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Abstract
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technology is sufficiently obsolete but also the wedge between the latest and the state of the arts
grades is large enough. This result indicates that the higher the threat a better technology may
be released is a cricial determinant in upgrading decision. Effects of the mean and the variance of
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1 Introduction

In the May 1999 issue of “Communications of the ACM”, the computer science magazine tried to
explore the following dilemma: how often should a firm buy a new computer and what type of
machine should it buy? The article reached the conclusion that a firm should replace its PC at
regular intervals using two dominating strategies: either buy high-end machines every 36 months for
organizations seeking substantial computer performance or buy intermediate-level computers every
36 months, a cheaper alternative. Changing configurations and declining prices lead to an important
characteristic of the PC market: computers must be replaced at regular intervals. In February 2005,
IBM unveiled a new computer chip called “Cell” that will run about ten times faster than the chips
found in the fastest desktop PCs today. The chip, developed in conjunction with Sony and Toshiba,
is being widely hailed as a significant development in the evolution of computing technology and a
challenge to Intel, the current market leader.

These observations raise an interesting set of questions. How do looming releases of superior
technologies affect upgrading decisions? What is the impact of the speed (drift) and uncertainty
(variance) of technological progress on the replacement decision?

In this paper, we propose a tractable continuous time model in which a firm must choose when
to scrap its technology and implement a new one when the arrival of innovations on the market is
random. Our main contribution lies in the fact we are able to derive the impact of the threat of the
arrival of superior technologies (making newly adopted ones obsolete) on the replacement policy.

Adoption of a new technology is by no means a simple issue to study so the literature has tried
to disentangle independently the role of several factors. A common feature of all technology adoption
models is the trade-off between waiting and upgrading. A change in technology is costly and usually
irreversible, so a natural concern for the manager is: how will the market evolve and how fast will
technological progress occur? When adoption is decided, the manager may hesitate over the type
of new technology to implement: Does the new piece of equipment require specific knowledge to be
operated properly? How large will the gains in efficiency be?

A large class of models focuses on the complementarity between technology and skills. There is
a trade-off between improving expertise and experience by continuing to operate a given technology
(learning by doing) and switching to a more profitable production process that is not fully mastered
by the firm right after adoption (Jovanovic and Nyarko (1996), Chari and Hopenhayn (1991)). Par-
ente (1994) proposes a model where learning exhibiting decreasing returns takes time and switching
technology induces a loss in know how. These authors emphasize the link between the low pace of
diffusion of a technology and the time required to acquire the skills to use it. More recently, Karp
and Lee (2002) investigate technology among less advanced and more advanced firms, the latter being
more reluctant to scrap a technology they are familiar with. They show that if agents are patient
enough, no leapfrogging occurs. Within a learning by doing framework, Mateos-Planas (2004) focuses
on the relationship between technology adoption and firm horizon.

Uncertainty is a fundamental factor in adoption of a new technology. Several types of uncertainties
have highlighted in the literature. Uncertainty may lie in the quality of the new technology or, more
generally, in its profitability. The moment when a technological curiosity becomes a commercial one
is hard to define. Mansfield (1968) mentions that in the case of a new piece of equipment, both the
supplier and the user often take a considerable risk. Does new necessarily mean more efficient, and if
yes for how long? To overcome the first difficulty, Jensen (1982) proposes a model in which the plant
manager observes signals from which she can infer the quality of the technology and, therefore, updates
her beliefs over time. Similarly, Jensen (1983) presents a firm undertaking trials to evaluate the quality
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of two competing innovations. Another class of models tries to capture the uncertainty surrounding
the arrival of a new technology, in particular the speed of arrival and the size of future innovations.
Both Balcer and Lippman (1984) and Farzin, Huisman and Kort (1997) examine the optimal timing
of technology adoption in a context of uncertainty regarding the arrival speed and the efficiency of
innovations. They show that significant technological improvements and a high rate of innovations
delay adoption. As pointed out in Rosenberg (1976), the sunk cost of investing prematurely in a
given technology is usually unrecoverable, a manager expecting a major technological breakthrough
may choose to delay adoption as she tries to avoid to lock herself in. Grenadier and Weiss (1997) use
an option pricing approach to study the adoption of new technologies when the arrival date of the
next generation of innovations is random. The model predicts four types of behaviors: i) compulsive
adoptions of every innovation, ii) leapfrogging which consists of skipping an early innovation but
adopting some subsequent developed technology, iii) sticking to some early purchased technology, and
finally iv) a lagging strategy of buying some older technology at some discounted price after waiting
the appearance of some new innovation on the market is stochastic.

Indeed, an important issue lies in the description of the range of new technologies appearing on the
market and its evolution. Most of the existing models on adoption technology makes for restrictive
assumptions on how new technologies become available on the market. Many assume that the firm has
no choice but to implement the latest developed technology or that the technological frontier evolves
in a deterministic and increasing fashion. Few attempts have been made to relax this assumption.
Jovanovic and Rob (1998) construct a deterministic general equilibrium model in which a manager
can choose to upgrade among an increasing range of vintages as technological progress continues.
Yet since the production function considered exhibits constant returns to scale, the state of the art
technology is always purchased. Bar-Ilan and Mainon (1993) introduce a stochastic environment in
which the firm must adjust its technological level with respect to the frontier technology. Indeed, in
reality, managers pay attention to what type of technology to implement. Why adopt the frontier
technology in a recession time?

Finally, our approach focuses on the option value of waiting to adopt a suitable technology as there
is uncertainty and the decision taken is irreversible. We lie in the vein of models developed by Abel
and Eberly (1996), (1998) and (2004), Abel et al. (1996), Bertola and Caballero (1994), Dixit and
Pindyck (1994) or in a context of indivisible durable goods by Grossman and Laroque (1990).

