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Abstract

This paper proposes a new pricing model for corporate securities issued by
a levered firm with the possibility of debt renegotiation. We take the structural
approach that the firm’s earnings follow a geometric Brownian motion with
stochastic collaterals. While equity holders can default the firm for their own
benefits when the earnings become insufficient to go on the firm, they may
want to liquidate it by repaying the face value of debt to debt holders in order
to get enough residuals, when the value of collaterals becomes sufficiently high.
Unlike the existing theoretical models, the bivariate structure enables us to
distinguish strategic default, liquidity default and the ordinary liquidation. It
is shown that liquidity default and liquidation possibly occur without entering
debt renegotiation, which makes the contribution of strategic debt service to
credit spreads lower than that obtained in the previous models, irrespective
of the equity holders’ bargaining power. Our model resolves the inconsistency
reported in recent empirical studies.

Keywords: Structural model; Debt renegotiation; Strategic debt service; Credit
spread; Liquidity default; Strategic default; Liquidation; M&A
JEL classifications: D81; G32; G33; G35

1 Introduction

The purpose of this paper is to propose a new pricing model for corporate securities
issued by a levered firm with the possibility of debt renegotiation. We take the
structural approach that the firm’s earnings follow a geometric Brownian motion
(GBM for short) with stochastic collaterals. As in Leland (1994), equity holders can
default the firm for their own benefits, when the earnings become insufficient to go
on the firm. In addition, equity holders may want to liquidate the firm by repaying
the face value of debt to debt holders in order to get enough residuals, when the
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value of collaterals becomes sufficiently high. Unlike the existing structural models,
the bivariate structure of our model can not only capture realistic credit spreads
observed in the market, but also explain many empirical findings reported in the
literature.

There are two major approaches for the pricing of corporate securities in the
finance literature. The first approach, called the structural approach,1 considers a
firm’s asset value and defines default as occurring either at maturity (as in Merton,
1974) or when the underlying process reaches a default boundary for the first time
(as in Black and Cox, 1976; Brennan and Schwartz, 1984). An attractive feature of
this approach is that we can analyze how firm-specific variables influence security
values. Also, it can treat complex contingent claims written on the firm’s asset value
(see, e.g., Kijima and Suzuki, 2001). However, if the underlying process follows a
diffusion process for the sake of analytical tractability, the model generates only
unrealistic credit spreads.

An important development in the structural approach was made in a seminal
paper by Leland (1994), who considers the optimal capital structure of a firm based
on the balancing theory, i.e., the trade-off between default costs and tax benefits.
Assuming that the firm’s asset value follows a GBM and corporate securities are
contingent claims written on the asset value, Leland (1994) derived the optimal
default boundary and the equity value simultaneously by solving a free-boundary
problem, because the default boundary is chosen by equity holders so as to maximize
the equity value. The debt and total firm values are calculated accordingly. The
optimal coupon rate (and hence credit spread) is then determined so as to maximize
the total firm value.

However, as Mella-Barral (1999) pointed out, credit spreads calculated by the
Leland model are close to those observed in the market only for significantly high
default costs. Also, Eom et al. (2004) noted that the models by Merton (1974)
and Geske (1977) underestimate the credit spreads, while the models by Longstaff
and Schwartz (1995), Leland and Toft (1996) and Collin-Dufresne and Goldstein
(2001) overestimate. Since then, several attempts have been made to overcome
the deficiency in the structural approach. Among them, Anderson and Sundaresan
(1996) and Mella-Barral and Perraudin (1997) proposed a structural model with
debt renegotiation. In reality, debt is renegotiated, because liquidation is costly and
debt holders cannot suffer from liquidation. Hence, equity holders have an incentive
to renegotiate in order to reduce the contractual debt service.

Following Anderson and Sundaresan (1996) and Mella-Barral and Perraudin
(1997), Mella-Barral (1999) considered a model with departures from absolute pri-
ority rule, while Fan and Sundaresan (2000) incorporated the medium bargaining
power and provided the Nash bargaining solution. Structural pricing models with
debt renegotiation suggest that, when creditors have little bargaining power, a large
part of credit spreads may be due to the possibility of strategic default risk. Debt

1The other approach, called the reduced-form approach, assumes an exogenous hazard rate pro-
cess as given, which represents the likelihood of unexpected default of the firm. Major advantages
of this approach are its analytical tractability and ability of generating a flexible and realistic term
structure of credit spreads. However, since default mechanism is not related to the firm value, we
cannot examine the impact of firm-specific variables on the values of corporate securities.
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renegotiation by strategic debt service provides higher credit spreads, whereby the
models mentioned above succeed to generate realistic credit spreads.

