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Optimal IPO Timing in an Exchange Economy

Abstract

We model the IPO decision of an entrepreneur in an exchange economy. The entrepreneur holds a
Lucas Tree, and when the IPO occurs, the market converges to a Two Trees economy built on Cochrane,
Longstaff, and Santa-Clara (2008). We solve the optimal timing problem and study the diversification
effects over the firm’s value and entrepreneur’s consumption. The model predicts that IPOs should be
correlated with the firm’s size and explains why firms with lower betas are expected to IPO first.
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1 Introduction

Market conditions have been considered, by most empirical studies, as one of the most important

factors that could trigger an Initial Public Offerings (IPO) decision by an unlisted firm. Empirical

evidence, such as the so called ”IPO Waves”, suggests that entrepreneurs wait for certain conditions

in the market to IPO their companies (e.g. Ritter 1984 and Pastor and Veronesi 2005). IPO waves

are also characterized by the presence of firms from similar sectors overweighting particular indus-

tries in the market portfolio. IPO decisions should not only be determined by market conditions,

but also by the characteristics shared within firms from similar industries.

IPO studies have mostly been focused in developed and mature economies. These economies

are generally well balanced, and comparatively big in relation to a newly listed firm implying that

the introduction of the new firm has no impact in its industrial composition. However, this is not

true for developing economies, where markets are immature and the industrial composition of the

economy is not well represented in the market portfolio. In these economies, large firms or sectors

that IPO may deeply impact the composition and characteristics of the market portfolio. The IPO

decision is inevitably influenced by its effect on the overall economy.

Benninga, Helmantel, and Sarig (2005) summarizes several motives that might encourage an

entrepreneur to IPO: financial support for investment opportunities, a possible increase in the

company’s valuation due to factors such as external monitoring and liquidity of shares (see also

Holmstrom and Tirole 1993), and differences in the way owners and buyers price the company

(undiversified versus diversified entrepreneurs respectively). Nevertheless, these factors have some

problems in determining a generalized theory of initial public offerings. Financial support can be ob-

tained through private equity and bank loans, and it has been documented that investments in firms

actually decline after an IPO (e.g. Pagano, Panetta, and Zingales (1998) and Benninga, Helmantel,

and Sarig (2005)). Factors such as external monitoring may increase firm’s value, but as shown in

Datta, Iskandar-Datta, and Patel (1999), some monitoring costs can be lowered using bank debt

(which reduces public debt borrowing costs). Differences in valuation due to entrepreneurs diversi-

fication may be diminished by credibility issues due to information asymmetries(Courteau (1995)).

Many authors have argued that diversification may play a central role in IPOs. Bodnaruk,

Kandel, Massa, and Simonov (2008) finds empirical evidence that relates portfolio diversification

with IPOs: less diversified shareholders are more eager to take their company public. This effect

is more important when individuals are more risk-averse. Courteau (1995) argues that after the

IPO the owner can diversify some firm-specific risk (non systematic risk) and get a better balanced

investment portfolio. Astudillo, Braun, and Castaneda (2008) study the empirical process in which

economies complete. In incomplete markets, few industries are well represented, and low beta

sectors are overweighted in the market composition. This means that the first companies expected

to IPO have lower betas, which are probably the ones with higher non-systematic risk.
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Benninga, Helmantel, and Sarig (2005) clearly states that IPOs are not single-shot opportu-

nities: entrepreneurs have the ability to time their IPOs. If we believe that IPO decisions are

irreversible (an entrepreneur is not planning to reacquire the company, at least not soon enough

to consider it in the decision), real option analysis seems like a natural candidate to model this

kind of problems. Several authors have already attempted alternative real option approaches with

different conclusions. Pastor and Veronesi (2005) and Pastor, Taylor, and Veronesi (2009) consider

the IPO edcision as an option, analyzing the trade-off between the benefits of waiting for a better

discount rate and the abnormal returns from new technologies. Draho (2000) elaborates a real

option model where the firm waits for high prices in listed companies from the same industry.

Benninga, Helmantel, and Sarig (2005) uses a binomial option-pricing model in which diversified

investors are willing to pay higher prices for the risky cash flows. The counterpart of the IPO loses

private benefits of control.

All of these are partial equilibrium models where the entrepreneur considers the trade-off be-

tween waiting for better conditions in the market to IPO versus costs associated to the action.

The IPO decision is influenced by the market, but the market stays unaffected by the new listed

company. These models may be applied to economies comparatively big and complete, but not for

developing economies, in which an IPO may change market condition, its industrial compositions,

diversification scenarios, risks and expected returns, within others. To consider effects like this one

in an IPO decision, a general equilibrium framework must be used. A new company or group of

companies going public may affect the market composition and the entrepreneur knows this before

making his firm publicly listed.

We propose a simple model in an exchange economy, in which the benefits from an IPO comes

purely from diversification, eliminating any other incentive that might trigger an IPO (as the ones

mentioned above). The company is represented by an asset that pays a dividend stream that has

some firm-specific characteristics. Why modeling the IPO decision in an exchange economy? As

is well known, an exchange economy has as a main advantage its simplicity. We can obtain nice

and intuitive solutions without caring on how goods and services are produced. This helps us to

concentrate exclusively in the diversification benefits perceived by the entrepreneur.

We assume that a transaction cost is payed by the entrepreneur to IPO his firm. This cost is a

constant fraction of the overall economy. This assumption is based on empirical facts documented

by Ritter (1987) who documents the existence of fixed and variable costs, that are a constant

fraction of the economy and IPO gross proceeds respectively.1

In our model, the IPO decision depends on the dividend of the unlisted firm relative to the

aggregate consumption in the economy, i.e. the dividend ratio. Before the IPO, the entrepreneur

perceives a higher price-dividend ratio because his firm has an embedded option related to the IPO

decision, i.e. the IPO timing option. At the IPO time the option value is zero. The diversification

1Ritter (1987) estimates, using information from IPOs in the U.S. in 1977-82, that direct costs of going public
have a fixed part (250.000 $USD) plus a variable component (7% of the gross proceeds.)
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effect is measured through the entrepreneur’s consumption stream. The dividend ratio required by

the entrepreneur to IPO his firm is lower when the potential benefits from diversification effect are

higher. In line with recent empirical findings, our model predicts that firms with lower expected

betas at the IPO time are expected to IPO first. Our model predicts that IPOs from the same

industry (similar dividend streams) should be positively correlated with the company’s size. We

also allow for possible discontinuities in the dividend streams possibly due to economic disasters or

technological changes.

Our paper is related to a recent literature that studies the asset pricing implications in exchange

economies. Cochrane, Longstaff, and Santa-Clara (2008) builds on Lucas (1978) and study the

effect of having a second Lucas trees in the economy. Martin (2009) generalizes the utility function,

dividend processes, and number of trees in the economy (a Lucas orchard). Other asset-pricing

studies that consider multiple trees are Longstaff (2009), Parlour, Stanton, and Walden (2009a)

and Parlour, Stanton, and Walden (2009b), among others.

