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 Real Options, Competition, and the Valuation of Licensing Agreements 
 

Abstract 

This paper combines a real options model with a Cournot-Nash equilibrium game to 

value a common pharmaceutical industry licensing arrangement.  It further extends 

Schwartz (2003) and Hoe and Diltz (2007) to consider the effect of competition on 

optimal investment policies in R&D projects.  Similar to earlier work, we incorporate the 

phases required to bring a pharmaceutical product from patent approval to market as well 

as a deterministic product life cycle variable.  We now place all parties into a Cournot-

Nash equilibrium game to see how optimal policies are altered by competitive 

interaction.  We focus on the allocation of profit between licensor and licensee, i.e., the 

“profit split” ratio (PSR) because of its widespread use by practitioners.  We find 

competition alters the PSR, depending on whether a firm is the winner, loser, or in a 

monopoly situation.  

 

I. Introduction 

Pharmaceutical and biotechnology companies must regularly introduce new 

products to secure profitability and growth opportunities.  Competition is intense, and 

new products must withstand a lengthy, complex, and risky development process.  A new 

product begins with discovery and pre-clinical research, followed by three clinical 

phases, and FDA regulatory review.  Firms adept at performing basic R&D may license a 

patent to another firm to test, produce, and market the drug.  The licensor receives a 

series of milestone and royalty payments.  A licensing agreement thus transfers advanced 

development and marketing risks from licensor to licensee.   

Accurate valuation of the opportunity embodied in the license agreement is 

crucial for effective negotiation between the parties.  It also allows both parties to 

estimate synergies created by the licensing agreement.  In practice, the licensee usually 
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negotiates payments to achieve a target profit split ratio (PSR).  The target represents 

desired compensation for development risks.  We focus on the PSR because managers 

depend heavily on this measure.   

Pharmaceutical firms develop and market products in a competitive environment. 

Frequently, several firms develop different patent-protected drugs targeted for the same 

disease.  Potential competition during the marketing phase plays a crucial role in R&D 

investment decisions in the development phases since the competing products must 

undergo the same approval processes.  The dynamic equilibrium game strategy 

complicates the optimal investment/abandonment decisions during product development, 

thus affecting project value.  When there is potential competition, both licensee and 

licensor should negotiate terms by explicitly considering competitive interactions into 

valuing the patented R&D project.  

Discounted cash flow techniques are not well suited to multi-stage R&D projects, 

and competition exacerbates the problem.  Real option models augmented with simple 

games have been proposed to deal with this problem.  Pindyck (1993) presents a 

valuation model with uncertain completion costs to capture a “learning effect”.  Childs 

and Triantis (1999) examine R&D investment policies and real options valuation for a 

firm that manages multiple projects with interactions.  Schwartz and Moon (2000) extend 

Pindyck’s model to include project revenue uncertainty and catastrophic events.  They 

derive an elliptical partial differential equation and solve (numerically) for investment 

opportunity value and comparative statics.  Trigeorgis (1991) studied the impact of 

competition on the optimal timing of project initiation using option methodology.  
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Schwartz (2003) develops a real options simulation framework to value patents 

and patent protected R&D projects.  He specifies stochastic processes for completion 

costs, sales cash flows, and catastrophic events that render the project worthless.  He 

implements the model using a hypothetical pharmaceutical example, solving the model 

using the Longstaff & Schwartz (2001) simulation method.  Schwartz and Moon (2000) 

present a simpler model that yields a partial differential equation solved using the 

successive overrelaxation (SOR) method.  Miltersen and Schwartz (2002) augment 

Schwartz and Moon (2000) model with duopoly settings, using Longstaff & Schwartz 

(2001) simulation.  Berk et al (2004) differs from Schwartz (2003) with respect to 

(among other things) exogenous variable choices and by assuming perpetual cash flows 

from product sales.   

 This paper extends Schwartz (2003) and Hoe and Diltz (2007) by modeling 

competitive interactions in the valuation of, and optimal investment in, licensing 

agreements.  Our paper differs from Miltersen and Schwartz (2002) in that they focus on 

total project valuation, while we focus on the valuation of licensee and licensor. They 

focus on “societal benefits”, such as reqired development time, R&D success rates, 

optimal production level, product prices, aggregate R&D investment costs, aggregate 

R&D project values, and so on.  We focus on analyzing the possible impact on 

negotiating licensing terms, milestone payments versus royalties, to mutual benefits due 

to competitive interactions.  We explicitly incorporate the phases required to bring the 

project from patent approval to market. Additionally, we focus on incorporating project 

lifecycle effects in the marketing phase.   
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The paper is organized as follows.  Section II presents background information, 

model assumptions, and the basic model.  Section III discusses application of the model 

and sensitivity analysis.  We also compare results with analogous results from DCF 

analysis.  We draw conclusions in Section IV.  

