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ABSTRACT  
 
Closed form solutions for valuation of projects that takes into account technical 

uncertainty and takes time to build are not currently available.  Approximate solutions are 

typically obtained by implementing a complex numerical algorithm to solve non-linear 

partial differential equations or computer intensive simulation techniques.  An equivalent 

Brownian motion stochastic process is proposed in this paper to model the nonlinear 

stochastic process typically used to describe the variation of technical uncertainty with 

time for projects that take time to build.  The proposed approximation allows estimating 

the value of projects with technical uncertainty using the well-known Black and Scholes 

closed form solutions for European-type options as well as the binomial approach.  The 

proposed approximation was compared to the results obtained using numerical Monte 

Carlo simulations.  A parametric study of the error in the approximation shows that the 

proposed simplified approximation provides a good estimate of the option values.  The 

main advantage of the proposed approximation is its simplicity and straight forward 

implementation.   

 

INTRODUCTION 

 

Many long term projects (e.g., construction projects, remediation of contaminated sites, 

real estate investments of contaminated sites, and R&D projects such as software 

development or pharmaceutical drug development) usually require the consideration of 

technical and financial risks to quantify the true economic cost associated with the 

project.  Technical risk is associated to the ability to complete the project as originally 

planned (within the budget and schedule).  Contrary to market risk, technical risk cannot 

be quantified unless the project is started (i.e., endogenous).  Projects that take longer to 

complete increase their associated financial risk because market conditions may change 

in the time between project initiation and completion.  Unlike financial risk where the 

rate of return is independent of the investor’s risk preference and is dictated by market 

conditions, the required rate of return for a project that only includes technical 

uncertainty should be the risk-free interest rate. In theory, an investor should be able to 

diversify technical risk, and hence, no risk premium should be required for a rational 

investor.  However, in reality, diversification of technical risk cannot be easily obtained 

because of a lack of fluid markets.  As a result, investors demand a risk premium that 

depends upon each investor’s risk preference.  For instance, most investors consider real 
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estate transactions that include remediation of a contaminated land to be riskier than 

similar projects without the contamination component and typically demand a 

significantly higher return on investment before agreeing to take on the project.  Often, 

the rate of return associated with environmental risk that the investor demands may be 

significantly higher than the actual risk associated with the project because the 

complexity of the project and environmental risk are poorly understood.   

 

Significant effort has been made in recent past to quantify non-financial risk using 

derivative pricing methods [e.g., Copeland and Keenan, 1998; Dixit and Pyndick, 1994; 

Trigeorgis, 1999].  Although several models to value technical risk have been derived 

[e.g., Madj and Pyndick, 1987; Schwartz 2001], these models are difficult to implement 

and often require the use of complex numerical techniques.  Because of the difficulties 

inherent to the implementation of numerical techniques, evaluation of contingent liability 

considering technical risk is often neglected.  It is clear that simple techniques that allow 

speedy and reasonable accurate estimations of contingent liability due to technical 

uncertainty are needed.  In what follows, the well-known equation describing the 

stochastic variation of technical uncertainty for projects that take time to build is 

described, followed by a description of the derivation of the proposed simplification.   

 

MODEL DEVELOPMENT 

 

Because projects take time to complete, the cost to complete the project usually includes 

two different kinds of uncertainties: technical and market uncertainty.  For instance, in 

the case of a contaminated site, technical uncertainty would be: How much contamination 

is present and, therefore, how much it is going to cost to remediate the site?  Technical 

uncertainty can only be resolved by undertaking the remediation project; actual cost 

unfolds as the project proceeds.  The second kind of uncertainty, referred to as input cost 

uncertainty, is external to the project.  It arises because input prices for labor and 

materials fluctuate over time.  The most widely used expression for the evaluation of 

technical uncertainty and input is given by Pindyck [1993] who proposed the following 

stochastic process to model these two uncertainties: 

 

 KdwdzIKIdtdK γυ ++−= 2/1
)(  (1) 

 

where K is the remaining project cost; dz and dw are the increments of uncorrelated 

Wiener processes; I is the investment rate; and υ�� and γ are the standard deviations of the 

project cost stochastic process (technical and input costs).  The second and third terms in 

