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Product development with value-enhancing options 

 

Abstract 

We study costly managerial actions that reveal uncertainty like research, experimentation, and early 

product versions (pilot projects) or actions that are intended to bring about an increase in value like 

attribute-enhancing development options and advertising but have an uncertain outcome. Actions are 

implemented sequentially at an optimal time and involve path-dependent characteristics. We derive 

two-stage analytic formulas to study product development with optimal timing of product versions 

and sequencing of value-enhancing actions. We also propose a multi-period solution using a 

numerical lattice approach. Our analysis reveals that exploration actions are more important when the 

project is out or at-the-money (near zero NPV), and less important for high project values. In a multi-

stage setting, exploration actions are important even for in-the-money projects when follow-on actions 

exist that can enhance the expected value of the project. With path-dependency, early actions are more 

valuable since they enhance the impact or reduce the cost of subsequent actions. 

JEL classification: G13, G31 
 
Keywords: Real options, economics of R&D, technical risk, path-dependency, sequential 
(compound) options, early versions (pilot projects) with cash multiplier, jump-diffusion. 
 
 
1. Introduction 

The innovation development process involves exploration and experimentation, research to meet 

consumer needs or to outperform competitors and attribute enhancing investments. In the area of 

consumer electronics, for example, Apple’s iPod involved experimentation with the use of materials 

and appearance that make it very attractive even if some materials are more costly to produce 

(Burrows, Business Week 9/25/2006). Research and development, however, involves considerable 

risks that affect the profitability and successful launching of the product. McGrecor et al. (Business 

Week 7/10/2006) discuss several examples of project failures. Apple also faced revenue reductions 

due to the vulnerability of some of the materials used and for overlooking other features like battery 

use (Burrows, Business Week 9/25/2006). Samsung’s marketing research concerning what consumers 
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considered most important attributes of a flat-screen TV resulted in a more focused development that 

achieved a higher market penetration (Moon, Business Week 7/3/2006). Even if the immediate cash- 

flow outcome of an action is negative, there may still be a “learning” effect which may have a positive 

impact on future decisions. McGrecor et al. (Business Week 7/10/2006) describe how firms have used 

previous failures to improve future decisions.  

We develop a real options model to study costly, interacting managerial exploration actions 

and actions that are expected to enhance value or reduce the cost of a project, albeit having an 

uncertain outcome. The information revealed from exploration actions or the resulting uncertainty of 

development investments, may cause management to deviate from its original plans. Kothari et al. 

(2002) find that the relation between R&D expenditures and uncertainty of future benefits exhibits a 

positive correlation.  In our model the information revelation of exploration actions and the volatility 

of direct-value enhancing actions also interact with exogenous demand-driven uncertainty (e.g. 

capturing changing consumer preferences) which is separately modelled in continuous time using a 

Brownian motion or a jump-diffusion process.  

Pure research or exploration actions include investments in early product versions (pilot 

projects), experimentation using new processes, or marketing research. These actions resolve 

uncertainty about the true project value or cost, enabling management to capitalize on new 

information before irreversible investment is undertaken. Childs et al. (2001) (see also Childs et al., 

2002) and Bernardo and Chowdhry (2002) use a filtering approach to study information acquisition in 

a real options model with noisy assets. Paddock et. al. (1988) study oil reserves risk, while Smith and 

Thompson (2005) study the choice between interdependent exploration projects. Pindyck (1993) 

examines sequential multi-stage actions with technical uncertainty that decreases as the project 

approaches completion.  Pindyck assumes continuous reduction of technical uncertainty while we 

allow for different levels of technical uncertainty resolution between stages. We also allow for 

interacting actions and derive analytic formulas for the two-stage problem. Childs and Triantis (1999) 

consider accelerated versus sequential strategies and learning spillovers between projects. They 

assume that actions affect the Brownian volatility, while we maintain separate demand driven 

uncertainty and consider path-dependency. 



 3

Direct value-enhancing actions include R&D efforts to improve the attributes or quality of a 

product, enhance customer perceptions through advertising or efforts to reduce cost through adoption 

of new technologies in production.  Similarly to Huchzermeier and Loch (2001) these actions aim at 

enhancing project value but have an uncertain outcome (see also Weitzman and Roberts, 1981). We 

assume that decisions are made at discrete points in time and the outcome of such investment actions 

is realized immediately. Impulse-type actions with uncertain outcome were introduced in control 

theory by Korn (1997) and in real options by Martzoukos (2000).  Childs and Triantis (1999) and 

Berk et al. (2004) analyze projects that require completion of development stages before 

commercialization of the product.  In our setting, the firm may decide to develop the product 

immediately, to delay development by exploring further experimentation and development 

opportunities, or to introduce early product versions.  The expected impact, volatility and costs of 

managerial actions and the cash flows of early product versions may depend on the sequencing of 

actions (path-dependency). For example, the firm may expect a higher impact of R&D if prior 

marketing research has been implemented. New information following the results of an 

experimentation process may also reduce next-stage costs. Childs et al. (1998) focus on potential 

synergies between actions by comparing sequential versus parallel development.  

We derive analytic solutions for a two-stage problem that involves multiple value-enhancing 

actions. Our analytic solutions nest several known results as special cases, including Geske (1979) 

and Longstaff (1990) (see Chung and Johnson, 1994 for the multi-stage extendible option). We 

incorporate path-dependency and optimal timing of managerial exploration and value-enhancing 

actions. We also allow for optimal timing of early product versions that provide cash flows and 

information about future product versions, the investment decision in the final version, and 

abandonment options for partial recovery of invested capital. We extend the model to a multi-stage 

framework using a numerical lattice approach and provide a numerical application with multiple 

actions and path-dependency.  

Consistent with results in Bernardo and Chowdhry (2002) and Huchzermeier and Loch (2001), 

we show that managerial exploration actions may be more valuable for projects that are marginal or 
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break-even (close to zero-NPV investments or near at-the-money options). In contrast to these papers, 

however, we show that in the case of interacting actions, exploration actions may be important even in 

deep in-the-money projects when follow-on value-enhancing actions are involved.  Furthermore, we 

show that multiple and interchanging decision regions (as a function of project value) between delay, 

early development, exploration and expected value-enhancing actions are possible. Path-dependency 

also has a substantial impact on these regions.  

The rest of the paper is organized as follows. Section 2 describes the problem and 

assumptions. Section 3 provides the analytic formulas and discusses the results and main implications. 

Section 4 provides a generalization to a multistage application in new product development and our 

proposed numerical solution. The last section concludes.   

 

2. Problem description 

Figure 1 illustrates a valuation problem for product development and market introduction which is 

typical for new products in many industries. With a basic technology already developed, the firm can 

proceed with the introduction of a basic product immediately (with a set of features the management 

considers to be an adequate basic version). However, management has the option for further 

enhancement, adding features (MC1) and improving quality or investing in advertising (MC2) to 

influence customer perceptions. It may also proceed with an early or scaled-down version (LG) of the 

product that would provide only a fraction of the cash flows of the complete version but generate 

valuable information (e.g., customer reaction and product testing) that strengthens the launch of the 

basic version at a later date. Management may also engage in research or experimentation (L1) that 

will enable further value-enhancing development opportunities.  Figure 1 illustrates the set of feasible 

actions and sequencing. For example, research may be followed by an introduction of an early version 

or follow-on attribute development. The choice of an early action may affect the expected outcome, 

volatility, and costs of following-on actions due to new information and experience obtained.  

[Insert Figure 1 here] 
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The present value of the basic version tS  (i.e., the present value of project cash flows of the basic 

version without further enhancements) is assumed to follow a Geometric Brownian motion, adjusted 

for the impact of optional activation of 1 2=
MCNi MC ,MC ,...MC  value-enhancing managerial actions:1 

                                                   σ= + +t
i i

t

dS
adt dz k dq

S
                                                        (1) 

where a  denotes the expected return of the project, σ is the standard deviation of the rate of return, 

and dz is an increment to a standard Wiener process (describing the exogenous uncertainty).  The 

MCN  managerial actions can be optionally activated (at a cost) by the management. Parameter ik  is a 

random variable that represents the impulse effect Yi = 1 + ki on project value of managerial action i,  

and idq  is a control variable that takes the value 1 when the action is optimally activated by 

management and 0 if not. Actions bring about value improvement by increasing the expected value or 

volatility of the project (thus increasing option value). Exploration actions (also included in the MCN  

set) help update management’s estimate about the true project value. 