1.1 Results

Adoption of a new technology is governed by economic depreciation due to the arrival of improved
technologies as well as the fear that a superior innovation may be released making the newly adopted
obsolete. We show that optimally the manager of the firm follows a (s, S) style policy and the scrapping
decision depends on how far the ratio of the operated technology to best invented technology is from
the ratio current state of the technology to best invented. Since we assume constant returns to scale
in technology, updating to the cutting edge technology is optimal. We find that the scrapped grade
relative to the state of the art technology is a decreasing function of the current state of research
relative to the state of the art one. It is never optimal to adopt the state of the art technology when
it is released. As in the case of a Russian option (see Shepp and Shiryaev (1993)), the manager of the
firm experiences some reduced regret of not having exercised her option at an earlier time as she still
has the opportunity of purchasing some previously introduced technologies. Finally, we establish that
increasing the average growth of technological progress as well as increasing volatility leads to a more
conservative updating strategy as economic depreciation is accelerated.

The paper is organized as follows. Section 2 describes the economic setting. In section 3, we
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examine the case of a single adoption and investigates the effects of the mean and volatility of the
technological progress on the optimal scrapping frontier. Section 4 extents the analysis to multiple
adoptions. Section 5 concludes. Proofs of all results are collected in the appendix.

2 The General Economic Setting

Time is continuous. An infinitely lived risk neutral manager has to decide sequentially the quality of
the technology her firm (plant) should operate.

2.1 Technology Adoption and Information Structure

Uncertainty is modeled by a probability space (Ω,F , P ) on which is defined a one dimensional (stan-
dard) Brownian motion w. A state of nature ω is an element of Ω. F denotes the tribe of subsets of
Ω that are events over which the probability measure P is assigned.

Technology is embodied in new capital goods. A single variable a ≥ 0 captures all the relevant
attributes of the production process to the operating cash flow. Roughly speaking, a represents the
grade of the technology. At denotes the latest developed technology and evolves exogenously according
to a geometric Brownian motion

dAt = At (µdt + σdwt) ,

where dwt is the increment of a standard Wiener process under P , µ represents the average growth
rate of technological progress and σ is its the volatility. On average, technology becomes better but
it can decrease, capturing the fact that some newly released technologies can be worse than some
older ones1. In general, only superior technologies are released on the market. Alternatively, one can
think of variable A as describing the state of current research. If so, A captures the likelihood that
an improved technology will appear. In this case, A is both the quality and an index for the state of
current research.

At time t, let zt be the best grade ever invented (frontier technology), starting at z > 0 at date 0,
i.e.

zt = max{z, sup
0≤s≤t

As}.

Let Ft be the σ-algebra generated by the observations of the released technologies, {As; 0 ≤ s ≤ t)}
and augmented. At time t, the investor’s information set is Ft. The filtration F = {Ft, t ∈ R+} is the
information structure and satisfies the usual conditions (increasing, right-continuous, augmented).

Operating technology grade a is costless and output y is simply equal to a. A risk neutral manager
who discounts future at a rate r > µ has to choose when to upgrade technology and which new
technology to implement among the ones available on the market at the time of adoption.

2.2 Timing of Adoption

We follow Jovanovic and Rob (1998). Denoting one particular adoption time by τ , switching technology
requires two steps:

- At time τ−, the firm has to scrap its old technology aτ− . The underlying idea is that technologies
are fully incompatible. We assume thin markets for used machines: the firm activity may be so specific

1For instance, the latest version of a software may include some bugs and may not be as good as the previous version.
Ultimately, the problems will be fixed and the efficiency of the technology enhanced.
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that capital resales only occur at heavy discounts. In our case, the resale price is simply zero and
scrapping is costless.

- At time τ+, the firm decides which technology to adopt aτ+ in [0, zτ ]. Obviously, the manager
will always select aτ+ > aτ− . The price p of one efficiency unit of technology is assumed to be constant,
with 0 < p < 1

r . We start by analyzing the simplest case when the firm can only upgrade once. This
case carries most of the intuition present in the multiple adoption case.

3 Single Upgrading

3.1 The Firm’s Problem

Switching technology implies giving up the cumulative discounted profit at the discount rate r that
could have been realized with the technology already in use. Since the forgone profit is strictly positive,
the manager is therefore facing an opportunity cost and upgrading cannot be continuous across time.
As aresult, technology adoption is lumpy. The firm optimally chooses a stopping time τ 2 and a
positive random variable a′ that represents the level of the its new technology adopted at τ . At some
initial date t = 0, given an operated technology a, the state of the art technology is z and the latest
technology is A, the firm’s problem is

F (A, z, a) = sup
(τ≥0, 0≤a′τ≤zτ )

E

[∫ τ

0
ae−rsds +

∫ ∞

τ
a′τe

−r(s−τ)ds− pa′τe
−rτ

]
. (1)

Equivalently

F (A, z, a) =
a

r
+ sup

(τ≥0, 0≤a′τ≤zτ )
E

[(
(
1
r
− p)a′τ −

a

r

)
e−rτ

]
.

The first term a
r is the value of operating forever the same technology a whereas the second term is the

option of upgrading technology once. It is equal to a perpetual American call option with underlying
asset (1

r−p)a′ and strike price a
r . We now derive some properties of the value function and the optimal

grade adopted.

Properties of the Value Function F

Property 1: F is strictly increasing in a, non-decreasing and convex in A and z.

Property 2: F is homogeneous of degree one and adopting the best existing technology is optimal,
i.e. a′τ = zτ .

Proof. See appendix 1.

The problem can be interpreted in terms of a Russian option as described in Shepp and Shiryaev
(1993). The only difference here is the strike price a

r , which represents the opportunity cost of giving
away the cumulated discounted profit made by operating technology a forever. In the sequel, we
explicitly look at the option value of waiting

G(A, z, a) = sup
τ≥0

E

[(
(
1
r
− p)zτ −

a

r

)
e−rτ

]
.

2A stopping time τ is a measurable function from the state space (R3
+, F) to R+ such that�

(A, z, a) ∈ R3
+, τ(A, z, a) ≤ t

	
∈ Ft for all t ≥ 0. It means that the stopping rule is a non-anticipated strategy or

in other terms the decision of switching technology only depends on the information available up to the time of the
adoption.
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Clearly, the option value of waiting and upgrading once is decreasing in the grade operated by the
firm a and increases with the state of the art technology z. We start by examining the case when
a = 0.