Equation (1) represent the technical and cost uncertainty, respectively.   In the absence of 

technical and input cost uncertainty, for t = 0, K is equal to the total expected cost, and 
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for t = Tc (time at which the project is actually completed), K = 0.  The total cost of the 

project (Q) can be related to the remaining total cost (K) at time t as: 

 

 )
2/1
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where t is the elapsed time since the beginning of the project.  It follows from Equation 

(2) that in the absence of technical and/or cost uncertainty component (i.e., υ�� = 0 and γ = 

0), Q would be a constant.  It follows from Equation (2) that:   

 

 KdwdzIKdQ γυ += 2/1
)(  (3) 

 

Assuming that the technical uncertainty is much larger than the input cost uncertainty, 

only technical uncertainty is considered in the analysis (i.e., γ = 0).   

 

 dzIKdQ
2/1

)(υ=  (4) 

 

The standard deviation of the technical uncertainty (υ) is related to the time-independent 

expectation (χ) and standard deviation (σ) of the project cost evaluated at the beginning 

of the project (i.e., t = 0) using a non-trivial relationship first derived by Dixit and 

Pindyck [1994]: 
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This relationship has been used to model the technical volatility of projects that take time 

to build and for which information is only available prior to project initiation.  If the total 

cost has been obtained through competitive bidding, the average of the bids can be 

viewed as the market's consensus of the true cost of the project and can be used as the 

time-independent cost expectation (χ) at t = 0 when the remaining project cost is equal to 

the total project cost.  Similarly, the standard deviation of the bids (σ) measures the 

variation about the project cost and it is an indicator of the bidders' uncertainty about the 

final project cost.  Variation about the mean given by the standard deviation represents 

judgment differences, assumptions, or minor bidding errors.  Both of these values (i.e., 

χ and σ) can be used to estimate the time-independent technical volatility (υ) using 

Equation (5).  The technical volatility can then be obtained as: 
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where V is the variance of the project defined as σ/χ.  If it is assumed that Q is a security 

that can be traded in the financial markets and create a portfolio φ that is composed of a 

long position of shares with contingent security F(Q) and a short position of a numbers of 

shares Q, then the portfolio value φ can be obtained as: 

 

 nQF −=φ  (6) 

where n is the number of shares Q that will be selected such that the return of the 

portfolio is risk-free.  The value of F derives from (i.e., is contingent upon) the value of 

Q, hence it being named as a derivative (or contingent security). 

 

An investor holding a long position of the security Q is expected to receive a payoff of 

µ = α + δ, where µ is the market return of the asset Q, α represents the expected return of 

the asset Q (i.e., the drift term of the stochastic variable Q), and δ represents the dividend 

(or convenience) yield for holding the asset Q.  Furthermore, because technical risks are 

considered diversifiable, a rational investor should expect a return for technical risk equal 

to the risk-free interest rate, thus r = α + δ.  As shown in Equation (4), the expected drift 

for the asset Q is zero (i.e., α = 0).  Hence, the convenience yield for the asset Q should 

be equal to the risk free interest rate (i.e., r = δ).   

 

For the sake of completeness, the steps followed to derive the value of contingent 

security for financial securities are presented below.  It follows from Equation (6) that a 

change of the portfolio value φ can be written as: 

 

 ndQdFd −=φ  (7) 

From Ito’s Lema, the change in the contingent security F can be written as:  
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The return on the portfolio (Rφ) is then given by the change in value of the portfolio given 

by Equation (7) minus the dividend yield (δ) that the investor holding the long position of 

Q is expected to receive.  This can be expressed as: 

 

 dtnQdR )( δφφ −=  (10) 

Hence, an investor holding the short position of n shares of Q should forgo (nQδ)dt.  