However, recent empirical studies such as Davydenko and Strebulaev (2007)
pointed out that the contribution of strategic debt service to credit spreads sug-
gested by the theoretical models is too large. In fact, Davydenko and Strebulaev
(2007) found that bond prices do appear to be affected by the possibility of debt
renegotiation, while their quantitative contribution to both the average level and
the cross-sectional level of credit spreads is below transactions costs.2 Based on this
result, they are inclined to suggest that debt holders are likely to have significant
bargaining power, which limits equity holders’ strategic behavior. Also, Acharya
et al. (2006) introduced the additional option that firms can carry cash reserves as
protection against costly liquidation and concluded that debt renegotiation typi-
cally has a negligible effect on the yield spreads under the model of Anderson and
Sundaresan (1996).

There is another defect in the theoretical models mentioned above. As Hart
and Moore (1994, 1998) emphasize, it is important to distinguish strategic default
from liquidity default. While liquidity default occurs when the firm’s cash flows are
insufficient to cover the debt service, strategic default occurs when the firm fails to
pay full amount of debt service in debt contract even though it possesses the resource
to do so. Most of the papers in the debt renegotiation literature distinguish strategic
default from liquidation, but neglect liquidity default.3 Moreover, in those models,
model parameters determine which occurs, either liquidation or strategic default,
in advance. In other words, we know a priori whether or not debt renegotiation
eventually occur by looking at the parameter values, and there is no uncertainty
how the firm terminates in the future.

In this paper, we extend the existing models to the bivariate framework by
introducing the value of tangible assets, which plays the role of collaterals. Because
of the bivariate feature, we can distinguish strategic default, liquidity default and the
ordinary liquidation. It is shown that, in our model, liquidity default can occur when
the value of collaterals is relatively high but the value of earnings (more precisely,
earnings before interest and tax; EBIT for short) is substantially low, irrespective
of the bargaining power of equity holders. In this case, the firm must pay large
maintenance costs for tangible assets despite of the poor business performance, and
equity holders cannot afford to carry out the debt contract, resulting in liquidity
default. When the value of tangible assets is sufficiently high and the EBIT is
substantially low, our model selects liquidation, because equity holders want to repay
the face value of debt to debt holders in order to get enough residuals. Otherwise, the
firm terminates as strategic default; however, the pattern depends on the sample
path of the bivariate process, not the initial parameter values. This means that
equity holders can select either liquidity default or liquidation, depending on the
economical condition, without entering debt renegotiation. This is a significant

2Davydenko and Strebulaev (2007) also found the fact that the bond prices are likely to be
affected by the possibility of debt renegotiation, especially when the costs of liquidation are likely
to be high and credit quality of the issuer is relatively low.

3Fan and Sundaresan (2000) consider liquidity default; however, it means liquidation by impos-
sibility of coupon payment, which is basically the same as liquidation considered in other papers.
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difference between our model and the other existing models in the debt renegotiation
literature.

The possibility of liquidity default and liquidation without entering debt rene-
gotiation is quite important from the pricing perspectives. If renegotiation always
occurs in a given model, the effect of strategic debt service will be overstated and its
contribution to credit spreads evaluated from the model becomes too high, which
can explain the empirical findings in Davydenko and Strebulaev (2007). In fact,
our model can produce credit spreads consistent with the empirical findings even
when equity holders have full bargaining power, as expected. The contribution of
strategic debt service to default premium depends on the underlying variables, in
contrast to the existing models such as Mella-Barral and Perraudin (1997).

The rest of the paper is organized as follows. Section 2 describes our two-factor
structural model and provides the security values of an unlevered/levered firm with-
out debt renegotiation. In Section 3, we introduce debt renegotiation by strategic
debt service to the bivariate model and show some numerical results. Section 4 gives
some discussions about extensions of the model, and Section 5 concludes this paper.
For the reader’s convenience, we provide concise proofs of known (but not trivial)
results in Appendix A. Appendix B demonstrates that the results in one-factor mod-
els (in particular, the results in Mella-Barral and Perraudin, 1997) can be derived
as a special case of our model, showing that our model is indeed an extension of the
existing models. Appendix C is devoted to explain the numerical technique used to
solve the bivariate free-boundary problems in this paper.

