 )

PQ

PQ

r








, 

where 
PQ P Q P Q       , see Paxson and Pinto (2005). The investment is made when the 

two variables attain their respective thresholds. If we denote the threshold levels for P  and Q  by 

                                                 
2
 Fixed costs that are constant can be absorbed within the investment cost. 
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1P̂  and 
1Q̂ , respectively, and since value conservation requires the investment option value to be 

exactly balanced by the net value rendered by the investment, then the value matching 

relationship is specified by: 

 1 1 1 1
1 1

ˆˆ(1 )ˆˆ

PQ

PQ
AP Q K

r

  




 


. (6) 

Optimality is characterized by the two smooth pasting conditions associated with (6)  for P and 

Q  , respectively: 

 1 1 1 1
1 1 1

ˆˆ(1 )ˆˆ

PQ

PQ
AP Q

r

  








, (7) 

 1 1 1 1
1 1 1

ˆˆ(1 )ˆˆ

PQ

PQ
AP Q

r

  








. (8) 

From (7) and (8), our conjecture that the parameter values are positive is corroborated because of 

the non-negativity of the investment option value. Moreover, the parameters are equal, 1 1  . 

This establishes that for determining the optimal investment policy, the two factors can be 

simply represented by their product PQ , the revenue from generating electricity per unit of time. 

This substitution is originally proposed by Paxson and Pinto (2005), who apply the principle of 

similarity for reducing the dimension of (5) to one in order to obtain a closed-form solution. It 

follows that: 

 1 1 1

1

ˆˆ(1 )

1PQ

PQ
K

r

 

 




 
, (9) 

where 1  is determined from  1 1, 0Q    , (4). Also 
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1 1

1 1 1 1 1

1 1 1
1 1

ˆˆfor ,

(1 ) ˆˆfor .
PQ

A P Q PQ PQ

F PQ
K PQ PQ

r

 





 


 
  

 (10) 

with: 

 
1 11 1

1 1
1

1

ˆˆ(1 )

( )PQ

P Q
A

r

 

 

 





. 

 

2.2 Model II    

Stochastic Price and Quantity  with a Permanent Subsidy on Quantity 

We now modify the analysis to consider the impact on the investment decision of a government 

subsidy, denoted by  , whose value is proportional to the amount of electricity Q sold per unit 

of time.  In the Appendix we also show the equivalent model and results based on revenue, for 

this and the next Q based model.   In the presence of the subsidy, the generating plant is 

effectively producing two distinct outputs: (i) the revenue per unit of time generated by the plant 

PQ , and (ii) the subsidy revenue received from the government or electricity customers Q . As 

before, the investment option value denoted by 2F  depends on the two factors P  and Q . The 

risk neutral valuation relationship for 2F  takes a similar form as (2), so the valuation function is 

given by (3) except for the change in subscript, that is 2 2

2 2F A P Q
 

 . Also, its characteristic root 

equation is  2 2, 0Q    , (4). 

 



10 

 

In the absence of any flexibility after incurring the investment, the present value of the operating 

revenue for the plant is: 

 
PQ Q

PQ Q

r r



 


 
. 

The operating revenue is the present value of the operating revenue plus the government subsidy. 

If the two threshold levels signaling optimal investment are denoted by 
2P̂  and 2Q̂  for P  and Q , 

respectively, then the value matching relationship for this subsidized production model is: 

 2 2 2 2 2
2 2 2

ˆ ˆˆ
ˆˆ

PQ Q

P Q Q
A P Q K

r r

  

 
  

 
. (11) 

It is observable from (11) that the principle of similarity is no longer available, since the factors 

P  and Q  occurring in the relationship cannot be construed as a product PQ , even if 2 2  . 

The two smooth pasting conditions associated with (11) are: 

 2 2 2 2
2 2 2 2

ˆˆ
ˆˆ

PQ

P Q
A P Q

r

 





, (12) 

 2 2 2 2 2
2 2 2 2

ˆ ˆˆ
ˆˆ

PQ Q

P Q Q
A P Q

r r

  


 
 

 
. (13) 

These conditions, (12) and (13),  reveal that both 2  and 2  are positive, otherwise the option 

value at investment 2 2

2 2 2
ˆˆA P Q

 
 would be negative. Moreover, by simplifying we have: 

 2 2

2 2

ˆ

PQ Q

P

r r

 

   


  
, 

which establishes that 2  exceeds 2  provided the subsidy rate   is positive.  We obtain 

reduced form value matching relationships by substituting (12) and (13) in (11), respectively: 
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 2 2 2 2

2

ˆ ˆˆ

1PQ Q

P Q Q
K

r r

 

  

 
      

, (14) 

 2 2 2 2

2

ˆ ˆˆ

1PQ Q

P Q Q
K

r r

 

  
 

  
.   (15) 

In these reduced forms, the government subsidy effectively reduces the investment cost of the 

plant with the economic consequence that the optimal revenue threshold justifying the 

investment is lower than without it. 

