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Abstract

In this paper we examine a firm’s capacity expansion and contraction policy with fixed
and quadratic adjustment costs. Suppose that the firm’s problem is to maximize expected
total discounted profit. To solve the firm’s problem, we formulate it as an impulse control
problem. Then, we show a policy which is derived quasi-variational inequalities is optimal.
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1 Introduction

In the last two decade the theory of investment under uncertainty has made great strides. Dixit
and Pindyck (1994) is an excellent textbook of this filed. Many literatures study the case in
which the investment is irreversible. The idea behind of the irreversible investment is that the
investment expenditure is sunk cost. See Dixit and Pindyck (1994) p. 8 for more detail. In the
last decade, as an interesting extension of the theory of investment under uncertainty, reversible
investment has been examined. See, for example, Abel and Eberly (1996, 1997) and Dixit and
Pindyck (1999).

This paper also examines reversible investment. To be specific, this paper examines a firm’s
capacity expansion and contraction policy. In this context, we assume that the investment
expenditure is not sunk cost. Firms can sell their capacity to the other firms. Thus, we assume
that the capacity is not firm-specific capacity. Furthermore, we assume that when the firm
expands (contracts) capacity, it incurs fixed and quadratic adjustment costs. Following the line
of Abel and Eberly (1997), we assume that a firm produces a single output by using capital and
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labor and sells it in competitive market. The output price process is governed by the stochastic
differential equation. We also assume that the firm has a Cobb-Douglas production function.
The firm wants to maximize the expected total discounted profit. To solve the firm’s problem,
we formulate the firm’s problem as an impulse control problem. Then, we show that a policy
which is derived quasi-variational inequalities (QVI) is optimal and that a solution of the QVI
is the value function of the firm’s problem.

Recently Hartman and Hendrickson (2002), Chiarolla and Haussmann (2005), Guo and Pham
(2005), and Merhi and Zervos (2005) also investigate the capacity expansion and contraction
problems as related papers. In these papers, firms are assumed to maximize their profits as in this
paper. Hartman and Hendrickson (2002) study the firm’s capacity expansion and contraction
problem as a singular stochastic control problem. Chiarolla and Haussmann (2005) study the
firm’s capacity expansion problem as a singular stochastic control problem. Guo and Pham
(2005) study the entry and the capacity expansion and contraction problems with proportional
adjustment costs. To solve the firm’s problem, they formulate the firm’s problem as a singular
stochastic control problem. Their adjustment cost is assumed to be linear and asymmetric.
When the firm expands the capacity, it incurs the cost. On the other hand, the firm can
contract the capacity at less cost. Chiarolla and Haussmann (2005) and Guo and Pham (2005)
assume that the firm’s capacity directly evolves the stochastic differential equation. Then, the
firm directly controls the capacity. Merhi and Zervos (2005) also study the firm’s capacity
expansion and contraction problem as a singular stochastic control problem. They solve the
firm’s problem explicitly. The main difference between these papers and this paper is that this
paper treats with the fixed adjustment cost. Then, this paper adopts impulse control method.

The rest of the paper is organized as follows. Section 2 describes the firm’s problem. Section
3 shows a capacity expansion and contraction policy (QVI-policy) is optimal. Lastly, Section 4
concludes the paper.

2 The Model

We assume that a firm produces a single output by using capital K; and labor L; and sells it
in competitive market as in Abel and Eberly (1997). The output price process P = {P,};>¢ is
governed by the following stochastic differential equation:

dP, = ppPdt + opP.dWy, Py- =p (> 0), (2.1)
where up (€ R) and op (> 0) are constants. W; is a standard Brownian motion on a filtered
probability space (2, F,P,{F; }+>0), where F; is generated by Wy in R, i.e., i = o(Ws,s < t).
We also assume that the firm’s production function F(L;, Ky) has the form as

F(Ly, Ky) = L)K,} 77, (2.2)
where v € (0,1). The firm’s operating profit at time ¢ is given by
PF(Ly, Ky) — wLy, (2.3)

where w is a constant wage. We assume that labor is assumed to be costlessly and instanta-
neously adjusted. Then, the firm’s maximized instantaneous operating profit 7 (K, P;) at time
t is derived as

(K, Py) = hPY Ky, (2.4)



where @ = 1/(1 =) (> 1) and h = o *(a — 1)* twl=* (> 0).

