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Abstract

The value of a real or financial option depends among other factors on
the assumption of the underlying stochastic process. Linear and loglinear
processes are most common, such as the arithmetic Brownian motion, the
geometric Brownian motion and the Ornstein-Uhlenbeck process. In the
time series literature, non-linear continuous time models have been de-
veloped. One such class of models is the threshold-autoregressive model,
where the dynamic process changes character depending on whether the
process is above or below a certain threshold. In this paper we investigate
real option modelling when uncertainty can be described by a continu-
ous time threshold autoregression. Closed form solutions to perpetual
American options on such processes are derived. Various applications are
studied, focusing on how uncertainty and non-linearity can affect option
valuation and investment. This includes examples where uncertainty en-
courages investment, contrary to the result with most real options models.

JEL classification : D21; D81; D92.
Keywords: Investment; Uncertainty; Growth, Threshold Diffusions.

1 Introduction
In this paper we develop and apply a real options modeling framework where
the underlying state variable can be described by continuous time threshold
diffusions. More precisely, the dynamics of the state variable changes character
at certain thresholds.
Threshold models have existed in the time series literature for a long period

of time, with the contribution of Tong (1978) for the discrete time threshold
autoregressive model a seminal paper. The book by Tong (1990) summarizes
many models in the non-linear time series literature, and Franses and van Dijk
(2000) review non-linear models applied in finance. The bulk of time series
literature has focused on discrete time models, but continuous time versions of
threshold models have been developed; see for instance Brockwell et al. (2006).
Still, most applications of TAR-models in economics and finance have been cast
in discrete time.
∗Corresponding author. Email: sigbjorn.sodal@hia.no (Agder University College, Norway)
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One such application is Ng (1996). She investigates the classical inventory
model in a commodity market. Essentially, in this model the commodity price
is in one of two possible regimes, depending on whether inventories are held or
not. She tests the model using a TAR-model and finds threshold behaviour in
the commodity price series.
Threshold models have been used to investigate price linkages in spatially

separated markets. The law of one price commands equal prices across spatial
markets, but transaction costs and other market frictions allow for temporary
departure from equilibrium. Goodwin and Piggot (2001) test a model for spa-
tial market integration for several North American corn and soybean markets.
They find that threshold models suggest much faster adjustments in response
to deviation to equilibrium than is the case when thresholds are ignored.
Sødal et al. (2008) suggest a real option application of integrated shipping

markets. They devolop a valuation model for a combination carrier (a ship that
can carry both oil and iron ore) derived from the spread between freight rates in
dry bulk and tanker markets. The valuation of the combination carrier depends
directly on the dynamics of the spread between the two markets. However, no
explicit threshold dynamics is assumed for the spread, rather it is modeled as a
linear Ornstein-Uhlenbeck process.
Threshold models have been applied to the foreign exchange markets to

model currency regimes. Krugman (1991) dicussed the dynamics of the foreign
exchange rate in a target zone model. This model has been the focus of a
lot of research, both theoretical modifications and empirical estimation. For
instance, Lundbergh and Terasvirta (2003) estimate variations of the model
using threshold autoregressions to series of daily observations of the Swedish
and the Norwegian currency indices. Stegenborg and Sørensen (2003) use a
continuous time model for the exchange rate in a target zone model, where the
exchange rate is modeled by a Jacobi diffusion. This approach leads to fairly
straight forward option pricing formulas. However, it is a restricted model in
the sense that the exchange rate cannot depart from the targets set by monetary
authorities.
The case for threshold dynamics can also be supported by partial equilib-