We assume that the multiplicative impact 1i iY k= +  follows a log-normal distribution of the 

form: 

                             ( ) ( ) ( ) ( )( )( )21 2 1γ γ σ= + ⎛ ⎞−⎜ ⎟
⎝ ⎠
exp exp expi i i iY k ~ log N ,                                     (2a) 

where 

    ( ) ( )2 21 0 5γ σ σ+ −i i i ilog k ~ N ,.                               (2b) 

The assumption of log-normality precludes negative asset values. Moreover, conditional on action 

activation, asset value remains log-normally distributed. The pair ( )γ σi i,  denotes the expected 

(exponential) impact (size) and the volatility of action i. We use 0γ >i  to describe efforts intended to 

enhance value with an uncertain outcome. (Alternatively, if S is interpreted as a cost, 0γ <i  implies 

efforts to reduce costs.)  

                                                 
1  The jump-diffusion case with multiple classes of jumps is discussed in the appendix. 
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The case 0iγ =  (with 2 0σ >i ) captures exploration activities with no direct cash-flow value 

impact. In this case value-enhancement can be achieved through improvement of the information. 

This situation exists when project values are not observed with certainty and are noisy estimates of 

true project values, with total uncertainty 2
TUσ . This uncertainty is different than demand-driven 

uncertainty. It might relate to uncertainty in the original cash flow projections, the selection of the 

optimal development process, or the optimal product features to be included. Each exploration 

investment reduces uncertainty about the true project value (in log-scale) by an amount equal to 2σi . 

The parameter 2σi  determines the expected (ex-ante) amount of information revelation that affects 

option value.  This is consistent with a Bayesian approach where the above parameters of the log-

normal distribution are estimated as the parameters of a preposterior distribution (see Kaufman, 1963, 

and a recent application by Davis and Samis, 2006).  

Management can make decisions at Ndec discrete (equally-spaced) decision points in time 

before maturity T: ( )
0 1 2 1

12
0 −

−
= = = =

dec

dec
N

dec dec dec

N TT T
t , t , t ,..., t

N N N
. The two-stage (Ndec = 2) 

problem involves decisions at 0t  (= 0) and 1t  (< T). At time T the decision is to either exercise or 

abandon the project. With an early (pilot) version, the firm may generate additional cash, assumed to a 

fraction  m of final project value (ST). With an early scaled-down version the firm still has the option 

to develop the basic version while it can also obtain more information observing the market’s 

reaction. The set of all feasible decisions is: 

{ }1 2 1 2MC MCN NM W ,A,EE,MC ,MC ,...MC ,W ,W ,...W=  

This set includes the following:  wait (W), abandon (A), exercise early (EE) the investment option,  

MCN  managerial value-enhancing control actions ( iMC ), and a set of possible states of inaction 

( iW ) after an action is activated. We will use the notation L to distinguish actions of pure 

experimentation or exploration that intend to reduce technical uncertainty from other direct value-

enhancing actions. At any decision time t , the set of admissible choices is tM
+ . tM

+  may not include 
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all decisions and can be a subset of the superset M  ( tM M+ ⊆ ). The characteristics of the actions 

(expected impact, volatility, and costs) in the set tM
+ may be path dependent, affected by the action 

history −
tM .  The value tdV  of the project under decision td  is thus a function of the history of 

actions in −
tM . (The modes EE and A are absorbing states since in those states the decision process 

stops.)  

Option value, reflecting the value of the project with the embedded opportunities to enhance 

value, must satisfy the following set of partial integro-differential equations (PIDEs) between decision 

points: 

    ( ) ( ) ( )2 21

2
0σ δ+ + − +

∈
+ − + − − =

⎧ ⎫⎡ ⎤⎡ ⎤⎨ ⎬⎣ ⎦⎣ ⎦⎩ ⎭
Max

SS S t
t t

i i i iS V r SV V
d M

m S X E V SY ,t V S,t dq rV         (3) 

                          

Here r denotes the riskless rate of interest, and δ  represents an opportunity cost of waiting or a 

shortfall from the equilibrium required rate of return (see McDonald and Siegel, 1984, and 

Constandinides, 1978). It may also represent exogenous competitive erosion (e.g., Trigeorgis, 1986; 

Childs and Triantis, 1999). The parameter mi captures additional cash flows received because of an 

early (pilot) version when capital expenditure Xi is paid (that also keeps the option to invest in the 

basic version).2  

                                                 
2 The PIDE in equation (3) is derived as follows. For the continuous part one could follow two alternative approaches. First, 

one can assume the existence of a “twin security” (or spanning assets) and follow a replication approach (e.g. Merton’s 

(1976)). A second approach is to follow Constantinides (1978) assuming that the intertemporal CAPM holds (Merton, 1973), 

adjusting required returns to their certainty equivalents. For the discontinuous part, generated by the effect of managerial 

actions, we follow a similar assumption with Merton (1976) assuming that managerial actions involve firm-specific risks 

which are uncorrelated with the market portfolio and thus are not priced by investors. We then discount using the risk free 

rate. Equivalently, one may assume risk-neutral agents. Consistently with these two assumptions, and in contrast with 

Pindyck (1993) we also allow final investment decisions to be made even when residual uncertainty is left, i.e. when 

exploration actions do not reveal all uncertainty about true S value.  
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With t tZ +Δ  denoting the accumulated (Brownian) noise between successive decision points from t to 

t t+ Δ , project value must then satisfy: 

 

                                  ( )
2

1
2
σ

δ σ+Δ
+Δ= − − Δ + +

⎡ ⎤⎛ ⎞
⎢⎜ ⎟ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

expt t
t t i i

t

S
r t Z k dq

S
                                    (4) 

The boundary condition at maturity T of the option is the maximum of the value of the decision to 

exercise (EE) 3, obtaining ST – X (X being the development cost), or to abandon (A) the project for a 

recovery amount α of total cumulative costs paid TC. This resale value may represent resale of 

innovations, property rights or the value of knowledge capital obtained that may be used for other 

spin-off products. X represents the necessary costs that will achieve a certain level of performance 

dictated by current competitive conditions in the market (see also Huchzermeier and Loch, 2001). The 

firm expects to get S with the option value being affected by competitive erosion and consumer demand 

uncertainty (Brownian noise). Implementing costly managerial actions may enhance this value but has an 

uncertain outcome. We assume for simplicity that development costs X are not affected by the selection 

of the R&D path (although this can be easily relaxed). 

In what follows we use the general notation ( )γ −
t tM ,d  and ( )σ −

t tM ,d  to describe the 

expected impact (size) and volatility of a managerial action dt at time t, conditional on the history of 

decisions tM
− . For example, implementing two actions in sequence may result in a higher expected 

impact or lower costs for the second action due to learning-by-doing or new information obtained.  

Log-returns between successive decision points t and t +Δt follow a normal distribution: 

         ( ) ( ) ( )2 2 2 21 1
2 2

δ σ γ σ σ σ− − − −+Δ⎛ ⎞ ⎛ ⎞⎛ ⎞− − Δ + − Δ +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

t t
t t t t t t t

t

Sln |M ~ N r t M ,d M ,d , t M ,d
S

        (5) 

The distribution of returns conditional on no activation of a managerial action is obtained by 

removing ( )γ −
t tM ,d and ( )σ −

t tM ,d  from equation (5). Actions in general increase the mean and 

                                                 
3 We use a single mode EE  to denote exercise whether this decision involves early exercise or at the maturity of the option.   
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variance of S.  Increases in mean and volatility increase option value but the firm should weigh these 

expected benefits against the costs of an action.  

 

3. Two-stage analytic solutions 

In this section we provide valuation formulas for investment options with multiple embedded 

managerial actions in a two-stage framework. Appendix section B provides formulas for the case of 

jump-diffusion process describing exogenous uncertainty.  

Consider a sequential option (call on call) with embedded managerial actions, early product 

versions providing cash (pilot projects), and early exercise and abandonment at 0 0t =  and 1 0t > . At 

0 0t = , the firm may exercise the investment option early, in which case it will obtain S – X.  Since 

the project is not yet initiated, abandonment has zero value (abandonment decisions in a later stage 

may allow recovering part of previously incurred costs). If the firm decides to wait or to invest in a 

managerial action at 0 0=t , i.e., when ( { }0 ∈d M \ EE,A ), the payoff 1 (.)dV at an intermediary 

point 1 <t T  is: 

( )
{ } ( ) ( ) ( ) ( ) ( ) ( ) ( )

{ } ( ) { }

1
1

1 0 1 1
1 1 1 11

1 1

1 1 1

0 1 1 2 0 1

0

δ γ

+ −

− − + − −
∈

∈ ∈

=

⎡ ⎤+ − −⎢ ⎥⎣ ⎦

+ +

                                                                                       (6)

k

k

d
t

T t d ,d r T t
t t d , d ,d W ,MC

d A d W ,MC

V S ,t |M ,M ,M

I m d ,d S S e N a Xe N a X d ,d

I aX d I ( ) ( ) ( )( ) ( ) { } ( )1
1 110 0 1 2

− −
∈+ − + −r T t

d , td EEe a X d X d ,d N a I S X

                               

where ( )( ) ( ) ( ) ( ) ( ) ( )

( )( )1

2 2
0 1 2 1 0 1 1 0 1

1 22 2
0 1

1
0 5 0 5δ γ σ σ

σ σ

+ − − + + − +
=

+

*
T

/d ,
ln S / S d ,d ,d r T t d ,d . T t . d ,d

T d ,d
a

( )( )1 1

1 22 2
0 12 1 σ σ= − +

/
d , d , T d ,da a  , {}1

1∈ =d .I ,  zero otherwise. 