The firm controls the capital stock corresponding to the business environment. That is,
capital investment is reversible. When the business environment is good (resp. severe), the firm
expands (resp. contracts) the scale of capital stock, i.e., the capacity. If the business environment
is strictly severe, the firm sells the remaining capacity and exits the market. In this paper, we
assume that if the output price is less than or equal to p, the firm sells the remaining capacity
and exits the market. We assume that the amount of the capacity is changed by &; at time 7;,
1 =0,1,---. Then, the dynamics of the capacity is governed by

dK; = —5tht, 7 <t < Tiy1,
Kn =K +&, (2.5)

K3

Ko- =ko (>0),

where ¢ (> 0) is a constant depreciation rate. We put 7, = 0 and Tig1 = Ti if ;41 = 7;. These &;
and 7; correspond to the impulses and the stopping times in impulse control theory, respectively.
A capacity expansion and contraction policy (CEC policy) is defined as the following double
sequence:

v = {(7,&i) }ixo- (2.6)

When the firm controls the capacity, it incurs the fixed and proportional adjustment costs. We
assume that the convex adjustment costs function C(§;):

(&) = = (2.7)

g +eE+efe, & >0,
cg +E & +EEE, &<,

where ¢;’~ (> 0) is the fixed adjustment cost, ¢;”~ (> 0) is the price of purchasing or selling
capital, and ¢&,>~ (> 0) is quadratic adjustment cost parameters'. For simplicity, we assume
that ¢y = ca“_ and ¢ = 6;’_. Note that, for &, & (> 0), C(&;) satisfies the following:

Cle+¢) =0 +C(€); (2.8)

c <o), ife<g. (2.9)

Inequality (2.8) represents superadditivity with respect to £ and implies that reasonable {F; }+>0-
stopping times become strictly increasing sequences; i.e., 0= < < < - - < T < -+ < 00.
Let change the variable P*K; to X;:

X, = PK; (2.10)
so that we consider the direct control on the state variable. See, for example, Vollert (2003) pp.

61-62 for more detail. Then, it follows from (2.1) and (2.5) that the dynamics of X is given by:

1
dXt = (a'up + §OL(OL — 1)0'%3 — (5) Xtdt + OéO'pXtth,

= ,LLXtdt + O'XthVt, XO— =X (> 0),

(2.11)

Tn Abel and Eberly (1997) p. 836, the cost function is formulated as C(¢) = &F¢; + &5 €, n € {2,4,6,---}.
That is, our formulation (2.7) expands the cost function of Abel and Eberly (1997) by adding the fixed adjustment
cost and putting n = 2.



where = app + a(a—1)o%/2 — § and 0 = aop. Let ¢; be defined by
G = Pré. (2.12)
Then, the CEC policy ¥ becomes v defined by
v = {(7;,Gi) }izo- (2.13)
Thus, the dynamics of the controlled state variable X denotes
dX} = pXPdt + o XPdWy, t € [1im1,Ti),
X7 = X;’i_ + G, (2.14)
Xo- =z (>0).
Furthermore, the profit function m and the cost function C' become respectively as follows:

T(XP) = hX?; (2.15)

Cle) = {CO +ef Gt el (>0, (2.16)

co+eiG+el?, <0,
We define the set of admissible CEC policy as follows:

Definition 2.1 (Admissible investment policy). A CEC policy v is admissible if the fol-
lowings are satisfied:

0<7 <741, as. 120 (2.17)

7; is an {Fi }i>0-stopping time, i > 0; (2.18)

Gi is Fr,-measurable, i > 0; (2.19)

P [lim 7 < T] =0, Tel0,00). (2.20)
12— 00

The condition given by (2.20) means that the CEC policy will only occur finitely before
a terminal time, 7. See, for example, Cadenillas and Zapatero (2000). Let V be the set of
admissible CEC policies.