rium arguments in several real market settings with entry and exit by indepen-
dent firms. Imagine a competitive industry with a large number of unit-sized
firms, fixed entry and exit costs, and demand given by a fixed downward-sloped
demand curve. Suppose, for example, that the demand curve is exposed to
geometric Brownian shocks. Then the price process facing individual firms will
also typically be geometric Brownian but with two reflecting barriers: an upper
barrier caused by entry and a lower barrier caused by exit. Each firm will end
up making the optimal investment timing decisions even if they ignore the exis-
tence of these barriers; that is, by assuming that the price is geometric Brownian
without barriers. Profits will be affected by the existence of the barriers but
the optimal thresholds at which to invest or disinvest will not; see Leahy (1993)
for a discussion of equilibrium, and Mossin (1968) and Dixit (1989) for seminal
earlier contributions in this field.
In practice, entry and exit as mentioned above more likely will create thresh-
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olds where the price process changes character rather than becoming perfectly
reflecting barriers. Still the qualitative nature consists of some kind of reversion
back from extreme values. In markets with economies of scale, the situation
could be the opposite at least for significant periods of time. For examples, de-
mand or prices can sometimes be expected to increase after some critical mass
has been achieved in an industry. In a simplified model, such a critical mass can
be reflected in a price threshold above which a positive price drift is expected.
Examples include industries with positive network externalities, bandwagon ef-
fects etc. Our main example illustrates with urban agglomeration and growth,
focusing on when to develop a piece of rural land that is located in the vicinity
of an urban area. For completeness, we also present a brief example of a sales
decision which does not yield the same kind of non-linear effects as the main
example. The decision in the latter case will be like exercising an American put
option as opposed to a call option in the first example. The second example
is also illustrated with the real estate business, although several interpretations
may be possible for both models.
The rest of the paper is organised as follows: In section 2 we set up a general

non-linear model with two price domains that are separated by a exogenous price
threshold. In section 3.1, the discount factor function under geometric Brownian
price process in two such domains is derived. Then, in sections 3.2 and 3.3, this
model is illustrated with the two examples mentioned above. Section 4 sums up
and discusses briefly how the model can be extended in various directions.

2 A baseline model
Suppose that the revenue, P , from an irreversible investment, C, is given by the
following continuous and autonomous Ito processes:

dP =

½
f1(P )dt+ g1(P )dZ (P < Px)

f2(P )dt+ g2(P )dZ (P > Px)
(1)

Here fi(P ) and gi(P ), i = 1, 2 are usual drift and volatility functions, while Px
is the threshold separating the two price process domains. The investment cost
is fixed, so the optimal decision will be to invest as soon as the price reaches
some optimal level that is to be determined.
Assume that the current price is a fixed P0 and that the trigger price for

investment is some high value. As in Dixit et al. (1999), the expected net
present value from investing at an arbitrary price P (> P0) equals

V0 = D(P0, P )(P − C) (2)

Here D(P0, P ) = E[e−ρT ] is the expected discount factor for a first-hitting time
(T ) up to P when starting from P0 and discounting at rate ρ. The optimal price
at which to invest, P ∗, is found by maximizing V0 with respect to P .
Alternatively, suppose that the option is a sales option where one can sell

an asset for a fixed price K. The value of the asset fluctuates according to a
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process similar to (1). Then the expected net present value from selling when
some P < P0 is reached from above, equals

V0 = D(P0, P )(K − P ) (3)

where D(P0, P ) is once again the expected discount factor for a first-hitting
time from P0 to P , but now in a downward direction.
The method for finding such discount factors presented in Dixit et al. (1999),

combined with smooth pasting theory, implies that the discount factor function
D(P0, P ) for a motion from P0 to P are found by solving the two differential
equations

1

2
g2i (P0)

∂2D(P0, P )

∂P 20
+ fi(P0)

∂D(P0, P )

∂P0
− ρD(P0, P ) = 0 (i = 1, 2) (4)

Each of the two general solutions to (4) typically involve two constants. The
discount factor function is derived by support from up to four boundary condi-
tions. First, we must have D → 0 as P0 and P get far apart. Second, there is
no discounting if the price is already at the destination, implying D(P, P ) = 1.
The process is continuous, so the threshold is irrelevant if Px /∈ (P0, P ) because
the price in such a case will stay in one domain all the time. Then the two
first boundary conditions just described are sufficient to determine the discount
factor function. In cases where Px ∈ (P0, P ), the value matching and smooth
pasting conditions apply at the threshold between the price domains. This yields

D(P−x , P ) = D(P+x , P ) (5)·
∂D(P0, P )

∂P0

¸
P0=P

−
x

=

·
∂D(P0, P )

∂P0

¸
P0=P

+
x

(6)

The two superscript signs for Px indicate whether the limit is taken from the
upper or lower price domain.

