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ABSTRACT 
 

The present paper investigates the optimal timing of investment for a high speed rail 

(HSR) project, in an uncertain environment, using a real options analysis (ROA) 

framework. It develops a continuous time framework with stochastic demand that 

allows for the determination of the optimal timing of investment and the value of the 

option to defer in the overall valuation of the project. The modelling approach used is 

based on the differential utility provided to railway users by the HSR service.  
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1. Introduction 

Today’s global and dynamic business market is characterized by a growing 

uncertainty that affects significantly the decision-making processes within business 

organizations. In this sense, dealing with uncertainty and taking optimal decisions 

regarding investment opportunities becomes a way of achieving supremacy over 

competition.  

Flexibility is crucial to perform efficiently, for instance, in terms of technological 

changes, competition’s shifts, or even in order to limit potential losses related to 

unexpected adverse scenarios in the market.   

Given the ineffectiveness of the traditional capital budgeting techniques in uncertain 

environments (Trigeorgis, 1996), the conceptual framework available in order to 

appraise complex investments in real assets consists in using real options analysis 

(ROA) techniques (Dixit and Pindyck, 1994).      

ROA has changed the investment valuation paradigm, due to its ability to cope with 

decision makers’ flexibility. In the offing period, new information may lead to a total or 

partial change of the initial plan, including the abandonment of the project. 

In spite of having emerged in the academy, (Brennan and Schwartz, 1985; 

McDonald and Siegel, 1986; Dixit, 1989; Pindyck, 1991; and Dixit and Pindyck, 1994, 

amongst others), this new paradigm has already made an impact in the business world, 

since an increasing number of companies and managers are adopting a real options 

perspective. Especially in capital budgeting decisions and in the assessment of the 

corresponding strategic positioning and competitiveness (Paddock, Siegel and Smit, 

1988; Nichols, 1994; Kallberg and Laurin, 1997; Moel and Tufano, 2002; Smit, 2003; 

etc.).  

The modelling framework proposed in this paper is inspired by a set of projects for 

the development of high speed rail (HSR) lines in Europe. The structuring nature of the 

projects for the countries involved; the need to renew the railway sector; the huge 

amounts of money needed; the uncertainty about the timings to invest and the economic 

challenge inherent in developing a conceptual setting for a decision that needs to be 

taken in the interest of the entire set of European taxpayers, all play a part in providing 

relevance to the study of the embedded option to defer and the optimal timing to invest.      
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2. Real Options in Major Projects in the Transportation Sector  

Although usually linked to political discussion and controversy, transport 

infrastructures tend to be understood as critical for the sustainable growth and 

development of any economy. According to Wilson (1986), since 1870 economists have 

been drawing their attention towards the transport industry in general, and to the railway 

sector in particular. The same author suggests that wrong transportation policies and the 

corresponding investment mistakes in transport infrastructures may compromise 

seriously economic growth. To prevent this type of outcome, it is important to develop 

and apply suitable decision criteria based upon sound cost/benefit analysis.     

Infrastructure investments that are usually understood to provide benefit and 

leverage to the economic growth of whole regions include investments in seaports, 

airports and railways links, energy networks, road systems, amongst others.  

The size, budget and impact in the global economic activity lead big transportation 

investments to assume the role of strategic options. Almost all these investments include 

a portfolio of options intended to, at some extent, protect the enormous funds needed to 

implement the project from failure.    

Rose (1998) has valued the concession of a toll road, considering the existence of 

two options interacting with each other. The author assumed that the traffic volume 

followed a geometric Brownian motion and used Monte Carlo simulation to compute i) 

the value of the embedded call option that allowed for the early acquisition of the 

project by the franchiser and ii) the option to defer regarding the payment of the 

corresponding fees’ by the franchisee. Similarly, Brandão (2002) applied the Copeland 

and Antikarov’s (2003) framework to value several options embedded in a project that 

included the building and operation of highways in Brazil.  

More recently, two other empirical ROA works focused on the valuation of 

structural investments in the transportation sector, were published: Smit (2003) and 

Bowe and Lee (2004). The first, analyses the expansion of an airport, while the second 

is apparently pioneer in the analysis of a railway transportation project.  

Investments in infrastructure or platform assets generate other investments 

opportunities that change the competitive standing of the companies involved. Smit 

(2003) combines ROA and game theory to capture the intrinsic value derived from the 

company’s positioning adjustment inside the industry, with an empirical application to 

the expansion of a European airport. His work has helped to fill in a gap in the real 
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options literature, where researchers have tended to, either, ignore competition, 

underestimating the impact of a competitive entry, or assume that the competition is 

exogenous to the valuation process. Smit (2003) has chosen to develop his work in a 

discrete time framework, arguing that it makes it more simple and available to 

management teams, at the same time that includes potential asymmetries amongst 

competitors and makes possible the definition of alternative stochastic processes.   

The main contribution of Smit’s (2003) work is due to the fact that he evaluates the 

growing opportunities generated by an infrastructure as a game of several sequential 

exercises. Following Trigeorgis’ (1996) developments, Smit (2003) starts by valuing the 

project without expansion opportunities, using traditional capital budgeting decision 

techniques, and subsequently valued the embedded growth opportunities in a 

competitive context with other European airports.     