This paper is structured as follows. Section 2 develops the framework in which the model is

constructed, and solves the optimal control problem associated with the IPO decision. In Section 3,

we analyze some results derived from the model, studying sensibility of optimal states to parameters,

and after versus before IPO scenarios. Finally, Section 4 summarizes and concludes.

2 The Model

This section develops the model and its assumptions. The section is structured as follows. First, we

define the assets and agents that interact in the economy. Then, we present the decision that the

entrepreneur faces and set the optimal control optimization problem, which solution is summarized

in Proposition 1

2.1 Basic assumptions

Let Zt be a 2-dimensional brownian motion defined in the filtered probability space

(Ω,FZ , (FZt )t,P). Let N be an l-dimensional Poisson random measure defined in (Ω,FN , (FNt )t,P).

We define the general filtered probability space as (Ω,F , (Ft)t,P)=
(
Ω,FZ ⊗FN , (FZ ⊗FNt )t,P

)
.

Suppose an exchange economy with two assets, each of them represented by a Lucas trees with

positive dividends following Lévy jump diffusion processes. One tree, P1, represents a company

that is going public at some time in the future, while the other one, P2, corresponds to the tradable

market before the IPO of P1. The assets pay dividend streams D1t and D2t, respectively. We model

the dividends as Dit = eyit , where yt = (y1t, y2t)
> is defined by the process

yt =y0 + µt+ σZt +

∫
R
g(z)N(dt, dz) (1)
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Here g(z) is an 2× l matrix function, µ is a 2-dimensional constant and σ an 2× 2 matrix. Using

Ito’s differential formula for jump diffusion we can write the dividend processes as

dDit

Dit
= µDidt+ σidZt +

l∑
k=1

∫
R

(egik(z) − 1)N (k)(dt, dzk) (2)

where µDi =
[
µi + 1

2σiσ
>
i

]
, with σi being the ith row of σ.

We define the dividend ratio s : Ω× R→ [0, 1] as the contribution of the company’s dividends

to the aggregate consumption, i.e. st = D1t
D1t+D2t

. In some cases, it will be easier to work with a

monotonic transformation of st given by ut = log
(
1−st
st

)
.

There are two representative agents in the economy. Agent 1 is the entrepreneur that initially

owns the unlisted firm, P1, and agent 2 represents the investors that holds the market portfolio P2.

Each of the agents has a constant relative risk aversion (CRRA) utility function of the form

Ut(C) = Et
[∫ ∞

t
e−βsui(Cs) ds

]
(3)

with

u(Ct) =
C1−γ
t − 1

1− γ
(4)

2.2 The IPO decision

We now describe the conditions the entrepreneur faces when making the decision about when to

IPO his company. Let (Cit)t be the process of consumption of the agents i = (1, 2) and τ be the

optimal time chosen by the entrepreneur to IPO his firm. Before the IPO the economy is segmented

and the agents can only consume the dividend payoffs of their respective assets. The entrepreneur

has the option to decide when to make his company public. We must first determine conditions

over entrepreneur’s wealth at τ .

We assume that the entrepreneur faces transaction costs CT at the IPO time. These costs

include any costs perceived by the entrepreneur, e.g. administrative costs, losing private control

benefits Benninga, Helmantel, and Sarig (2005), legal costs, etc. His interchangeable wealth is

given by the price the market is willing to pay for P1 minus the cost CT . We assume that CT is

proportional to the economy’s overall wealth, i.e. CT = α(P1+P2). This simple assumption is based

in empirical facts documented in Ritter (1987). Fixed costs can be assumed as a fraction of overall

wealth, so transaction costs are function of P1 and P2 (homogeneous of degree 1). We can easily

extend the model to consider a more general transaction cost structure (i.e. CT = α1P1 + α2P2

with α1 6= α2), but we prefer to keep the model simple.
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Let (Wit)t be agent’s i wealth process. The entrepreneur wealth at the IPO time τ is:

W1τ = P1τ − α(P1τ + P2τ ) (5)

At τ , the asset is incorporated to the market portfolio. Once the IPO is made, the market com-

pletes and the economy prices the stocks as in Cochrane, Longstaff, and Santa-Clara (2008) and

Martin (2009).2 At the IPO time both agents rebalance their positions and end up holding the new

market portfolio.

After some math, we obtain the following relation for the entrepreneur’s consumption at τ :

C1τ = ωτ (D1τ +D2τ ) (6)

where

ωτ =
P1τ − αWτ

Wτ
(7)

Here ωτ represents the fraction of aggregate consumption consumed by the entrepreneur at τ and

Wt ≡W1t+W2t is the aggregate wealth of the economy. Equations (B5) and (B4) in Appendix B.1

show that at any time t > τ , the agents consume the same constant fraction of the aggregate

consumption as in τ , i.e.

C1t = ωτ (D1t +D2t) , t > τ (8)

C2t = (1− ωτ ) (D1t +D2t) , t > τ (9)

The consumption streams before and after the IPO are a function depending on the processes

(Dis)s for i = 1, 2. Before the IPO, the entrepreneur’s utility is given by

Jτ (t,D1t, D2t) = Et
[∫ ∞

0
e−βsu(C1s) ds

]
(10)

= Et
[∫ τ

0
e−βsu(D1s) ds+ e−βτ

∫ ∞
τ

e−β(s−τ)u(C1s) ds

]
(11)

= Et
[∫ ∞

0
e−βsu(D1s) ds+ jE(τ,D1t, D2t)

]
(12)

where jE(t,D1t, D2t) = e−βtEt
[∫∞
t e−β(s−t) (u(C1s)− u(D1s)) ds

]
. The first term in the right side

of equation (12) is the expected utility of the entrepreneur if he never makes the IPO. The second

term is the extra indirect entrepreneur’s utility associated to the option to IPO his firm. Appendix A

shows that jE can be obtained in closed form, and that it is given by an expression of the form

jE(t, x, y) = e−βtx(xy)−γ/2j(s, ωτ ). The optimal IPO decision the entrepreneur faces is represented

2See Appendix B for further details in this point.
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by an optimal stopping problem where he seeks to maximize the value function:

V (t, x, y) = sup
τ
jE(τ, x, y) = jE(τ∗, x, y) (13)

We use dynamic programming to solve this problem (see Oksendal and Sulem (2005)). The next

proposition summarizes the solution of the value function.

Proposition 1 The value function of the entrepreneur is given by a function φ(t, x, y) and an

stopping time τD satisfying the following conditions. Suppose a function H : [0, 1] → R and

constants 0 ≤ s∗1 < s∗2 ≤ 1 such that:

H(s) ∈ C1((0, 1)) ∪ C([0, 1]) ∪ C2((0, 1) \ ∂D) with D = {s ∈ (0, 1)\H(s) > j(s)} and

H(s) =


h1(s) if s < s∗1

j(s, ωτ ) if s∗1 < s < s∗2

h2(s) if s > s∗2

(14)

With

hi(s) = ci

(
1− s
s

)λi
i = 1, 2 (15)

For some constants λ1 < 0 < λ2 such that D is given by D = [0, 1] \ [s∗1, s
∗
2]. Let τD := inf{t >

0\s /∈ D}. Then φ(t, x, y) = e−βtx(xy)−γ/2H(s) and τ∗ = τD (under some assumptions over the

processes).