3.1.1 Benchmark Case: a = 0

This problem can be seen as a firm that contemplates to enter into a new market. When is the best
time to enter? Which technology the firm should then operate? There is an explicit solution given by

F (A, z, 0) =

{
(1

r − p)
β1(αA

z )β2−β2(αA
z )β1

β1−β2
z, z

α ≤ A ≤ z,

(1
r − p)z, 0 ≤ A ≤ z

α ,

where β1 and β2 are respectively the positive and negative roots of the quadratic

σ2

2
β2 + (µ− σ2

2
)β − r = 0, (2)

and

α =

(
1− 1

β2

1− 1
β1

) 1
β1−β2

> 1.

Proof. See Shepp and Shiryaev (1993).

The optimal strategy is to upgrade immediately if the current technology is far away down from
the state of the art technology, otherwise wait. This simple case provides a lot of economic intuition
regarding the optimal timing of a technological upgrade. As long as the ratio current frontier technol-
ogy A over the state of the art technology z is large enough, namely above 1

α , i.e. if the threat that a
better technology soon appears on the market is significant, waiting is optimal.

We now study the general case when a is positive for which obsolescence of the technology operated
by the firm also matters.

3.2 General case

3.2.1 Inaction Region and Conjecture of the Optimal Policy

Details of the existence of the solution can be found in Øksendal (2000), Chapter 10. The supremum
F is the least superharmonic majorant of the reward function (1

r −p)z. We define the inaction region
IR where no upgrading takes place as

IR =
{

(A, z, a) : A ≤ z, F (A, z, a) > (
1
r
− p)z

}
.

In appendix 1, we prove that the inaction region is connected and is of the form

IR = {(A, z, a) : a ≥ a∗(A, z)} ,

or equivalently
IR =

{
(A, z, a) : A > A∗(z, a) = zL0(

a

z
)
}

,

for some smooth decreasing function L0. As mentioned in Grossman and Zhou (1993), z is a continuous
increasing process and thus a finite variation process. Moreover, denoting by [X, Y ] the quadratic
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covariation between processes X and Y , we have d [z, w]t = 0 and d [z, z]t = 0. For (A, z, a) ∈ IR and
A < z, the Hamilton-Jacobi-Bellman (HJB) equation is

rF (At, zt, a)dt = adt + Et (dF (At, zt, a)) .

Dropping the time index and applying Ito lemma leads to the following expression for the HJB

rF (A, z, a) = a + µAF1(A, z, a) +
σ2

2
A2F11(A, z, a). (3)

Since F is homogeneous of degree one, the general solution of the HJB is

F (A, z, a) =
a

r
+ a1−β1f(

z

a
)Aβ1 + a1−β2g(

z

a
)Aβ2 ,

where f and g are two smooth positive functions to be determined. In order to do so, it remains to
examine what happens at A = z. As mentioned in Shepp and Shiryaev (1993) and derived in Grossman
and Zhou (1993), in order for F to satisfy the HJB at A = z, F must satisfy the additional condition
Fz(z, z, a) = 0, which implies that for all x ≥ 0

f ′(x)xβ1 + g′(x)xβ2 = 0. (4)

The initial condition is F (0, z, a) = max{(1
r − p)z, a

r } and the value-matching and smooth pasting
(free boundary) conditions respectively are

F (A∗(z, a), z, a) = (
1
r
− p)z

∇F (A∗(z, a), z, a) = (0,
1
r
− p, 0),

where ∇F = (F1, F2, F3) is the gradient of F.

Proposition 1 The option value is given by

F (A, z, a) =

{
a
r +

β1L0(a
z
)−β2(A

z )β2−β2L0(a
z
)−β1(A

z )β1

β1−β2

(
(1

r − p)z − a
r

)
, zL0(a

z ) ≤ A ≤ z,

(1
r − p)z, 0 ≤ A ≤ zL0(a

z ),

where L0 is the solution for u ∈ [0, 1− rp] of the following ODE

uL′0(u) = L0(u)

(
1−

(1− rp)
(
β1L0(u)β1−β2 − β2

)
β1β2(1− rp− u) (1− L0(u)β1−β2)

)
,

with L0(0) = 1
α and L0(u) = 0 for u ∈ [1− rp, 1] . When a > (1 − rp)z, no updating takes place; the

value of the firm is independent of z and is given by

F (A, z, a) =
a

r
+ Da1−β1Aβ1 ,

where D = lim
u→1−rp

−β2

r(β1−β2)(1− rp)β1−1(1− rp− u)L0(u)−β1.
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Proof. See appendix 2

When the technology operated by the firm a is close enough to the state of the art technology z,
regardless of the threat that a better technology could be released soon on the market A

z , no upgrading
takes place. Also notice that, in this case, the value of the firm is independent of the state of the art
technology z.

We now present some properties of the optimal scrapping frontier.

Proposition 2 The optimal frontier A∗ is homogeneous of degree one in (z, a), A∗(z, a) = zL0(a
z ),

increasing in z and decreasing in a. It follows that a
z is a decreasing function of A

z : upgrading takes
place when the gap between the current operated technology a and the state of the art technology z is
large enough provided that it is unlikely that a better technology will soon be released. i.e. the wedge
between the current frontier technology A and the state of the art technology z is must be significant.

3.2.2 Uncertainty effects

We have the following proposition.

Proposition 3 An increase in the project volatility raises the option value and consequently delays
adoption.

Proof. See appendix 3.

An increase in the project volatility shifts in the optimal scrapping frontier L0.

3.3 Numerical Simulations

In this paragraph, we aim at quantifying the impact of the mean and the variance of the technological
progress process on the optimal scrapping frontier. We use Mathematica to simulate the ODE defining
the optimal frontier L0 using the initial condition L0(0) = 1

α .
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3.3.1 Effects of the Average Speed of Technological Progress

Figure 1 : Effects of the technological progress mean on the optimal scrapping frontier

r=0.05, σ = 0.2, p = 1

The optimal scrapping frontier L0 is displayed in Figure 1 for several values of the average speed
of technological progress µ. As µ increases, the optimal scrapping frontier shifts in: For any given
value of A∗

z , the relative upgrading trigger point is lower, which indicates that upgrading is delayed.
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3.3.2 Effects of the Volatility of Technological Progress

Figure 2 : Effects of the technological progress volatility on the optimal scrapping frontier

r=0.05, σ = 0.2, p = 1

The optimal scrapping frontier L0 is displayed in Figure 2 for several values of the volatility of
technological progress σ. We find similar effects as those described previously when analyzing the
impact of parameter µ. As σ increases, the optimal scrapping frontier shifts in: For any given value
of A∗

z , the relative upgrading trigger point is lower, which indicates that upgrading is delayed.