Similarly to Smit (2003), Bowe and Lee (2004) apply binomial analysis. However, 

they use a logarithmic transformation similar to Trigeorgis (1991), to evaluate the high 

speed train project in Taiwan, comparing the obtained results with a valuation based on 

traditional capital budgeting decision techniques. The work embraces the valuation of 

three different options (expand, reduce and defer) and the according interactions, 

included in a project that does not pay dividends.  Nevertheless, as stated by the authors, 

this type of analysis should incorporate the effect of dividends in order for the 

framework to become close enough to real life situations to deserve proper 

consideration by companies.  

 

3. Investment Valuation Using a Real Options Framework  

In a HSR project, at any moment in time, the owner of the investment’s rights holds 

the possibility of acquiring the future cash flow generated by the venture, in exchange 

for the payment of the corresponding implementation costs. Thus, we are dealing with 

an option to invest. 

Considering the investment in a HSR line as an optimal stopping problem allows us 

to determine the value of the embedded option to defer. Following, the work of 

McDonald and Siegel (1986) and Salahaldin and Granger (2005), it also permits to 

determine the optimal timing to invest. 
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In the present paper it will be assumed not only that the option to defer is perpetual 

in nature ( ∞=T ), but also that, once implemented, the investment will produce 

perpetual benefits. Without major technological changes, the impact of these 

assumptions in the global valuation should not be unreasonable for two reasons. In the 

first place, because the present value of the more remote cash flows tends naturally to 

zero. In the second place, because maintenance and conservation - whose expenses are 

taken into consideration - tend to restore the operational aptitude of the assets in place 

and the corresponding flow of benefits. 

 

3.1. Optimal Timing to Invest – Investment in one Period 

In a context of the nature above mentioned, a decision to implement a project in a 

non-optimal moment, implies destruction of value. Therefore, finding the optimal 

timing offers the possibility to study the impact of the ability to delay in the global 

value of the project.    

Thus, it is important to answer the question of when to invest, or at least find a 

critical value that might support in a rational way the decision of implementing the 

investment. The irreversibility features of the investment, given that there is no other 

use for the project rather than the railways, emphasise the importance of estimating the 

optimal timing to invest.   

The model proposed here draws on the work of Salahaldin and Granger (2005) on 

the valuation of sustainable systems of urban transport aimed at relieving air pollution. 

It is a model that comprises a unique change from an inactive to an active state, and 

considers a single stochastic variable.    

Because investment in infrastructures, like HSR lines, will affect the economic and 

social conditions of future generations, it should be assessed considering a global point 

of view, in terms of economic welfare. In an uncertain environment, it will only make 

sense to invest in such a project, if the economic value of the utility provided by the 

resulting benefits is able to surpass the joint value of the option to defer (lost by 

investing) and of the utility provided by the conventional railway system to its users.  

Investing, in a moment other than the corresponding optimal timing, implies a 

reduction in the global level of utility achieved by the users, compromising seriously the 

projects’ success. In such circumstances, any potential user may always maintain his 
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current level of utility, choosing to travel in the conventional railway line, rather than in 

the new HSR service. If a suboptimal investment timing is chosen, the ability of the 

HSR service to attract clients will be strongly distressed.     

At any moment users can choose to travel in the conventional railway, without any 

constraints. Consequently, to maintain the users’ utility, the fraction of the new 

investment supported by each one must be identical to the sum of the benefits earned 

resulting from the reduction of the travel time and the conventional service fare saved, 

net of variable and fixed operational costs upheld.     

Given a fixed amount to invest, the higher the demand, the higher the expected net 

benefit per capita. Consequently, higher levels of demand tend to lead to the 

anticipation of the optimal invest timings. The main source of uncertainty derives 

obviously from the level of future demand for the HSR service.  

We will consider that the demand for the new high speed service, tx , follows a 

geometric Brownian motion process:   

dwdt
x

dx

t

t σµ +=  (3.1) 

Similar assumptions may be found in Rose (1998), with the purpose of modelling  

highway traffic; in Salahaldin and Granger (2005), with the purpose of modelling the 

dynamics of a city’ population; and in Marathe and Ryan (2005) and Pereira et al. 

(2006) with the purpose of modelling airline demand. 

In equation (3.1) µ  and σ  represent the growth rate and the standard deviation of 

the demand for the HSR service. We assume that both parameters are constant in time. 

The Wiener process, tw , has zero mean and standard deviation dtσ . 

Under these circumstances, it is reasonable to expect that, in the future, the natural 

demand for HSR will reach a level capable of providing a rational reason to invest in 

such a project.   