2 Debt and Agency Costs

We consider a firm with a set of tangible (or physical) assets that can yield revenues.
Both the value of tangible assets, V , and the firm’s EBIT (earnings before interest
and tax), P , are modeled with correlation in a dynamic setting.4 The instantaneous
risk-free interest rate is assumed to be constant and denoted by r. Since we focus
on the change of default strategy by introducing stochastic collaterals rather than
the capital structure, we neglect the tax benefit and assume that corporate tax rate
is zero for simplicity.

2.1 Basic Assumptions

Suppose that the asset value V follows a geometric Brownian motion (GBM):

dV (t)

V (t)
= µvdt + σvdB1(t), V (0) = v,

where µv is the instantaneous expected growth rate of V , σv is the associated volatil-
ity, and B1 is a standard Brownian motion. The asset needs to be maintained by

4Many papers such as Mella-Barral and Perraudin (1997) and Mella-Barral (1999) consider a
single state variable that is supposed to be positively correlated to revenues. In this paper, we
explicitly consider both tangible assets and revenues with correlation.
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expending a proportional cost ηV .5

On the other hand, the firm’s EBIT P is assumed to follow another GBM:

dP (t)

P (t)
= µpdt + σpdB2(t), P (0) = p,

where µp is the instantaneous expected growth rate of P , σp is the volatility, and B2

is another standard Brownian motion with instantaneous correlation E[dB1dB2] =
ρdt.6

Note that our model can be seen as a bivariate extension of existing models in the
literature. For example, if we replace the asset value V and the firm’s EBIT P by a
constant scrap value γ and earnings p−w, respectively, and neglect the maintenance
cost ηV of tangible assets, then our model is reduced to the one considered in Mella-
Barral and Perraudin (1997). Appendix B demonstrates that our model is indeed
an extension of Mella-Barral and Perraudin (1997).

Throughout the paper, we assume that µv, µp < r in order to ensure the exis-
tence of value functions of interest. Furthermore, for a levered firm, we assume the
following.

Assumption 1 (Levered Firm) The firm issues a perpetual debt with contractual
coupon rate c, face value c/r and collateral C(t) = min {V (t), c/r}. Moreover,

1. Equity holders can voluntarily default the firm. Upon default, debt holders own
the residual assets and take over the firm as existing equity holders.

2. Equity holders can liquidate the firm’s tangible assets and repay the collateral
to debt holders. In this case, the firm cannot go on.

3. The firm cannot redeem the debt. That is, the firm cannot turn back to a pure
equity firm unless it experiences a default.

Hence, equity holders have options either to default or to liquidate the firm,
depending on the state of the variables (V, P ). If the firm is defaulted, debt holders
take over the firm and it becomes a pure equity firm. If the firm is liquidated, debt
holders receive the collateral C and equity holders will get the residual. Note that,
after the firm becomes a pure equity firm, debt holders can liquidate the firm either
immediately or after some time, depending on the state of the variables (V, P ). We
shall explain how default and liquidation occur in this setting later.

We assume that the liquidation of the firm’s tangible asset is induced by M&A.
As pointed out by Lambrecht and Myers (2007), liquidation is often accompanied
by (and apparently forced by) M&A in declining industries. Let Y (t) be the buyout
price at time t, and suppose that the M&A market is perfectly competitive and
equity holders have full bargaining power against all the raiders. Then, under these

5As we explain later, equity holders have an incentive to supply short-term funds by increase
in capital even if the EBIT is substantially low.

6Throughout this paper, we fix the probability space (Ω,F , P) and denote the expectation
operator by E. The canonical filtration generated by the underlying stochastic structure is denoted
by {Ft}, where Ft defines the information available at time t.
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assumptions, the raiders’ return is given by V (t) − C(t) − Y (t) = 0 and the M&A
occurs at the best time for equity holders.7 In other words, the liquidation can occur
at the value

Y (τ) = V (τ) − C(τ) (1)

for any stopping time τ .
Because this assumption is essential for the valuation of corporate securities, we

state it formally as the following assumption.

Assumption 2 (Liquidation and M&A) The liquidation of the firm’s tangible
asset is induced by M&A, where the M&A market is perfectly competitive and equity
holders have full bargaining power against all the raiders. The value of the firm’s
tangible asset upon liquidation is given by (1) for any stopping time τ .