The firm’s expected discounted profit J(z;v) is given by:

J(z;0) =E / (XAt — 3 e O(G) oo | (2.21)
0 i=1
where r (> 0) is a discount rate. In this context we assume that
> [ (AS.1)
Therefore, the firm’s problem is to maximize the expected discounted profit over V:
V(z) =supJ(z;v) = J(z;0"), (2.22)
vEY

where V' is the value function and v* is an optimal CEC policy.



3 QVI Policy

In the previous section, we formulated the firm’s problem as an impulse control problem. From
that formulation, we naturally guess that, under an optimal CEC policy, the firm expands (resp.
reduces) the capacity whenever the state process X = {X} }+>0 reaches an upper (resp. lower)
threshold. In order to verify this conjecture, we prove that a policy induced by the QVI is an
optimal CEC policy for the firm’s problem (2.22).

Suppose that ¢ : Ry — R, is a continuous function. Let M denote the capacity expansion
and contraction operator on the space of functions ¢ defined by

Me(z) = sup {d(z+())-C(O}, (3.1)

CG(—.‘JZ,OO)

We assume that ¢ is a twice continuously differentiable function on R, C?, except on the bound-
ary of the considered region. Let us define an operator £ of the X by

£olw) = 30%6 (@) + o (2) — r(z). (32

Since ¢ is not necessarily C? in the whole region, we must apply the generalized Dynkin formula
for ¢. The formula is available if ¢ is stochastically C2. That is, we use the generalized Dynkin
formula on the set which has a Green measure of X" zero. Here the Green measure of X" is the
expected total occupation measure G(-, z;v) defined by

G(E,z;v) = E [ /0 h X;qut] , (3.3)

where 1z is the indicator of a Borel set = C R. The continuous function ¢ is called stochastically
C? with respect to XV if L¢(z) is well defined point wise for almost all x with respect to the
Green measure G(-, z;v). Henceforce, we assume that ¢ is stochastically C? with respect to XV.
The following equality, which is called the generalized Dynkin formula, will be used in the proof
of Theorem 3.1.

Ele™"""¢(Xy-)] = Ele " p(X7)] + E

/ " e—”w(ng)dt] , (3.4)

for all ¢, all bounded stopping times 6 such that 7; < 6 < 7;1;. See Brekke and @ksendal (1998)
for more details of the Green measure and the generalized Dynkin formula.
We are now in a position to define the quasi-variational inequalities (QVT).

Definition 3.1 (QVI). The following relations are called the QVI for the firm’s problem (2.22):

Lo(x)+m(x) <0, fora.a x wrt G(,z;v), veV; (3.5)
¢(z) > Mo(z); (3.6)
[Lo(x) + m(x)][p(x) — Mp(x)] =0, for a.a. x w.r.t. G(-,z;v), v e V. (3.7)



Eq. (3.7) is the complementary condition and is able to be rewritten as
Lo(z)+7m(x)=0, zeC (3.8)
and
d(x) — Mep(z) =0, zeZ, (3.9)
where C is the continuation region defined by
C = {z;p(x) > M¢(z) and Lo(z) + 7(z) = 0} (3.10)
and 7 is the controlled region defined by
T = {z;¢(x) = M¢p(x) and Lp(z) 4+ n(z) < 0}. (3.11)
We define the policy which is derived from the QVI.

Definition 3.2 (QVI policy). Let ¢ be a solution of the QVI. Then, the following CEC policy
v 1s called a QVI policy:

~

(70,60) = (0,0); (3.12)
7 = inf{t > #_1; X7 ¢ C}; (3.13)
@ = arg max {¢ (X;}i_ + Ci) - C(G) : Cz} . (3.14)

In this context, U is defined by v = {(f'i,(fi)}izo and Xf is the result of applying the CEC policy
0.