 

II.  Background, Assumptions, and Model  

We assume two firms, X and Y, specialize in developing new drugs in the same 

therapeutic area.  Firm X has finished discovery and pre-clinical research, and X’s 

management has filed for patent protection on a promising new drug.  Due to financial, 

technical, or logistical constraints, X’s management decides to license this patent-

protected intellectual property to another firm for further development, FDA approval, 

production, and marketing.  Firm Y (the licensee) expresses interest in an agreement with 

X to shepherd the new drug through the approval process and on to market.  Negotiations 

result in a licensing agreement.  

We assume: 

(1) Duopolistic Setting:  We introduce a competitor to Firm Y to complete the 

duopoly.  The competitor is developing a different molecule targeted at the same disease, 

and we assume that this molecule is at the same development stage as the targeted 

licensing compound.  Patents on both drugs are assumed to expire simultaneously1. Both 

groups have managerial flexibilities during the development stages, i.e., they can 

optimally exercise abandonment/investment decisions along the development phases.  

                                                 
1  These assumptions allow us to focus on symmetric scenario analysis and they can be relaxed. 
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(2) Licensing Agreement Expiration:  The licensing agreement and patent 

protection expire simultaneously.  Following previous research, we assume no residual 

cash flow after patent expiry.  

(3) Licensee’s Responsibility and Right:  Four developmental phases remain, 

namely, Clinical Phases I, II, III, and FDA Regulatory Review. Firm Y is responsible for 

all developmental phases, assumes all development risks, pays periodic milestone 

payments, and preserves the flexibility to abandon the project. If Y decides to abandon 

the project, the licensing agreement is terminated. Following FDA Regulatory Review, 

the project generates sales revenues, which will be either monopolistic or duopolistic 

revenues depending on the timing of the drug marketed and the other firm’s optimal 

investment/abandonment decision, and Y pays royalties until the licensing agreement 

expires. 

(4) Milestone Payments and Royalties:  Milestone payments are made 

(approximately) upon passage of a clinical phase, thus occurring randomly.  Royalties are 

a fixed percentage of revenues,2 thereby following the same stochastic process. The size 

of milestone and royalty payments are exogenously determined and fixed over time.          

(5) Stochastic Sales, Development Costs and Development Time:  Upon FDA 

approval, revenues depend on demand for the drug and both competitors face the same 

stochastic cash flow (revenue) process described in detail in the following sub-section. 

The winning group enjoys the monopoly profit before the losing group enters the 
                                                 
2 In practice, the royalty rate based on the sales is preferred rather than the net sales since it prevents the 

licensor from observing the licensee’s internal operating information. In addition, sometimes sales 

milestone payments are negotiated when sales achieve some targeted levels; this in turn highlights the 

importance of imposing product life cycle in the evaluation.    
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markets; both parties share the sales revenue, beginning with the duopoly phase until 

patent expiry. Development capital costs vary based on the assumed controlled diffusion 

process (details in the following sub-section). For tractability, we assume that past and 

present development costs are publicly available. Development time needed is obtained 

when development capital cost process hits zero, thus stochastically determined.  

(6) Catastrophic Events:  There is the (Poisson) probability of a catastrophic event 

(e.g., toxicity, ineffectiveness, etc.) that renders the project worthless.  If λi is the average 

rate per unit of time that the project will become worthless in different phases and is 

independent from each other and uncorrelated with the market (no risk premium 

associated to them), as shown by Brennan and Schwartz (1985), the failure rate enters 

with the addition of phase dependent failure rates λi to the discount rate.3  For tractability, 

we assume that the probability of catastrophic event is publicly available information.   

Time Index Specification 

Let T be the patent expiry date and also be the licensing agreement expiry date.  

Let j
iτ be the completion time for phase with  i = 1,2, 3, 4 representing Clinical Phases I 

through FDA Regulatory Review.  Let }2,1{∈j , i.e., group 1 and 2, such that 1 = 

licensing group, 2 =  competing group.  We have }0|0inf{ =≥= j
it

j
i Ktτ  and j

caliτ  is 

defined as the elapsed time to completion, i.e.,  0with 0
0

== ∑
=

j
i

k

j
k

j
cali τττ ; we assume 

current calendar time as zero. The completion time is defined as },{ 44 TMin j
cal

j
cal ττ = . Let 

abn be abandonment time, and τ is the first drug marketed, defined as the first time the 

                                                 
3 The alternative and equivalent way of modeling the catastrophic events is, as in Merton (1976), to append 
the Poisson process that can suddenly drive the project value to zero to the stochastic project value process 
(in our case, it’s the sales process equation (1)).  
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total cost process approaches zero, that is, },min{ 2
4

1
4 calcal τττ = (i.e.,  2

4
1

4 ^ calcal τττ =  ). τ  is 

the second drug marketed defined as },max{ 2
4

1
4 calcal τττ = (i.e., = 2

4
1

4 calcal τττ ∨=  ). 

We present the whole timeline of our model in Figure 1 to help readers visualize 

the whole process. 
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Figure 1.  Model Timeline  

We work on a probability space (Ω, -,  ) and a filtration, F={ -[}0≤t≤T ,where 

Brownian motion is defined and the expectation {•}is computed,  is the equivalent 

martingale measure. 