Proof The proof is based in solving the homogeneus PDE associated with the generator of the

process Zs = (t+s,D1s, D2s)
>, with Z0 = (t, x, y), verifying then optimality conditions. For further

details see Appendix A. �

This proposition shows that the optimal IPO strategy is determined by two IPO triggers, the

small-cap IPO trigger s∗1 and the large-cap IPO trigger s∗2. It may exist the case where s∗1 = 0

or/and s∗2 = 1. If the dividend ratio is too low (or too big), the entrepreneurs will decide to keep

his firm unlisted. As soon as the dividend ratio reaches one of the triggers, the IPO decision will

be made. The so called value matching and smooth pasting conditions are implicitly given by the

proposition (H(s) must be C1((0, 1))∪C([0, 1])). The following corollary gives us a direct method

for obtaining the optimal triggers s∗i and the constants ci for (i = 1, 2).

Corollary 1 The optimal states s∗i can be obtained by solving the following equations:

s∗i (1− s∗i )j′(s∗i , ω(s∗i )) + λij(s
∗
i , ω(s∗i )) = 0 i = 1, 2 (16)
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and ci is given explicitly by the expression

ci =
j(s∗i , ω(s∗i ))(

1−s∗i
s∗i

)λi i = 1, 2 (17)

3 Results

In the following section we study the main implications of our model. Although the theoretical

model accounts for jumps in the dividend processes, we consider only the diffusion component for

most of our analysis. A simpler model is desirable to highlight the main contributions of the paper

and the economic intuition behind the results. First, we analyze the behavior and sensibility of

optimal IPO decision to the dividends correlation and transaction costs. The expected IPO time

and its sensibility to the initial dividend ratio is also studied. Then, we analyze the diversification

effect on the entrepreneur wealth and consumption. In addition we study the relations between

optimal IPO triggers and Betas of the newly listed firm. Finally we consider the effect of jumps in

dividends and analyze their effect on the IPO triggers.

3.1 Optimal IPO triggers

In this section we study in detail the market conditions at which the entrepreneur IPO his firm.

As mentioned above, the optimal IPO strategy is determined by a closed interval between dividend

ratios s∗1 and s∗2: the small-cap IPO trigger and the large-cap IPO trigger.

When private company has a small share of the economy, i.e. s < s∗1, it will be optimal to

postpone the decision. Although the IPO diversifies the entrepreneur’s consumption, transaction

costs are too big. The optimal IPO strategy is to wait until the company owns a bigger share of

the economy, which implies greater diversification benefits.3

In the unusual case in which the company owns a large share of the economy, i.e. s > s∗2, the

entrepreneur is not tempted to IPO its company: the potential market portfolio after the IPO will

be too correlated with the company. Diversification benefits are small comparing with transaction

costs (for values of s near 0 or 1 diversification is minimal). The entrepreneur will keep its company

private until its share in the economy diminishes (produced by negative shocks to the company’s

dividends, or positive shocks to the market’s dividends). This case is absurd if we only think of

develop economies, but it may have occurred in an early stage of a less develop economy some

decades ago (when few firms were listed in the stock market).

3For the symmetric case, Cochrane, Longstaff, and Santa-Clara (2008) shows that diversification finds its maximum
for middle values of the dividend ratio, s.
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Figure 1 presents the IPO triggers for different correlations between the dividend streams D1

and D2 and for different values of risk aversion of the agents. Figure 1(a) shows that the small-cap

IPO trigger increases with the correlation of the dividend streams and decreases with risk aversion.

Diversification benefits of the IPO diminishes if the company is correlated with the market, which

means the entrepreneur will wait for a bigger share of the economy, increasing the optimal IPO

trigger. For higher risk aversion, the agents value more the diversification benefits, implying that

the entrepreneur IPOs in a lower share.

A symmetric effect is reflected in Figure 1(b). The large-cap IPO trigger decreases with the

correlation and increases with risk aversion. If agent 1 holds a large fraction of the economy (i.e.

s > s∗2), a higher correlation with the market decreases its diversification benefits. Therefore, the

entrepreneur will delay the IPO decision until these benefits are enough. This occurrs for lower IPO

triggers. Higher risk aversion increases the IPO trigger because diversification is more desirable.

Further analysis will be focused only in the small-cap IPO trigger, being the most common case

faced in economies. Figure 2 plots this trigger against the fraction of the economy that represents

the transaction costs. Results support the intuition: the higher the transaction costs, the larger

the requirements for the IPO. For lower risk aversion, the model is highly sensitive to transaction

costs, and IPO trigger grows fast when facing large transaction costs.

3.2 Expected hitting time

In this section we study the expected time until the IPO option is exercised. In some cases, this

analysis is more intuitive than studying the optimal triggers directly. The expected hitting time is

calculated from that the monotonic transformation of st equals ut = y2t−y1t. The random variable

ut : Ω→ R distributes the same as the variables yit, i.e. it follows a jump diffusion process.

It can be proved that expected IPO time when processes yit have the same drift is infinite (see

Shreve (2008)). An intuitive explanation might be that because the expected growth company

equals market’s growth, the firm is never expected to reach the optimal relative size to IPO. To

calibrate the variables, we chose different drifts for dividends. We assume that the firm’s dividends

grow faster than the market dividend payoffs.

For obtaining the distribution of the stopping time variable τD =

inf {t > 0\The company stays unlisted} we use the results obtained by Coutin and

Dorobantu (2009). Knowing the distribution, expectations can be easily computed.

Figure 3 shows the behavior of expected IPO time for different initial sizes (i.e. dividend ratio).

For companies with lower s, expected hitting times are huge. This expectation lowers when the

firm’s size approaches the optimal s to IPO. This means that the smaller the IPO trigger, the lower
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is the expected time a company has to wait to IPO. As before, we find that entrepreneurs with

lower risk aversion degrees are expected to wait more time to IPO their firms.

Assuming that firms within an industry have similar dividend streams, the model predicts that

IPO occurrences will be positively correlated with firms’ size. This means that the first IPOs will

be triggered by larger companies in an industry, and then smaller firms will follow.

3.3 Welfare analysis

This section studies the effect of diversification contrasting scenarios before and after the IPO. First

we analyze the perceived effect of the timing option over the firm’s value. The second part studies

how entrepreneur’s consumption changes with the IPO.

We first compare the price-dividend ratio of the market portfolio with the one perceived by

the entrepreneur. The embedded IPO option adds value to the entrepreneur. Our purpose is to

transfer this value to the firm’s price.