4 Multiple Upgrading

The firm optimally chooses an increasing sequence of stopping times3 {τk}∞k=1 and a sequence of
positive random variables {a′k}

∞
k=1 ∈ [0, zτk

] , where a′k represents the level of the kth technology
adopted at τk. This is a typical impulse control problem (see Harisson, Sellke and Taylor (1983) and
Brekke and Oksendal (1994)). For an initial condition (A0, z0, a0), the value of the firm is

F (A0, z0, a0) = sup
(τk≥0, 0≤a′k≤zτk

)k=∞
k=1

E

[∫ τ1

0
a0e

−rsds +
∞∑

k=1

(∫ τk+1

τk

a′ke
−r(s−τk)ds− pa′ke

−rτk

)]
. (5)

Using a recursive approach, the problem can be reformulated as

F (A, z, a) =
a

r
+ sup

(τ≥0, 0≤a′τ≤zτ )
E
[(

F (Aτ , zτ , a
′
τ )− pa′τ −

a

r

)
e−rτ

]
.

3A stopping time τ is a measurable function from the state space (R3
+, F) to R+ such that�

(A, z, a) ∈ R3
+, τ(A, z, a) ≤ t

	
∈ Ft for all t ≥ 0. It means that the stopping rule is a non-anticipated strategy or

in other terms the decision of switching technology only depends on the information available up to the time of the
adoption.
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We now derive some properties of the value function.

Property 1: F is increasing in a and z, non-decreasing in A and F is homogeneous of degree one in
(A, z, a).

Property 2: F is convex in a so upgrading to the best existing technology is optimal: a′τ = zτ .

Proof. See appendix 4

From property 2, we have

F (A, z, a) =
a

r
+ sup

τ≥0
E
[(

F (Aτ , zτ , zτ )− pzτ −
a

r

)
e−rτ

]
,

and the option value of upgrading is

G(A, z, a) = sup
τ≥0

E
[(

F (Aτ , zτ , zτ )− pzτ −
a

r

)
e−rτ

]
.

It is follows that G is decreasing in a and increasing in A and z.

Shape of the Inaction Region and Properties of the optimal scrapping frontier

As derived in appendix 4, similar to the single adoption case, the inaction region IR has the following
shape

IR =
{

(A, z, a) : A > A∗(z, a) = zL(
a

z
)
}

,

where L is a decreasing function to be characterized. In addition, we find that scrapping takes place
when, given (A, z) the operated technology a corresponds to a minimum of the value function F .

4.1 Derivation of the Value Function

Inside the inaction region IR, the HJB equation is same as before

rF (A, z, a) = a + µAF1(A, z, a) +
σ2

2
A2F11(A, z, a).

The initial condition is F (0, z, a) = max {(1
r − p)z, a

r } and the value-matching and smooth pasting
(free boundary) conditions respectively are

F (A∗(z, a), z, a) = F (A∗(z, a), z, z)− pz

∇F (A∗(z, a), z, a) = (F1(A∗(z, a), z, z), F2(A∗(z, a), z, z)− p), F3(A∗(z, a), z, z)).

Proposition 4 The option value is given by

F (A, z, a) =

{
a
r +

β1L(a
z
)−β2(A

z )β2−β2L(a
z
)−β1(A

z )β1

β1−β2

(
(1

r − p)z − a
r

)
, zL(a

z ) ≤ A ≤ z,

(1
r − p)z, 0 ≤ A ≤ zL(a

z ),

where L is the solution for u ∈ [0, 1− rp] of the following ODE

uL′(u) = L(u)

(
1−

(1− rp)
(
β1L(u)β1−β2 − β2 −

((
β2(β1 − 1)L(0)−β1 + β1(1− β2)L(0)−β2

)
L(u)β1

))
β1β2(1− rp− u) (1− L(u)β1−β2)

)
,
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and L(u) = 0 for u ∈ [1− rp, 1] . When a > (1 − rp)z, no updating takes place; the value of the firm
is independent of z and is given by

F (A, z, a) =
a

r
+ Da1−β1Aβ1 ,

where D = lim
u→1−rp

β2

r(β1−β2)
(1−rp−u)L(u)−β1

1−(1−rp)1−β1
.

Proof. See appendix 5

The determination of the upgrading frontier L (and the value of the firm F ) is not complete yet since
we still ignore the initial value L(0).

4.2 Complete Characterization of the Scrapping Frontier

As derived in appendix 5, constant D and the initial value L(0) are linked by the following relationship

D =
1− rp

r(β1 − β2)(β1 − 1)

(
β2(β1 − 1)L(0)−β1 + β1(1− β2)L(0)−β2

)
. (6)

It is not possible to determine analytically the initial value L(0) so the ODE defining L cannot be
solved numerically in the standard way as we did in the single adoption case using an initial condition.
Instead, we need to look for a fixed point.

Double Shooting Method. The ODE defining L can be solved numerically by looking for a fixed
point. The method used is called double shooting. We start with some initial guess about L(0) in (0, 1),
then we compute numerically the values of L in the range [0, 1− rp] for instance using Mathematica,
and determine D. Finally, we compare the computed value of D with the one given by relationship
(8). The operation is repeated until the two values coincide.

4.3 Comparison Between Single and Multiple Adoptions

When multiple adoption are allowed, the option value of waiting is higher since the manager always
has the possibility to upgrade only once. As a consequence, we expect the optimal switching frontier
for the multiple adoption case to be above the optimal switching frontier for the single adoption case.
In fact in appendix 5, we formerly establish that this intuition is correct: for all u in [0, 1 − rp), we
have L(u) > L0(u) and at u = 1 − rp, both frontiers coincide and are equal to zero. The firm is
less concerned with adopting a technology that may soon be rendered obsolete since it will have the
opportunity to upgrade again in the future.
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Figure 3 : Optimal scrapping frontiers for single and multiple adoptions

r=0.05, σ = 0.2, p = 1

Figure 3 compares the optimal scrapping frontiers in the case of a single adoption and multiple
adoptions. The distance between the two curves first widens as u increases and then shrinks as u
gets closer to 1 − rp. Indeed, having the opportunity to upgrade technology several times leads to a
significantly less conservative scrapping policy, in particular for large values of u.