Investment Cost Uncertainty and Phase Completion Time  

 The expected cost to completion in each phase is assumed to follow the controlled 

diffusion process4:                      

                                                 
4 As pointed out in Dixit and Pindyck (1994), this is a special case of the controlled diffusion process: 

ttt dBKIgIdtdK ),(+−=  where 0≥
∂
∂

I
g

 , 02

2

≤
∂
∂

I
g

  and 0≥
∂
∂

tK
g

. The equation indicates that 

expected cost to completion declines with ongoing investment, but also changes stochastically. Stochastic 
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jj
i

jj
it

j
i

j
i

j
i

j
it

iical

it

MK

dBKIdtIdK

=

+−=

τ

σ
                                        (1) 

where i =1,2, 3, 4 represent Clinical Phase I, Phase II, Phase III, and FDA Regulatory 

Review, respectively. j
iI is the investment rate (the control), and j

it
dB  is the increment of 

a standard Weiner process assumed uncorrelated with the market at each phase, j
caliτ  is 

the elapsed time to completion defined as  0with 0
0

== ∑
=

j
i

k

j
k

j
cali τττ ; j

iτ represents the 

completion time of each phase, when the cost process hits zero, and j
iM is the 

corresponding milestone payment.  If no milestone payment is required for advancing 

through that particular phase, j
iM  equals zero; moreover, in our situation, j

iM occurs 

only when j = licensing group. The term jj
it

j
i

j
i it

dBKIσ  is described by Pindyck (1993) as 

technical uncertainty since it is resolved only by additional investment. The term shows 

that the more R&D investments the firm estimates it still has to conduct and the higher 

the current R&D investment rate is, the more uncertainty will be revealed per time unit. 

                                                                                                                                                 
changes in K might be due to technical uncertainty for 0 and 0),0( >= IgKg ,  input cost uncertainty 

for 0),0( >Kg , or both. By defining ),;( mIVKF as the value of the investment opportunity, where mI  
is the maximum investment rate, the above controlled diffusion process makes economic sense only if the 
following conditions hold: (i) ),;( mIVKF is homogeneous of degree 1 in K ,V , and mI ; (ii) 0<KF , 
that is, an increase in the expected cost of an investment always reduces its value; (iii) the instantaneous 
variance of tdK  is bounded for all finite tK  and approaches zero as 0→tK ; and (iv) if the firm invests 

at the maximum rate mI  until the project is completed, time τ ,  KdtIE m =∫
τ

0
0 , so that K  is indeed the 

expected cost to completion.  The general structure αβ )/(),( KIKKIg =  with 2/10 ≤≤ α satisfies 

the four conditions; note that 10 <≤α  does not satisfy the condition 0<KF . The specification of 

0=α or 
2
1

=α results in simple corner solutions for the optimal investment problem.  
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jj
it

j
i

j
i it

dBKIσ  is affected by a stochastic term with mean zero and a variance linear both 

in the level of investment I and the expected cost. The square root j
i

j
i KI 5, in the 

diffusion term is linear in investment, giving rise to a bang-bang solution for the optimal 

control.  The optimal investment strategy takes one of two possible values: zero or the 

maximum rate.  We assume zero correlation among uncertainties across phases.  The 

expected cost to completion of a phase may change only after investment in that phase 

has begun.  This implies that “learning” about cost to completion occurs only for the 

current phase.  The variance of cost to completion for each phase i has the following 

analytical representation, j
j

i

j
ij

ii
KKVar )

2
()~( 2

2

σ
σ
−

= 6 and the first passage time of the cost 

process hitting zero can be obtained explicitly7.  

We summarize the stochastic cost process for each phase as follows:  

For j
cal

t
1

0 τ≤≤  

j
yespaymentmilestone

j

jj
t

jjjj
t

MK

dBKIdtIdK

j
cal

t

1
1

1

} {1

11111

1 ==

+−=

τ

σ
                                                (2) 

 

                                                 
5 See footnote 5; we can have general specification of α)(IK with  

2
10 <≤α .  

6 For a detailed derivation see Karlin and Taylor (1981, p.203), appendix in Pindyck (1993), Dixit and 
Pindyck (1994, p. 351 footnote 12)  
7 The probability that the total cost to completion of the project in phase i is less than R , conditional on an 
initial expected cost to completion Ki, is given by 

ributiongamma distumulative ) is the cwhere Γ
n

k
Ke

kH
n

i

n

i

ik
K

ii

i

•
++Γ

−= ∑
∞

=

−+−

(    
)22(

)2(
1)(

0
2

21

2

2
22

σ

σ
σσ

  ; 

detailed derivation see Schwartz and Moon (2000). 
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We perform two simulation runs, each with 110,000 sample paths, by first 

assuming that the original licensee “wins”, and alternatively assuming that the competitor 

“wins”.   