Before the IPO the asset is not open for trade in the market. Therefore, we cannot assume com-

plete markets in its valuation (The uniqueness of the pricing kernel is not assured). Entrepreneur

might value his company in a different way that the market does, mainly because there is an option

involved in the IPO timing. We use a utility indifference approach to value the unlisted firm from

the entrepreneur’s point of view.

Let us define the company’s price as the minimum value at which the entrepreneur is willing

to IPO his company. At this price the entrepreneur’s utility before and after the IPO must be the

same. We summarize this approach by the following statement. Suppose P ∗ is the price at which

the entrepreneur is indifferent to IPO his firm. For s ∈ [s∗1, s
∗
2] we have that P ∗ = P . Outside this

region (therefore before de the IPO), we can isolate the price from the following relations:

P ∗ solves

h1(s) = j(s, P
∗−αWt
Wt

) if s < s∗1

h2(s) = j(s, P
∗−αWt
Wt

) if s > s∗2

(18)

where the functions hi(·) are defined in Proposition 1.

Before the IPO, the price-dividend ratio is calculated using the utility indifference price. Once

the IPO is done, the asset becomes tradable in a complete market and there is a unique pricing

kernel.

Figure 4 shows the IPO timing option in terms of price-dividend ratios. Before the IPO, the

company has an extra value given by the option to postpone the IPO for better market conditions.

This value is added to the price at which the entrepreneur is willing to sell his company. From
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the entrepreneur’s point of view, the company has a bigger price-dividend ratio before the optimal

IPO timing. Because the market is willing to pay a lower price that the one asked by the company

owner, the IPO is not triggered. When the firm’s relative size approaches the IPO trigger, the

option value vanishes and the price-dividend ratios before and after the IPO equate.

For a better understanding of the entrepreneur’s motives to IPO, we study the consumption

streams, which becomes the core process of the utility function. Before the IPO the entrepreneur

only consumes the dividends generated by its company. After the IPO, as stated in equations (8)

and (9), the entrepreneur owns a fully-diversified portfolio. The diversification effect is reflected

immediately in the consumption streams. As shown by Cochrane, Longstaff, and Santa-Clara (2008)

and Martin (2009), the effect of portfolio diversification in the consumption processes is significant.

The consumption volatility achieves its minimum for intermediate values of s as seen below:

dCit
Cit

= [stµD1 + (1− st)µD2 ] dt+ stσ1dZt + (1− st)σ2dZt (19)

Then

Et
[
dCit
Cit

]
= [stµD1 + (1− st)µD2 ] dt (20)

Vart
[
dCit
Cit

]
=
[
s2tσ1σ

>
1 + (1− st)2σ2σ>2 + st(1− st)σ1σ>2

]
dt (21)

Figure 5 shows how the entrepreneur’s consumption process changes before versus after the

IPO. Before the IPO, the entrepreneur’s consumption volatility is the same as the constant dividend

volatility represented by the dashed line. After the IPO, the entrepreneur’s wealth is given by a

fraction of the economy’s aggregate wealth, and his consumption is a constant fraction ωτ of the

aggregate consumption. For intermediate values of s, volatility reaches its minimum. At the IPO

time, consumption volatility falls enough to compensate for the fixed transaction costs.

Figure 6 shows consumption-wealth ratio for the entrepreneur. Before the IPO, he consumes a

lower fraction of his wealth comparing to the diversified case.4. After the IPO, marked with the

red dashed line, the entrepreneur’s consumption jumps to the solid line. The IPO diversification

effect is reflected in today’s consumption. A decrease in the consumption volatility due to the IPO

decision reduces the need for precautionary savings. This implies that the entrepreneur is willing

to consume a larger amount of his total wealth.

3.4 Relation Between Betas and IPO Triggers

The following section studies the betas of firms at the optimal IPO time. We wish to analyze the

relation between the size at which a firm IPOs and its betas. For conducting our purpose, we define

4The values of s where the non-diversified consumption surpasses the diversified case occurs because if the en-
trepreneur IPOs for those values of s, the transaction costs are higher than the firm’s value, in which case wealth and
consumption are negative
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the beta in terms of excess returns from the CAPM 5, i.e.

Et [r1t]− rft = β
(
Et [rMt]− rft

)
(22)

The expected return, Et [r1t] and the riskless interest rate, rft , are calculated as in Martin (2009).6

The expected return of the market after the IPO, Et [rMt], is the weighted expected return of both

assets. The beta is obtained from equation (22).

We wish to consider companies from several industries. Different industries will be characterized

by the correlation of its dividends with the market. This way, within an industry we may have

many companies of different sizes, but whose dividend streams follow the same process.

Figure 7 shows the relation of the beta at which a company optimally triggers the IPO against

correlation of the dividend streams. We see that the higher the correlation of the industry with

the market, the higher the Beta at which the company triggers the IPO. This information can be

added to the information from Figure 1, and we can obtain the relation showed in next figure.

Figure 8 shows the relation between the optimal size at which a company IPOs versus its

Beta in that moment. Industries with lower correlation with the market IPOs with lower betas,

and companies within this industries will IPO with lower sizes. We observe that there is a direct

relation between optimal s triggers and the betas. Considering that beta measures how much

company’s returns follow the market, the first companies expected to IPO will be from industries

which returns do not follow the market.

The model predicts the dynamics of the economy over time. Remember Figure 3: the smaller

the IPO trigger, the lower is the expected time a company has to wait to IPO. Because industries

that IPO with lower betas has smaller optimal triggers, the first companies to IPO are expected

to come from this industries. This predictions is in line with the empirical work of Astudillo,

Braun, and Castaneda (2008) that compares the country’s beta from economies in different stages

of development. Astudillo, Braun, and Castaneda (2008) concludes that at early stages of the

economy the first firms to IPO comes from industries that show lower betas, overweighting these

sectors in the market. As the economy develops, firms from higher Beta industries IPO, raising

the markets’s Beta, until the market reaches a mature point in which al sectors in the economy are

well represented.

3.5 Dividends subject to jumps: Idiosyncratic and Systematic Shocks

In this final section of the paper, we analyze the effect of dividend jumps over IPO decisions. For

this purpose, we compare 4 scenarios: no jumps, Positive Jumps, Negative Jumps, and Economical

5Note that the CAPM is valid because at the IPO the asset is part of the complete market.
6See Appendix B for details.
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Crisis. In Positive Jumps we consider normal jumps affecting the unlisted firm, with mean 0.05,

variance 0.12 and an occurrence rate of 1/5 (1 every 5 years). Negative Jumps are the same, but

with mean −0.05. Economical Crisis are characterized by jumps affecting both assets (Company

and Market) with mean −0.1, variance 0.12 and occurrence rate 1/20.