3 Examples

3.1 Discount factors for geometric Brownian motions

If the processes in (1) are geometric Brownian motions with drift µi and volatil-
ity σi (i = 1, 2), it is well known that equation (4) has the general solutions

D(P0, P ) = AiP
−αi
0 +BiP

βi
0 (i = 1, 2) (7)

where Ai and Bi are constants (which in our boundary problem generally de-
pend on P ). The variables −αi and βi are the negative and positive roots,
respectively, of the following quadratic equations:

1

2
σ2ix(x− 1) + µix− ρ = 0 (i = 1, 2) (8)
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Note that the αi’s and βi’s are defined as positive numbers. Moreover, one
needs to distinguish between four different kinds of relationships between the
variables that make up the discount factor function:
(1) P0 < P and Px /∈ (P0, P ). This reflects an upward price change for

a regular geometric Brownian motion with no non-linearities. The applicable
constant Ai must be equal to zero since P

−αi
0 → ∞ as P0 → 0. The condition

D(P, P ) = 1 then yields the familiar discount factor function

D(P0, P ) = (P0/P )
βi (9)

where the subscript i refers to the price domain (upper or lower) in question.
(2) P0 > P and Px /∈ (P0, P ). This reflects a downward price change, also

over a price interval with no threshold. Now we must have Bi = 0, and the
following discount factors result:

D(P0, P ) = (P/P0)
αi (10)

- - -
The two remaining cases include crossings over the threshold Px in either

direction. Value matching (5) and smooth pasting (6) applies at the border:

A1P
−α1
x +B1P

β1
x = A2P

−α2
x +B2P

β2
x (11)

−α1A1P−α1−1x + β1B1P
β1−1
x = −α2A2P−α2−1x + β2B2P

β2−1
x (12)

Once again the expression for the discount factor depends on the direction
of motion:
(3) P0 < P and Px < P . For such an upward motion the boundary condition

D(P, P ) = 1 implies
A2P

−α2 +B2P
β2 = 1 (13)

In this case we also know from the discussion that A1 = 0. Eq. (13) together
with value matching (11) and (12) determines the constants A2, B1 and B2.
The following expression for the discount factor function is obtained:

D(P0, P ) =
(α2 + β1)(

P0
P )

β2 + (β2 − β1)(
Px
P )

β2(PxP0 )
α2

α2 + β1 + (β2 − β1)(
Px
P )

α2+β2
(P0 ≥ Px) (14)

Note that eq. (14) only covers cases where P0 ≥ Px. When P0 ≤ Px ≤ P
the discount factor can be found by using the fact that

D(P0, P ) = D(P0, Px)D(Px, P ) (15)

for any Px between P0 and P ; see Dixit et al. (1999).
(4) P0 > P and Px > P : For this downward motion the boundary condition

D(P, P ) = 1 implies
A1P

−α1 +B1P
β1 = 1 (16)
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We also have B2 = 0, so the constants B1, A1 and A2 are found from eqs. (16),
(11) and (12). This yields

D(P0, P ) =
(α2 + β1)(

P
P0
)α1 + (α1 − α2)(

P
Px
)α1(P0Px )

β1

α2 + β1 + (α1 − α2)(
P
Px
)α1+β1

(P0 ≤ Px) (17)

while cases for which P0 ≥ Px are handled by use of eq. (15).
The functional form made up by the expressions (9), (10), (14) and 17) com-

pletes the description of the discount factor for a non-linear stochastic process
with two geometric Brownian motions separated by the exogenous threshold Px.
The discount factor simplifies as expected in limiting cases. For example, we
have α1 = α2 and β1 = β2 if the two process are identical. Then eqs. (14) and
(17) simplify to (9) and (10).