Sales Uncertainty 

Upon FDA approval, the project generates sales revenue, S.   We assume that S 

follows the Geometric Brownian motion: 

dSt = αtStdt+σStdZt                                                                     (6) 

where αt,
8 is the time dependent instantaneous growth rate with a deterministic life cycle 

trend, satisfying a Lispchitz assumption with linear growth.  σ is the instantaneous 

annualized sales volatility, assumed constant.  dZt represents increments of a standard 

Wiener process.  Following Schwartz (2003), cash flow from sales occurs only after 

investment has been completed.  Prior to this time they represent the sales revenues the 

                                                 
8 For the case αt=α, it indicates the constant instantaneous annualized growth rate, a typical stock price 
process assumption in the classical Black-Scholes model.   
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project would have produced if it were completed.  We assume zero correlation between 

the investment cost and the sales revenue processes. We assume both competing products 

face the same stochastic revenue process. 

Net Operating Cash Flows 

We assume that net operating cash flows are a proportion, η, of  sales revenue.  

Net operating cash flows follow the same Geometric Brownian motion process as sales: 

dCt= ηdSt = η (αtStdt+ σStdZt)                              (7) 

where η∈(0,1),  αt, σ, and dZt are defined above. We assume both parties face the same 

operating cash flows.  

Duopoly Phase Project Value 

By simulating the cost process, we can easily identify τ  andτ .  In the duopolistic 

time periodτ  to T, the revenue for the licensee will be 

dWt = 0.5*(dCt – dRt) = 0.5*(η-θ)(αtStdt+ σStdZt)                                    (8) 

where Rt is royalty payments, a percent of sales revenue following the same Geometric 

Brownian motion process with proportion, θ, of sales: 

dRt= θdSt = θ(αtStdt+ σStdZt) where θ∈(0,1)                                             (9)    

On the other hand, the revenue for the other competing group will be 

dCt= 0.5*η*dSt = 0.5*η* (αtStdt+ σStdZt)                                                       (10) 

In the first scenario, two firms exist in the duopolistic phase.  Project value for the 

licensee in our licensing group is: 
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where the subscript W denotes winner, L denotes Loser and D2 denotes that two groups 

exist in the duopoly phase. 

Project value for the competing party is: 
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where the superscript CG denotes competing group. 
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 In the second scenario, only one firm exists in the duopolistic phase.  Project 

value for the licensee in our licensing group is: 
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where D1 denotes that only one group exists in the duopoly phase.   

Project value for the competing party: 
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Monopoly Phase Project Value 
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In the monopolistic phase τ  to τ , the revenue for the licensee will be 

dWt = (dCt – dRt) = (η-θ)(αtStdt+ σStdZt)                                      (15) 

where Rt is royalty payments, a percent of sales revenue following the same Geometric 

Brownian motion process with proportion, θ, of sales: 

     dRt= θdSt = θ(αtStdt+ σStdZt) where θ∈(0,1)                                             (16)    

On the other hand, the revenue for the other competing group will be 

dCt= η*dSt = η* (αtStdt+ σStdZt)                                                           (17) 

In the first scenario our licensee is the “winner”.  Project value for the licensee, 

winner, if the competing group’s project is still alive is as follows.  We must consider that 

(1) the losing firm is still investing in R&D and is still exposed to catastrophic events, 

and (2) the losing firm (competing group) will follow its optimal R&D 

investment/abandonment strategy. Given that we model the catastrophic events through 

Poisson probability, the conditional probability (under an equivalent martingale measure, 

) that the competing group, the losing firm, is not hit by catastrophic events throughout 

the period from date t to date u in the monopoly phase, given that its project was alive at 

date t is: 
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 As a result, the conditional probability (under an equivalent martingale measure, 

) that the competing group (losing firm), is hit by catastrophic events during a period 

from date t to date u in the monopoly phase, given that its project was alive at date t is 

∑− λ1  .  
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At any given date t in the monopoly phase, i.e. ),[ ττ∈t  , if the competing group’s 

project is still alive, the project value for the licensee, the winning group is: 
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where ),[ ττ∈t , and ,*2

,tlabn  is losing group’s optimal R&D 

investment/abandonment strategy. The first term in equation (18) represents the winning 

firm’s (licensee’s) monopoly profit from date t until the end of the monopoly phase.  The 

second term in equation (18) is the winning group’s (licensee’s) share of the duopoly 

profit in the duopoly phase in the event that the losing group (the competitor) is not hit by 

catastrophic events and does not abandon its project.  The third term in equation (18) is 

the winning group’s (licensee’s) monopoly profit in the duopoly phase where the losing 

group (competing group) is either hit by catastrophic events before the duopoly phase or 

the losing group (competing group) finds it optimal to abandon. 

Project value for the licensee, winner, if the competing group’s project is no 

longer alive is: 

),[ re       whe)1(
)(
)(),( ))((

1, ττ
α
θη α ∈−××

−
−

= −−− teS
r

tSV tTr
tt

Licensee
MW                        (19) 

Project value for the competing party given our licensee is the winner and the winning 

group’s project is still alive at the entrance date of the monopoly phase: 
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(20) 

 where the next to last term represents the losing group’s (i.e. the competing 

group’s) R&D investment costs in the monopoly phase after date t and until (1) it is hit 

by catastrophic events, (2) it decides to abandon its R&D investment project, or (3) it 

completes the R&D investment project.  The last term is the losing group’s (i.e. the 
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competing group’s) share of the duopoly profit in the duopoly phase where the losing 

group is neither hit by catastrophic events, nor does it abandon. 