 

Equation (6) above applies when { }1 1 2− = =  k MCM W ,MC , k , ,..N for 

{ }1 1 1 2+∈ = ≠ = i MCd M W ,A,EE,MC , i k , ,..N . That is, conditional on delaying development or 

investing in an action at  0 0t = , the firm has the following options at  1t : delay investment (wait) 
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(extension may be costly with ( )0 0≥X d ,W ) , early exercise of the development option,  engage in 

costly managerial R&D actions to enhance project value  or reveal more information about the true value 

of the project (with cost ( )0 1 2=i MCX d ,MC , i , ,...N ), or abandon the project (recovering a fraction α% 

of paid capital). With 1 =d W , the second term is a standard call option.  With 1 = id MC , a modified 

version of the standard call option obtains.  It can be easily verified that the payoff is increasing in 

both the average impact ( 0 1( , )d dγ ) and volatility of actions ( 2
0 1( , )d dσ ). At 1t  the cash factor, 

expected impact, volatility and costs may depend on a previous decision.   

We define
1d

R , { }1 1 2∈
MCNd W ,EE,A,MC ,MC ,...,MC , to be the number of regions where 

decision 1d  is optimal at 1t . L denotes the lower boundary and H  the upper boundary of that region. 

At maturity we have two decision regions: development or abandonment of the project ( },{2 AEEd ∈ ).   

The value of a sequential two-stage option is then given by: 

 

1 0 1

1 0

1 2

( )
,1 ,1 ,2 ,2

1 1

( )
0 ,1

1

(. | \ { , } { , , ,... })

 [ ( ) ( )] [ ( ) ( )]                         (7)

( , ) [ ( ) (

MC

EE EE

W

o N

R R
t d r tL H L H

l EE l EE l EE l EE
l l

R
t d L

l W l W
l

CC d M EE A W MC MC MC

Se N a N a Xe N a N a

m d W Se N a N a

δ γ

δ γ

− + −

= =

− +

=

∈ = =

⎡ ⎤ ⎡ ⎤
− − −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

+ −

∑ ∑

∑ 1

1 0 1

0

1

,1 0 ,2 ,2
1

( )
0 ,1 ,1 0 ,2 ,2

1, 1 1

0 ,2

)] ( , ) [ ( ) ( )]

( , ) [ ( ) ( )] ( , ) [ ( ) ( )]

( ) ( )

W

MC MCMC i i

R
r tH L H

l W l W
l

R RN
t d tL H L H

i l l i i l l i
i l l
i d

r t
A

T

X d W e N a N a

m d MC Se N a N a X d MC e N a N a

e aX d N a

Se

δ γ δ
ι ι

δ γ

−

=

− + −

= = =
≠

−

− +

⎡ ⎤ ⎡ ⎤
− −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
⎡ ⎤

+ − − −⎢ ⎥
⎢ ⎥⎣ ⎦

+ −

+

∑

∑ ∑ ∑

0

0 0

0

( )
,1 ,1 ,1 ,1

1

,2 ,2 ,2 ,2
1

( ) ( , )
,1 ,1 ,1 ,1

1, 1

[ ( , , ) ( , , )]

[ ( , , ) ( , , )]

[ ( , , ) ( , , )]  

W

W

MCMC i
i

R
d L H

l W W W l W W W
l

R
rT L H

l W W W l W W W
l

RN
T d d MC L H

l i i i l i i i
i l
i d

N a b N a b

Xe N a b N a b

Se N a b N a bδ γ γ

ρ ρ

ρ ρ

ρ ρ

=

−

=

− + +

= =
≠

⎡ ⎤
−⎢ ⎥

⎣ ⎦
⎡ ⎤

− −⎢ ⎥
⎣ ⎦

⎡ ⎤
+ −⎢ ⎥

⎢ ⎥⎣ ⎦

∑

∑

∑ ∑
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( )

( )

0

,2 ,2 ,2 ,2
1, 1

0 0 ,2 ,2 ,2 ,2
1

0 0 ,2 ,2 ,2
1

- [ ( , , ) ( , , )]

( ) ( , ) ( , , )] ( , , )

( ) ( , ) ( , , )] ( ,

MCMC i

W

MCi

RN
rT L H

l i i i l i i i
i l
i d

R
rT L H

l W W W l W W W
l

R
rT L H

i l i i i l i
l

Xe N a b N a b

e a X d X d W N a b N a b

e a X d X d MC N a b N a

ρ ρ

ρ ρ

ρ

−

= =
≠

−

=

−

=

⎡ ⎤
−⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤+ + − − − − −⎣ ⎦

+ + − − −

∑ ∑

∑

∑
0

,2
1,

, )
MCN

i i
i
i d

b ρ
=
≠

⎡ ⎤− −⎣ ⎦∑

 

The following are defined for all decisions d1 and for each of the 
1d

R  regions: 

                             ( )
( ) ( )( ) ( ) ( ) ( )

( )( )
1

1

2 2
0 1 1 0 0

1 1 22 2
1 0

0 5 0 5δ σ γ σ

σ σ

+ − + + +
=

+

* L,H
tL,H

d , /

ln S /S d ,d r . t d . d
a ,

t d
                   

                              ( ) ( ) ( )( )
1 1

1 22 2
1 02 1 σ σ= − +

/L,H L,H
d , d ,a a t d     

( ) ( ) ( )
( ) 2/1

10
2

0
22

10
2

0
22

100210
*

1,
),()(

),()(5.05.0),()()(),,(/ln
1 dddT

dddTdddTrdddSS
b T

d
σσσ

σσσγγδ

++

+++++−+
=  

                    ( ) ( )( )1 1

1 22 2 2
2 1 0 0 1σ σ σ= − + +

/
d , d ,b b T d d ,d  

 

The notation (L, H) used in the parameters of the cumulative univariate and bivariate normal terms 

implies that the formula applies separately for the L (low threshold) and for the H (upper threshold) 

case of each decision region.  

For each decision d1 the correlation coefficient  is ( )
( ) ( )1

2 2
1 0

2 2 2
0 0 1

σ σ
ρ

σ σ σ

+
=

+ +
d

t d

T d d ,d
. Note that the 

correlation coefficient reduces to the well-known result of compound-sequential options (see Geske, 

1979) when none of the managerial actions is activated.  For  1 =d W  we have ( )2
0 0σ =d ,W  so that 

( )
( )

2 2
1 0

2 2
0

σ σ
ρ

σ σ

+
=

+
W

t d

T d
. We use ( )

1 0 1
*
tS d ,d  and ( )0 1 2

*
TS d ,d ,d to denote the threshold project 

value(s) at 1t  and T for actions 1d  and 2d , respectively, conditional on previous actions. These are 

determined by appropriate value-matching conditions (described next). ( ) ( )l lN . , N .,.,.  are the 

univariate and bivariate cumulative standard normal distribution functions, respectively. Equation (7) 
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is conditional on the decision at 0t  and excludes any additional positive or negative cash flows at 0t . 

The term ( ) ( )1

11 1
12 2

1=

− ∈⎡ ⎤
⎢ ⎥⎣ ⎦∑ ,

dR
L H

l l td , d ,
l

N a N a d M , represents the probability of reaching a particular 

decision region 1d  at 1t  and ( ) ( )1

1 1 1 11 1
2 22 2

1
ρ ρ

=

⎡ ⎤−⎢ ⎥⎣ ⎦∑
dR

L H
l d , d l d , dd , d ,

l
N a ,b , N a ,b , , gives the joint 

probability of reaching decision region 1d  ( { } { }1 1 1 2
+∈ =

MCNd M \ EE W ,MC ,MC ,...,MC ) at 

1t and exercising the investment option at T. Similarly, the 

term ( ) ( )1

1 1 1 11 1
2 22 2

1
ρ ρ

=

⎡ ⎤− − − − −⎢ ⎥⎣ ⎦∑
dR

L H
l d , d l d , dd , d ,

l
N a , b , N a , b , denotes the joint probability of reaching 

decision region 1d  at 1t  and abandoning the project at T. The term 

( ) ( ) ( ) ( )1
1 0

1 1
0 1 1 1

1

δ γ− +

=

−
⎡ ⎤

⎡ ⎤⎢ ⎥
⎢ ⎥⎣ ⎦⎢ ⎥

⎣ ⎦
∑
dR

t d L H
l ld , d ,

l
m d ,d Se N a N a captures the cash flows that the option holder 

gets in region d1 at 1t  (with ( )0 1=m d ,EE ).  