3.2 An investment (call) option: urban development

It is well known from economic theory of agglomeration and growth that a
critical mass must sometimes be reached in order for an economic growth process
to take off (Fujita et al. 1999). The price of land, which is the stochastic variable
in our first application, can be expected to rise rapidly if the critical mass is
reached. It is also reasonable to assume that the potential for growth will be
reflected in the current price of land, P0, in the sense that growth will be more
likely to take off the higher the current price. For simplicity, we shall restrict
to a setting with only two price regimes. We assume that a stochastic process
with expectedly higher growth is spurred as soon as a certain price Px is hit
from below, in accordance with the specifications above.
The owner of a certain piece of rural land in the vicinity of an urban area

is facing such a situation. The current price, P0, is too low for immediate
development of the property, but how long is it optimal to wait? One option
consists of waiting for a normal return based on the rural price regime (P < Px),
but could it be wise to wait until agglomeration forces have spurred rapid growth
in the region - i.e., wait for a price above Px?
Fig. 1 plots the value function (2) for three sets of data. The numbers

are chosen mainly in order to demonstrate some qualitative characteristics of
such investment problems. Both price processes are geometric Brownian, so the
applicable discount factor is found from either eq. (9) or eq. (14). The base
case curve in the middle assumes µ1 = 0, σ1 = 0.10, σ2 = 0.10, µ2 = 0.037,
ρ = 0.05, Px = 5, C = 3, and P0 = 3.1 In this case the land owner is almost
indifferent between investing before or after urbanization and growth forces set
in. Ignoring the growth potential in the future, he would invest at the leftmost
local maximum according to a McDonald-Siegel (1986) rule (at P ∗ = β1

β1−1C).
Here this implies development at P ' 4. If waiting for growth to take off at
P = 5, he should postpone development until P ' 13 , where there is also a local

1Note that the optimal trigger price does not depend on P0 as long as waiting applies. For
simplicity we set P0 = C, since it will never be optimal to invest before the gain from the
investment exceeds the investment cost.
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maximum. This could indeed take a long time, considering that the expected
annual growth rate is only 3.7 percent. With the chosen numbers the two local
maxima happen to be very close (V0 ' 0.35).

< FIGURE 1>

The two outer curves in Fig. 1 are based on the same data as the middle
curve except for the drift in the upper price domain (P > Px). The lower
assumption for this drift parameter (µ2 = 0.030) makes it less beneficial to wait
than the base case value (µ2 = 0.037). With the higher drift rate (µ2 = 0.040) it
is clearly optimal to wait for urbanization rather than ignoring this possibility.
The rightmost local maximum (for P ' 17) is clearly higher than the leftmost
maximum.
Fig. 1 demonstrates several results of interest. First, even a small change

in a variable can create strong market shocks due to the non-linear character of
the model. A marginal increase in the expected price drift after take-off could
under some circumstances delay investment delay with several years. Second,
the local maximum to the left has a higher second order derivative than the
other one.2 This implies that the exact timing of development is more critical
for the owner under investment in the rural price domain. Third, it can be
shown that the optimal trigger price for development after growth take-off is
slightly below a McDonald-Siegel trigger price based exclusively on the upper
price process (P > Px). The reason is that even if growth takes off it may not
be sustained due to uncertainty. If a recession later comes about with prices
once again below Px, one could be trapped there. The risk of such outcomes
represents a cost that makes it optimal to invest earlier than in the McDonald-
Siegel model. (It is extremely small for this data set.) Finally, if the leftmost
local maximum were to be ignored, we recognize the familiar result from many
models without non-linear effects, that increased price drift (µ2) increases the
optimal trigger price for investment.
Fig. 2 shows similar plots but now varying price uncertainty in the growth