The value obtained in the above equation is a maximization problem because the 

losing group (competing group) needs to decide at each instant whether to continue 

investing in R&D or abandon for maximizing the project value.  Given that the losing 

group has not abandoned and the winning group’s (licensee’s) project is still alive at that 

date, the losing group’s (competing group’s) optimal R&D investment/abandonment 

strategy, *2
labn , is an optimal stopping time related to the filtration . The maximization 

problem can be solved by applying dynamic programming with boundary condition:  

),(),0,( 22, ττ ττ SVSV CG
D

CG
ML =                                                     (21) 

Project value for the competing party given our licensee is a winner and the 

winning group’s project is no longer alive at the entrance date of the monopoly phase: 
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(22) 

where the next to last and last terms have the same interpretation as those in 

),,(2. tKSV ltt
CG

ML .  Here the losing firm’s R&D investment/abandonment strategy, *1
labn , 

again can be solved  through dynamic programming with boundary condition:  



 19

),(),0,( 11, ττ ττ SVSV CG
D

CG
ML =                                                      (23) 

Competitive R&D Phase Project Value 

In the competitive R&D phase before any drug is marketed (i.e. prior to the time 

that the first drug is commercialized), the two groups race to commercialize their drug 

first.  When both groups are still investing in the competitive R&D phase, there is a 

competitive interaction element to the optimal R&D investment/abandonment strategy. 

That is, the value to one of the groups of all future cash flows is negative if the other 

group continues investing, but the value becomes positive if the other group abandons.  

As Milterson and Schwartz (2002), a standard Cournot-Nash equilibrium is applied to 

find the optimal R&D investment/abandonment strategies for both groups.  In this phase, 

at any given date t the two groups’ date t optimal R&D investment/abandonment 

decisions are obtained as a reaction (i.e., response function) to their competitor’s given 

date t R&D investment/abandonment decision.  

First, we assume that the other group is hit by catastrophe or it abandons.  It 

becomes a standard optimal stopping problem. The same methods applied to the losing 

group in the monopoly phase can be used to solve the problem.  

At any given date t in the competitive R&D phase, i.e. t ∈ [0, τ ), if the 

competing group’s project is no longer alive, the total value to the winner, licensee, of all 

cash flows after that date is: 
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represents the conditional probability (under equivalent martingale measure ) that the 

licensee (winner) is not hit by catastrophe from date t to u in the development phase, 

given that its project was alive at t, and the conditional probability (under equivalent 

martingale measure ) that the competing group (loser) is hit by catastrophe during a 

period from date t to date u in the monopoly phase, given that its project was alive at date 

t is 
∧

∑− λ1  . 

This is an optimal stopping problem, and we can derive the optimal  

abandonment/investment strategy, *1
licenseeabn  , through dynamic programming with 

boundary condition:  

                                 ),(),0,( 11& ττ ττ SVSV Licensee
M

Licensee
DR =                                           (25) 

Similarly, the total value to the competing group after that date can be derived as: 
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(26) 

 Again we can derive the optimal abandonment/investment strategy, *1
labn  , 

through dynamic programming with boundary condition:  

                                      ),(),0,( 11& ττ ττ SVSV CG
D

CG
DR =                                        (27) 
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Having derived the value of each group’s project given the other abandons 

(equation 24 and equation 26), we the turn to derive the date t value of licensee group’s 

and competing group’s projects given the other group continues investing in order to find 

the best response function.  We must account for the fact that both groups are exposed to 

catastrophic events, as well as the fact that both groups follow investment strategies that 

are Cournot-Nash equilibria at any later date u ≥ t in the competitive R&D phase.  

Because of the competitive interactions, only the objective function as a solution to a 

dynamic programming problem can be derived.  If both projects are alive in the 

competitive R&D phase, the boundary conditions for the project values are given by the 

value at the entrance date into the monopoly phase.  That is  

),,(),,0,( ,2,2& ττ ττττ CG
Licensee

MCG
Licensee

DR KSVKSV =  

                            and   ),,(),,0,( ,2,2& ττ ττττ CG
CG

MCG
CG

DR KSVKSV =                              (28) 

This valuation problem in the competitive R&D phase is then solved by backward 

induction.  We solve for project value at t (in the competitive R&D phase) conditional on 

having already solved for the value at any later date u.   

The value at t in the competitive phase to the licensing group (if its project is still 

alive) of all cash flows after t assuming both groups continue investing at t, denoted as 

),,,(ˆ
2& tKKSV l

t
Licensee
tt

Licensee
DR , can be expressed as an expectation under equivalent  

martingale measure (with Filtration tF ) from the next moment, say date dtt + , with three 

main components: (1) licensee investment costs from continuing investing at time dtt + , 

(2) ),,,(2& dttKKSV CG
dtd

Licensee
dtddtt

Licensee
DR ++++  with the probability that both groups are not hit by 
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catastrophic events, and (3) ),,(1& dttKSV Licensee
dttdtt

Licensee
DR +++  with the probability that the 

competing group is hit by catastrophic events.  