Additional numerical simulations (not displayed here) show that the effects on the mean and
volatility of the technological progress on the optimal scrapping frontier are identical to those found
in the single adoption case.
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5 Conclusion

In this paper, we develop a simple model of innovation adoption allowing for random technological
progress. For the sake of simplicity, much of the literature dealing with technology adoption in
a dynamic framework chose to examine the special case where the latest developed technology is
systematically purchased. We relax this assumption and any technology available within a non-
decreasing range across time may be implemented. Our framework shares some common feature
with Russian options as presented in Shepp and Shiryaev (1993). Namely, the firm experienced some
reduced regret from not adopting a technology as soon as it is released (and would rather wait for the
next available innovations) since this opportunity still holds later on. We first examine the case of a
single adoption and extend the analysis to the case of multiple adoptions. We find similar results for
both frameworks: the firm is all the more reluctant to upgrade the higher the threat that appears on
the market a better technology. The single adoption case reinforces this phenomena because the firm
has little room for mistake. This result indicates that the introduction of better technologies and the
uncertainty surrounded them may be a crucial determinant in upgrading decision. Finally, the impact
of the average speed and volatility of the technological progress is to enhance the obsolescence of newly
adopted technologies, thus deterring the firm from upgrading. We have considered an extreme case
where the new technology implemented is more productive right after adoption. Lag effects such as
time to build or time to learn can also have a significant impact on updating decision. In addition,
updating decisions are based on expectations about future available technologies. We have taken the
arrival of new grades as exogenous. A general equilibrium model would allow us to endogenize it. This
is left for future research. .
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6 Appendix

6.1 Appendix 1

Proof of property 1. Given relationship (1), the only statement that is not trivial to show the
convexity in A. Let λ in (0, 1) and two initial values A0 and A′0. As shown in the sequel, it is optimal
to adopt the best ever invented technology z. Recall that

zλ,t = max{λA0 + (1− λ)A′0, sup
0≤s≤t

λAs + (1− λ)A′s}

≤ λ max{A0, sup
0≤s≤t

λAs}+ (1− λ) max{A′0, sup
0≤s≤t

A′s}

≤ λzt + (1− λ)z′t.

It follows that

F (Aλ, z, a) =
a

r
+ sup

τ≥0
E

(
(
1
r
− p)zλ,τ −

a

r

)
e−rτ

≤ λ

(
a

r
+ sup

τ≥0
E

(
(
1
r
− p)zτ −

a

r

)
e−rτ

)
+ (1− λ)

(
a

r
+ sup

τ≥0
E

(
(
1
r
− p)z′τ −

a

r

)
e−rτ

)
≤ λF (A, z, a) + (1− λ)F (A′, z, a).

Proof of property 2. We first show that F is homogeneous of degree one in (a,A, z). Let λ > 0
and an initial state (λa, λA, λz), since the law of motion of A is linear at date τ , the frontier level is
λzτ and the current technology level is λAτ . It follows that

F (λA, λz, λa) =
λa

r
+ sup

(τ≥0, 0≤a′τ≤λzτ )
E

(
(
1
r
− p)a′τ −

λa

r

)
e−rτ

= λ

(
a

r
+ sup

(τ≥0, 0≤b′τ≤zτ )
E

(
(
1
r
− p)b′τ −

a

r

)
e−rτ

)
(b′ =

a

λ

′
)

= λF (A, z, a).

At the time of adoption, the manager must decide which technology to upgrade and maximize

sup
0≤a′≤z

(
1
r
− p)a′ − a

r
.

This leads to a′ = z.

Proof of properties of the optimal frontier A∗ and inaction region IR. Let (A, z, a) in IR
and a′ > a. Since F is strictly increasing in a we have

F (A∗(z, a), z, a′) > F (A∗(z, a), z, a)

> (
1
r
− p)z,

so (A, z, a′) is also in IR and IR must be of the form

IR = {(A, z, a) : a ≥ a∗(A, z)} ,
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for some smooth function a∗. Then, if A∗(z, a′) ≥ A∗(z, a), this implies that

F (A∗(z, a′), z, a′) ≥ F (A∗(z, a), z, a′) > (
1
r
− p)z,

which is a contradiction. Hence, A∗ is strictly decreasing in a. Finally, as F is homogeneous of degree
one, the optimal scrapping frontier is also homogeneous of degree one so we can write

A∗(z, a) = zL0(
a

z
),

for some strictly decreasing function L0.

6.2 Appendix 2

Let
M = {(A, z, a) : 0 ≤ A ≤ z, 0 ≤ a ≤ (1− rp)z}

The value matching and smooth pasting conditions lead to

a

r
+ a1−β1f(

z

a
)A∗β1 + a1−β2g(

z

a
)A∗β2 = (

1
r
− p)z

β1a
1−β1f(

z

a
)A∗β1 + β2a

1−β2g(
z

a
)A∗β2 = 0.

This yields

f(
z

a
) =

−β2

β1 − β2

(
(
1
r
− p)z − a

r

)
A∗−β1aβ1−1

g(
z

a
) =

β1

β1 − β2

(
(
1
r
− p)z − a

r

)
A∗−β2aβ2−1.