In order to model such a situation we are going to assume that each user will face a 

cost for railway travel between two cities, ψ , whose global worth will be a function of 

the value of time for the user, η , and the travel fare, p . According to the literature, 

both these variables exhibit a relationship to the global demand for railway services 

(vide Owen e Phillips, 1987; Wardman, 1994; and Wardman 1997).  
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Considering the relationship between the value of travel time and the demand for 

faster railway services (Owen e Phillips, 1987; and Wardman, 1994), the following 

functional form will be used: 

βδβη x=  (3.2) 

 In this functional form, βδ  represents the elasticity between the value of travel time 

η  and the HSR demand x .  Consequently, β  is the scale parameter between demand, 

x , and the value of travel time, η , given by: 

 βδηβ −= x  (3.3) 

Concerning the relationship between the fare value and the demand for railway 

services, this will be given by the functional form (Owen e Phillips, 1987): 

αδα xp =  (3.4) 

The elasticity between the fare value, p , and the HSR demand, x , is represented by 

the parameter αδ . The scale parameter α , that relates demand and the fare value, p , is 

given by: 

αδα −= xp  (3.5) 

The demand may be inferred from the preferences of a risk neutral representative 

user, with a utility function cU = , in which c  represents the mean consumption of all 

users that constitute the overall demand. The budget constraint is given by mc =+ψ , 

in which ψ  represents the travel cost and m  the individual disposable income by unit 

of time. Analytically, we have:   

ψ−= mc  (3.6) 

Replacing the level of consumption in the utility function, will allow for the 

determination of the following indirect utility function, V , representative of the value 

that each user attributes to a railway trip:  

ψ−== mUV  (3.7) 

The relationship between demand tx  and value of travel time, i) in the period of 

time that precedes investment, 0η ; ii) during the period of effective investment, 1η ; and 
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iii) after the investment’s implementation, 2η , is represented, respectively, by 0β , 1β  

and 2β . Since the new rail service will save travel time and, in consequence, will 

reduce the value of travel time from 0η  to 2η , it will be reasonable to expect that from 

the pre-investment period to the operational phase 0β  will change to 2β  with 20 ββ > . 

The difference between 0β  and 2β  reflects the decrease in travel time.   

Meanwhile, for the moment, we will assume that the investment will take place 

during a single period of time. Thus, the relationship between demand and travel costs, 

during the construction period 1β  is assumed to be equal to 2β . 

Analytically, the cost of travelling in a conventional railway, 0ψ , and the cost of 

travelling in HSR, 2ψ , will be represented by the following equations, 

αβ δδ αβψ tt xx 000 +=  (3.8) 

βδβψ tx22 =  (3.9) 

For modelling purposes, the conventional railway travel cost, 0ψ , includes both the 

value of the travel time lost and the fare paid. In contrast, the HSR travel cost function 

here considered, 2ψ , is not affected by the value of the corresponding fare, 2p , because 

the current valuation framework assumes implicitly that each user will bear his part of 

the investment expenditure plus the corresponding operating costs per user. In other 

words, a socially acceptable HSR service fare is already implicitly considered in the 

valuation framework. Consequently, it does not make sense to duplicate it.  

The existing conventional railway service that charges a fare 0p , enables us to 

identify the relationship between HSR demand, tx , and the price of a substitute service 

(Owen and Phillips, 1987; and Wardman, 1997) given by equation (3.4). 

As long as the investment is not implemented, the indirect utility function will be 

given by: 

αβ δδ αβ xxmV 000 −−=  (3.10) 

After the investment is implemented, users will continue to face a (smaller) cost in 

terms of time spent. However, since the analysis performed here takes into 

consideration all costs and benefits induced by the project (including not only capital 
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investment expenditure, but also all fixed and variable operating costs), the new indirect 

utility function will be given by:   

xx
xmV ργϕωβ βδ −−−−= 22  (3.11) 

with γ  representing the capital investment expenditure, ρ  the discount rate, ω   the 

variable operating costs and ϕ  the fixed operating costs. Notice that 
x
ϕ  and 

x
ργ  

represent the fixed operating costs and the investment expenditure per unit of time, for 

each user that integrates the global demand for the HSR service. We assume implicitly 

that the outcomes of the investment will last for an unlimited time horizon.   

The purpose is to carry out the investment without changing the present utility 

function equilibrium. In order to achieve this outcome, it will be necessary to find the 

critical demand level for ∗x , above which it will be optimal to invest.  

Noting that, in these terms, the whole framework might be understood as an 

intergeneration welfare problem, as previously stated, we may use the objective 

function of Ramsey-Koopmans adopted by Salahaldin and Granger (2005). 

Analytically, we have: 

( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ + ∫∫

∞ −−

∗ τ

ρτ ρ dtexVxdtexVxE t
t

t
tx

x
20 00

sup  (3.12) 

Where,   

 τ = Moment of time in which the optimal value is achieved by the first 
time; 

 ( )xV0  = Indirect utility function per unit of time before investment 
implementation, given by the equation (3.10); 

 ( )xV2
= Indirect utility function per unit of time after investment 

implementation, given by the equation (3.11); 

 tx = Demand throughout time, given by the equation (3.1); and 

 0x = Estimated demand at present. 
 

Aggregating the utility of all users that constitute the potential demand before and 

after the investment, and replacing 0V  and 2V  for the corresponding values in (3.10) and 

(3.11), we get: 
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[ ] [ ] ⎟
⎠
⎞⎜

⎝
⎛ −−−−+−− ∫∫

∞ −−

∗ τ

θρτ θθρ ργϕωβαβ βαβ dtxxmxedtxxmxeE ttt
t

ttt
t

x
x

20 000
sup  

 (3.13) 

with ββ δθ += 1  and αα δθ +=1 . 