The value at t in the competitive R&D phase to the competing group (if its project 

is still alive) of cash flows after t, assuming both groups continue investing, denoted as 

),,,(ˆ
2& tKKSV l

t
Licensee
tt

CG
DR , can be expressed similarly to the licensing group described  

above.  

Following Milterson and Schwartz (2002), we consider the game shown in the 

following table to find the Cournot-Nash type equilibrium R&D investment/abandonment 

decisions at date t for the two groups in the competitive R&D phase: 

Continue Investing Abandon

Competing Group

Licensing 
Group

Continue Investing

Abandon

),,,(ˆ
2& tKKSV CG

t
Licensee
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Licensee
DR ),,,(ˆ

2& tKKSV CG
t

Licensee
tt

CG
DR ),,(1& tKSV Licensee

tt
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DR 0

0 0),,(1& tKSV CG
tt

CG
DR0

 

 

For considering this Cournot-Nash Equilibrium game in the competitive R&D 

phase, we can summarize the total value to the licensing group and the competing group 

as follows:  
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It  can be seen that ),,,(ˆ
2& tKKSV CG

t
Licensee
tt

CG
DR < ),,(1& tKSV CG

tt
CG

DR (so as for the 

licensing group), i.e., the value to any group if it continues investing in R&D is lower if 

the other group also continues investing than if the other group abandons, ceteris paribus.   

If ),,,(ˆ
2& tKKSV CG

t
Licensee
tt

CG
DR  ≥ 0 and ),,,(ˆ

2& tKKSV CG
t

Licensee
tt

Licensee
DR ≥ 0, there is a 

unique Nash equilibrium in simple strategies.  This equilibrium has both firms continuing 

investment.  

If ),,,(ˆ
2& tKKSV CG

t
Licensee
tt

CG
DR  ≥ 0 and ),,,(ˆ

2& tKKSV CG
t

Licensee
tt

Licensee
DR < 0 (or the other 

way around), the unique Nash equilibrium in simple strategies is that the group with 

positive project value continues investing, whereas the other abandons.   

If  both ),,(1& tKSV CG
tt

CG
DR  and ),,(1& tKSV Licensee

tt
Licensee

DR  < 0, the unique Nash 

equilibrium in simple strategies has both firms abandoning.   

If ),,(1& tKSV CG
tt

CG
DR ≥ 0 and ),,(1& tKSV Licensee

tt
Licensee

DR  < 0 (or the other way around), 

the unique Nash equilibrium in simple strategies is that the group with positive project 

value continues investing, whereas the other abandons.   

If  ),,(1& tKSV CG
tt

CG
DR ≥ 0 , ),,,(ˆ

2& tKKSV CG
t

Licensee
tt

CG
DR <0, ),,(1& tKSV Licensee

tt
Licensee

DR ≥ 0 

and ),,,(ˆ
2& tKKSV CG

t
Licensee
tt

Licensee
DR < 0), there are multiple Nash equilibria in simple 
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strategies.  It is a Nash equilibrium in simple strategies that one of the groups continues 

investing and the other abandons.  We need to be able to establish a rule for the two 

groups, so that we know which of them should continue investing and which should 

abandon.  In this situation, we follow the technique suggested by Miltersen and Schwartz 

(2002) to set up the rule that the group with the highest value of continuing investing in 

R&D, given that the other firm abandons its R&D investment project, continues investing 

in R&D, and the other firm abandons its R&D investment project. As suggested by 

Miltersen and Schwartz (2002), this Nash equilibrium among all Nash equilibria gives 

the highest ex ante values of the two firms’ projects and thus should be the one Nash 

equilibrium that both firms would prefer to play.  As a result, we have found the Cournot-

Nash type equilibrium investment decisions for date t.  The date t values for each of the 

two projects corresponding to the outcome of this Cournot-Nash type investment game 

can then be assigned to ),,,(2& tKKSV CG
t

Licensee
tt

CG
DR and ),,,(2& tKKSV CG

t
Licensee
tt

Licensee
DR  (In our 

summarized equation above).   

 

III. Model Application and Sensitivity Analyses  

Numerical Solution Procedure 

We solve the model by applying the Longstaff and Schwartz (2001) simulation 

method.  We simulate 110,000 discretizised (quarterly) sample paths for governing state 

variables representing sales revenue (See Figure 3 and 4), all of the Clinical Phase cost 

processes, and cost upon completion of the FDA regulatory review (each with two 

different stochastic cost processes, one for each group) (See Figure 1). The completion 

time for each phase for a particular firm can be obtained through simulation of cost 
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processes (See Figure 2).  We can also find the time for the first marketed the drug and 

the time for the second marketed drug (i.e., the monopoly and duopoly phases).     