( ) ( ) ( ) ( )1
0 0 1

1 1 1 11 1
1 11 1

1

δ γ γ ρ ρ− + +

=

−⎡ ⎤
⎢ ⎥⎣ ⎦∑

d
R

T d d ,d L H
l d , d l d , dd , d ,

l
Se N a ,b , N a ,b ,  captures the cash flows that the 

option holder gets at T after a decision { }1 1
+∈d M \ EE  at 1t  (for decision 1 =d W , 

( ) ( )0 1 0 1 0σ γ= =d ,d d ,d ).   

In equation (7) the number of optimal regions at 1t for each action and the critical thresholds 

that separate the regions also need to be determined. At maturity there are two regions, option 

exercise (EE) and abandon (A). The critical threshold is determined by applying the value-matching 

condition: ( ) ( ) ( )( )0 1 2 0 1 0− = +*
TS d ,d ,d X a X d ,d X d . Depending on the action path, the critical 

trigger point at maturity will differ since ( ) ( )0 1 0X d ,d , X d  depend on the path of actions.  

At 1t  exploration actions that reveal volatility (or managerial actions with high volatility and 

low expected impact) are expected to be more important for near at-the-money options (S close to X) 

due to the convexity of the option payoff. Their importance is expected to be less for in-the-money 
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options. Having a fixed cost of activation may make activation suboptimal both at very low values 

and at high values of S. The benefit is defined as the difference between the value conditional on 

action activation and the next-best choice between abandonment, wait or early development (with the 

cost of managerial action not yet accounted for). Figure 2 illustrates with the use of numerical 

example how the benefit of value-enhancing actions varies with different value-enhancing 

characteristics. If a given fixed cost is surpassed, a positive net gain obtains resulting in an activation 

of that action. 

[Insert Figure 2 here] 

 

We also assume a positive abandonment recovery value. Focusing on exploration or small impact 

(size) actions, we see that at very low values of S these costly actions will be dominated by 

abandonment or costless wait. For intermediary values of S (near at-the-money),  they start to exhibit 

a significant value enhancement that diminishes as S gets deeper in the money. This result is 

consistent with the findings in Bernardo and Chowdhry (2002) and Huchzermeier and Loch (2001). A 

costly action may remain dominant for high values of S if the expected impact is sufficiently positive. 

At very high values of S the payoffs of value-enhancing actions (as with simple delay) do not depend 

on the univariate cumulative normal terms (which effectively become 1). The maximum of 

managerial value-enhancement action, ( ) ( ) ( ) ( )1 0 1 11
1 10 1

δ γ− − + − −= + −T t d ,d r T td
t tV m d ,d S S e Xe  

(with 1d MC= or with L using 0 1( , )d dγ =0), of wait ( 1d W=  with 0 1 0 1( , ) ( , ) 0d d m d dγ = =  in 

previous equation), and of early exercise ( 1d EE= , which gives S-X) then provides the best decision.  

An action with zero expected impact, 0 1( , ) 0d dγ = , but positive volatility will have zero net benefit 

over a costless wait decision at high values of S and will be dominated by costless wait for any 

positive cost action. Similarly, these zero expected impact actions and costless wait will be dominated 

by early development at high S ranges. With a γ > δ(T – t1), the payoff with a managerial action 

increases more than the early exercise (one-to-one) increase and will dominate the upper region 

irrespective of the action cost.  When γ = δ(T – t1), the action may still be preferable over early 
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development in the upper range if the action costs are low. At high S values the slope of the payoff 

with respect to S will be a key determinant of which action dominates.  

With only a single exploration/experimentation action, we observe the following sequence of 

regions as a function of S (starting from low values of S) in the most general case: abandonment (A), 

wait (W), exploration/experimentation (L), wait (W), and early development (EE).  In the presence of 

a positive expected impact action (MC), we may get sequences of regions like {A, W, L, W, MC}, {A, 

W, L, EE, MC}, {A, L, MC, EE}, etc., depending on action characteristics (special cases may look like 

{A, MC} for a high average-impact action).  No general rule applies for the determination of the 

sequence of regions at the intermediary S values. Here one can use a simple graphical inspection to 

investigate these regions and apply value-matching conditions to find the critical points where 

decision regions change.  In the numerical multi-stage procedure (described in the appendix section 

A), optimal decisions are determined at each node of the numerical lattice tree through an 

optimization algorithm. 

The critical point where one would switch from optimal decision f  to i  is determined by finding the 

critical (threshold) value of S that solves the appropriate value-matching 

condition: ( )( ) ( )( )1 10 1 1 1 0 1 1 1 1
+ − + − += ∈i * f *

t tV S d ,i ,t |M ,M ,M V S d , f ,t |M ,M ,M ) i, f M . 

At the initial stage (t = 0) the formula is evaluated for each possible decision at t = 0 with the optimal 

decision being the one providing the maximum value net of costs. The application of the general 

formula (equation 7) with multiple actions in each of the two stages is demonstrated in the next 

section. We also employ a simplified version to demonstrate the importance of value-enhancing 

actions and the interactions between actions implemented at different points in time.  

 

3.1. A numerical example, sensitivity analysis and main implications 

Consider an application of equation (7) involving a two-stage option with two exploration and two 

positive-impact value-enhancing actions, with wait, abandonment and early exercise options. We also 

consider the case of path-dependency in abandonment costs. Here the action subscript denotes the 

time that the action can be optionally activated. Assume that the set of actions at 0t =  are 
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{ }0 0 0M W ,EE,L ,MC= and at 1tt =  the firm can choose among actions 

{ }1 1 1M W ,EE,L ,MC= .4 Action costs are increasing over time and that managerial value-

enhancement are more costly than exploration actions so that ( )1 0 02 2 5= ( (),  )=X L X L X L . , 

( )1 0 02 5= =(MC ),  ( )X XMC X MC . This example may represent a situation were the firm 

invests in a marketing campaign (L0) that may be followed by a more costly pilot project (L1) and  

attribute-enhancement actions that are increasingly more costly to implement .  

To obtain the value of the project, we need to determine the optimal regions at intermediate 

point 1t  and evaluate equation (7) conditional on W, 0L  or 0MC . The value of the project at 0t =  is 

the maximum of S – X, ( ) ( )0 = −CC .|d W X W , ( ) ( )0 0 0= −CC .|d MC X MC  and 

( ) ( )0 0 0= −CC .|d L X L . For the numerical investigation, we assume the initial value of the project 

is 100S = , the development costs are 100X =  and ( ) 0X W = , 0 05 0 2r . , .δ σ= = = , 2T =  

years, and intermediate decision point is at 1t  = 1 year. For L0 we assume ( ) ( )0 00 0 5L , L .γ σ= =  

and for action MC0 at 0=t  assume ( ) ( )0 00 1 0 3MC . , MC .γ σ= = . For the second-stage managerial 

actions we assume the same characteristics for actions (i.e., ( ) ( )1 10 0 5L , L .γ σ= =  and 

( ) ( )1 10 1 0 3γ σ= =  MC . , MC . ). To identify the optimal regions at 1t  we compare the payoffs 

illustrated in Figure 3 (panels A-D). 

    [Enter Figure 3 here] 

At 1t  there are three action regions: {W, 1 1L ,MC }. EE is a dominated strategy and does not appear at 

1t  regardless of the decision at 0t = .  At 1t , at low project values S, W will be the optimal strategy, 

while for very high values of S  the 1MC  action is optimal. The 1MC  payoff grows at a higher rate 

than other payoffs for high values of S, such that no other payoff can exceed it. This can be seen from 

                                                 
4 All possible combinations of actions between t0 and t1 involve: (EE),(W,W),(W,L1),(W,MC1),(W,EE), (L0,W), 
(L0,EE),(L0,L1),(L0,MC1),(MC0,W),(MC0,EE),(MC0,L1), (MC0,MC1). 
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the payoffs.5 For some S values, the payoff of EE can dominate the payoffs of W and 1L  but here it is 

dominated by MC1.
6
 To determine the critical thresholds we apply the value-matching conditions; for 

{ }0 0 0=d W ,L ,MC the lower boundary of W at t1 is ( )
1

0 0=* L
tS d ,W , the threshold where one 

switches from W to L1 is ( ) ( )
1 10 0 1 65 844= =* H * L
t tS d ,W S d ,L .  and the high boundary for the 

decision 1L  is ( ) ( )
1 10 1 0 1 131 096= =* H * L
t tS d ,L S d ,MC . . With the above information, equation (7) 

gives: ( )0 15 888= =CC .|d W . , ( )0 0 24 827= =CC .|d L . ,  and ( )0 0 26 159= =CC .|d MC .  