Applying the Markov propriety as in Oksendal (2003), we will get:  

[ ] [ ] ⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ −−=⎟

⎠
⎞⎜

⎝
⎛ −− ∫∫

∞ −−∞ −
∗

0 0000 dtxxmxeEeEdtxxmxeE ttt
t

xxttt
t

x
αβαβ θθρρτ

τ

θθρ αβαβ

 

 (3.14) 

in the second element of (3.13), we obtain 

[ ]
[ ] ⎟

⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ −−−−=

=⎟
⎠
⎞⎜

⎝
⎛ −−−−

∫

∫
∞ −−

∞ −

∗
0 2

2

0

0

dtxxmxeEeE

dtxxmxeE

ttt
t

xx

ttt
t

x

ργϕωβ

ργϕωβ

ρρτ

τ

θρ β

 (3.15) 

Replacing the second element of (3.13) by the RHS of (3.15) and additionally 

adding and subtracting the RHS of (3.14), results in the following objective function,  

[ ]
( )[ ]

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ −−−+−+

+⎟
⎠
⎞⎜

⎝
⎛ −−

∫

∫
∞ −−

∞ −

∗

∗

0 020

0 00

0

0

sup
dtxxxeEeE

dtxxmxeE

ttt
t

xx

ttt
t

x

x ργϕωαββ

αβ

αβ

αβ

θθρρτ

θθρ

 

 (3.16) 

Since the first component does not depend on ∗x , the problem may be rewritten, in 

the following terms: 

( )[ ] ⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ −−−+−∫

∞ −−
∗

∗ 0 0200
sup dtxxxeEeE ttt

t
xx

x
ργϕωαββ αβ θθρρτ  (3.17) 

This objective function maximizes the net gain provided by an investment in a HSR 

link, in terms of travel costs for the corresponding users.    

Simplifying, we have: 



 

11 

( )[ ]
( ) ( ) ( ) ( )[ ]∫

∫
∞ ∗∗∗−

∞ −

−−−+−=

=⎟
⎠
⎞⎜

⎝
⎛ −−−+−∗

0 020

0 020

dtxExExEe

dtxxxeE

txtxtx
t

ttt
t

x

ργϕωαββ

ργϕωαββ

αβ

αβ

θθρ

θθρ

 (3.18) 

We know that tx  follows a geometric Brownian motion described by (3.1). Thus,  

( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −+

∗∗ =
tt

tx

xx

exxE
21

2
1 σθθµθθθ  (3.19) 

The existence of a future optimal timing to invest requires the need to respect the 

following condition ( ) 01
2
1 2 >−−− xx σθθθµρ . This condition imposes the demand 

growth rate to be lower than discount rate, thus providing a rational economic 

interpretation to the underlying mathematical developments. Simplifying again and 

under this new condition, we have:   

( ) ( ) ( ) ( )[ ]
( )( ) ( ) ( ) γ

ρ
ϕ

µρ
ω

σθσθθµρ
α

σθσθθµρ
ββ

ργϕωαββ

ααα

θ

βββ

θ

θθρ

ωβ

αβ

−−
−

−
+−−

+
+−−

−
=

=−−−+−

∗∗∗

∞ ∗∗∗−∫

xxxxxxx

txtxtx
t

xxx

dtxExExEe

222
0

222
20

0 020

22
2

22
2  

 (3.20) 

Rewriting (3.17) taking into consideration the result (3.20), we achieve: 

( )( ) ( )

( )
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−
−

−

−
+−−

+
+−−

−

∗

∗∗

−

∗

γ
ρ
ϕ

µρ
ω

σθσθθµρ
α

σθσθθµρ
ββ

ααα

θ

βββ

θ

ρτ

αβ

x

xxxxxx
x

x x

xx

eE
222

0
222

20

22
2

22
2

sup
0

 

 (3.21) 

With,  

( )
222

20

22
2

xxx

A
σθσθθµρ

ββ

βββ +−−
−

=  (3.22) 

222
0

22
2

xxx

B
σθσθθµρ

α

ααα +−−
=  (3.23) 

ρ
ϕ

−=C  (3.24) 
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γ−=D  (3.25) 

and 

x

F
µρ

ω
−

−=  (3.26) 

function (3.21) becomes, 

( ) ( ) ( )( )[ ]DCxFxBxAeEx
x

++++ ∗∗∗−

∗

αβ θθρτ
0

sup  (3.27) 

Given the current demand level, the value of the project, v , is determined through 

the maximization of the function: 

( ) ( ) ( ) ( )( )[ ]DCxFxBxAeExtv x ++++= ∗∗∗− αβ θθρτ
000 ,  (3.28) 

That satisfies the differential equation, 

0
2
1

0
02

0

2
2
0

2 =−
∂
∂

+
∂
∂ v

x
vx

x
vx xx ρµσ , for ∗≠ xx  (3.29) 

Resulting from the simplification of the following partial differential equation: 

0
2
1

0
02

0

2
2
0

2 =
∂
∂

+
∂
∂

+
∂
∂

t
v

x
vx

x
vx xx µσ , for ∗≠ xx  (3.30) 

Equation (3.29) satisfies the following conditions: 

1. Initial condition: 

( ) 00 =v  (3.31) 

2. Value matching condition: 

( ) DCxFxBxAxtv ++++= 00000 , αβ θθ , with ∗= xx0  (3.32) 

and, 

3. Smooth-pasting condition: 

( ) FxBxAxtv ++=′ −− 1
0

1
000 , ωβ θ

ω
θ

β θθ ,  with ∗= xx0  (3.33) 