 

The investment threshold that signals the amount of electricity sold per unit of time Q  and the 

price per unit of electricity P  economically justifying an optimal investment is specified by (i) 

and (ii) the two reduced form value matching relationships, (14) and (15), and (iii) the 

characteristic root equation  2 2, 0Q    , (4). In principle, the boundary relationship is 

obtainable by eliminating 2  and 2 from the three constituent equations, but as no purely 

analytical solution exists, we resort to obtaining the boundary numerically. 

 

2.3 Model III    

Stochastic Price and Quantity with a Retractable Subsidy on Quantity  

Subsidies are normally offered by governments in order to induce entrepreneurs to accelerate the 

timing of their investment in facilities, when otherwise they would defer making their 

commitment. As soon as the subsidy has activated sufficient plant investment, the government 

may decide to withdraw the subsidy, often without any advance warning. We now explore the 
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financial consequences on the investment decision for a subsidy that can be withdrawn at any 

time and to determine its effects on the threshold levels for P  and Q .  We assume that once the 

subsidy is withdrawn, it will never again be provided. 

 

We denote the value of the investment option in the presence of a subsidy, but when there is a 

possibility of an immediate withdrawal, by 3F , and in the absence of a subsidy by 1F , as before. 

We assume that the subsidy withdrawal is well explained by a Poisson process with a constant 

intensity factor, denoted by . The change in the option value conditional on the subsidy 

withdrawal occurring is    1 3, ,F P Q F P Q , so the expected change is given by: 

             1 3 1 3, , d 0 1 d , , dF P Q F P Q t t F P Q F P Q t       . 

From (2), it follows that the risk-neutral valuation relationship for 3F  is: 

 

 

2 2 2
2 2 2 23 3 3

2 2

3 3
1 3

1 1

2 2

0.

P Q P Q

P Q

F F F
P Q PQ

P Q P Q

F F
P Q F r F

P Q

   

   

  
 

   

 
     

 

 (16) 

The solution to (16) adopts the form: 

 3 3 1 1

3 3 1F A P Q A P Q
   

  , (17) 

where the parameters 1  and 1  are specified by  1 1, 0Q    , (4), with 1 1  (with =0), 

while 3  and 3  are related through the characteristic root equation: 

 
     

 

2 21 1
3 3 3 3 3 3 3 3 32 2

3 3

, 1 1

0.

P Q P Q

P Q

Q

r

           

    

    

    
 (18) 

For any feasible values of P  and Q , the valuation function 3F  exceeds 1F  because the 

coefficient 3A  is positive. This implies that the option value to invest is always greater in the 
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presence of a government subsidy that may be withdrawn unexpectedly than in its absence, 

which suggests that a subsidy, even one having an unexpected withdrawal, comparatively 

hastens the investment commitment, while it is comparatively deferred in its absence. 

 

If the subsidy is present, then the present value of the plant is    PQ QPQ r Q r     , and 

if absent, then  PQPQ r  , so the net present value following the investment commitment is: 

 
 1

PQ Q

QPQ

r r

 

 




 
. 

The thresholds signaling investment for a subsidy with unexpected withdrawal are denoted by 
3P̂   

and 
3Q̂  for P  and Q , respectively. The value matching condition becomes: 

 
 

3 3 1 1 33 3
3 3 3 1 3 3

ˆˆˆ 1ˆ ˆˆ ˆ

PQ Q

QPQ
A P Q A P Q K

r r

     

 


   

 
. (19) 

The two associated smooth pasting conditions are, respectively: 

 3 3 1 1 3 3
3 3 3 3 1 1 3 3

ˆˆ
ˆ ˆˆ ˆ

PQ

PQ
A P Q A P Q

r

    


 


, (20) 

 
 

3 3 1 1 33 3
3 3 3 3 1 1 3 3

ˆˆˆ 1ˆ ˆˆ ˆ

PQ Q

QPQ
A P Q A P Q

r r

     
 

 


  

 
. (21) 

The parameter values 1A , 1  and 1  are known from the solution to Model I with =0. 