(before considering the costs). The value of the complete project at t = 0 net of the costs is 22.327 

(with optimal decision being to follow an exploration action). Exploration is of high importance 

because the option is at the money. In this case, the exploration action at t = 0 increases the 

probability of development of the option at maturity (we provide further analysis relating this result to 

the moneyness of the option in this section using a special case of the general formula). In this 

particular case we also observe an  increase in the likelihood of a direct value-enhancement action at 

1t , but a decrease in the probability of a second exploration action.  

 In order to illustrate the effect of path-dependency on optimal decisions, we revisit the 

previous case assuming a recovery amount (α) of 50% of incurred costs. For example, if the pure 

research/exploration is activated at t = 0 the firm can recover 1.25 at 1t  while if in addition a 

managerial enhancement action is exercised at 1t  the firm may recover 1.25 + 5 = 6.25 at T. With 

abandonment, option values increase, obtaining the following results (net of associated costs):  

( ) ( )0 17 264 15 888= = >−   ( )CC .|d W X . .W , ( ) ( )0 0 0= = >− 23.951  ( 22.327)CC .|d L X L  

and ( ) ( )0 0 0= = >− 23.515  ( 21.159)CC .|d MC X MC . The decision regions at 1t  now are {A, W, 

                                                 
5 For example, at S = 250 ( ) ( )1

11
250 1 1 05

δ γ− − +
= = =Slope d iT t

S MC ,MC e N a . which is higher than the slopes of other payoffs. 

Even if the slope of learning or wait goes to one for an incremental increase in S it is still not possible for these payoffs to 
surpass the positive impact managerial enhancement payoff. Note that the costs will not be important since the impact is 
proportional to S and S values are at a high range.  
6 Changing the base case parameters may result in more complex regions. An interesting case is where the costs of all the 
managerial actions are doubled. In this case we will have a region where EE is optimal. The following regions at t1 would 
then appear: W, L1, EE, MC1. The managerial enhancement option appears in the upper region since its slope is higher than 
the slope of the exercise payoff.  
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L1, MC1}. Again, the optimal decision at t = 0 is to undertake an exploration action. However, with 

abandonment the difference between the exploration and the expected impact enhancement action 

decreases because some of the high costs of MC0 can be recovered in the future (the optimal decision 

may even be reversed depending on the respective costs and the prospects for capital recovery). 

Further evidence on the importance of path-dependency are provided in the next section focusing on 

the opportunities of affecting the expected impact of future actions through exploration actions. 

In order to draw more insights and provide sensitivity results we focus on an interesting 

special case of a sequential growth option with two managerial actions activated at 0t =  and/or at 

1t t= .7 The first action 1MC , with mean impact and volatility ( 0( )dγ , 0( )dσ ), can be activated at 

0t = at a cost ( )0X d . The second action ( 2MC ), with distributional characteristics ( ( )0 1γ d ,d , 

( )0 1d ,dσ ), can be activated at 1t t=  at a cost ( )0 1X d ,d . The set of available decisions are 

{ }0 1=M A,W ,MC , { }1 2=M A,MC , and { }=TM A,EE .  In what follows we assume abandonment 

has zero recovery (positive-value recovery would require two additional terms as in equation (7)). 

Action 2MC  also generates cash, such that the firm gets a fraction ( )0 1m d ,d of S and improves future 

investment opportunities. In equation (8) below, a single threshold exists at 1t t= . The value of the 

sequential-growth option conditional on the activation of action 0d  at 0t =  is given by: 

                      

{ }( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

0 0 1

1 0

1

0 0 1 1 1

2 2 0 1 1

0 1 2

δ γ γ

δ γ

ρ

ρ

− + +

− +−

−

∈ = =

− +

−

T d d ,d

t drT

r t

CC .|d M W ,MC Se N a ,b ,

Xe N a ,b , m d ,d Se N a

X d ,d e N a

                          (8) 

                                                 
7 Equation (7) encompasses other cases appearing in the literature as special cases. The extendible option of Longstaff 

(1990) can be obtained by setting: ( ) ( )2
0 0 0 0γ σ= = =MCd d , N ( ) ( )0 01 0 0 0= = = = > =EE W AR R R , m d , X d , a,W ,W  

The wait mode here is equivalent to an extension option. In this case there are three regions at the intermediary decision 

point, A, W, and EE, with two thresholds, between A and W and between W and EE. Since ( )
1 0 = ∞*H
tS d ,EE  we then have 

( ) ( )1 2 0= =H H
EE , EE ,N a N a . 
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where            
( )( ) ( ) ( ) ( )

( )( )
1

2 2
0 1 1 0 0

1 1 22 2
1 0

0 5 0 5δ σ γ σ

σ σ

+ − + + +
=

+

*
t

/

ln S /S d ,d r . t d . d
a

t d
                   

            ( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( )

2 2 2
0 0 1 0 0 1

1 1 22 2 2
0 0 1

0 5 0 5δ γ γ σ σ σ

σ σ σ

+ − + + + + +
=

+ +
/

ln S / X r T d d , d . T . d d , d
b

T d d , d

           ( )( )1 22 2
2 1 1 0σ σ= − +

/
a a t d ,     ( ) ( )( )1 22 2 2

2 1 0 0 1σ σ σ= − + +
/

b b T d d ,d  

            ( )
( ) ( )

2 2
1 0

2 2 2
0 0 1

σ σ
ρ

σ σ σ

+
=

+ +

t d

T d d ,d
 

The value of the option, assuming the firm decides to wait at 0t = , is obtained by setting 

( ) ( )2
0 0 0γ σ= =d d . The optimal value at t = 0 equals 

( ) ( ) ( ) ( )( )1 1 0− −max CC .|MC X MC , CC .|W X W , . The compound call option of Geske (1979) 

can be seen as a special case by setting ( ) ( ) ( ) ( )0 0 0 1 0 1 0γ σ γ σ= = = =d d d ,d d ,d . The critical value 

( )
1 0 1
*
tS d ,d  for 1 2d MC=  is found by solving numerically the value-matching condition: 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 0 1 1
1 10 1 0 1 0 1 1 2 0 1

δ γ− − + − −+ − =T t d ,d r T t* *
t tm d ,d S d ,d S d ,d e N v X e N v X d ,d           

with        
( ) ( ) ( ) ( ) ( )

( )

2 2
1 0 1 0 1

1 1 22 2
0 1

0 5 0 5δ σ γ σ

σ σ

+ − + − + +
=

+⎡ ⎤
⎣ ⎦

/

ln S / X r . T t d ,d . d , d
v

T d ,d
         

                 ( )
1 22 2

2 1 0 1σ σ= − +⎡ ⎤
⎣ ⎦

/
v d T d ,d  

In Figure 4 we investigate the impact of value-enhancing and exploration actions in the sequential 

framework using equation (8).  

[Insert Figure 4 here] 

Panel A shows the effect of changes in the impact ( )0dγ and volatility ( )0dσ  of a managerial action 

on the value of the option, assuming no further improvement action is available at t1.  The value of a 

project is increasing in the expected impact and volatility of actions. Similar results apply for 

( )0 1γ d ,d  and ( )0 1σ d ,d . Panel B shows that an increase in the volatility of the action in general 

increases the probability of project development for out-of-the-money (or near-at the-money) options 
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and decreases the probability of project development for in-the-money options. This confirms the 

intuition developed above on the importance of exploration actions for out-of-money or at-the-money 

options. Project values are increasing in the volatility (or the information revelation level) as shown in 

Panel A, but for very high volatility levels the probability of development declines. This concave 

shape of probability of development as a function of the volatility of the R&D investments is similar 

with the observations made in Sarkar (2000) about the effect of exogenous volatility on investment. 

The impulse nature of the endogenously activated actions in our case shows that higher information 

revelation (increase in volatility) of R&D investments may result in a strictly decreasing relationship 

with the probability of development when options are in the money. We also observe that the 

difference in the development probabilities between out- and in-the-money options is decreasing 

considerably with the volatility of the action,  i.e., options that are in-the-money tend to have similar 

probability of development with out-of-the money options as the volatility increases.   In Panel C we 

investigate the marginal effect of such actions. The figure shows that the incremental value (% 

benefit) of exploration actions (over passive wait at t = 0) is decreasing in the volatility and expected 

impact of follow-on actions. The intuition behind this result is as follows. A higher information 

revelation of follow-on actions increases the value of the call-like payoff at 1t . This effectively 

increases the moneyness of the compound option (the option held at t = 0). Since exploration actions 

are less important for in-the- money options, the marginal value of additional units of information 

revelation (volatility) is less in the presence of follow-on actions. The same result applies for positive 

expected-impact follow on actions (the marginal benefit at t = 0 of additional volatility revelation is 

less).  