domain (σ2) between 0.07 and 0.13. Uncertainty in the rural domain is kept
constant for all curves (σ1 = 0.10) . Therefore, the curve in the middle coincides
with the middle curve in Fig. 1. Increased uncertainty could make waiting less
profitable. With σ2 = 0.13 it is better to invest before the growth take-off. The
opposite is true for σ2 = 0.07. This contrasts the results of most real options
models, for which the value of an investment option and the value from waiting
are increasing in uncertainty. The reason is once again the risk of growth failure.
Uncertainty increases the value of waiting for higher prices but also the risk of a
price decline and slow recovery from a potential recession. As the arrow in Fig. 1
indicates, however, uncertainty shifts the trigger price for investment marginally
to the right when ignoring the leftmost local maximum. Then uncertainty would
again encourage waiting. Hence, the effect of uncertainty on the value of waiting
is generally ambiguous in this model.

2The curve is steeper up to the leftmost local maximum. This is also true when using
logarithmic scale, so the sensitivity is also higher in percentage terms.
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< FIGURE 2>

Fig. 3 plots similar results as in Fig. 2 expect that uncertainty in both
regimes is varied simultaneously. The lower curve is based on σ1 = σ2 = 0.07
while the upper curve assumes σ1 = σ2 = 0.13. Now a marginal increase of
uncertainty encourages waiting marginally in both price domains. It may also
create a non-linear shift of investment timing. This happens because the option
value created by uncertainty is generally higher in the upper price domain,
where the expected growth rate is higher and the cost of waiting accordingly
lower (due to discounting).

< FIGURE 3>

Fig. 4 illustrates the non-linear effects of the model by plotting the option
value as a function of the initial price for two levels of uncertainty in the price
growth domain (σ2 = 0.07 and σ2 = 0.13). Other parameters are as in Fig.
2 (µ1 = 0, σ1 = 0.10, µ2 = 0.037, ρ = 0.05, Px = 5, C = 3). The option
value curve with low uncertainty (σ2 = 0.07) is almost tangent to the value
line (P0 − C) at the point where investment is optimal with high uncertainty
(σ2 = 0.07), but the value of the growth option takes over soon enough to
dominate.

< FIGURE 4>

The wider implications of the results from this example are difficult to infer
without expanding to an equilibrium setting. For example, if growth creates
positive welfare effects, policy makers are typically concerned with the question
of whether it makes sense to pay for reducing risk by political means. The
model showed that uncertainty could encourage early rather than late develop-
ment, but the opposite could also be true. Moreover, does the timing of invest-
ment or political investment stimuli influence the likelihood of urbanization and
growth? One the one hand, early investment could be expected to encourage
self-reinforcing agglomeration forces if many land owners reacted similarly. In
this respect early investment ought to encourage (endogenous) growth. On the
other hand, with many land owners investing in this manner, prices will typi-
cally go down. It is evident that our example, with a single threshold separating
two otherwise geometric stochastic processes, is not rich enough to reflect all
such equilibrium effects.

3.3 A sales (put) option: Ownership or a perpetual lease?

Some 10-15 percent of privately owned homes in Norway are built on property
that is rented under a perpetual lease contract. A typical contract leaves the
land owner with few rights other than a flow of land rents. The rents as well as
the price if the land owner were to sell a lot to the house owner, are typically
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regulated by law in ways which not fully reflect market prices.3 This particular
ownership structure has a long history, but it has also led to many conflicts
as well as to some recent changes in laws and regulations. Leaving aside such
complicating issues, the interesting fact in our context is that a shift of ownership
from the land owner to the house owner could often create additional value, e.g.
as it might enable the house owner to develop the property more efficiently than
under the lease restrictions.
The decision facing the land owner might, in practice, have the form of a

sales option. He would be able to sell one or more lots basically any time for
a certain, typically fairly low price (K) under the prevailing restrictions. By
doing so, however, he would give up a perpetual flow of rents. Suppose that the
expected and discounted value of rents by selling today equals P0, and that the
similar cost of selling in the future is governed by a stochastic process of the
usual kind (1). By exercising the option at some P (< P0), the land owner’s
expected net present value will be given by eq. (3). His optimal decision can be
found by maximization as above, and non-linearity be expressed by a threshold
Px and explained by similar arguments. For example, rents can be expected
to increase in case of urban growth that is not reflected in the permitted sales
price.
As in the previous example, we assume that both price processes are geo-