3 31 1 3 3
3 1 1 3 3 3 3 3

ˆˆ
ˆ ˆˆ ˆ( ) / ( )

PQ

PQ
A A P Q P Q

r

   


  

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2.4 Model IV   Stochastic Joint Products with Sudden Provision of a                        

Permanent Subsidy on Quantities 

We now explore the financial consequences on the investment decision for a subsidy that can be 

provided permanently at any time and to determine its effects on the threshold levels for P  and 

Q .  We consider only the case where the subsidy thereafter can never be withdrawn, and 

compare the case of building the facility without a possible subsidy with the cases of a 

permanent subsidy.   

 

Since a sudden unexpected subsidy withdrawal makes an operating plant appear to be less 

economically attractive, it is likely that investment is hastened to capture the subsidy before it is 

withdrawn. In contrast, a sudden unexpected permanent subsidy introduction is expected to 

produce the opposite effect of investment deferral so that the subsidy income can be more fully 

captured. 

 

In Model II, the revenue threshold that signals an economically justified investment in the 

presence of a subsidy is 
2 2 2

ˆˆ ˆR P Q . Before the investment is made, the threshold 
2R̂  creates 

either side separate domains over which the investment option value differs in form.  The 

prevailing revenue is denoted by R PQ . If the prevailing revenue R  is less than the threshold 

2R̂ , then a sudden unexpected subsidy announcement does not trigger an immediate investment 

and the investment is deferred until R  attains 2R̂ . If, on the other hand, 2
ˆR R , then a sudden 

unexpected subsidy announcement automatically triggers an immediate investment in plant. This 
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asymmetry around the threshold 
2R̂  means that the investigation of a sudden unexpected subsidy 

announcement has to treat the case where 
2

ˆR R  differently from where 
2

ˆR R .  

 

The value for the investment option, denoted by 4F , is specified over the two domains: 

 
40 2

4

41 2

ˆfor ,

ˆfor .

F R R
F

F R R

 
 



 (22) 

We first consider the domain 
2

ˆR R , which is considered to be out-of-the money because over 

this domain, investment in the presence of a subsidy is not economically justified. It is assumed 

that a subsidy introduction is well described by a Poisson process with intensity  , and that once 

introduced, it cannot be withdrawn. The risk neutral valuation relationship then becomes: 

 

 

2 2 2
2 2 2 240 40 40

2 2

40 40
2 40

1 1

2 2

0.

P Q P Q

P Q

F F F
P Q PQ

P Q P Q

F F
P Q F r F

P Q

   

   

  
 

   

 
     

 

 (23) 

The solution to (23) adopts the form: 

 40 40 2 2

40 40 2F A P Q A P Q
   

   (24) 

where the parameters 2  and 2  are specified by  2 2, 0Q    , (4), and 40  and 40  by 

 3 40 40, 0Q    , (18).  

 

If there is no subsidy, then the present value of the plant is given by  PQPQ r  , while if there 

is an additional subsidy, then the present value is    PQ QPQ r Q r     . The net present 

value for the investment is given by: 
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PQ Q

PQ Q
K

r r



 
 

 
. 

The thresholds signaling investment for a sudden unexpected subsidy introduction are denoted 

by 
40P̂   and 

40Q̂  for P  and Q , respectively. The value matching condition becomes: 

 40 40 2 2 40 40 40
40 40 40 2 40 40

ˆ ˆˆ
ˆ ˆˆ ˆ

PQ Q

P Q Q
A P Q A P Q K

r r

    

 
   

 
. (25) 

The two associated smooth pasting conditions can be expressed as, respectively: 

 40 40 2 2 40 40
40 40 40 40 2 2 40 40

ˆˆ
ˆ ˆˆ ˆ ,

PQ

P Q
A P Q A P Q

r

    


 


 (26) 

 40 40 2 2 40 40 40
40 40 40 40 2 2 40 40

ˆ ˆˆ
ˆ ˆˆ ˆ .

PQ Q

P Q Q
A P Q A P Q

r r

    
 

 
  

 
 (27) 

 

We now consider the domain 
2

ˆR R , where investment is justified if the subsidy is introduced.  

The risk neutral valuation relationship for this domain is: 

 

 

2 2 2
2 2 2 241 41 41

2 2

41 41
2 41

1 1

2 2

ˆ 0.