We can now prove that a QVI policy is an optimal CEC policy. The following theorem is
well-known verification theorem. See, for example, Brekke and @ksendal (1998) and Ohnishi
and Tsujimura (2002, 2006).

Theorem 3.1. (1) Let ¢ be a solution of the QVI and satisfy the following:

¢ is stochastically C* w.r.t. X; (3.15)
tl_i)m e "H(XP) =0, as. vEV; (3.16)
the family {p(X?)}r<oo is uniformly integrable w.r.t. P v € V. (3.17)
Then, we obtain
d(x) > J(z;v) veV. (3.18)



(II) From (3.5) — (3.7) and (3.12), we have
Lo(z) +7m(x) =0, =xe€H. (3.19)
Suppose v € V, i.e., the CEC policy is admissible. Then, we obtain
o(x) = J(x;0). (3.20)
Hence, we have
o(x) =V(x) = J(x;0). (3.21)
Therefore, U is optimal.

Proof. (I) Assume that ¢ satisfies (3.15) — (3.17). Choose v € V. Let 0,11 := 7 V (Tix1 A 5)
for any s (> 0). Then, by the generalized Dynkin formula, (3.4), we obtain

0; 41—
Ble T o3, )| Bl o] +B | [ eresoa]. e

Hence, from (3.5) we obtain

0it1

0;11—
Biero o5, )] < Ble o] -2 [ ernomia]. e

Taking lims_,. and using the dominated convergence theorem, we have

Ele 1 g(XY,, )] < Ele¢(X2)] ~ E [ [ e—"w<Xf>dt] . 329
Summing from ¢ = 0 to ¢ = m yields
$(z) + D Ele h(Xy) — e T G(XE )] ZEleTTHTH(XE )]
=1 (3.25)

Tm+1
+E [/ 6_Tt7T(Xtv>dt:| .
0

For all 7; < oo, following the investment policy, the state process X? jumps immediately
from X?_ to a new state level X”_ 4 ;. Thus, by (3.1) and X'_ + G = X7, we obtain

P(XT,) S MP(XT_) + C (&) (3.26)

Thus, we have

%

3@)+ 3B [[emMo (X2) = e 6 (X2)] 1]
1=1

Tm+1 _
/(; e_rtﬂ'(X;])dt _ Z e—rnc(g)l{n<oo} + e—rTm+1¢ (X:;+1)] . (327)

=1

>E




(IT)

It follows from (3.6) that
Mg (Xj_) —¢ (X”_) <0. (3.28)

Hence, we obtain that

¢(z) > E

=1

Tm+41 m
A e_TtTl'(XZ))dt _ Z e_rTiC(Ci)]-{Ti<oo} + 6—TTm+1_d) (X:_);H_l)] . (329)

Taking lim,, o, and using (3.16), (3.17) and the dominated convergence theorem, we
obtain

¢(z) > E
i=1

Aoo e_rtﬂ'(Xtv)dt - Z e_TTiC(Q)l{TKOO}] . (330)

Therefore, (3.18) is proved.

Assume that (3.19) holds and 4 is the QVI policy. Then, repeat the argument in part (I)
for v = 0. Then, inequalities (3.23) through (3.30) become equalities. Thus, we obtain

p(z) =E /O e "t (X7)dt — Ze—’"ﬁo(@-)1{ﬁ<m}] . (3.31)
i=1
Hence, we obtain (3.20). Combining (3.20) with (3.18), we obtain
¢(x) = sup J(z;0) = J(;0) = p(). (3.32)
veEV

Therefore ¢(x) = V() and v* = v is optimal, i.e., the solution of the QVI is the value
function and the QVI policy is optimal. The proof is completed.
O

4 Conclusion

In this paper we examined a firm’s capacity expansion and contraction policy with fixed and
quadratic adjustment costs. Suppose that the firm’s problem is to maximize expected total
discounted profit. To this end, we formulated it as an impulse control problem. Then, we
showed a policy which was derived quasi-variational inequalities is optimal.

Our remaining problem is to show an optimal investment policy.
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Figure 1: Sample paths of the output price process P and capital stock process K.
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