Differentiating with respect to a, we find that:

− z

a2
f ′(

z

a
) =

−β2

β1 − β2

(
−1

r
A∗−β1aβ1−1 + ((

1
r
− p)z − a

r
)
(

(β1 − 1)A∗ − β1a
∂A∗

∂a
)A∗−(β1+1)aβ1−2

))
− z

a2
g′(

z

a
) =

β1

β1 − β2

(
−1

r
A∗−β2aβ2−1 + ((

1
r
− p)z − a

r
)
(

(β2 − 1)A∗ − β2a
∂A∗

∂a
)A∗−(β2+1)aβ2−2

))
Using condition (4) we obtain that in the interior of M, A∗ must satisfy the following ODE

∂A∗

∂a
= A∗

β1β2((1
r − p)z − a

r )
((

z
A∗

)β1 −
(

z
A∗

)β2
)

+ (1
r − p)z

(
β1

(
z

A∗

)β2 − β2

(
z

A∗

)β1
)

β1β2a((1
r − p)z − a

r )
((

z
A∗

)β1 −
(

z
A∗

)β2
)

Note that the denominator is strictly negative, so ∂A∗

∂a is well defined. Writing

A∗(z, a) = zL0(u),

for u = a
z ∈ U = [0, 1− rp], it is easy to check that L0 must satisfy the following ODE

L′0(u) = L0(u)
β1β2(1− rp− u)

(
1− L0(u)β1−β2

)
+ (1− rp)

(
β1L0(u)β1−β2 − β2

)
β1β2u(1− rp− u) (1− L0(u)β1−β2)

(7)
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with L0(0) = 1
α , L0(1− rp) = 0. From relationship (9), when u is close to 1− rp, we have

L′0(u) '
1−rp

− L0(u)
β1(1− rp− u)

,

which implies that
L0(u) '

1−rp
B(1− rp− u)

1
β1 ,

for some B > 0. Then define

x =
u

1− rp

y(x) = L0((1− rp)x)β1−β2 ,

it follows that y satisfies the following ODE

y′(x) = (β1 − β2)y(x)
β1β2(1− x) (1− y(x)) + β1y(x)− β2

β1β2x(1− x) (1− y(x))
, (8)

for all x in [0, 1] with y(0) =
(

1
α

)β1−β2 = −β2

β1

β1−1
1−β2

, y(1) = 0. This ODE is an Abel’s equation of second
kind. Set

ϕ(x) =
−β2 (β1 (1− x)− 1)
β1 (1− β2 (1− x))

.

ϕ is decreasing from ϕ(0) =
(

1
α

)β1−β2 down to ϕ(1) = β2

β1
< 0. Writing y(x) = y(0)(1 + mx + o(x))

and injecting this asymptotic expansion into relationship (10) leads to

m = − 1
β1 − β2(β1 − 1)

< 0.

We now show that y is decreasing on [0, 1] which is equivalent to show that y(x) ≥ ϕ(x) for all x in
[0, 1]. We know that y(0) = ϕ(0) and y′(0) < 0. Hence, by continuity of y′ there exists a neighborhood
(0, δ), with δ > 0 such that y′(u) < 0 for all x in (0, δ). Now assume that there is a point x∗ > δ
such that y(x∗) = ϕ(x∗) and η > 0 such that y(x) < ϕ(x) for all x in (x∗, x∗ + η). It follows that y is
increasing on (x∗, x∗ + η). But recall that y(x∗) = ϕ(x∗) and ϕ is decreasing, which implies that we
must have y(x) > ϕ(x) for all x in (x∗, x∗+η). This leads to a contradiction and indeed y is decreasing.
It follows that L0 is decreasing and the proof is complete.

Properties of the optimal scrapping frontier. From the firm view point it is optimal to upgrade
technology when

a∗ = zL−1
0 (

A

z
).

Note that a∗

z is decreasing in the relative threat A
z . It is also easy to see that a∗ is decreasing in A and

∂a∗

∂z
=

L−1
0 (A

z )L′0(L
−1
0 (A

z ))− L0(L−1
0 (A

z ))
L′0(L

−1
0 (A

z ))
> 0,

since from relationship (9) it is easy to see that uL′0(u)− L0(u) > 0.
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6.3 Appendix 3

Let us consider σ′ > σ and denote F (A, z, a;σ′) and F (A, z, a;σ) the corresponding option values. By
definition we have

F (A, z, a;σ′) =
a

r
+ sup

(τ≥0, 0≤a′τ≤zτ )
E

[(
(
1
r
− p)a′τ −

a

r

)
e−rτ

]
.

Inside the inaction region IRσ′ , we have

rF (A, z, a;σ′) = a + µAF1(A, z, a;σ′) +
σ2

2
A2F11(A, z, a, σ′) +

σ′2 − σ2

2
A2F11(A, z, a;σ′).

Since F is homogeneous of degree one, the general solution of the HJB is

F (A, z, a) =
a

r
+ a1−β′1m(

z

a
)Aβ′1 + a1−β′2n(

z

a
)Aβ′2 .

where β′1 and β′2 are the roots of the quadratic (2) for parameter σ′ and m and n are smooth functions.
It is easy to verify that since σ′ > σ, 0 < β′1 < β1 and β2 < β′2 < 0. Let (ε1, ε2) be positive.
Alternatively, we can write

F (A, z, a, σ′) =
a

r
+ (ε1 + a1−β1)f(

z

a
)Aβ1 + (ε2 + a1−β2)g(

z

a
)Aβ2

−

(
σ′

σ

)2
− 1

2(β1 − β2)
Aβ1

∫ A

A∗(z,a;σ)
x

((
A

x

)β1

−
(

A

x

)β2
)

F11(x, z, a, σ′)dx,

where A∗(z, a;σ) is the optimal updating frontier for F (A, z, a, σ). Note that since F11 > 0, if
A∗(z, a;σ) < A, then the last term on the RHS of the above equality is negative.

F (A, z, a, σ′) =
a

r
+ a1−β1f(

z

a
)Aβ1 + a1−β2g(

z

a
)Aβ2

−

(
σ′

σ

)2
− 1

2(β1 − β2)
Aβ1

∫ A

c(z,a)

(
β′1(β

′
1 − 1)a1−β′1m(

z

a
)xβ′1−β1−1 + β′2(β

′
2 − 1)a1−β′2n(

z

a
)xβ′2−β1−1

)
dx

+

(
σ′

σ

)2
− 1

2(β1 − β2)
Aβ2

∫ A

d(z,a)

(
β′1(β

′
1 − 1)a1−β′1m(

z

a
)xβ′1−β2−1 + β′2(β

′
2 − 1)a1−β′2n(

z

a
)xβ′2−β2−1

)
dx.

where β1 and β2 are the roots relative to F (A, z, a;σ) defined by relationship (2). Identifying terms,
it follows that

(ε1 + a1−β1)f(
z

a
) =

(
σ′

σ

)2
− 1

2(β1 − β2)