To solve (3.29) we substitute ( ) ( )000
0, xextv t Φ= −ρ , where Φ  represents the 

projects’ value function at any moment in time. Therefore, (3.29) becomes, 
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( ) ( ) ( ) 0
2
1

0000
2
0

2 =Φ−Φ′+Φ ′′ xxxxx xx ρµσ , for ∗≠ xx  (3.34) 

With the following conditions:  

1. Initial condition:  

( ) 00 =Φ  (3.35) 

2. Value matching condition: 

( ) DCFxBxxAx ++++=Φ 0000
αβ θθ , with *

0 xx =  (3.36) 

and, 

3. Smooth-pasting condition 

( ) FBxxAx ++=Φ′ −− 1
0

1
00

αβ θ
α

θ
β θθ , with *

0 xx =  (3.37) 

Since equation (3.34) is a Cauchy-Euler second order homogeneous differential 

equation, the solution may be written as, 

( ) 21
02010
rr xaxax +=Φ  (3.38) 

where 1r  and 2r  are the two roots of the quadratic equation: 

0)1(
2
1

0
2 =−+− ρµσ rxrr xx  (3.39) 

given by, 

2

2
2

22

1

2
2
1

2
1

x

xxxxx

r
σ

ρσσµµσ +⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −

=  
(3.40) 

and 

2

2
2

22

2

2
2
1

2
1

x

xxxxx

r
σ

ρσσµµσ +⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛ −

=  
(3.41) 

As 2
02
rxa  tends to the infinity when 0x  tends to zero, according to the initial 

condition (3.35) and  ( )0xΦ  needs to be limited when 00 →x , 02 =a . Thus, equation 

(3.38) becomes, 
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( ) 1
010
rxax =Φ  (3.42) 

Using the condition ( ) DCxFxBxAx ++++=Φ ∗∗∗∗ αβ θθ  that results from the 

substitution of 0x  by ∗x  in equation (3.36), we find the coefficient 

11111 1
1

rrrrr xDxCxFxBxAa −∗−∗−∗−∗−∗ ++++= αβ θθ , concluding that the solution of (3.29) 

is, 

( ) 1111110
0

1
00 , rrrrrrt xxDxCxFxBxAextv ⎥⎦

⎤
⎢⎣
⎡ ++++= −∗−∗−∗−∗−∗− αβ θθρ  (3.43) 

For a given value of 0x  in 00 =t , the value of ∗x  that maximizes ( )0,0 xv  is 

implicitly given by the equation: 

( ) ( ) ( ) 01 111
1*

1
*

1
* 11111 =−−−+−+− −−−−− rDxrCxrFxrBxrAx rrrrr

α
θ

β
θ θθ ωβ  (3.44) 

The critical value ∗x  can only be found through numerical solution of (3.44), except 

if two assumptions are made. The first assumption related to equality between the HSR 

demand/value of travel time elasticity and the HSR demand/conventional service fare 

cross elasticity, conducting to θθθ αβ == . The second assumption comes from the 

possibility of neglecting the operational variable costs, 0=F , considering the 

operational characteristics of the project. Taking these two conditions into account, ∗x  

has the following closed form solution:   

( )
( )( )

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−+

+−

=∗

θ
θ1

1ln
exp rBA

DCr

x  (3.45) 

The critical value ∗x  represents the level of demand that, when reached, justifies 

(turns optimal) an immediate implementation of the project.  

This solution preserves utility equilibrium between HSR and conventional service 

for railway users, making the optimal solution independent of the original income m  

and the initial level of demand for the HSR service 0x . The fact that the whole 

framework is aimed at achieving a better level of global economic welfare, based on the 

equilibrium between the utility of two similar services, turns this model especially 

adequate to analyse governmental scale investment decisions.    
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3.2. Optimal Timing to Invest – Investment over Several Periods  

Large projects normally take time to implement. Thus, it is crucial to include this 

feature in the ROA’s model, allowing the time-to-build effect to be incorporated. 

Relaxing the assumption previously made at this level and allowing 21 ββ ≠ , we 

create a transition period that corresponds to the time needed to build the HSR link.  

A new HSR link can only start to operate after all the inherent engineering and 

development work is finished. Consequently, during this building period n , the cost of 

travelling is still given by 0ψ , so 1β  remains equal to 0β  ( 01 ββ = ). When the HSR 

starts to operate, the cost of travelling will change to 2ψ , with 2β  incorporating the 

decrease in travel time. 

The new Ramsey-Koopmans objective function becomes, 

( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ + ∫∫

∞ −
+

−
+

−
+

−
+

∗ τ

ρρτ ρρ dtexVexdtexVexE t
nt

n
nt

t
nt

n
ntx

x
20 00

sup  (3.46) 

Where, now:   

 ( )ntxV +0

 

= Indirect utility function by unit of time before the beginning of the 
HSR operation; 

 ( )ntxV +2
= Indirect utility function by unit of time after the beginning of the 

HSR operation; 

 n = Time-to-build (construction) of the investment;  

With, 

( ) αβ δδ αβ ntntntnt xxmxV ++++ −−= 000  (3.47) 

and 

( )
nt

n

nt
ntntnt x

e
x

xmxV
++

+++ −−−−=
ρ

δ ργϕωβ β
22  (3.48) 

 Considering the global utility of all the users that constitute the demand before and 

after the HSR link starts to operate, and substituting 0V  and 2V  from (3.47) and (3.48) 

into (3.46), we obtain: 

( )[ ]
( )[ ] ⎟

⎟
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⎠

⎞

⎜
⎜
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⎝

⎛
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∫
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n
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n
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x
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2

0 00

0
sup  (3.49) 
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with ββ δθ += 1  and αα δθ += 1 . 