Because the portfolio is designed to be risk-free, the portfolio return should be the risk-

free interest rate (r) and Rφ is thus expressed as: 

 

 dtrR )( φφ =  (11) 

Then, by setting Equation (10) equal to Equation (11), it follows that: 

   

 ( )dtnQFrdtrdtnQd −==− )()( φδφ  (12) 

 

Replacing Equations (6) and (7) into Equation (12), yields: 

 

 ( ) 0
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To eliminate the stochastic (i.e., uncertainty) component of Equation (13), and thus 

eliminating the portfolio risk, the numbers of shares n must be equal to FQ.  Thus, 

Equation (13) reduces to: 

 0)(
2

1 2 =+−−+ tQQQ FrFQFrIKF δυ  (14) 

Defining the time variable as the available time before the option expiration date as τ = Tc 

– t, where Tc is the project completion date, Equation (14) can be written as: 

 

 0)(
2

1 2 =−−−+ τδυ FrFQFrIKF QQQ  (15) 

Equation (15) together with a set of boundary conditions can be used to estimate the 

contingent security F.  Because the coefficient of the first term depends upon the 

parameter K (which changes with time), Equation (15) is a non-linear partial differential 

equation (PDE).  Hence, numerical techniques are required to solve this equation. 
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LINEARIZATION TECHNIQUE 

 

Linearization of Stochastic Process 

 

Closed form solutions for Equation (15) are not available, only numerical finite 

difference solutions have been provided for particular cases [Dixit and Pyndick, 1994].  

To facilitate the application of Equation (15) to practical problems (e.g., R&D projects, 

construction cost), a linearization of Equation (4) was performed.  By dividing Equation 

(4) by the project total cost (Q), the following expression is obtained.    
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For a constant rate of investment, Q/I represents the expected time of project completion 

(Tc). The second term in Equation (16) represents the ratio between remaining project 

cost and the total actual cost.  At the beginning of the project (t=0) the ratio is equal to 1 

(i.e., K=Q) whereas at the end of the project (t=Tc), the ratio is zero.  Assuming a linear 

variation between these two values, the average cost ratio is 0.5.  Defining a parameter β 

as the average cost ratio [K/Q]avg, the value of β before project completion is defined as 

follows:   
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It follows from Equation (17) that for t=Tc, the parameter β is equal to ½.  Replacing 

Equation (17) into Equation (16), yields: 
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where the parameters αQ is the  instantaneous (constant) equivalent return on the asset K; 

σQ is the instantaneous (constant) standard deviation of asset return.  Equation (18) is the 

equivalent linear representation of the more accurate non-linear stochastic process given 

by Equation (4).  Also, the stochastic process given by Equation (18) is similar to the well 

known stochastic process used for modeling stocks.   

 

Closed Form Solution 

 

Using the proposed linearization, the non-linear Equation (15) can be rewritten as: 
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and replacing Equation (19) into Equation (21), the following well-known linear partial 

differential equation is obtained. 

 

 0)(
2
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 (22) 

 

If Equation (22) is subjected to the following boundary condition, is then a call option.  

 

 { }0,max),,( XQTXQFC
C

−==  (23) 

The partial differential equation (22) subject to the boundary condition given by Equation 

(23) can be used to answer the following question:  What is the expected cost overrun (F) 

over the invested amount X in a project that has an unknown total cost to complete (Q) at 

the end of period (Tc)?   

 

The solution to this problem is equivalent to the equation derived by Black and Scholes 

[1973] to evaluate European-type options.  The solution to the proposed linear equation 

for call option is then:  
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and the operator N( ) is the cumulative standard normal distribution function.  A 

comparison between the value of a contingent security and a contingent liability of real 

project is shown in the table below.  The closed form solution given by Equations (23) 

and (24) can be used to evaluate the contingent liability for the cost overrun on a real 

project.  As discussed above, because the expected drift is zero, the project convenience 

yield is equal to the risk-free interest rate (i.e., δ = r).  

 

Table 1 – Comparison of Real Options and Financial Options 

Variable Project Contingent Liability Contingent Security (Call/Put  Option) 

Q Expected total project cost Stock price 

σQ Project cost uncertainty Volatility of the stock 

X Project target cost Exercise price 

R Risk free interest rate Risk free interest rate  

δ Project convenience yield Stock dividend yield 

Tc Expected project completion time Time to maturity 

F Contingence liability above cost X Call (C)/Put option (P) 

 

If Equation (22) is subjected to the following boundary condition, is then a put 

option.   