First, we calculate the future profits after the duopoly phase both for the 

duopolistic situation and monopolistic situation.  The losing firm’s value in the 

monopolistic phase involves optimal investment/abandonment decisions and can be 

obtained by backward induction, regressing the continuation value along each of the 

sample paths which are in the monopoly phase at the same date onto a set of basis 

functions of the state variables, K and S at the same date.  Regression coefficients are 

used to estimate the conditional expectation (continuation value).  If the regression 

forecast exceeds the costs of investing in R&D for another quarter, the losing firm should 

continue investing.  This procedure gives us: (1) the losing firm’s optimal R&D 

investment/abandonment decisions along each sample path for each quarter in the 

monopoly phase both in the case where both projects are alive and in the case where there 

is only one project alive, and (2) the losing firm’s value of all future cash flows back to 

the date that the winning firm commercializes the drug. The winning firm’s project value 

and optimal investment/abandonment decision back to the first commercialization date 

can be easily obtained through similar procedures making use of losing firm’s optimal 

investment/abandonment decisions.  In the competitive R&D phase, we use the same 

approximation techniques and go through the Cournot-Nash game to find the Nash 

equilibrium R&D investment/abandonment decisions.  

After we obtain all the R&D investment/abandonment decisions for the two 

groups, we implement a forward procedure that evaluates the profit along each sample 

path taking into account the R&D investment/abandonment decisions. We then average 
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the results over all sample paths. We obtain the licensing group’s value in terms of loser 

and winner in this R&D competing game.  The licensee’s value is obtained directly 

whereas the licensor’s value is a byproduct when obtaining the licensee’s values. 

 

Illustrative Examples 

 We present post-phase I examples with time-varying drift to capture life cycle 

effects.  Our analysis focuses on the profit split ratio (PSR) between licensor and licensee 

because this metric is used by pharmaceutical industry managers.  Licensor value is the 

present value of licensing fees, milestone payments, and royalties.  Licensee value is the 

present value of the residual difference between total project value and licensor value.  

We define the PSR as the ratio of licensee value to licensor value.   

The licensee is a residual claimant somewhat like a common stock shareholder.  

The licensor expects a fixed set of payments in development stages, followed by royalties.  

In practice, PSRs of three (i.e., 75% to licensee, 25% to licensor) to four (i.e., 80% to 

licensee, 20% to licensor) are common.  The parties typically negotiate the PSR based on 

the costs incurred from the project.  Costs include those incurred by the licensor from 

project inception to the present versus development and commercial costs anticipated by 

the licensee.  Although PSRs are usually greater than one, increasing competition for 

licensing agreements in recent years has shifted the balance of power in favor of  

licensors, occasionally resulting in a PSR less than one.  Occasionally, the licensee may 

adopt a portfolio approach to establish the lowest acceptable PSR.  The profit and risk of 

the licensing agreement are evaluated relative to existing licensing agreements and 

internal product pipelines.  We classify PSRs below one as unacceptable to our licensee. 
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Following Schwartz (2003) and Schwartz and Moon (2000), we compare project 

values from our real option model to an approximate NPV by setting volatility 

parameters to zero and applying an appropriate risk-adjusted discount rate (see Schwartz 

(2003)).  Licensee management monitors the development process and optimally 

abandons if continuation value is less than the investment required to keep the project 

alive.    

Our base case situations are as follows.  Firm X (the licensor) and Y (the licensee) 

negotiate a 20-year agreement for X’s patent-protected compound that has passed the 

Phase I clinical trial.  Y is responsible for subsequent phases, and it pays milestone 

payments as the drug advances through Clinical Phases II and III, and FDA Regulatory 

Review.  The completed project generates sales revenues, and Y pays a 10.5 percent 

royalty.  Expected Clinical Phase II development time is 2.5 years, three years for 

Clinical Phase III, and one year for FDA Regulatory Review.  The annual failure 

probability for Clinical Phase II is 15%, and the annual failure probability for Clinical 

Phase III and FDA Regulatory Review is 8%.  The resulting failure probability for the 

compound at the beginning of Clinical Phase II is around 50%.9  Annual sales are $20 

million.  The cost volatility is 50% and sales volatility is 35%.  Net operating cash flows 

are 75% of sales. 

For the licensing agreement, development cost and milestone payment schedules 

are: (1) $40 million development cost for Clinical Phase II, (2) $60 million development 

                                                 
9 This failure probability may be a little higher compared with Schwartz 2003, which states that the failure 

probability provided by the survey includes the “abandonment” decision in addition to the catastrophic 

events. However, it should not affect the analysis result per se.   
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cost for Clinical Phase III and FDA Regulatory Review together, (3) $16 million annual 

research investment for Clinical Phase II, and $15 million annually each for Clinical 

Phase III and FDA Regulatory Review, (4) $5 million milestone payment after Clinical 

Phase II, and (5) $12 million milestone following FDA Regulatory Review.   