P Q P Q

P Q

F F F
P Q PQ

P Q P Q

F F
P Q F r F

P Q

   

   

  
 

   

 
     

 

 (28) 

When an unexpected subsidy is announced for 2
ˆR R , the option valuation function 

instantaneously changes from 41F  into 2 2

2 2 2 2
ˆˆ ˆF A P Q

 
 , which denotes the threshold option value 

for committing an investment in the presence of a subsidy. The solution to (28) is: 

 41 41 2 2

41 41 2 2 2
ˆˆF A P Q A P Q

r

   


 


, (29) 
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where the parameters 2  and 2  are specified by  2 2, 0Q    , (4), and 41  and 41  by 

 3 41 41, 0Q    , (18).  

 

The thresholds signaling investment for a sudden unexpected subsidy introduction are denoted 

by 
41P̂   and 

41Q̂  for P  and Q , respectively. The value matching condition becomes: 

 41 41 2 2 41 41 41
41 41 41 2 2 2

ˆ ˆˆ
ˆ ˆˆ ˆ

PQ Q

P Q Q
A P Q A P Q K

r r r

    

  
   

  
. (30) 

The two associated smooth pasting conditions can be expressed as, respectively: 

 41 41 41 41
41 41 41 41

ˆˆ
ˆˆ

PQ

P Q
A P Q

r

 





, (31) 

 41 41 41 41 41
41 41 41 41

ˆ ˆˆ
ˆˆ

PQ Q

P Q Q
A P Q

r r

  


 
 

 
. (32) 

 

The reduced form value matching relationships are obtained by substituting (31) and (32) in (30), 

respectively, to give: 

 2 241 41 41 41
2 2 2

41

ˆ ˆˆ
ˆˆ

1PQ Q

P Q Q
K A P Q

r r r

  

   

 
   

     

, (33) 

 2 241 41 41 41
2 2 2

41

ˆ ˆˆ
ˆˆ

1PQ Q

P Q Q
K A P Q

r r r

  

   

 
       

. (34) 

 

It is observed from (33) and (34) that the effect of an unexpected sudden subsidy introduction is 

to effectively raise the investment cost, by an amount equaling the option value for an 

economically justified investment in the presence of a subsidy, adjusted by the Poisson intensity 
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parameter  . For 0  , the solution simplifies to the case of no subsidy. As   becomes 

increasingly large, the investment cost is raised by the amount equaling the option value.   

 

2.5 Model V  Stochastic Joint Products with Sudden Provision of a 

Retractable  Subsidy  

Finally, we consider the case where a government suddenly provides a retractable subsidy, but 

only for those facilities built after the announcement of the subsidy provision.  Since a sudden 

unexpected subsidy withdrawal makes an operating plant appear to be less economically 

attractive, there is the incentive to capture the subsidy before it is withdrawn, but also the 

incentive to wait until the retractable subsidy is available. 

  

In Model III, the revenue threshold that signals an economically justified investment in the 

presence of a retractable subsidy is 3 3 3
ˆˆ ˆR PQ . Before the investment is made, the threshold 

3R̂  

creates either side separate domains over which the investment option value differs in form.  The 

prevailing revenue is denoted by R PQ . If the prevailing revenue R  is less than the threshold 

3R̂ , then a sudden unexpected subsidy announcement does not trigger an immediate investment 

and the investment is deferred until R  attains 3R̂ . If, on the other hand, 3
ˆR R , then a sudden 

unexpected subsidy announcement automatically triggers an immediate investment in the plant. 

This asymmetry around the threshold 3R̂  means that the investigation of a sudden unexpected 

subsidy announcement has to treat the case where 3
ˆR R  differently from where 3

ˆR R .  
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The value for the investment option, denoted by 5F , is specified over the two domains: 

 
50 3

5

51 3

ˆfor ,

ˆfor .

F R R
F

F R R

 
 



 (35) 

We first consider the domain 
3

ˆR R , which is considered to be out-of-the money because over 

this domain, investment in the presence of a retractable subsidy is not economically justified. It 

is assumed that a subsidy introduction is well described by a Poisson process with intensity  , 

and that once introduced, it is retractable. The risk neutral valuation relationship then becomes: 

 

 

2 2 2
2 2 2 250 50 50

2 2

50 50
3 50

1 1

2 2

0.

P Q P Q

P Q

F F F
P Q PQ

P Q P Q

F F
P Q F r F

P Q

   

   

  
 

   

 
     

 

 (36) 

The solution to (36) adopts the form: 

 50 50 3 3

50 50 3F A P Q A P Q
   

   (37) 

where the parameters 3  and 3  are specified by  3 3, 0Q    , (18), and 50  and 50  by 

 3 50 50, 0Q    , (18). 