 { }0,max),,( QXTXQFP
C

−==  (27) 

The partial differential equation (22) subject to the boundary condition given by Equation 

(27) can be used to answer the following question:  What is the expected project saving 

(P) below the invested amount X in a project that has an unknown cost to complete (Q) at 

the end of period (Tc)?   

 

Lattice Model  

 

The advantage of the simplified model derived above is that it can also be implemented 

using the binomial option pricing model [Cox, et al, 1979].  The binomial option pricing 

model (Figure 1), a special case of lattice models, is generally more intuitive, simpler, 

and more flexible in handling different stochastic processes such as option payoffs, 

several underlying variables, early exercise, or other intermediary decisions.  Also, a 

binomial model can be more easily communicated to non-technical parties than its partial 

differential equation counterpart. 
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The binomial option pricing model assumes that the price of the underlying asset (Q) in 

each period can only move up (by a multiplicative factor u) or down (by a multiplicative 

factor d) – that is, the asset price follows a binomial distribution (Figure 2).  This 

approach to pricing options conveys much of the depth and intuition of more complex 

and seemingly more realistic models.  Binomial pricing is especially useful in pricing 

American-type options due to its backward, dynamic programming-type process.  For the 

proposed linear solution, the multiplicative factors u and d are given by: 
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where N is the number of time steps used to describe the binomial distribution (Figure 2), 

and σQ is standard deviation of the proposed modified solution and it is given by 

Equation (19). 
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As described above, the call option can be viewed as the expected total cost overrun of 

the project (i.e., the project cost over the amount X), whereas the put option can be 

viewed as the expected project savings that may be realized at the end of the project.   

 

 

 

VERIFICATION 

A solution to Equation (4) was implemented using Monte Carlo simulation (MCS) to 

evaluate the contingent liability of a cost overrun above an initial expected project cost.  

The MCS results were then compared to those obtained using the closed form solution 

and the binomial solution described above.  The input parameters are listed in Table 2.    
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Figure 2 – Multi-step Binomial Lattice Representation 
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Table 2 – Input Parameters 

Variable Project Contingent Liability Value 

Q Expected total project cost $6.0 million 

V Project Variance 5%, 10%, 15%,20%, 25%, 30% 

X Project target cost $6, $6.1, $6.2, $6.3, $6.4, $6.5, $6.6 million 

r Risk free interest rate 6% 

Tc Project completion time 1, 2, 3, 4, 5 years 

N Number of time steps 18, 24, 36 

ns Number of simulations 5000, 10000, 20000, 30000 

Quantities shown in bold correspond to the base case 

 

For illustrative purposes, the results of typical random simulations of the variation of the 

remaining project cost (K) as a function of elapse time (t) for the case analyzed is 

presented in Figure 3.   
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Figure 3 – Random Variation of Remaining Project Cost vs. Time 

 

The results of the contingent liability (i.e., call option) for the base case are presented in 

Table 3.  Because the results of MCS are not unique, each simulation yields slightly 
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different results.  Table 3 presents the results of several simulations for 5,000 trials and 

shows that the average error of the modified binomial and closed form solution is 4% and 

3%, respectively.  Hence, as the number of trials increases, the error should trend towards 

the calculated numbers averages.     

 

Table 3 –Simulation Results (5,000 trials) 

Binomial Modified Simulation Error 

CB CM CS (CS-CB)/CMCS (CS-CM)/CMCS 

 $  566,607   $  572,538   $  574,575  1.4% 0.4% 

 $  566,607   $  572,538   $  605,484  6.4% 5.4% 

 $  566,607   $  572,538   $  595,411  4.8% 3.8% 

 $  566,607   $  572,538   $  596,060  4.9% 3.9% 

 $  566,607   $  572,538   $  580,819  2.4% 1.4% 

 Average $  590,470 4.0% 3.0% 

 

 

Table 4 shows the comparison between: (i) the MCS and the proposed closed solution; 

and (ii)  the MCS and the binomial solution for various cases for the parameters listed 

above.  As shown in the table, error associated with the binomial and modified techniques 

are small (i.e., approximately less than 5%).   