(
β′1(β

′
1 − 1)a1−β′1m( z

a)
β1 − β′1

A∗(z, a;σ)β′1−β1

+
β′2(β

′
2 − 1)a1−β′2n( z

a)
β1 − β′2

A∗(z, a;σ)β′2−β1

)

(ε2 + a1−β2)g(
z

a
) =

(
σ′

σ

)2
− 1

2(β1 − β2)

(
β′1(β

′
1 − 1)a1−β′1m( z

a)
β′1 − β2

A∗(z, a;σ)β′1−β2

+
β′2(β

′
2 − 1)a1−β′2n( z

a)
β′2 − β2

A∗(z, a;σ)β′2−β2

)
.
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Inverting the system, we find that

β′1(β
′
1 − 1)(β1 − β2)(β′1 − β′2)a

1−β′1m( z
a)A∗(z, a;σ)β′1

(β1 − β′1)(β
′
1 − β2)

= −β′2

(
a1−β1f(

z

a
)A∗(z, a;σ)β1 + a1−β2g(

z

a
)A∗(z, a;σ)β2

)
+(β1 − β′2)ε1A

∗(z, a;σ)β1 − (β′2 − β2)ε2A
∗(z, a;σ)β2 (9)

β′2(β
′
2 − 1)(β1 − β2)(β′1 − β′2)a

1−β′2n( z
a)A∗(z, a;σ)β′2

(β1 − β′2)(β
′
2 − β2)

= β′1

(
a1−β1f(

z

a
)A∗(z, a;σ)β1 + a1−β2g(

z

a
)A∗(z, a;σ)β2

)
−(β1 − β′1)ε1A

∗(z, a;σ)β1 + (β′1 − β2)ε2A
∗(z, a;σ)β2 .(10)

When ε1 and ε2 are equal to zero, then m and n are positive functions. We want to impose ε1 and ε2

positive and show that it is still the case that m and n are positive functions. To simplify notations,
let

δ1 = A∗(z, a;σ)β1ε1

δ2 = A∗(z, a;σ)β2ε2.

We would like to choose δ1 and δ2 positive in a way such that

(β1 − β′2)δ1 − (β′2 − β2)δ2 > 0
−(β1 − β′1)δ1 + (β′1 − β2)δ2 > 0.

This implies that we need to choose δ1
δ2

such that

β′2 − β2

β1 − β′2
<

δ1

δ2
<

β′1 − β2

β1 − β′1
.

This is possible if and only if
β′2 − β2

β1 − β′2
<

β′1 − β2

β1 − β′1
,

or equivalently
(β′1 − β2)(β1 − β′2)− (β′2 − β2)(β1 − β′1) > 0.

Since
(β′1 − β2)(β1 − β′2)− (β′2 − β2)(β1 − β′1) = −β2(β′1 − β′2) > 0,

the condition is satisfied. To sum up, given the choice of ε1 and ε2 positive and any positive functions
f and g, it is possible to choose two positive functions m and n given by relationships (11) and (12).
It follows that given the properties of f, g and A∗(z, a;σ)

F (A∗(z, a;σ), z, a, σ′)−
(

1
r
− p

)
z = A∗(z, a;σ)β1ε1 + A∗(z, a;σ)β2ε2 > 0.

Since F is strictly increasing in A it must be the case that for σ < σ′, A∗(z, a;σ′) < A∗(z, a;σ).
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6.4 Appendix 4

Proof of properties 1 and 2. The first three points of property 1 are obvious from relationship
(5). The homogeneity is degree one for F is a direct consequence of the linearity of the law of
motion of the technology A, the linearity of adoption constraint 0 ≤ a′τ ≤ zτ and the expression of
F given by relationship (5). To prove property 2, let λ be in [0, 1] and a0 and b0 in R+. Denote by
c0 = λa0 + (1− λ)b0 and c′ = {c′k}

∞
k=1 the optimal adoption strategy. We have

F (A, z, c0) = sup
(τk≥0, 0≤c′k≤zτk

)k=∞
k=1

E

[∫ τ1

0
c0e

−rsds +
∞∑

k=1

(∫ τk+1

τk

c′ke
−r(s−τk)ds− pc′ke

−rτk

)]

≤ λsup
τ1≥0

E

[∫ τ1

0
a0e

−rsds

]
+ (1− λ)sup

τ1≥0
E

[∫ τ1

0
b0e

−rsds

]
+ sup

(τk≥0, 0≤c′k≤zτk
)k=∞
k=1

E

[ ∞∑
k=1

λ

(∫ τk+1

τk

c′ke
−r(s−τk)ds− pc′ke

−rτk

)
+ (1− λ)

(∫ τk+1

τk

c′ke
−r(s−τk)ds− pc′ke

−rτk

)]
≤ λ sup

(τk≥0, 0≤c′k≤zτk
)k=∞
k=1

E

[∫ τ1

0
a0e

−rsds +
∞∑

k=1

(∫ τk+1

τk

c′ke
−r(s−τk)ds− pc′ke

−rτk

)]

+(1− λ) sup
(τk≥0, 0≤c′k≤zτk

)k=∞
k=1

E

[∫ τ1

0
b0e

−rsds +
∞∑

k=1

(∫ τk+1

τk

c′ke
−r(s−τk)ds− pc′ke

−rτk

)]
≤ λF (A, z, a0) + (1− λ) + F (A, z, b0).

It follows that a 7→ F (A, z, a)− pa is also convex and therefore when upgrading, the best technology
is adopted.

Shape of the inaction region and properties of the optimal scrapping frontier

The inaction region is now defined as

IR = {(A, z, a) : A ≤ z, F (A, z, a) > F (A, z, z)− pz} .

First of all, notice that if a is in IR, then a′ > a is also in IR since

F (A, z, a′) > F (A, z, a) > F (A, z, z)− pz.