The thresholds signaling investment for a sudden unexpected subsidy introduction are denoted 

by 
50P̂   and 

50Q̂  for P  and Q , respectively. The value matching condition becomes: 

 50 50 3 3 50 50 50
50 50 50 3 50 50

ˆ ˆˆ
ˆ ˆˆ ˆ

PQ Q

P Q Q
A P Q A P Q K

r r

    

 
   

 
. (38) 

The two associated smooth pasting conditions can be expressed as, respectively: 

 50 50 3 3 50 50
50 50 50 50 3 3 50 50

ˆˆ
ˆ ˆˆ ˆ ,

PQ

P Q
A P Q A P Q

r

    


 


 (39) 

 50 50 3 3 50 50 50
50 50 50 50 3 3 50 50

ˆ ˆˆ
ˆ ˆˆ ˆ .

PQ Q

P Q Q
A P Q A P Q

r r

    
 

 
  

 
 (40) 
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We now consider the domain 
3

ˆR R , where investment is justified if the retractable subsidy is 

introduced.  The risk neutral valuation relationship for this domain is: 

 

 

2 2 2
2 2 2 251 51 51

2 2

51 51
3 51

1 1

2 2

ˆ 0.

P Q P Q

P Q

F F F
P Q PQ

P Q P Q

F F
P Q F r F

P Q

   

   

  
 

   

 
     

 

 (41) 

When an unexpected subsidy is announced for 
3

ˆR R , the option valuation function 

instantaneously changes from 51F  into 3 3

3 3 3 3
ˆˆ ˆF A P Q

 
 , which denotes the threshold option value 

for committing an investment in the presence of a subsidy. The solution to (41) is: 

 51 51 3 3

51 51 3 3 3
ˆˆF A P Q A P Q

r

   


 


, (42) 

where the parameters 3  and 3  are specified by  3 3, 0Q    , (18), and 51  and 51  by 

 3 51 51, 0Q    , (18). 

 

The thresholds signaling investment for a sudden unexpected withdrawal subsidy introduction 

are denoted by 
51P̂   and 51Q̂  for P  and Q , respectively. The value matching condition becomes: 

 51 51 3 3 51 51 51
51 51 51 3 3 3

ˆ ˆˆ
ˆ ˆˆ ˆ

PQ Q

P Q Q
A P Q A P Q K

r r r

    

  
   

  
. (43) 

The two associated smooth pasting conditions can be expressed as, respectively: 

 51 51 51 51
51 51 51 51

ˆˆ
ˆˆ

PQ

P Q
A P Q

r

 





, (44) 

 51 51 51 51 51
51 51 51 51

ˆ ˆˆ
ˆˆ

PQ Q

P Q Q
A P Q

r r

  


 
 

 
. (45) 
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There are several additional subsidy arrangements which could be modeled similarly such as 

proportional subsidies on P only, permanent, retractable, and a suddenly introduced permanent or 

retractable subsidy.  Also there are combinations of P subsidies and separate Q subsidies, and 

some arrangements such as investment credits which reduce effective K, which are also 

amendable to quasi-analytical solutions
3
.  Possibly these approaches can be utilized to model the 

consequences of tax (price) versus trading (quantities) in environmental abatement policies, see 

Pezzey and Jotzo (2012). Other arrangements such as guaranteed minimum prices for certain 

quantities, or guaranteed purchases for certain quantities at certain times, and finite facilities, 

may not be amenable to quasi-analytical solutions.    

 

3.  Numerical Illustrations 

It is interesting to compare the apparent effectiveness of different subsidy arrangements, and the 

possible sudden introduction or retraction of those subsidies on the real option value of those 

investment opportunities, and the price and quantity thresholds that justify commencing  

investments.  Pairs of P̂  and Ĉ  could be generated by changing the solutions along a suitable Q 

range. 

Since Model I P̂
 
(=.20) is less than Model I P̂  (=0), clearly a permanent subsidy makes a 

difference, with a 20% R subsidy reducing the price threshold by 16.6%, and increasing the ROV 

some 60%.   

                                                 
3
 Fisher and Newell (2004) show that a subsidy per unit output equal to the price of a green certificate is equivalent 

to =s/(1-) where s is the equilibrium value of the green certificate and  is the required proportion of fossil fuel 

generation that must be purchased.  But if s is stochastic, then so is .  Lesser and Su (2008) review several feed-in-

tariff designs, noting that some US regulators have established gradually increasing annual minimum proportions of 

renewable energy that must be purchased or generated over time, but in Germany direct subsidies for renewable 

generation decrease over time. 
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For a comparable subsidy (at the price threshold) on the quantity generated, Model II, the 

permanent subsidy reduces the price threshold even more, and adds more than 16% to the ROV.  