Using again the Markov propriety from Oksendal (2003), with a simplification 

identical to that performed in the previous section, it is possible to obtain the following 

objective function, 

( )[ ]
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n
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t
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n
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ρρθρθρρτ

ρθθρ

αβ
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 (3.50) 

The first element does not depend on ∗x , so (3.50) may be rewritten in the 

following terms: 

( )[ ]
⎥
⎥
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⎢
⎢
⎣

⎡
⎥
⎦
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∗ 0 0200
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 (3.51) 

This objective function, similar to equation (3.17), maximizes the net utility gain, 

provided by an investment in a HSR link, in terms of travel costs for the corresponding 

users. In contrast to (3.17), this new formulation considers that after the decision to 

implement the project a n  building period will need to take place, before the HSR link 

may start to operate. 

Simplifying, we have, 

( )[ ]
( ) ( ) ( ) ( )[ ]∫

∫
∞ −−

+
∗−

+
∗−

+
∗−

∞ −−
+

−
+

−
+

−

−−−+−=

=⎟
⎠
⎞⎜

⎝
⎛ −−−+−∗

0 020

0 020

dteexEexEexEe

dteexexexeE

nn
ntx

n
ntx

n
ntx

t

nn
nt

n
nt

n
nt

t
x

ργϕωαββ

ργϕωαββ

ρρρθρθρ
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 (3.52) 

Knowing that tx  follows a geometric Brownian and that ( )θ
tx xE*  is given by (3.19), 

then,  

( ) ( ) ( ) ( )nt

ntx

xx

exxE
+⎟

⎠
⎞

⎜
⎝
⎛ −+

∗
+

∗ =
21

2
1 σθθµθθθ  (3.53) 

Simplifying again and under the condition that ( ) 01
2
1 2 >−−− xx σθθθµρ , we have, 
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 (3.54) 

Rewriting (3.51) considering these simplifications, we get: 
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 (3.55) 

Now with,  
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 (3.56) 
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 (3.57) 

ρ
ϕ ρn

tc
eC
−

−=  (3.58) 

( )

x

n

tc

xeF
µρ

ω ρµ

−
−=

−

 (3.59) 

and D  equal to (3.25). The subscript tc  used above refers to solutions for A , B , C  

and F  that apply to situations in which a time-to-build effect is considered.   

The function that has to be maximized is similar to (3.28), with the inclusion of the 

above-mentioned difference in terms of notation: 

( ) ( ) ( ) ( )( )[ ]DCxFxBxAeExtv tctctctcx ++++= ∗∗∗− αβ θθρτ
000 ,  (3.60) 
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It is solved in the same way, since it satisfies the same differential equation (3.29) 

and also boundary conditions (3.31), (3.32) and (3.33).  

For a given value of 0x  in 0=t , the value of *x  that maximizes ( )0,0 xv  is given by 

the numerical solution of the equation:  

( ) ( ) ( ) 01 111
1*

1
*

1
* 11111 =−−−+−+− −−−−− rDxrxCrxFrxBrxA rr

tc
r

tc
r

tc
r

tc α
θ

β
θ θθ αβ  

 (3.61) 

with 1r  given by (3.40). 

When θθθ αβ ==  and 0=tcF , *x  is given by the following closed form solution 

similar to (3.45): 

( )
( )( )
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1ln
exp rBA

DCr

x tctc

tc

 (3.62) 

In this case, the critical value ∗x  represents the level of demand that, when reached, 

justifies (turns optimal), an immediate implementation of a project whose HSR link will 

start to operate  n  periods afterwards. 

Using the traditional capital budgeting analysis, based on the concept of net present 

value (NPV), the rationale for taking the decision would be structurally similar, except 

that the decision would not be taken in an uncertain framework: the capital investment 

should only take place when the reduction in the cost of travelling provided by the HSR 

link and measured by the difference between 0ψ  and 2ψ  was enough to cover for the 

investment capital expenditure plus the operating costs. Analytically, for ωβ θθθ == , 

0=tcF  and any 0≥n , we have, 

n
ntntnt exxx ρθθθ ργϕβαβ ++>+ +++ 200  (3.63) 

Considering n
tnt exx θµθθ ≡+ , it would only become optimal to invest if the demand 

level reached, 

( )
θ

θµ

ρ

αββ
ργϕ
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020

ˆ ⎥
⎦

⎤
⎢
⎣

⎡
−−

+
=> n

n

t e
exx  (3.64) 
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with x̂  representing the traditional capital budgeting analysis critical demand level, that 

once reached would justify the investment.  

The comparison between the optimal rule of investment given by ROA (3.45) and 

by traditional capital budgeting analysis becomes evident if in an investment 

implemented in one single period of time, we consider 1=θ  as well as inexistence of 

fixed and variable costs ( 0==ωϕ ). 