As shown in equation (8), both the volatility and the impact of actions cumulate as more actions are 

implemented. Thus, despite the lower marginal value of actions, the combined (cumulative) present 

value increase may exceed the costs. Interestingly, this may result in exercise of exploration actions 

even at high levels of the underlying project value. This in contrast to a single period case and the 

results of Bernardo and Chowdhry (2002) and Huchzermeier and Loch (2001) that show that 

exploration actions are only important for in-between ranges of project values and not for very high 
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values. To see how this may result in our model, assume for simplicity a zero cash factor m and no 

early exercise at 1t . (These features would work further in favour of exploration action at t = 0.) For 

very high values of S, the value of an exploration action ( 1L ) at t = 0  assuming a follow on value-

enhancing action 2MC , is at least 1 2 1( , )
1 2( , )T L MC rtrTSe Xe X L MC eδ γ− + −−− −  (the univariate and 

bivariate terms tend to 1 for very high values of S). It can then be seen that exploration actions may  

prevail even at high values of S.  For example, comparing the exploration payoff with early 

development at t = 0, shows that for sufficiently high  expected impact γ of follow-on actions the 

benefits would outweigh the lost value due to the erosion δ  and the extra cost of action that has to be 

paid at 1t   Furthermore, the importance of exploration actions increases when they provide enhanced 

benefits (higher expected impact or lower cost) of follow on actions, e.g., due to learning. In the next 

section we extend this framework to multiple periods with path-dependent managerial actions 

focusing on the effect of early exploration actions’ on follow on decisions.  

 

4. Multistage product development with path-dependencies 

Let us revisit the general problem of Figure 1 with multiple decision points and managerial actions 

involving optimal timing and path-dependency. Section A of the appendix describes a numerical 

approach based on a forward-backward algorithm of exhaustive search in a lattice framework for this 

multistage problem. We focus on the same problem with two exploration actions { 1L , GL } and two 

positive-impact value-enhancing actions { 1MC , 2MC } in a multi-stage framework. The admissible 

sequences of actions assumed here is that the firm can move from research ( 1L ), to product 

development stage I ( 1MC ), to product development stage II ( 2MC ). Alternatively, it can move from 

1L  to the scaled-down version I ( GL ) of the product to product development phase II ( 2MC ). We 

assume here that with the pilot project the firm also implement development stage I. Some or all 

actions can be skipped (see Figure 1) and the characteristics of version I (pilot project GL ) and the 

managerial actions depend on the sequence (path) followed. Figure 5 provides the base-case 

parameter values for this problem. 
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[Enter Figure 5 here] 

 

The total uncertainty that can be resolved by exploration actions is 3 (0.3)2. Direct implementation of 

the pilot project (at optimal time) resolves 2/3 of this uncertainty. Volatility resolved by each of the 

other actions is 30% (1/3 of total). The pilot project also provides cash that is a fraction m = 10% of 

the basic product version.  The expected impact of the managerial value-enhancing actions is higher if 

a research action has been performed earlier (γ(LG, MC2) = 0.2, γ(L1, MC1) = 0.2 ). The associated 

costs of these actions are
1 1 2

10 20= = = =L MC MC GX X X , X , the maturity of the option is T = 5 years, 

and we allow 5 annual decision points before maturity (starting at t0). We determine the optimal 

timing of all actions in the problem. For example, the firm may decide to invest in product 

development of basic attributes in year 2 and in further quality improvements in year 4. We use a 12-

step lattice tree per year (dt = 1 month) and an exhaustive search to evaluate all combinations of 

decisions between nodes of the lattices at each point in time.   

Our choices of parameter values are chosen to get closer to average product development 

situations. The short 5-year horizon of the maturity reflects typical situations in innovation 

development with firms facing high competitive pressures. The costs of the actions are consistent with 

empirical observation in Amir et al. (2006) that R&D expenditures are about 8% of the market value 

of equity for R&D-intensive firms. Grabowski and Vernon (1990) document average returns on 

pharmaceutical R&D of around 15-30% with a highly skewed distribution with the top decile 

providing a return around 400-500%. A cost of 10 to 20 provides an increase of 10-20% on an asset 

value of 100, implying an R&D return of about 50% to 100%.  Exogenous uncertainty may in general 

be high especially for new products. Childs and Triantis (1999) use a standard deviation of 40% to 

capture volatility attributed to R&D; we use 30%. 

[Enter tables 1, 2 here] 

Our numerical results show sensitivity with respect to the basic project value S, the cash flow factor of 

the scaled-down version m, and the effect of exploration actions on the expected impact of follow-on 

value-enhancement actions ( ( )1 1γ L ,MC and ( )2γ GL ,MC ). Table 1 provides sensitivity with respect 
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to the effectiveness of exploration actions (keeping the cash factor to m = 0.1). The base case reflects 

the situation where exploration actions provide for a better expected impact of follow-on actions 

(γ(LG,MC2) =0.2,  and γ (L1,MC1)=0.2) than implementing these actions directly (which provides only 

a 10% expected increase for each action). Under this specification, the early version dominates in 

most of the range of S values, with delay being optimal at lower values. The importance of the scaled-

down version is enhanced by the early cash it provides (equal to 10% of S), besides the enhancing the 

impact of follow-on actions. The second panel shows the case when neither the scaled-down version 

nor the exploration action L1 provide any additional expected impact on follow-on actions (γ(LG,MC2) 

= 0.1, γ(L1,MC1) = 0.1). The third panel shows the case when the early version does not provide any 

additional expected value-enhancement, while action L1 does (γ(LG,MC2) = 0.1, γ(L1,MC1) = 0.2).  

The results show that if neither of the two exploration actions improves the characteristics of future 

actions, the firm will proceed directly to positive-impact value-enhancing actions. When the early 

version does not improve the characteristics of future actions while L1 does, the firm will proceed with 

L1. The overall results highlight the importance of optimal sequencing of actions due to path-

dependency when actions affect follow-on actions. Contrary to Bernado and Chowdhry (2002) and 

Huchzermeier and Loch (2001), here even very profitable investments might justifiably be postponed 

with the firm performing further experimentation when technical uncertainty remains. Path-

dependency may reinforce this result since early actions may enhance the impact of follow-on actions. 

Table 2 provides sensitivity with respect to the level of the early version’s cash factor m. As expected, 

the higher the cash factor (with more revenues provided early on) the more likely management will 

proceed with the early version and the higher the project (option) value will be at t = 0.  

 

5. Conclusion 

We analyzed investment options with embedded explorative research (e.g., experimentation or 

marketing research) and value-enhancing (attribute or quality improvement actions, or advertisement). 

These actions improve option value through increases in the expected impact of project value or 

through information revelation. Our framework can be used for analyzing new product development 

and deriving optimal decisions. The framework accounts for path-dependency in the mean impact, 
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volatility and cost of actions. We derive analytic solutions for two-stage sequential options, and use a 

numerical lattice-based model for analyzing the multi-stage problem. Our model also allows for early 

development, abandonment and early versions of the product that provide cash and resolve 

uncertainty. Exogenous uncertainty is modeled using a diffusion (or jump-diffusion) process. 

We show that there may be an interchanging range of optimal decision regions but in general 

exploration actions are important when the NPV of the project is close to zero. The marginal value of 

value-enhancing exploration actions is less important when follow-on actions exist. Exploration 

actions are shown to be worthwhile even for valuable products when subsequent actions may enhance 

the expected value of the project. The optimal sequencing of actions is important in the presence of 

path-dependency. 
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Figure 1.  Product development with early product versions and value-enhancing actions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: The figure describes a representative case in product development. The firm is considering the development of a product that currently 
has an expected value S  (Development mode (EE) without enhancement). The firm faces exogenous uncertainty about demand and may 
hold an option to delay development (Wait (W) mode not shown and implied between decisions). The firm can however proceed with 
alternative development scenarios that involve the choice of research (L1) (e.g. marketing research or experimentation) or it may proceed to 
further product development, improving basic features (MC1), or investing in improving quality (MC2). These actions are expected to 
increase value, albeit with uncertain outcome. Another choice involves the launching of an early scaled-down version with limited features 
(Version I (LG)) (getting a fraction of cash of the complete version) that may also provide information about the complete basic version. MC1 
and MC2 can also be alternatively interpreted as advertisement campaigns targeting to enhance the complete version’s value with uncertain 
outcome. All value-enhancing actions  can be developed at optimal timing. 
 