R is more uncertain (34.6%) than Q due to the assumed volatilities and negative correlation.  

Table I 

 

Model I is the solution to EQs 6-7-8 with ROV EQ 10, Model II is the solution to EQs 11-12-13 with ROV the LHS 

of EQ 11, Model III is the solution to EQs 19-20-21 with ROV EQ 17, Model IV is the solution to EQs 25-26-27 or 

30-31-32 with ROV EQ 24 or 29, Model V is the solution to EQs 38-39-40 or 43-44-45 and ROV EQ 37 or 42, with 

the parameter values as follows: price P=€53, quantity Q=7.8 KWh, R subsidy =.20, Q subsidy 13.65,  investment 

cost K=€4867 
4
, price volatility P=.20, quantity volatility Q=.20,  price and quantity correlation =-.50, P=.01, 

Q=.01, and riskless interest rate r=.08. =.10  reflects the possibility of a subsidy being withdrawn, and both the 

possibility of a permanent subsidy and also a retractable subsidy.  

 

                                                 
4
 The P, Q and K parameter values are consistent with an Iberian wind farm. The subsidy rate .20 for R in Model I is 

comparable with the Q=13.65 subsidy in Model II at the P,Q which justifies exercise of the real option. 

Subsidy Incentive Effect under Different Models
 P^Q^ P^ (Q^=7.8) ROV

Model I 0.00 638.70 81.88 1022.72 NO SUBSIDY

Model I 0.20 532.25 68.24 1631.49 PERMANENT SUBSIDY ON R

 

Model II 13.65 486.07 62.32 1903.76 PERMANENT SUBSIDY ON Q

 

Model III 13.65 461.72 59.19 1717.11 RETRACTABLE SUBSIDY ON Q

 

Model IV0 13.65 718.97 92.18 1325.66 MAYBE PERMANENT SUBSIDY ON Q, R<R2^

Model IV1 13.65 697.11 89.37 1913.12 MAYBE PERMANENT SUBSIDY ON Q, R>R2^

Model V0 13.65 461.72 59.19 941.95 MAYBE RETRACTABLE SUBSIDY ON Q, R<R3^

Model V1 13.65 584.77 74.97 1127.56 MAYBE RETRACTABLE SUBSIDY ON Q, R>R3^

Q^=Q 7.80

P 53.00

R 413.4

R Subsidy 106.45 Subsidy Value at R^ M I

Q Subsidy 106.47 Subsidy Value at P^Q^ M II
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If a subsidy can be withdrawn, Model III versus Model II, the P̂  decreases but ROV also 

decreases.  Commence the project when the subsidy is available earlier if it might be withdrawn.  

A higher retractable  results in P̂  increasing and ROV decreasing, as shown in Figures 4 and 8 

below. 

Comparing the out-of-the money Model IV0 with the out-of-the-money Model II, the PIV price 

threshold exceeds PII, naturally because a bird in the hand is worth more than the same bird in a 

bush (talk is cheap), and the ROV is lower.  But for the in-the-money Model IV1, the 
1

ˆ
IVP  is 

lower than the Model IV0 and so is the ROV.  

For sudden subsidies that might be withdrawn, if the current price is out-of-the money, 
0

ˆ
VP  is 

about the same as the ˆ
IIIP , and the ROV is lower, naturally.  If the current price is in-the-money, 

the 
1

ˆ
VP  is lower than for Model IV1, and the ROV is lower.  So at these parameter values, either 

a possible or actual retractable subsidy is likely to encourage early investment. Sudden possible 

retractable subsidies are less valuable than possible permanent subsidies, as retractable subsidies 

are less valuable than permanent subsidies.  

SENSITIVITIES 

Our base parameters for the sensitivity of P̂  and ROV to changes in parameter values are the 

same as for Table I, over a range of Q volatility 20% to 45%, correlation of P and Q from -.50 to 

.75,  from .20 to .45 (and the comparables for Q), and  from .10 to .225, both for retractable, 

and for possible permanent and possible retractable subsidies.. 
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    Figure 1 

 

0P̂  is the solution to EQs 6-7-8 without a subsidy, and 
1P̂  with a subsidy, 

2P̂  is the solution to EQs 11-12-

13, 
3P̂

 
is the solution to EQs 19-20-21, 

4P̂  is the solution to EQs 25-26-27 or 30-31-32, 
5P̂  is the solution 

to EQs 38-39-40 or 43-44-45 with the parameter values in Table I.     