Figure 9 shows how the IPO trigger is affected by the jump scenarios. Under the presence of

positive jumps, the firm has a higher valuation for the same values of s (because of higher expected

dividends). This higher valuation increases the diversification benefits obtained through the IPO,

lowering the optimal trigger. Negative jumps produce the contrary effect: the company loses value,

and diversification effect at the IPO diminishes, which increases the optimal IPO trigger. In an

scenario with economical crisis, there are two opposing effects. On one hand, the company loses

value because expected dividend streams decrease. On the other hand, the market loses value

because of the negative jumps, which increases the diversification effects in the IPO. The second

effect is greater, and the entrepreneur chooses to IPO at a lower share.

4 Conclusions

We summarize the basic procedure conducted in this study. First we built up a general equilib-

rium model in an endowment economy to analyze an IPO scenario. The model is solved using

dynamic programming and asset pricing results from the works of Cochrane, Longstaff, and Santa-

Clara (2008) and Martin (2009). We analyzed the random variables and states affecting the decision,

studying expected optimal hitting times and diversification effects over the entrepreneur.

Eliminating any extra benefit, portfolio diversification is strong enough to trigger an IPO:

consumption streams are less volatile, which increases the entrepreneur’s utility through time,

overcoming any transaction costs. Within an industry, the relative size of the firm to the market

is the main characteristic that triggers the IPO.

Studying expected hitting times, the model predicts that within an industry bigger firms are

expected to IPO first (greater diversification benefits). In our model, each industry defines a

dividend stream, and each dividend stream generates an optimal IPO trigger. As a firm approaches

this dividend share, the time expected to IPO approaches to zero.

Optimal IPO triggers are higher when dividends face high correlation with the market, an so

are the CAPM Betas in the moment of the IPO. Merging this two effects, we realize that IPO

trigger and the Beta of the newly public firms move in the same direction. This means (considering

that the lower IPO trigger the lower the expected time to IPO) that the first firms expected to IPO

should have lower Betas. This effect might explain why most public firms in developing economies

and emerging markets are concentrated in low Betas sectors. As time passes, the model predicts

that firms with higher Betas will be incorporated in the market until the market completes.

12



It is left for future research to fit the model to the data. It will probably require the incorporation

of more trees in the economy, fitting the dividend streams (i.e. drift, diffusion, and jumps), and

more specific transaction costs. The model, beside complementing the IPO theory, might be used

as a guide for any entrepreneur analyzing IPO timing decision, considering portfolio diversification

benefits.
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Appendix

A Solution for the entrepreneur’s value function

A.1 Value function

We want to compute the value of the following expression

jE(t,D1t, D2t) = e−βtEt

[∫ ∞
t

e−β(s−t)

(
C1−γ

1s − 1

1− γ
− D1−γ

1s − 1

1− γ

)
ds

]

=
e−βt

1− γ


∫ ∞
t

e−β(s−t)Et
[
C1−γ

1s

]
ds︸ ︷︷ ︸

(Et1)

−
∫ ∞
t

e−β(s−t)Et
[
(D1s)

1−γ] ds︸ ︷︷ ︸
(Et2)


(A1)

We notice from equation (B21) that (Et1) = W1t/C
γ
1t. W1t is solved below in Appendix B.2. Using this

result we get

(Et1) =
C1−γ
it√

sγt (1− st)γ

∫ ∞
−∞

(
1− st
st

)iv (
st

β − c1(v)
+

1− st
β − c2(v)

)
Ψγ(v) dv (A2)

Using equations (8) and (9) and after some algebraic manipulations

(Et1) = ω1−γ
τ D1t (D1tD2t)

−γ/2
∫ ∞
−∞

(
1− st
st

)iv (
1

β − c1(v)
+

(1− st)/st
β − c2(v)

)
Ψγ(v) dv (A3)

(Et2) is obtained after solving the conditional expectation:

Et
[
D1−γ

1s

]
= Et

[
e(1−γ)(y1t+ỹ1(s−t))

]
= e(1−γ)y1te(s−t)c((1−γ),0) (A4)

Then

(Et2) =
D1−γ

1t

β − c((1− γ),0)
=
D1t (D1tD2t)

−γ/2
(

1−st
st

)γ/2
β − c((1− γ),0)

(A5)

for β1 − c((γ − 1),0) > 0. The function c(·, ·) is defined in Appendix A.3. Finally

jE(t,D1t, D2t) =
e−βtD1t (D1tD2t)

−γ/2

1− γω1−γ
τ

∫ ∞
−∞

(
1− st
st

)iv (
1

β − c1(v)
+

(1− st)/st
β − c2(v)

)
Ψγ(v) dv +

(
1−st
st

)γ/2
β − c((1− γ),0)


(A6)

16



A.2 Optimal Stopping States

At first, our state variables are the dividend processes D1t and D2t given by the following PDE:

dDit

Dit
= µDidt+ σidZt +

l∑
k=1

∫
R

(egik(z) − 1)N (k)(dt, dzk) (A7)

The optimal control problem consists in finding the optimal states in which Jτ (t,D1t, D2t) reaches its
maximum value, or equivalently, the optimal states in which jE(τ,D1t, D2t) is maximized. The problem is
summarized in equations (13). We apply Theorem (2.2) from Oksendal and Sulem (2005) for finding the
value function V :

Define the 3-dimensional state process

Zs =

 t+ s
D1s

D2s

 , Y0 =

 t
x
y

 (A8)

Define also Ŝ = R3
+, D̂ = {z ∈ Ŝ\φ(z) > jE(z)}, τŜ = inf{t ∈ R+\Zt /∈ Ŝ} and T = {τ stopping time \τ <

τŜ}.

We must find φ : S → R that satisfies the following

(i) ∂D is a Lipschitz surface

(ii) φ ≥ jE on S

(iii) φ ∈ C1(Ŝ) ∪ C(Ŝ) and φ ∈ C2(Ŝ \ ∂D) with locally bounded derivatives near ∂D

(iv) E
[∫ τŜ
t

1∂D(Ys) ds
]

= 0

(v) YτŜ ∈ ∂Ŝ a.s. on {τŜ <∞} and lims→τ−
Ŝ

φ(Ys) = jE(YτŜ )1{τŜ<∞}

(vi) E
[
|φ(Yτ )|+

∫ τŜ
t

(
|Aφ(Ys)|+ ‖σ>∇φ(Ys)‖2 +

∑l
k=1 |φ(Yte

gk(zk))− φ(Yt)|2 dνk(zk)
)
ds
]
<∞ for all τ ∈

T

(vii) Aφ = 0 on D

(viii) Aφ ≤ 0 on S \ ∂D

(ix) τD := inf{t ∈ R\Zt /∈ D} <∞ a.s.