Figure 2.  Net benefit of exercising exploration (L) and mean enhancing actions with uncertain 

outcome (MC) 
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Note: Base parameters values are  m = 0, development cost S = 100, X = 100, r = δ = 0.05, σ = 0.1, t1 = 1, and T = 2. We use 
payoff functions at intermediary decision point t1 (see equation 6) under alternative parameter values for value-enhancing 
actions. Total benefit (y-axis) is defined as the difference between the payoff of the value-enhancing action and the next best 
payoff (the maximum of abandonment, wait or exercise). Abandonment recovery value is assumed to be equal  10, and delay is 
costless.  The net benefits should be compared with the action cost (assumed equal to 6.5) in order to determine the optimal 
decision. 
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 Figure 3. The payoff functions of the compound-growth option with wait, early exercise and two 

managerial actions at the intermediate point  (t1) 
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Panel C:      Panel D: 
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Note: We investigate the payoffs for alternative decisions at t1 =1 for an investment option with maturity 2=T (see equation 6). The set of 
possible actions at t1 is Wait (W), Early Exercise (EE), managerial enhancement action  (MC) or exploration/experimentation (L). The general 
parameters for the problem are: S  =100, r  =  δ  = 0.05, σ = 0.2. For L1 use σL = 0.5 , ΧL = 5,  while the managerial enhancement option use σMC = 
0.3, γMC = 0.1, XMC = 10. We also assume m = 0.    
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Figure 4.   Sensitivity of the sequential investment option, the probability of 

development and the incremental benefits of value-enhancing actions with respect to 

actions’ expected impact and volatility 
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Note: Base parameters values (at the money case) are m = 0, S = 100, X = 100, 0 1( , )X d d = 5, r = δ = 0.05, σ = 0.1, t1 = 1 and T = 2. For all 

panels equation (8) is used.  Panel A shows joint effect (at t = 0) of changes in impact 0( )dγ and volatility 0( )dσ  of a managerial action on 
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the value of the compound-growth option (additionally 0 1( , )d dγ =0, 0 1( , )d dσ = 0).  For panels B 0( )dγ  = 0, in-the-money S =140 and out-
of-the-money case S = 90.   For panel C, Incr. benefit (%) is defined as the incremental percentage difference between the value with a 
managerial value enhancement action and the value with no action at t = 0. 
 
 

 

 

Figure 5.  Parameter values for the new product development case 
 

Volatility matrix of actions                                                                           Average impact matrix of  actions 
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Note: For the description of the problem see Figure 1. Base-case parameters are: r = δ = 0.05, σ = 0.1, T = 5, cost for each action is 

10
211
=== MCMCL XXX  and 20=GX . Growth factor of pilot project is m = 0.1.  The average impact and volatility of managerial 

actions are given above. We use 5 decision points (Ndec = 5) and for the numerical lattice Nsub = 12 per year (dt = 1 month). 
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Table 1.  Multi-stage investment program with an exploration L1, a pilot project (LG) and 

value-enhancing actions (MC1, MC2). Sensitivity with respect to the effectiveness of 

exploration actions (L1, LG)  

 

  γ(L G,MC 2) = 0.2

Optimal Optimal Optimal
decision decision decision

S Value at t =0 Value at t =0 Value at t =0
240 170.096 L G 155.495 MC 1 164.770 L 1

230 158.230 L G 144.523 MC 1 153.281 L 1

220 146.400 L G 133.564 MC 1 141.814 L 1

210 134.615 L G 122.629 MC 1 130.381 L 1

200 122.890 L G 111.747 MC 1 118.995 L 1

190 111.274 L G 100.925 MC 1 107.689 L 1

180 99.761 L G 90.153 MC 1 96.446 L 1

170 88.365 L G 79.471 MC 1 85.296 L 1

160 77.109 L G 68.965 MC 1 74.308 L 1

150 66.080 L G 58.589 MC 1 63.483 L 1

140 55.347 L G 48.468 MC 1 52.891 L 1

130 44.903 L G 38.700 MC 1 42.644 L 1

120 34.831 L G 29.294 MC 1 32.784 L 1

110 25.390 L G 20.575 MC 1 23.535 L 1

100 16.521 L G 12.514 MC 1 14.982 L 1

90 9.006 W 6.599 W 7.840 W
80 3.951 W 2.720 W 3.198 W
70 1.180 W 0.755 W 0.849 W
60 0.179 W 0.113 W 0.119 W
50 0.009 W 0.006 W 0.006 W

  γ(L 1,MC 1) = 0.2 γ(L 1,MC 1) = 0.2 γ(L 1,MC 1) = 0.1
  γ(L G,MC 2) = 0.1 

Base case
γ(L G,MC 2) = 0.1

 
Note: See problem description and base-case parameters in Figures 1 and 5. 
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Table 2.  Multi-stage investment program with an exploration L1, a pilot project (LG) and 

value-enhancing actions (MC1, MC2). Sensitivity with respect to the level m of early version 

(pilot project) cash flows 
 

Optimal Optimal Optimal
decision decision decision

S Value at t =0 Value at t =0 Value at t =0
240 164.770 L 1 170.096 L G 194.096 L G

230 153.281 L 1 158.230 L G 181.230 L G

220 141.814 L 1 146.400 L G 168.400 L G

210 130.381 L 1 134.615 L G 155.615 L G

200 118.995 L 1 122.890 L G 142.890 L G

190 107.689 L 1 111.274 L G 130.274 L G

180 96.446 L 1 99.761 L G 117.761 L G

170 85.296 L 1 88.365 L G 105.365 L G

160 74.308 L 1 77.109 L G 93.109 L G

150 63.483 L 1 66.080 L G 81.080 L G

140 52.891 L 1 55.347 L G 69.347 L G

130 42.644 L 1 44.903 L G 57.903 L G

120 32.784 L 1 34.831 L G 46.831 L G

110 23.535 L 1 25.390 L G 36.390 L G

100 14.982 L 1 16.521 L G 26.521 L G

90 7.840 W 9.006 W 17.430 L G

80 3.198 W 3.951 W 9.360 W
70 0.849 W 1.180 W 3.920 W
60 0.119 W 0.179 W 1.002 W
50 0.006 W 0.009 W 0.105 W
40 0.000 W 0.000 W 0.002 W

Growth  m  = 0.2Growth  m  = 0.1Growth  m  = 0

 
Note: See problem description and base-case parameters in Figures 1 and 5. The middle column represents the base case parameters. 
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Appendix 

 

Section A: A numerical lattice model for the multi-stage problem 

 

In this section we consider the more general version of the new product development problem that 

allows for multiple stages, path-dependent actions at optimal timing, growth options, abandonment 

options and early exercise in a numerical lattice based framework. The multi-stage framework is 

useful in solving problems like those posed in Figure 1 of the main text .Decisions are again made 

sequentially at equal periodic intervals. To account for path-dependency we keep track of all previous 

decisions tM
− . Remember that ( )tdV .  is the payoff conditional on decision dt. This payoff is a 

function of the value of cash flows S at that decision point, the characteristics of available actions, the 

development cost X, the action-specific path-dependent costs ( )1tX M ,d− , the recovery rate α in case 

of abandonment, the growth factors ( )1tm M ,d S−  of pilot projects, etc. t represents the time of a 

decision point (t < T) and Δt the time interval between decision points. Our objective is to maximize 

the value of the investment option value (V) by making the optimal feasible decisions ( )td  at each t: 

 

                           ( ) { }t
t t

d
t t t

d M
V * S ,t|M ,M ,M max V+ −

∈
=                            

We have the following cases:   

 
( ) ( ) ( )

( ) ( ) { }1 2

− Δ+ − + −
+Δ

− −

= + Δ

+ − ∈

⎡ ⎤
⎣ ⎦

                                for 

t

MC

tr td d
t t t t t t t t t

t t t t t t N

V S ,t|M ,M ,M e E V * S ,t t|S ,M ,M ,M

m M ,d S X M ,d d MC ,MC ,....,MC
                                        

( )td
t t tV S ,t|M ,M ,M+ − = XSt − for { }td EE∈ ,                        

( ) ( )α+ − −=  td
t t t t tV S ,t|M ,M ,M TC M for { }∈td A  where ( )tTC M − defines the total investment 
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costs paid until t, and                                       

( )td
t t tV S ,t|M ,M ,M+ − = ( ) ( )− Δ + −

+Δ +Δ⎡ ⎤
⎣ ⎦

tr t
t t t t t

d
te E V * S ,t t|S ,M,M ,M  

 for { }1 2 MCt Nd W ,W ,W ,...,W∈ , 

At maturity we have:          

       ( ) ( )( )Td
T T T T TV S ,T |M ,M ,M max S X,a TC M+ − −= −                            

Expectation td
tE when { }1 2∈

MCt Nd MC ,MC ,...,MC  is taken with respect to the distribution of log-

returns that depend both on demand and exploration actions information revelation or expected value-

enhancing actions volatility. With delay i.e. { }1 2 MCt Nd W ,W ,W ,...,W∈ , the expectation is taken 

only with respect to demand uncertainty.  Note that { }td EE,A∈  are terminal/absorbing decision 

states. We discretize the state-space of S values using a numerical lattice scheme. From equation (5) 

of the main text, the underlying asset S follows a log-normal distribution between decision points. We 

approximate the distribution on the time interval sub
dec

T
t T

N
Δ ≡ =  with a binomial lattice with 

subN  steps in-between decision points. The per step conditional volatilities ( )2
t tv M ,d−  over the 

interval (t, t +Δt) depend on the current action td  and all previous actions. They equal 