Figure 2 
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0P̂  is the solution to EQs 6-7-8 without a subsidy, and 
1P̂  with a subsidy, 

2P̂  is the solution to EQs 11-12-

13, 
3P̂

 
is the solution to EQs 19-20-21, 

4P̂  is the solution to EQs 25-26-27 or 30-31-32, 
5P̂  is the solution 

to EQs 38-39-40 or 43-44-45 with the parameter values in Table I.     

    Figure 3 

 

0P̂  is the solution to EQs 6-7-8 without a subsidy, and 
1P̂  with a subsidy, 

2P̂  is the solution to EQs 11-12-

13, 
3P̂

 
is the solution to EQs 19-20-21, 

4P̂  is the solution to EQs 25-26-27 or 30-31-32, 
5P̂  is the solution 

to EQs 38-39-40 or 43-44-45 with the parameter values in Table I.     

Price thresholds for all models increase with increases with quantity volatility, and decrease with 

the size of the subsidy. So either production volume floors or high subsidies of almost any type 

might encourage investment.  Sensitivity to increases in the correlation and to possible retraction 

or introduction of subsidies is sometimes ambiguous. The  for Model III ranges from .10 to 

.225, but the retractable Model III  used for Model V is always .10, that is there is a .10 

intensity of retraction, when the possibility of a retractable subsidy being introduced suddenly 

has an intensity ranging from .10 to .225.  

 

Figure 4 
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3P̂
 
is the solution to EQs 19-20-21, 

4P̂  is the solution to EQs 25-26-27 or 30-31-32, 
5P̂  is the solution to 

EQs 38-39-40 or 43-44-45 with the parameter values in Table I.     

    Figure 5 

 

ROV0 is the solution to EQ 10 without a subsidy, ROV1 with a subsidy, ROV2 the LHS of EQ 11, ROV3 

EQ 17, ROV4 EQ 24 or 29, ROV5 EQ 37 or 42, with the parameter values in Table I.   

  

   Figure 6 
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ROV0 is the solution to EQ 10 without a subsidy, ROV1 with a subsidy, ROV2 the LHS of EQ 11, ROV3 

EQ 17, ROV4 EQ 24 or 29, ROV5 EQ 37 or 42, with the parameter values in Table 1.   

     Figure 7 
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ROV0 is the solution to EQ 10 without a subsidy, ROV1 with a subsidy, ROV2 the LHS of EQ 11, ROV3 

EQ 17, ROV4 EQ 24 or 29, ROV5 EQ 37 or 42, with the parameter values in Table I.   

     

Figure 8 

 

ROV3 is the solution to EQ 17, ROV4 EQ 24 or 29, ROV5 EQ 37 or 42, with the parameter values in Table I. 

  

The ROV for all models decrease with increases with quantity volatility, increase with the 

increase of correlation (which increases P*Q volatility) and (mostly) increase with the size of the 

subsidy. So while either production volume floors or high subsidies of any type might encourage 

investment, the value of a renewable energy concession will be dependent on expected 

volatilities, as well as the subsidy.  Sensitivity of ROV to possible retraction or to the 

introduction of retractable subsidies is intuitive: the greater the possibility of retracting a subsidy, 

the less the ROV, but the greater the possibility of a retractable subsidy (rather than no subsidy) 
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the lower the ROV.  Of course, the greater the possibility of a permanent subsidy, the greater the 

ROV.  

  . 

4.  CONCLUSION   

We derive the optimal investment timing and real option value for a renewable energy facility 

with joint (and sometimes distinct) products of price and quantity of generation, particularly 

where there might be a government subsidy proportional to the quantity of generation. When the 

dimensionality cannot be reduced, the thresholds and real option values are derived as a 

simultaneous solution to a set of equations.  Our base Model I shows that a permanent subsidy 

proportional to revenue lowers the investment threshold and raises the real option value 

substantially.  In Model II, when the permanent subsidy is proportional to the quantity produced, 

the threshold is lower than the equivalent R threshold of Model I. In Model III, for a retractable 

subsidy the price threshold is even lower, showing the incentive of a bird in hand. Where there is 

the possibility of a permanent subsidy, for out-of-the-money investment options, Model IV, the 

price threshold is much higher, but for the possibility of a retractable subsidy, Model V, about 

the same as for an actual retractable subsidy. MIV0>M0>MI>MII>MIII>MV0, given that in all 

cases P< P̂ .  Price thresholds for all models increase with increases with quantity volatility, and 

decrease with the size of the subsidy. So either production volume floors or high subsidies of 

almost any type might encourage investment. 