 

As shown by the parametric study of the variability of the construction cost (first group 

of Table 4), larger construction cost variability results in a larger risk premium (as 

expected).  The second group of Table 4 shows the risk premium associated with a cost 

overrun higher than the listed values (e.g., for an initial estimated project cost of $6 

million, the risk premium associated with a final cost being higher than $6.3 million is 

$588,493).  As shown by the parametric study of the variability of the time to completion 

of the project (third group of Table 4), the risk premium is not particularly sensitive to 

this parameter.  The last two parameters (number of time steps and number of simulation 

trials) are related to the accuracy of the MCS algorithm.  As shown in the fourth and fifth 

group in Table 4, for the selected range of these parameters, the risk premium is not 

sensitive to these parameters. 
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Table 4 – Results of Simulation Comparison for a Call Option 

X V Tc N ns Binomial Modified Simulation Error 

[million] [%] [Years] [-] [-] CB CM CS Binomial Modified 

$6.0 30.0% 3 24 5,000  $566,607   $572,538   $574,550  1.4% 0.4% 

$6.0 25.0% 3 24 5,000   $478,716   $483,727   $492,845  2.9% 1.8% 

$6.0 20.0% 3 24 5,000   $387,421   $391,477   $400,145  3.2% 2.2% 

$6.0 15.0% 3 24 5,000   $293,243   $296,312   $309,416  5.2% 4.2% 

$6.0 10.0% 3 24 5,000   $196,800   $198,860   $206,786  4.8% 3.8% 

$6.0 5.0% 3 24 5,000   $98,798   $99,832   $104,260  5.2% 4.2% 

$6.0 30.0% 3 24 5,000   $566,607   $572,538   $574,550  1.4% 0.4% 

$6.1 30.0% 3 24 5,000   $536,227   $536,494   $538,623  0.4% 0.4% 

$6.2 30.0% 3 24 5,000   $505,848   $502,312   $510,837  1.0% 1.7% 

$6.3 30.0% 3 24 5,000   $475,468   $469,940   $483,892  1.7% 2.9% 

$6.4 30.0% 3 24 5,000   $445,089   $439,320   $468,929  5.1% 6.3% 

$6.5 30.0% 3 24 5,000   $414,710   $410,393   $405,770  -2.2% -1.1% 

$6.6 30.0% 3 24 5,000   $384,330   $383,098   $389,731  1.4% 1.7% 

$6.0 30.0% 1 24 5,000   $638,847   $645,535   $651,802  2.0% 1.0% 

$6.0 30.0% 2 24 5,000   $601,644   $607,942   $634,290  5.1% 4.2% 

$6.0 30.0% 3 24 5,000   $566,607   $572,538   $588,493  3.7% 2.7% 

$6.0 30.0% 4 24 5,000   $533,610   $539,196   $559,882  4.7% 3.7% 

$6.0 30.0% 5 24 5,000   $502,535   $507,796   $525,532  4.4% 3.4% 

$6.0 30.0% 3 36 5,000   $566,607   $572,538   $577,659  1.9% 0.9% 

$6.0 30.0% 3 24 5,000   $566,607   $572,538   $574,550  1.4% 0.4% 

$6.0 30.0% 3 18 5,000   $566,607   $572,538   $595,709  4.9% 3.9% 

$6.0 30.0% 3 24 5,000   $566,607   $572,538   $580,819  2.4% 1.4% 

$6.0 30.0% 3 24 10,000   $566,607   $572,538   $573,775  1.2% 0.2% 

$6.0 30.0% 3 24 20,000   $566,607   $572,538   $587,973  3.6% 2.6% 

$6.0 30.0% 3 24 30,000   $566,607   $572,538   $589,962  4.0% 3.0% 

 

 

CONCLUSIONS 

 

A simplified model that considers technical uncertainty and time to build has been 

developed and its results compared to those obtained using Monte Carlo simulation for a 

specific example.  The error appears to be small for the cases analyzed.  The advantage of 

the method is its simplicity and its relation to the well-known Black and Scholes 

equations.  Extension of the proposed procedure to other common applications could 

therefore be easily achieved.   
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