In this case, equations (3.62) and (3.64) would become, 

( )( )tctc BAr
Drx
+−

−
=∗

11

1  (3.65) 

( )020

ˆ
αββ

ργ
+−

=x  (3.66) 

Equations (3.65) and (3.66) show that xx ˆ>∗ . Thus, when ∗<< xxx tˆ  a decision to 

implement based on a traditional capital budgeting analysis framework results in a value 

reduction for the whole project. In this situation, the value of the projects will be smaller 

than the sum of the capital expenditure and the value of the (sacrificed) option to defer. 

The ability to delay has value because it allows for uncertainty resolution.  

 

3.3. Valuation of an HSR Investment Using ROA Framework 

Considering the investment value function given by the (3.43), for a given level of 

0x , with 00 =t , the value of an investment opportunity when *
0 xx <  is given by: 

( ) [ ]DCxFxBxA
x
xxv tctctctc

r

++++⎟
⎠
⎞

⎜
⎝
⎛= ∗∗∗ αβ θθ

1

*
0

0  (3.67) 

while for *
0 xx ≥  the value of the investment opportunity is given by: 

( ) 111111
0

1
0

rrr
tc

r
tc

r
tc

r
tc xxDxCxFxBxAxv ⎥⎦

⎤
⎢⎣
⎡ ++++= −−−−− αβ θθ  (3.68) 

Assuming αβ θθθ ==  and 0=tcF , we may replace the critical value, *x , given by 

(3.45) in the second part of the RHS of equation (3.67) and simplifying, the solution of 

the project’s value function may be rewritten in the following terms: 
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 (3.69) 

with tcC , D , 1r , tcA  and tcB  given by (3.58), (3.25), (3.40), (3.56) and (3.57). 

In accordance to the literature (vide McDonald and Siegel, 1986; and Dixit and 

Pindyck, 1994), from the moment τ , in which the optimal number of passengers is 

reached, *x , the value of the option to defer is zero, since it is always better to 

implement the investment and receive in exchange the NPV - given by 

DCxFxBxA tctctctc ++++ 000
αβ θθ  - of the expected decrease in the cost of travelling.   

As long as the optimal timing to implement the investment is not reached, τ<t , 

there is always an inherent value of waiting for new information about demand. In this 

case, the value of the option to defer is given by the difference between ( )0xv  and the 

NPV calculated using the expected demand in that moment.  

  In addition for allowing the inclusion of the impacts produced by i) the building 

period, ii) the fixed operating costs and iii) the variable operating costs, in the global 

value of the project, these developments take into consideration the elasticity between 

the value of travel time and demand. As the model is developed in terms of differential 

utility, factors other than those related to the cost of travelling (e.g., income), are 

assumed constant and do not influence the final outcome.   

Whenever the elasticity between demand and value of travel time is null  

( 10 =⇒= ββ θδ ), we are implicitly assuming that, both, the conventional railway 

service and HSR service will not suffer real changes in terms value of travel time. Real 

changes in both services’ fares imply positive levels of elasticity. Similarly, the 

conventional railway service fare remains constant in real terms whenever 

10 =⇒= αα θδ .  

If 1>βθ , increases in the value of travel time will be directly related to the 

passengers’ growth rate.  This type of demand behaviour for a faster rail transportation 

related to the value of travel time, besides being economically rational, is supported by 

the work of Owen and Phillips (1987) and Wardman (1994). In this sense it is 
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acceptable that increases in the demand for the HSR service are, at least partially due to 

raises by the users in the value of travel time.  

When 1>αθ  the cross elasticity between conventional railway fare and HSR 

demand is positive. Supported by the works of Owen and Phillips (1987) and Wardman 

(1997), increases in the fare of substitute service justify increases in the railway service 

demand. 

The global value of a project determined by this ROA framework includes the 

economic worth of the ability to wait for uncertainty resolution, provided by the option 

to defer. When the ability to delay does not exist, as in the traditional capital budgeting 

decision analysis, this component is not taken in consideration and the global result will 

underestimate the corresponding true value. The value embedded in the option to 

postpone the investment derives from the incorporation of the value inherent in the 

“good tail” of the uncertainty regarding the demand by the HSR service. Turning 

parallel, the “bad tail” of demand uncertainty is limited by the option to carry on 

deferring (not investing), if the situation does not look attractive enough (McDonald and 

Siegel, 1986 and Dixit and Pindyck, 1994). 

 
4. Numerical Example    

Table 1. Base-case parameters for the project  

Parameter Value 
0x  – HSR demand at actual moment  3 M  
γ  – Present value of the investment expenditures 5,000 M€ 

0η  – Value of travel time in conventional railway service 30 € 

2η  – Value of travel time in HSR service 10 € 

0p  – Conventional railway service fare 25 € 
ω  – Variable operating costs 1 € 
ϕ  – Fixed operating costs 90 M€ 
ρ  – Discount rate 0.09 

xµ  – Expected growth rate of x  0.035 

xσ  – Standard deviation of x  0.20 
n  – Number of years for the construction 5 
βδ  – Elasticity between x  and η  0.60 

αδ  – Cross elasticity between x  and 0p  0.40 
Note:  M = Millions  
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We are going to assume a project for the construction of a HSR link connecting two 

cities. The basic parameters are in Table 1. The conventional railway service operates in 

the same link. The new HSR service will reduce the travel time to ⅓ comparatively to 

the conventional railway service.  