(x) {φ(Yτ )\τ ∈ T } is uniformly integrable, for all (t, x, y) ∈ R3
+

We begin searching for a function φ(t, x, y) that fits the conditions above. The generator of the process
Zt is given by

Aφ(t, x, y) =
∂φ

∂t
+ xµD1

∂φ

∂x
+ yµD2

∂φ

∂y
+

1

2
A1A

>
1 x

2 ∂
2φ

∂x2
+A1A

>
2 xy

∂2φ

∂x∂y
+

1

2
A1A

>
1 y

2 ∂
2φ

∂y2
+

l∑
k=1

∫
R
{φ(t, x+ x(eg1k(zk) − 1), y + y(eg2k(zk) − 1))− φ

−∂φ
∂x
x(eg1k(zk) − 1)− ∂φ

∂y
y(eg2k(zk) − 1)} ν(k)(dzk) (A9)
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Condition (vii) requires that Aφ = 0. We suppose that φ(t, x, y) has the following structure:φ(t, x, y) =
e−β1tx(xy)−γ/2h(u), with u given by ut ≡ log 1−s

s = log y/x. Replacing in equation above:

Aφ(t, x, y) = e−β1tx(xy)−γ/2(θ0h(u) + θ1h
′(u) + θ2h

′′(u)+
l∑

k=1

∫
R
{eg1k(zk)e−γ/2(g1k(zk)+g2k(zk))h(u+ g2k(zk)− g1k(zk)) +

h(u)
[
eg1k(zk)(γ/2− 1) + eg2k(zk)γ/2− γ

]
+ h′(u)

[
eg1k(zk) − eg2k(zk)

]
} dν(k)(zk))

(A10)

where
θ0 = −β1 + (1− γ/2)µD1 − γ/2µD2 + 1/2(γ2/4− γ/2)A1A

>
1

+ (γ2/4− γ/2)A1A
>
2 + 1/2(γ2/4 + γ/2)A2A

>
2

θ1 = µD2
− µD1

+ 1/2(γ − 1)A1A
>
1 +A1A

>
2 + 1/2(−γ − 1)A2A

>
2

θ2 = 1/2A1A
>
1 −A1A

>
2 + 1/2A2A

>
2

We propose h(u) = eλu:

Aφ(t, x, y) = e−β1tx(xy)−γ/2eλu(θ0 + θ1λ+ θ2λ
2+

l∑
k=1

∫
R

{
eg1k(zk)(1−λ−γ/2)−g2k(z2)(−λ+γ/2) + eg1k(zk)(γ/2 + λ− 1) + eg2k(zk)(γ/2− λ)− γ

}
dν(k)(zk))

(A11)

A.3 Cumulant-generating function

Cumulant-Generating function c(v) is defined as the logarithm of the moment-generating function

c(v) := log
(
E
[
ev
′( ˜yt+1−ỹt)

])
(A12)

In our case

c(v) = v′µ+
1

2
v′Σv + ω

(
Eev

′Sk − 1
)

(A13)

c(v) = v′µ+
1

2
v′Σv +

l∑
k=1

∫
R

(
ev
′gk(zk) − 1

)
ν(k)(dzk)7 (A14)

where Σ = AA′. If ν is the Lévy measure of Poisson jumps v N (µS ,ΣS), c(v) results in

c(v) = v′µ+
1

2
v′Σv + ω

(
ev
′µS+1/2v′ΣSv − 1

)
(A15)

B Equilibrium after the IPO

B.1 Prices

First, suppose the IPO decision is irreversible, and done at some time τ . At the IPO time, the market
completes and both agents rebalance their portfolio. Each of the agents can choose freely in t how much to
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consume and how much to invest in P1 and P2. After this happens, the market is in equilibrium, and the
scenario resembles the two Lucas trees economy Cochrane, Longstaff, and Santa-Clara (2008).

In this scenario, the market clearing condition states that the aggregate consumption C equals the sum
of the dividend payoffs, i.e.

Ct := C1t + C2t = D1t +D2t (B1)

The first order conditions for the asset prices, derived by Lucas (1978), states that from the point of
view of the entrepreneur

Pit = Et

[∫ ∞
t

e−β(s−t)
(
C1s

C1t

)−γ
Dis ds

]
(B2)

and from the point of view of the market

Pit = Et

[∫ ∞
t

e−β(s−t)
(
C2s

C2t

)−γ
Dis ds

]
(B3)

Since the market is complete, state-price deflators must be unique and prices form both points of view must
be the same. It follows that

e−β(s−t)
(
C1s

C1t

)−γ
= e−β(s−t)

(
C2s

C2t

)−γ
= ξ (B4)

Using (B1) we can isolate ξ in terms of the dividend processes:

ξ = e−β(s−t)
(
D1s +D2s

D1t +D2t

)−γ
(B5)

Asset prices are given by the following proposition, in line with the results of Martin (2009)

Proposition B1 Under the above conditions, the asset prices in equilibrium are given by

Pit =
Dit√

sγt (1− st)γ

∫ ∞
−∞

(
1− st
st

)iv
Ψγ(v)

β − ci(v)
dv (B6)

(B7)

Where

Ψγ(v) =
1

2π

Γ(γ/2− iv)Γ(γ/2 + iv)

Γ(γ)
(B8)

c1(v) = c(1− γ/2− iv,−γ/2 + iv) (B9)

c2(v) = c(−γ/2− iv, 1− γ/2 + iv) (B10)

and c(θ) the CGF of the process yt+1 − yt

Proof The method for obtaining asset prices in complete markets can be found in Martin (2009). We repeat
the same procedure: it was previously stated that asset prices are given by (B2), (B3) and (B5). Using both,
we get

Pit = Et

[∫ ∞
t

e−β(s−t)
(
D1s +D2s

D1t +D2t

)−γ
Dis ds

]
(B11)

=

∫ ∞
t

e−β(s−t) (D1t +D2t)
γ Et

[
Dis

(D1s +D2s)γ

]
ds (B12)

19



For solving Et
[

Dis
(D1s+D2s)γ

]
, we use the fact that

Et
[

Dis

(D1s +D2s)γ

]
= eyitEt

[
eỹi(s−t)(

ey1t+ỹ1(s−t) + ey2t+ỹ2(s−t)
)γ
]

= eyite−γ/2(y1t+y2t)Et

e(1{i=1}−γ/2)ỹ1(s−t)+(1{i=2}−γ/2)ỹ2(s−t)(
2 cosh

y2t−y1t+ỹ2(s−t)−ỹ1(s−t)
2

)γ
 (B13)

We now use de Fourier transform Ψγ(v) of 1/[cosh(u/2)]γ for γ > 0 given by

1

[2 cosh (u/2)]
γ =

∫ ∞
−∞

eiuvΨγ(v) dv (B14)

Martin (2009) obtains a close expression for Ψγ(v), which is

Ψγ(v) =
1

2π

Γ(γ/2− iv)Γ(γ/2 + iv)

Γ(γ)
(B15)

Replacing in (B13), the right part of the equation becomes

= Dite
−γ/2(y1t+y2t)Et

[∫ ∞
−∞

eiv(y2t−y1t+ỹ2(s−t)−ỹ1(s−t))e(1{i=1}−γ/2)ỹ1(s−t)+(1{i=2}−γ/2)ỹ2(s−t)Ψγ(v) dv

]
= Dit e

−γ/2(y1t+y2t)