Then, using the Envelop condition, we have

F3(A, z, a) = E0

[∫ τ∗1

0
e−rsds

]
≥ 0. (11)

Switching exactly means τ∗1 = 0, so F3(A∗(z, a), z, a) = 0. In addition for a′ > a, τ∗1 > 0, so
F3(A, z, a′) > 0. Henceforth, for all a′ ≥ a, F (A∗(z, a), z, a′) ≥ F (A∗(z, a), z, a), which exactly means
that a is a minimum for F (A, z, a). From relationship (6), it is then easy to see that given (A, z),
there is a unique a∗, such that F3(A, z, a∗) = 0. Then, we claim that given a, A∗(z, a) is unique.
Indeed, if A∗1(z, a) < A∗2(z, a) are two candidates, then we have F (A∗2(z, a), z, a) > F (A∗1(z, a), z, a),
which contradicts the fact that F (A∗2(z, a), z, a) is a minimum. This implies that there is a one to one
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relationship A∗(z, a) = zL(a
z ), for some smooth function L. The relationship is invertible so we can

write a = zL−1(A
z ). It follows that L must be monotonic. In appendix 5, we show that

L′(0) =
−L(0)(1− L(0)β1−β2)

(1− rp)(β1 − β2L(0)β1−β2)
< 0,

which implies that L is a decreasing function. Clearly, the optimal scrapping frontier has the same
properties as in the single adoption case and the inaction region IR can be rewritten

IR =
{

(A, z, a) : A > A∗(z, a) = zL(
a

z
)
}

.

6.5 Appendix 5

Derivation of the optimal scrapping frontier. The value matching and smooth pasting condi-
tions lead to

a

r
+ a1−β1f(

z

a
)A∗β1 + a1−β2g(

z

a
)A∗β2 = z1−β1f(1)A∗β1 + z1−β2g(1)A∗β2 + (

1
r
− p)z

β1a
1−β1f(

z

a
)A∗β1 + β2a

1−β2g(
z

a
)A∗β2 = β1z

1−β1f(1)A∗β1 + β2z
1−β2g(1)A∗β2 .

This yields

f(
z

a
) =

−β2

β1 − β2

(
(
1
r
− p)z − a

r

)
A∗−β1aβ1−1 + f(1)z1−β1aβ1−1

g(
z

a
) =

β1

β1 − β2

(
(
1
r
− p)z − a

r

)
A∗−β2aβ2−1 + g(1)z1−β2aβ2−1.

Once again, due to the homogeneous nature of the problem, we look for a solution of the form

A∗(z, a) = zL(u),

with u = a
z . It follows that

f(
1
u

) =
−β2

β1 − β2

(
(
1
r
− p)− u

r

)
uβ1−1L(u)−β1 + f(1)uβ1−1 (12)

g(
1
u

) =
β1

β1 − β2

(
(
1
r
− p)− u

r

)
uβ2−1L(u)−β2 + g(1)uβ2−1.

We conjecture that g(1) = 0 (to be justified later since we need g( 1
1−rp) = 0) and therefore

− 1
u2

f ′(
1
u

) =
−β2

β1 − β2

(
−1

r
L(u)−β1uβ1−1 + ((

1
r
− p)− u

r
)
(
(β1 − 1)L(u)− β1uL′(u))L(u)−(β1+1)uβ1−2

))
+(β1 − 1)f(1)uβ1−2

− 1
u2

g′(
1
u

) =
β1

β1 − β2

(
−1

r
L(u)−β2uβ2−1 + ((

1
r
− p)− u

r
)
(
(β2 − 1)L(u)− β2uL′(u))L(u)−(β2+1)uβ2−2

))
and using the condition f ′(x)xβ1 + g′(x)xβ2 = 0, we find that

uL′(u) = L(u)

(
1−

(1− rp)
(
β1L(u)β1−β2 − β2

)
− r(β1 − 1)(β1 − β2)f(1)L(u)β1

β1β2(1− rp− u) (1− L(u)β1−β2)

)
, (13)
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with L(1− rp) = 0. From relationship (15), it is easy to check that

L(u) ∼
1−rp

B(1− rp− u)
1

β1 .

Using relationship (??), by continuity we find that

f(
1

1− rp
) =

−β2

r(β1 − β2)
(1− rp)β1−1B−β1 + f(1)(1− rp)β1−1

g(
1

1− rp
) = g(1)(1− rp)β2−1.

Imposing that f and g are constant on the range (1, 1
1−rp ] yields

f(1) =
−β2

r(β1 − β2)
B−β1

(1− rp)1−β1 − 1
> 0 (14)

g(1) = 0.

Finally, assuming that L′(0) is finite, we must have

f(1) =
1− rp

r(β1 − 1)(β1 − β2)

(
β2(β1 − 1)L(0)−β1 + β1(1− β2)L(0)−β2

)
. (15)

Since f(1) > 0, it must be the case that

L(0) >
1
α

.

Hence

uL′(u)
L(u)

= 1−
(1− rp)

(
β1L(u)β1−β2 − β2 −

((
β2(β1 − 1)L(0)−β1 + β1(1− β2)L(0)−β2

)
L(u)β1

))
β1β2u(1− rp− u) (1− L(u)β1−β2)

.

(16)
Writing

L(u) = L(0) + L′(0)u + o(u),

and plugging back into relationship (18) we find that

L′(0)β1β2(1− rp)
(
1− L(0)β1−β2

)
= β1β2L(0)(L(0)β1−β2 − 1)

+β1β2L
′(0)(1− rp)((β2 − 1)L(0)β1−β2 − (β1 − 1)) + o(u).

Hence, we must have

L′(0) =
−L(0)(1− L(0)β1−β2)

(1− rp)(β1 − β2L(0)β1−β2)
< 0.

Comparison between the single and multiple scrapping frontiers. From the differential
equations defining L0 and L, for u in [0.1− rp], it is possible to write

L′0(u) = −Γ(L0(u))
L′(u) = −Γ(L(u))−∆(L(u)),

for some positive functions Γ and ∆. Set v = 1− rp− u and define two auxiliary functions K and K0

such that K0(v) = L0(u) and K(v) = L(u). We have K0(0) = K(0) = 0 and

K ′
0(v) = Γ(K0(v))

K ′(v) = Γ(K(v)) + ∆(K(v)).
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It follows that ∫ K0(v)

0

dx

Γ(x)
= v∫ K(v)

0

dx

Γ(x)
= v +

∫ v

0

∆(K(x))
Γ(K(x))

dx.

since Γ and ∆ are positive functions, it must be the case that the function K is strictly greater that
function K0.
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