The order of the ROV for each context is not exactly the same as for the price threshold.  The 

ROV ranks by type of subsidy arrangement are MII>MIII>MI>MIV0>M0>MV0, given that in 

all cases P< P̂ .  Model I shows that a permanent subsidy proportional to revenue lowers raises 
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the real option value substantially.  The highest ROV are the actual permanent subsidies on Q or 

the possibilities of such subsidies.  The lowest ROV are the possibilities of a retractable subsidy. 

The ROV for all models decrease with increases with quantity volatility, increase with the 

increase of correlation (which increases P*Q volatility) and increase with the size of the subsidy. 

So while either production volume floors or high subsidies of almost any type might encourage 

investment, the value of a renewable energy concession will be dependent on expected 

volatilities, as well as the subsidy. 

What are the apparent policy guidelines in using subsidies to encourage early investment in 

facilities with joint (and sometimes distinct) products?  Subsidies matter, especially if regarded 

as permanent.  But whether increasing a subsidy say from 0 to .35 per unit produced is worth 

reducing the threshold as indicated is questionable.  Possibly less transparent incentives are price 

or quantity guarantees, which effectively reduce price and/or quantity volatility, with a 

significant impact on thresholds under all models. 

Obvious areas for future research are other subsidy arrangements which could be modeled 

similarly, such as proportional subsidies on P only, permanent, retractable, and sudden 

permanent or retractable subsidies, along with some combinations with Q subsidy arrangement 

models. Also possibly some of the models herein might serve as comparisons for numerical 

analysis of more realistic, finite, investment opportunities.  
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Appendix 

In this Appendix, simplified solutions to three alternative models are obtained by assuming the 

subsidy depends on the generated revenue and not on one of its elements.  By invoking the 

similarity principle, the value-matching relationship can be expressed as a one-factor 

formulation. If the proportional subsidy is represented by M , then for a revenue  R PQ , the 
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total cash inflow is specified by  1 MR  . The value for the investment opportunity is denoted 

by V , in order to differentiate between the original and simplified variants.  

Model 0 

The subsidy is set to equal zero in Model 0. If the threshold revenue signalling an optimal 

investment is denoted by 
1R̂ , then: 

  1
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The value for the investment opportunity is defined by: 
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where: 
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Model I 

For a positive proportional subsidy M , the corresponding results are: 
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Model II 

The probability of a sudden unexpected withdrawal of the subsidy is denoted by  . If the 

revenue threshold signalling an optimal investment is denoted by 
3R̂ , then its solution is found 

implicitly from: 

 
 

13 3 1
3 1 3

3 3

ˆ ˆ
1 1 1 1

PQ

M

r
R K B R


  

   

 
 

   
 (A7) 

where 1B  is enumerated from (A3)..  The value for the investment opportunity is specified by: 
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where: 

 
  3

1 3

1

3 1
3 1 3

3 3

ˆ(1 1 ) ˆ
( )

M

PQ

R
B B R

r



   

  



 
 


. (A9) 

For 0  , when there is no likelihood of the subsidy being withdrawn unexpectedly, 3 1  and 

Model II simplifies to the Model I solution. 

Model III 

The probability of a sudden unexpected introduction of the subsidy is denoted by  . If the 

revenue threshold signalling an optimal investment is denoted by 4R̂ , then: 
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where 2B  is enumerated from (A6). The value for the investment opportunity is specified by: 
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where: 
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For a zero likelihood of an unexpected introduction of a proportional subsidy, Model III 

simplifies to Model 0.  

Numerical Evaluations 

With the identical parameter values to those of Table I, the revenue thresholds are shown below.   

     

Model R 0 and Model R I results are identical to those shown in Table I, which are based on 

revenue, without and with a permanent subsidy on R.  Where there is a permanent subsidy on Q 

rather than on R, Model R II shows a higher revenue threshold than Model II, indicating an 

incentive to defer investment.  Where there is a retractable subsidy on Q rather than on R, Model 

R III shows a much higher revenue threshold than Model III, indicating a significant incentive to 

defer investment.   

Model R^

R 0 638.702

R I 532.251

R II 504.277

R III 721.175