( ) ( )2
2 2 t tsub

t t
sub sub

M ,dT
v M ,d

N N

σ
σ

−
− = +  for { }1 2 MCt Nd MC ,MC ,...,MC∈ . Managerial actions with 

uncertain outcome are of impulse type. However, since decisions are at discrete intervals and because 

of the actions multiplicative impact on project value, the distribution between decision points is not 

affected if we allocate the total volatility ( )2
t tM ,dσ −  and impact ( )t tM ,dγ −  equally between the 

Nsub steps. We use the following up and down moves for the lattice between stages (decision points) 

that match the volatility of the continuous process (equation 1 of main text): 
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                   ( ) ( )( ) ( ) ( )
1− − −
−

= =t t t t t t
t t

u M ,d exp v M ,d , d M ,d
u M ,d

     

The probabilities for an up and down move for { }1 2 MCt Nd MC ,MC ,...,MC∈  are obtained by 

matching the mean of the continuous process: 

                 

( )
( )

( ) ( )

( ) ( )

( ) ( )1

γ
δ

−
−

−
− −

− −

− + −

=
−

= −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

t tsub
t t

sub sub

u t t
t t t t

d t t u t t

M ,dT
exp r d M ,d

N N
p M ,d ,

u M ,d d M ,d

p M ,d p M ,d

  

For { }1 ct Nd W ,W ,...,W∈  we set the γ and σ parameters equal to zero. Due to path dependency the 

optimal value *V  cannot be evaluated in the usual backward dynamic programming fashion. Instead, 

we take into account all alternative combinations of actions and paths of the state-variable.  We thus 

implement a forward-backward algorithm of exhaustive search (see also Hull and White, 1993, 

Ritchken and Kamrad, 1991, or Thompson, 1995), and the optimal decision will determine today’s 

option value.  

Table A1 shows a comparison between the analytic and lattice based numerical model for the case of 

a two-stage compound-growth option with different levels of exploration volatility at t1 and possible 

positive cash flows (cash factor m) at t1 At t = 0 we assume that only costless wait is possible. We can 

see that the numerical model provides a very good approximation to the analytic formulas in both 

cases. Note that the case of zero volatility of action (and zero impact) reflects the case of the 

compound option of Geske (1979). The results show that the value of exploration options embedded 

in investment options can be extremely important. In the table we use Nsub = 60 steps. We have also 

implemented the lattice with Nsub = 30 steps and the error was again very low (between 0.1%  – 

0.7%). 
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Table A1 Comparison of numerical and analytic compound option with learning 

Volatility
Time of action Analytic Numerical Analytic Numerical Analytic Numerical

0.000 0.000 0.000 1.103 1.094 14.320 14.315
0.100 0.001 0.001 1.656 1.662 14.839 14.838
0.200 0.016 0.015 3.773 3.774 16.864 16.863
0.300 0.282 0.282 7.079 7.093 19.883 19.892
0.400 1.743 1.753 10.660 10.678 23.341 23.357
0.500 4.424 4.438 14.266 14.288 26.991 27.012
0.000 0.013 0.013 2.123 2.118 14.100 14.094
0.100 0.027 0.026 2.648 2.654 14.675 14.675
0.200 0.126 0.127 4.406 4.410 16.547 16.550
0.300 0.616 0.618 7.203 7.214 19.310 19.319
0.400 2.038 2.050 10.447 10.461 22.506 22.519
0.500 4.400 4.416 13.792 13.811 25.906 25.924
0.000 0.302 0.300 3.860 3.859 13.635 13.643
0.100 0.378 0.380 4.244 4.244 14.091 14.094
0.200 0.668 0.664 5.427 5.439 15.462 15.464
0.300 1.338 1.338 7.339 7.348 17.560 17.566
0.400 2.552 2.563 9.747 9.758 20.091 20.102
0.500 4.319 4.328 12.402 12.418 22.850 22.866

Volatility
Time of action Analytic Numerical Analytic Numerical Analytic Numerical

0.000 2.964 2.963 8.670 8.662 25.992 25.989
0.100 3.220 3.218 10.239 10.243 26.537 26.536
0.200 4.511 4.511 13.344 13.349 28.567 28.567
0.300 6.707 6.712 16.827 16.841 31.587 31.595
0.400 9.357 9.368 20.413 20.431 35.045 35.061
0.500 12.223 12.237 24.019 24.041 38.695 38.716
0.000 3.133 3.134 9.857 9.846 25.407 25.401
0.100 3.506 3.505 11.001 11.005 26.045 26.044
0.200 4.796 4.797 13.576 13.584 27.957 27.961
0.300 6.838 6.843 16.674 16.685 30.725 30.734
0.400 9.299 9.310 19.957 19.972 33.921 33.934
0.500 11.973 11.989 23.304 23.323 37.321 37.339
0.000 3.946 3.951 11.345 11.331 23.977 23.986
0.100 4.320 4.320 12.004 12.009 24.510 24.512
0.200 5.400 5.403 13.699 13.705 25.991 25.995
0.300 7.029 7.033 15.970 15.978 28.137 28.144
0.400 9.006 9.014 18.527 18.540 30.679 30.691
0.500 11.187 11.199 21.220 21.236 33.440 33.456

S  = 120

S  = 80 S  = 100 S  = 120

Growth option factor m = 0

T  = 2

T  = 5

Growth option factor m = 0.1

T  = 1

T  = 2

T  = 5

T  = 1

S  = 80 S  = 100

 
Note:   Parameters are: r = δ = 0.05, σ = 0.10, t1 = T / 2 ,  γ = 0 , and cost of  action  1X  = 5. For the analytic formula we use 
equation 8 of the main text. For the numerical lattice  Nsub = 60 steps.  
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Section B: Analytic formulas and a numerical lattice implementation for jump-diffusion 

 

In the presence of i optional actions {
MCNMCMCMC ,..., 21 } and jN  independent classes of jumps 

the value of the project is defined as: 

                         ∑∑
==

+++−=
jj N

j
jjii

N

j
j

t

t dkdqkdzdtka
S

dS
11

)( πσλ                                       

Jumps have an impact jk ,  j = 1, 2,…, Nj, with jdπ  denoting Poisson processes with frequency of 

arrival jλ  per year. The partial integro-differential equation (PIDE) that the option should satisfy is 

given by: 
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Denoting the accumulated (Brownian) noise between successive decision points from t to tt Δ+  by 

ttZ Δ+  we then have that asset values are: 
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Similarly with the managerial actions, jumps are log-normally distributed impact kj, and Y = 1+ jk  

follows a log-normal distribution: 

 ( )2(1 ) ~ log exp( ),exp(2 )(exp( ) 1)j j j jY k N γ γ σ= + −            

The risk-neutral distribution of S at tt Δ+  conditional on the activation of managerial action i and on 

the realization of },...,,{ 21 jNnnnn = jumps is given by: 
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Analytic formulas  

Due to the complexity of the notation we present the formulas for the special case of compound-

growth options in equation (8) of the main text. The formulation can be generalized to other more 

complex cases with multiple actions and regions. Our results are consistent with Gukhal (2004) who 

prices simple compound options for the jump-diffusion case and our results were derived 

independently. Furthermore we provide more details on how the correlation coefficient of the 

compound option formula gets affected by the impact of exogenous jumps and endogenous 

managerial actions. Project value follows jump-diffusion with jN  sources of jumps and two optional 

managerial actions at 0=t  and 1tt =  (and also note that t2= T – t1). The compound-growth option 

conditional on activation of a managerial action at 0=t  is given by: 
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weight the value of the compound option with the probabilities of occurrence of all combinations of 
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Similarly analytic valuation formulas exist for the cases of call on put, put on call and put on put under 

jump-diffusion assumptions and managerial value-enhancing actions.   

 

Numerical solution for the jump-diffusion case 

The value function for early exercise, abandonment as well as the boundary condition at maturity stay 

the same like the diffusion case. We have the following adjustments to the cases of managerial actions 

and the decision to delay investment  due to the conditioning on the arrival of jumps:   
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for },...,,,{ 21 MCNt WWWWd ∈  

The volatility conditional on the realization of  ),...,,( 21 jNnnnn = jumps is:  
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The formulas for the up and down steps are like in the diffusion case (but we use the above 

specification of volatility) and the up and down probabilities are given by: 
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The implementation of the numerical framework with both path-dependency of managerial actions 

and jumps can be computationally intensive and it is only recommended for low intensities of arrival 

of rare events. 

 

 

 

  