Table 2 presents the HSR line investment valuation results for the base-case 

parameters. 

Table 2. Project valuation results   

Output Value 
∗x  – Critical demand for HSR service (n.º passengers) 10.777 M 
( )xv  – Investment Opportunity Value 3,743.3 M€ 

npv  – Net Present Value 254.2 M€ 
vod  – Value of the Option do Defer 3,489.1 M€ 
 

Based on the results obtained, the construction of the HSR line should only start 

when the demand reaches 10,777 millions of passengers. Although the project registers 

a slightly positive NPV, shouldn’t be implemented at the current time, concerning the 

uncertainty regarding the number of passengers of the new service. Maintaining “alive” 

this investment’s opportunity has a value of 3,743 millions of euros, of which 93,21% 

results from the value of the option to defer the investment.  

Figure 1. Investment’s opportunity value, NPV and value of the option to defer, for 
the base case 
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Figure 1 represents the evolution of the investment’s opportunity value, the NPV 

and the option to defer according to the demand tx  increase throughout time. As we 

may observe, for levels of demand higher than the critical demand level of 10,777 

millions passengers, the option to defer the implementation no longer has value. Thus, 
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from this point on, the decision to immediately implement the project is the one which 

maximizes the value for its owners.     

Figure 2 to Figure 7 show the sensibility of the valuation indicators of the project 

regarding the variation of some parameters. Thus, we may notice that critical demand 

level  ∗x  varies inversely with the demand growth rate xµ  (Figure 2) and with the 

reduction of the value of travel time given by 
0

20

η
ηη −  which the HSR line enables 

(Figure 7). For higher demand growth rates xµ  and with major reductions in the value 

of travel time, the present value of the benefits resulting from the project increases, 

justifying anticipating its implementation.   

 

Figure 2. The impact of the growth rate 
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Figure 3. The impact of the discount rate 
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Figure 4. The impact of the investment expenditures 
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Figure 5. The impact of the volatility of the number of passengers 
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Figure 6. The impact of the time-to-build 
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The other parameters analyzed assume a direct relationship with the critical level of 

demand ∗x . Larger discount rates  (Figure 3), larger investment’s expenditures (Figure 

4), larger volatility in the number of passengers (Figure 5) or more construction time 

needed (Figure 6) instigate significant postponements in the projects’ implementation.  
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Figure 7. The impact of the reduction in the value of travel time 
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In presence of variations in any of the analyzed parameters, the investment’s 

opportunity value and the NPV always register the same trend, for each one of the 

parameters, although with different drifts. It is worth noting the behaviour of NPV 

regarding increments in volatility. Figure 5 shows that NPV increases with uncertainty 

increase. This result originates from the fact that the valuation model incorporates the 

elasticity between HSR demand and the value of travel time and the cross elasticity 

between the HSR demand and the conventional service fare. This specificity of the 

developed model results in a value of the option to defer that slightly diminishes with 

the increase of uncertainty. These findings can also be seen in Figure 8. It is always 

assumed that the discount rate remains unchanged as the volatility of the project 

changes.  

Figure 8. The impact of both the volatility of the number of passengers and the 
discount rate 
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In case a larger period of time to implement the project is needed, the increase in 

uncertainty throughout time and the delay on the benefits from the investment’s 
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operation instigate a reduction in the investment’s opportunity value and in the NPV 

(Figure 6).  

Figure 9 gives the joint impact of both the discount rate ρ  and the investment 

expenditures γ  in the critical demand value ∗x  and in the value of the option to defer. 

Both valuation outputs shows a direct relationship with these two parameters, turning 

the option to defer more valuable as this project parameters value increase. As showed 

in Figure 3 and Figure 4 this is due to a deeper decrease in NPV than the one registered 

in the investment’s opportunity value. 

Figure 9. The impact of both the investment expenditures and the discount rate 
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5. Conclusion 

 The present work develops a model aimed at finding the optimal timing to 

implement a HSR investment, in an uncertain environment. We have introduced several 

adjustments to the original valuation model of the option to defer (McDonald and 

Siegel, 1986) and to the optimal stopping model of Salahaldin and Granger (2005), 

given the need to design a model applicable to an HSR investment in an environment of 

stochastic demand. As far has we are aware, the development of closed form solution 

ROA’s models to value railway investments was never done before.    

The existence of a conventional railway service enables the analysis of the 

investment in HSR to be performed in an incremental basis, measured in terms of the 

corresponding utility functions. The indifference in the demand utility between HSR 

and conventional railway services makes possible for the problem to be equated in 

terms of finding a critical demand level that justifies the implementation of the 

investment.  
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The presented developments, regarding the optimal timing to invest and the 

investment’s opportunity value, have the advantage of offering a clear way to evaluate 

the utility of the HSR investment in each moment in time, for the set of potential users - 

the society in general. The numerical example and simulation of some important input 

parameters demonstrates the consistency of the model concerning the behaviour of the 

valuation outputs.   

In future research, it should be possible to enrich the model in order to include more 

uncertainty sources – like the fare price and the investment expenditure. Additionally, 

we expect to perform an empirical application1 capable of providing the feedback 

necessary to guide additional improvements in the structure of the modelling 

framework.  
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