We begin with the symmetric duopolistic case by introducing another comparable 

licensing group (i.e., the same development cost, milestone payments, royalty rates and 

catastrophic events).  Based on NPV calculated:  (1) at a risk-adjusted rate equal to 

riskless rate plus annual failure probability minus the risk-adjusted sales growth rate, and 

(2) with an initial licensing fee of $0.5 million dollars, we estimate a PSR of 1.33 

(57%/43%) in the monopoly situation and, for the symmetric duopoly situation, it yields:            

(1) the licensee negative profits holding all else constant or decreasing licensing 

payments by half, (2) the licensee a PSR of 0.887 (47%/35%) when sales are estimated to 

be 1.75 times the initial monopoly sales holding all else constant, and (3) the exact profit 

and PSR as the monopolist when sales are double holding all else constant. Under NPV 

calculation, the duopoly situation makes the licensing agreement unattractive to the 

licensee without re-negotiating because the revenues from commercialization decrease by 

half. Without re-negotiating terms, the unattractive situation improves only if estimated 

sales can be increased (see Table 1). 

Table 1 
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For project value with abandonment using the base case parameters (sales 

volatility 35%, cost volatility 50%) we estimate a PSR of 1.50 (60% / 40%) for the 

monopolistic case, and 0.59 (37% / 63%) for the symmetric duopolistic case10 ceteris 

paribus. Because of the presence of a duopolist, the PSR decreases to less than one, and 

as expected, the profit decreases, too. Holding all else constant by increasing initial sales 

by 1.7 times, we estimate a PSR of 1.17 (54%/46%). It seems that the profit split ratio 

increases to a greater degree than in a monopoly case as uncertainty increases. However, 

total project value decreases, even with 1.7 times the initial sales, because of the presence 

of a duopolist (see Tables 2 and 3).  We also find: 

(1)  Under both scenarios, the PSR increases as sales and/or cost volatility increases. 

(2)  Under both scenarios, licensee project value with abandonment option increases with 

greater amounts of either source of uncertainty.  Licensor project value does not display 

the same monotone relation to changes in either sales or cost uncertainty.   

(3) The smaller positive investment opportunity value based on NPV implies higher 

abandonment flexibility value to the licensee.  NPV also implies that both licensee’s and 

licensor’s project value is relatively more sensitive to changes in either sales or cost 

volatility.  

(4) Under both scenarios, sales volatility has a greater impact on licensee’s and licensor’s 

project value compared with cost uncertainty.  

(5) The sum of option values is not zero.  This is a byproduct of the characteristics of the 

relation between licensee and licensor, i.e., their positions are not symmetrical. 

                                                 
10 For the number reported here, we assume the same technology shocks. The detailed results for different 
technology shocks will be reported in a future version of this paper. 
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 Preliminary results from the symmetric duopolistic case reinforces our conjecture 

that the estimated project value is affected by competition.  Based on our example 

parameters, it appears that the option to abandon is worth more in the symmetric duopoly 

case than in the monopolistic situation.  This is not surprising given the smaller NPV 

accruing to the individual licensee under the symmetric duopolistic case.  Research is 

under way concerning asymmetric duopoly situations.  We will present asymmetric 

duopoly results in a future version of this paper.   

 

IV. Conclusion  

 Preliminary results reinforce our conjecture that uncertainties embedded in 

competition for the project have an impact on the PSR.  The true PSR will deviate from 

estimates obtained through the typical NPV analysis under uncertainty, and also from the 

contingent claims analysis under monopoly.  Based on our example parameters, it 

appears that the option to abandon is worth more in the symmetric duopoly case than in 

the monopolistic situation.  This is not surprising given the smaller NPV accruing to the 

individual licensee under the symmetric duopolistic case.  The outcome from the 

Cournot-Nash game impacts our results, and we look forward to presenting results from 

more elaborate simulations in future research.   
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Figure 1. 
Simulated Total Cost to Completion – One of the Groups  
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Figure 2. 

Simulated Completion Times (Quarterly Time Step) – One of the Groups  
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Figure 3. 

 
Simulated Sales Revenue (Quarterly Time Step) – 5 Random Paths 
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Figure 4. 
 

Simulated Mean Sales Revenue  
(Quarterly Time Step; 110,000 Paths) 
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Table 2.  Licensee and Licensor Project Values and Profit Allocations for Monopoly and Symmetric Duopolistic Case (1.7X 
Sales) 
Project values and profit allocations are generated from the real options model described in Section 2.  Licensor and licensee have a 20-year agreement for a 
project that has passed the Phase I clinical trial.  The licensee pays a 10.5 percent royalty when marketed.  Expected development times are 2.5 years, 3 years and 
1 year for Phases II, III, and FDA regulatory review, respectively.  The annual failure probabilities are 15% for Phase II, and 8% each for Phase III and FDA 
regulatory review.  Annual sales are $20 million. Net operating cash flows are 75% of sales.  Cost schedule includes:  (1) $40 million for Clinical Phase II, (2) 
$60 million for Clinical Phase III and FDA Regulatory Review, (3) $16 million annual research investment for Clinical Phase II, and $15 million annually each 
for Clinical Phase III and FDA Regulatory Review, (4) $5 million milestone payment after Clinical Phase II, and (5) $12 million milestone following FDA 
Regulatory Review.  
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