∫ ∞
−∞

E
[
e(1{i=1}−γ/2−iv)ỹ1(s−t)+(1{i=2}−γ/2+iv)ỹ2(s−t)

]
eiv(y2t−y1t)Ψγ(v) dv (B16)

Last equality stands because of the independent increments of ỹis. Finally,

Et
[

Dis

(D1s +D2s)γ

]
= Dite

−γ/2(y1t+y2t)

∫ ∞
−∞

e(s−t)c(1{i=1}−γ/2−iv,1{i=2}−γ/2+iv)eiv(y2t−y1t)Ψγ(v) dv (B17)

We now replace in our last expression for Pit

Pit =

∫ ∞
t

e−β(s−t) (D1t +D2t)
γ
Dit e

−γ/2(y1t+y2t)∫ ∞
−∞

e(s−t)c(1{i=1}−γ/2−iv,1{i=2}−γ/2+iv)eiv(y2t−y1t)Ψγ(v) dv ds (B18)

= Dite
−γ/2(y1t+y2t) (D1t +D2t)

γ∫ ∞
t

e−β(s−t)
∫ ∞
−∞

e(s−t)ci(v)eiv(y2t−y1t)Ψγ(v) dv ds (B19)

Where ci(v) := c(1{i=1} − γ/2 − iv,1{i=2} − γ/2 + iv) for simplifying notations. For conditions over the
parameters given by β − ci(v) > 0 for i = 1, 2, the integrand above is absolutely integrable. Using Fubini’s
theorem

Pit = D1t e
−γ/2(y1t+y2t) (D1t +D2t)

γ
∫ ∞
−∞

eiv(y2t−y1t)
(∫ ∞

t

e−(s−t)(β−ci(v)) ds

)
Ψγ(v) dv

= D1t e
−γ/2(y1t+y2t) (D1t +D2t)

γ
∫ ∞
−∞

eiv(y2t−y1t)

β − ci(v)
Ψγ(v) dv (B20)

Replacing with the process st = Dit
D1t+D2t

finally proves Proposition B1.

�
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B.2 Wealth

Let Wit (i = 1, 2) be the wealth of the agents in equilibrium (entrepreneur and market resp.). In an exchange
economy today’s consumption must equal the discounted cash flows in the future, i.e.

Wit = Et

[∫ ∞
t

e−(s−t)β1

(
Cis
Cit

)−γ
Cis ds

]
(B21)

This leads us to the following proposition

Proposition B2 Under equilibrium conditions, the economy agents’ wealth will be given by

Wit =
Cit√

sγt (1− st)γ

∫ ∞
−∞

(
1− st
st

)iv (
st

β − c1(v)
+

1− st
β − c2(v)

)
Ψγ(v) dv (B22)

=
Cit

D1t +D2t
(P1t + P2t) (B23)

Where c1, c2, and Ψγ are as in (B8).

Proof For obtaining the relations between wealth and consumption, we solve (B21) using a similar procedure
as we did with prices. First we discount the consumption streams with our state price deflator (B5):

Wit = Et

[∫ ∞
t

e−β(s−t)
(
D1s +D2s

D1t +D2t

)−γ
Cis ds

]
(B24)

From equations (B4) and (B5) we can isolate consumption streams in terms of consumptions in t and the

dividend processes, i.e. Cis = Cit

(
D1s+D2s

D1t+D2t

)
. Replacing in last equation:

Wit = Cit (D1t +D2t)
1−γ

∫ ∞
t

e−β(s−t)Et

[
1

(D1s +D2s)
1−γ

]
ds (B25)

The conditional expectation is solved as we did with prices:

Et
[

1

(D1s +D2s)γ−1

]
= Et

[
D1s

(D1s +D2s)γ

]
+ Et

[
D2s

(D1s +D2s)γ

]
(B26)

= D1t e
−γ/2(y1t+y2t)

∫ ∞
−∞

e(s−t)c(1−γ/2−iv,−γ/2+iv)eiv(y2t−y1t)Ψγ(v) dv

+D2t e
−γ/2(y1t+y2t)

∫ ∞
−∞

e(s−t)c(−γ/2−iv,1−γ/2+iv)eiv(y2t−y1t)Ψγ(v) dv (B27)

= e−γ/2(y1t+y2t)

∫ ∞
−∞

(
D1te

(s−t)c1(v) +D2te
(s−t)c2(v)

)
eiv(y2t−y1t)Ψγ(v) dv (B28)

We now use Fubini’s theorem, imposing conditions of integrability given by β − ci(v) > 0 for i = 1, 2:

Wit = C1te
−γ/2(y1t+y2t) (D1t +D2t)

1−γ
∫ ∞
−∞

eiv(y2t−y1t)Ψγ(v)∫ ∞
t

e−β(s−t)
(
D1te

(s−t)c1(v) +D2te
(s−t)c2(v)

)
ds dv (B29)

= C1te
−γ/2(y1t+y2t) (D1t +D2t)

1−γ∫ ∞
−∞

eiv(y2t−y1t)
(

D1t

β − c1(v)
+

D2t

β − c2(v)

)
Ψγ(v) dv (B30)
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Finally, we replace with our state process st = D1t

D1t+D2t
. This concludes the proof to Proposition B2. �

B.3 Asset returns

We will proceed with the study of asset’s returns and risk free returns. This will permit us to analyze risk
factors faced by the entrepreneur.

For obtaining the instant risk-free return in equilibrium, we will base our procedure on Martin (2009).
Suppose we are at a time t. First, we price a bond BT that pays a unit in T > t. Then we calculate the
dividend yield Rt→T using the fact that BT = e−Rt→T (T−t). Finally, we can obtain the instant risk-free
return with the limit of the dividend yield as T tends to t, i.e. rft = limT→tRt→T . Details of this procedure
can be found on the Appendix. The result is shown below.

rft =
1√

sγ(1 + s)γ

∫ ∞
−∞

(
1− s
s

)iv
(β − c(−γ/2− iv,−γ/2 + iv)) Ψγ(v) dv (B31)

Procedure for obtaining expected asset returns can be found in Martin (2009). First, we proceed solving
the expected capital gains, i.e. Et [dP ]. We start with the expressions for prices obtained above:

Pit = (D1t +D2t)
γ

∫ ∞
−∞

hi(v)e(1{i=1}−γ/2)ỹ1t+(1{i=2}−γ/2)ỹ2t dv (B32)

where

hi(v) =
Ψγ(v)

ρ− ci(v)
(B33)

Using the Newton’s generalized binomial theorem, we may expand (D1t +D2t)
γ . It follows that

Pit =

∞∑
n=0

(
γ

n

)∫ ∞
−∞

hi(v)ewin(v)yt dv (B34)

with
win = (1{i=1} − γ/2 + n− iv,1{i=1} − γ/2− n+ iv) (B35)

Let us callX = ewinyt . Using Ito’s differential formula applied to jump-diffusions we may obtain an expression
for Et [dX]:

Et [dX] = ewinytEt

[
(w′inµ+ w′inΣwin)dt+ w′inAdZ +

l∑
k=1

∫
R
(ewing

(k)(zk) − 1)N (k)(dt, dzk)

]
(B36)

= ewinyt

(
w′inµ+ w′inΣwin +

l∑
k=1

∫
R

(ewing
(k)(zk) − 1) ν(k)(dzk)

)
dt (B37)

= ewinytc(win)dt (B38)

Then Et [dPt] is given by

Et [dPit] =

( ∞∑
n=0

(
γ

n

)∫ ∞
−∞

hi(v)ewin(v)ytc(win) dv

)
dt (B39)

Replacing this result and expressions for prices (B34) in (B40), and after some algebraic manipulations, we
get expression (B41) for returns.
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B.4 Riskless rate

Let (rit)t be the asset’s return for i = (1, 2). By definition, the asset’s total return is given be the capital gains
plus the dividend yield, i.e.

rit dt =
dPit
Pit

+
Dit

Pit
dt (B40)

Following Martin (2009), we can find a close expression for the expected returns. Using expressions (B40),
the dividend yield is given by the reciprocal of the Price/Dividend obtained before. The only things left to
calculate are the capital gains, specifically Et [dPt]. The procedure is exactly the same as in Martin (2009).
Finally

Et [rit] =

∑∞
n=0

(
γ
n

) (
1−st
st

)−n ∫∞
−∞

(
1−st
st

)iv
hi(v)c(win) dv∑∞

n=0

(
γ
n

) (
1−st
st

)−n ∫∞
−∞

(
1−st
st

)iv
hi(v) dv

+
Dit

Pit
(B41)

Where

hi(v) =
Ψγ(v)

ρ− ci(v)
(B42)

w1n = (1− γ/2 + n− iv, γ/2− n+ iv) (B43)

w2n = (γ/2 + n− iv, 1 + γ/2− n+ iv) (B44)

First we need to price a bond BT that pays a unit in period T . We use our state-price deflator (B5) to
discount the payment:

BT = Et

[
e−β(T−t)

(
D1T +D2T

D1s +D2s

)−γ]
(B45)

= e−β(T−t) (D1T +D2T )
γ Et

[
1

(D1T +D2T )
γ

]
(B46)

Conditional expectation is solved analogously as we did with prices. Bond’s price is then given by

BT = e−β(T−t) (D1t +D2t)
γ

e−γ/2(y1t+y2t)

∫ ∞
−∞

e(T−t)c(−γ/2−iv,−γ/2+iv)eiv(y2t−y1t)Ψγ(v) dv (B47)

The interest yield Rt→T of a bond t that pays a unit in T is defined by the relation BT = e−Rt→T (T−t).
Isolating the interest yield and replacing with our state process st = D1t

D1t+D2t
, it follows that

Rt→T = β − 1

T − t
log

(
1√

sγt (1− st)γ

∫ ∞
−∞

(
1− st
st

)iv
e(T−t)c(−γ/2−iv,−γ/2+iv)Ψγ(v) dv

)
(B48)

Instantaneous riskless rate rt = limT→tRt→T is obtained using L’Hopital rule:

rt = β −

∫∞
−∞

(
1−st
st

)iv
c(−γ/2− iv,−γ/2 + iv)Ψγ(v) dv∫∞
−∞

(
1−st
st

)iv
Ψγ(v) dv

(B49)

By definition (2 cosh(u/2))
γ ∫∞
−∞ eiuvΨγ(v) dv = 1. Using this fact and regrouping terms we finally obtain

expression (B31).
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(a) Small-cap IPO trigger versus ρ
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(b) Large-cap IPO trigger versus ρ

Figure 1: Optimal IPO triggers with respect to the correlation between both dividend payoffs, ρ.
The parameters used are µD1 = µD2 = 0.05, σ11 = 0.25

√
1− ρ2, σ12 = 0.25ρ, σ21 = 0, σ22 = 0.25,

β = 0.04 and α = 0.05.
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Figure 2: Small-cap trigger with respect to the fixed transaction costs α. The parameters used are
µD1 = µD2 = 0.05, σ11 = 0.25, σ12 = 0, σ21 = 0, σ22 = 0.25, β = 0.04 and ρ = 0.
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Figure 3: Expected IPO time as a function of the initial relative dividend. The parameters used
are µD1 = 0.07, µD2 = 0.04, σ11 = 0.25, σ12 = 0, σ21 = 0, σ22 = 0.25, β = 0.04, ρ = 0 and α = 0.05.
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Figure 4: Price/dividend ratios for firm 1. The dashed line shows the price/dividend ratio before
IPO, the solid line the ratio after IPO and the red dashed line shows the optimal IPO trigger.
The parameters used are µD1 = µD2 = 0.05, σ11 = 0.25, σ12 = 0, σ21 = 0, σ22 = 0.25, β = 0.04,
α = 0.05, ρ = 0 and γ = 2.
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Figure 5: Consumption volatility as a function of the relative dividend. The dashed line shows the
consumption volatility before IPO, the solid line the consumption volatility after IPO and the red
dashed line shows the optimal IPO trigger. The parameters used are µD1 = µD2 = 0.05, σ11 = 0.25,
σ12 = 0, σ21 = 0, σ22 = 0.25, β = 0.04, α = 0.05, ρ = 0 and γ = 2.
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Figure 6: Consumption/wealth ratio for the entrepreneur as a function of the relative dividend.
The dashed line shows the consumption/wealth ratio before IPO, the solid line the ratio after IPO
and the red dashed line shows the optimal IPO trigger. The parameters used are µD1 = µD2 = 0.05,
σ11 = 0.25, σ12 = 0, σ21 = 0, σ22 = 0.25, β = 0.04, α = 0.05, ρ = 0 and γ = 2.
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Figure 7: Beta of firm 1 at optimal IPO time against correlation between dividend payoffs. The
parameters used are µD1 = µD2 = 0.05, σ11 = 0.25

√
1− ρ2, σ12 = 0.25ρ, σ21 = 0, σ22 = 0.25,

β = 0.04, α = 0.05 and γ = 2.
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Figure 8: Small-cap trigger against the beta of firm 1. Both variables are monotonic functions of
the correlation ρ. The parameters used are µD1 = µD2 = 0.05, σ11 = 0.25

√
1− ρ2, σ12 = 0.25ρ,

σ21 = 0, σ22 = 0.25, β = 0.04, α = 0.05 and γ = 2.
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Figure 9: Small-cal IPO trigger with respect to the correlation between both dividend payoffs, ρ,
when we allow for jumps in the dividend processes. The parameters used are µD1 = µD2 = 0.05,
σ11 = 0.25

√
1− ρ2, σ12 = 0.25ρ, σ21 = 0, σ22 = 0.25, β = 0.04 and α = 0.05. The parameters of

the jump processes are described in Section 3.5.
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