metric Brownian motions, but the parameters values are quite different. We set
σ1 = σ2 = 0.2 , µ2 = 0.1 and ρ = 0.1. The threshold is set at Px = 5, and we
also set K = 5.
Fig. 5 plots the value function (3) for three different drift terms in the lower

regime, assuming P0 = 5. Not unexpectedly, we see that reducing µ1 = 0.1
to µ1 = 0 and µ1 = −0.05 increases the value of the option. It also becomes
optimal to wait for a lower P before exercising the right to sell.

< FIGURE 5>

Fig. 6 plots the value of the put option for different initial values. We vary
P0 from 7 down to the optimal exercise price. This is done for each parameter
scenario. No shockwise effects as in the first example results. Nonetheless, the
curves in Fig. 6 indicate that the drift term in the lower regime have a fairly
large and non-linear influence on the option price. It would be exciting if similar
results were obtained with a well-founded data set of practical interest, e.g. from
a financial market application.

< FIGURE 6>

3The exact specification of the contract as well as the government regulations of rents are
of utmost importance in such contexts if such market prices were to be defined. Without rent
regulations, any irreversible investment by the home owner on the property could otherwise
leave the land owner with an option to extract the return by increasing the rent after the
investment is made.
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4 Conclusions
A framework for option valuation and optimal investment decision making with
non-linear dynamics has been spelled out and applied. All numerical examples
were based on geometric Brownian prices in two domains separated by a fixed
threshold. We have seen that non-linearity can create discrete time shift of
investment arising from marginal changes in exogenous variables. Non-linear
dynamics also enabled a more complex and potentially more realistic modelling
of risk. Uncertainty can create two opposing effects under such conditions. On
the one hand, increased uncertainty increases the value of waiting and discour-
ages investment as usual in real option models. On the other hand, it may also
increase the risk of some failure or catastrophy in the future, thereby encourag-
ing investment now. The net effect is generally ambiguous.
Multiple thresholds and price processes beyond geometric Brownian mo-

tions could be applied to increase realism. As discussed in the introduction,
one cannot expect extreme outcomes like processes with reflecting barriers in
most markets of practical interest. Firms differ in size and costs, and demand
and technology characteristics change continuously. This turns otherwise clear-
cut barriers for price movements in the markets into softer pillows or elastic
bands. More likely, a price process may have mean-reverting properties but not
necessarily towards a fixed target. An Ornstein-Uhlenbeck process and similar
processes have such a unique long-term mean value, implying that the price
drifts downward as soon as the mean is exceeded while drifting upwards in the
opposite case. The drift is stronger the farther away the current value is from
the mean. Equilibrium considerations indicates that the mean reversion charac-
teristics could be more complicated. With fully or partly irreversible entry and
exit, the mean-reversion drift may not be towards a certain value but towards
a price band caused by uncertainty and irreversibility. Inside such a band of
in-action, the price could be a non-drifting geometric Brownian motion or a
similar diffusion. Outside the band, the mean reversion force may be stronger
the more homogenous the firms and the more competitive the industry. The
exact character may well depend on whether the price is above or below the
normal band for price variations. In order to model such markets properly one
needs at least three different processes: one for the motion inside the normal
price band and one for the motion on each side of the band.
The modelling framework of this paper can handle such non-linear cases, but

stochastic processes other than the geometric Brownian motion easily lead to
technical problems as far as closed-form solutions are concerned. Such problems
could be circumvented by allowing for many thresholds but by letting all sub-
processes be geometric Brownian. The number of discount factor domains and
expressions for the discount factor function grow accordingly, but the discount
factor is still found from a linear system. For example, a process with three
domains (two thresholds) requires two extra sets of boundary conditions similar
to (5) and (6), and solving 3 x 3 linear equation systems.
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