2.2 Pure Equity Firm

Before preceding, we first consider a pure equity firm as a benchmark to the levered
firm. To do so, we denote by W ∗ the equity value of the firm without debts (hence,
W ∗ is equal to the firm value). Note that equity holders can receive the EBIT P
minus the maintenance cost ηV as dividends. Hence, they will liquidate the firm
against either a decrease in profits or defrayment of maintenance cost, and upon
liquidation, they receive V as the liquidation payoff.

Suppose that P (0) = p and V (0) = v, and consider the value function W ∗(p, v)
of the pure equity firm. Let τ0 be the liquidation time chosen by equity holders to
maximize their own value. The value function is given by

W ∗(p, v) = sup
τ0∈T0

E
[∫ τ0

0

e−rt(P (t) − ηV (t))dt + e−rτ0V (τ0)

]
, (2)

where T0 denotes the set of admissible stopping times in [0,∞).
In order to preclude arbitrage opportunities, it is well known that the following

equilibrium condition must hold:

rW ∗ = p − ηv + E
[
dW ∗

dt

]
.

Hence, applying Ito’s formula, we obtain the partial differential equation (PDE for
short)

AW ∗(p, v) + p − ηv = 0, (3)

where the partial differential operator A is defined by

AW ∗(p, v) =
1

2
p2σ2

pW
∗
pp +

1

2
v2σ2

vW
∗
vv + pvσpσvρW ∗

pv + µppW
∗
p + µvvW ∗

v − rW ∗. (4)

Note that the PDE (3) has no constant term and the payoff can be represented
in terms of p/v only. Hence, we can find the value function W ∗(p, v) analytically
by using the change-of-variable z = p/v. The proof of the next result is standard;
however, for the reader’s convenience, we provide a concise proof in Appendix A.1.

7It is an interesting problem to discuss the M&A under the assumption that raiders choose
the acquisition timing so as to maximize their return under imperfect competition. We leave this
interesting problem as a future work.
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Proposition 1 (Pure Equity Firm) The value function of the pure equity firm
is given by

W ∗(p, v) =


p

r − µp

− ηv

r − µv

+
(r − µv + η)v

(1 − λ)(r − µv)

( p

b∗v

)λ

, for
p

v
> b∗,

v, for
p

v
≤ b∗,

(5)

where λ is the negative root of the quadratic equation

1

2
σ2

zλ(λ − 1) + (µp − µv)λ − (r − µv) = 0

with σ2
z = σ2

p + σ2
v − 2ρσpσv. The optimal liquidation time is obtained as

τ ∗
0 = inf{t ≥ 0 : P (t)/V (t) ≤ b∗},

where the liquidation threshold is given by

b∗ =
λ

λ − 1

r − µp

r − µv

(r − µv + η). (6)

The variable z = p/v can be interpreted as the return on tangible assets (ROTA).
According to Proposition 1, the pure equity firm will continue its operation as long
as ROTA stays above the threshold b∗. When ROTA goes down to the threshold b∗,
the pure equity firm is liquidated and equity holders receive the value v of tangible
assets.

2.3 Equity Value of the Levered Firm

This section derives the equity value of the levered firm under Assumption 1. In
our setting, equity holders can select one of the two stopping times, default time
τ1 or liquidation time τ2, so as to maximize their equity value. Recall from the
second statement in Assumption 1 that equity holders can repay the collateral to
debt holders and receive the residual upon liquidation. On the other hand, they will
receive nothing if the firm is defaulted.

In order to make the difference between the levered firm and the pure equity
firm explicit, we denote the value functions of the levered firm by using a hat.8

For example, the equity value of the levered firm is denoted by F̂ (p, v). Under
Assumption 1, the equity value is given by

F̂ (p, v) = sup
τ1,τ2∈T

E
[∫ τ1∧τ2

0

e−rt(P (t) − ηV (t) − c)dt

+ 1{τ1>τ2}e
−rτ2 max {V (τ2) − C(τ2), 0}

]
, (7)

where c denotes the coupon payment and T the set of admissible stopping times
in [0,∞) × [0,∞). Note that the optimal stopping times are chosen by looking at

8In the next section, we shall denote the value functions of a levered firm with the possibility
of debt renegotiation with no accent marks.
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the state variables (P, V ). Also, since liquidation is selected only when the payoff is
greater than that of default, we obtain

max {V (τ2) − C(τ2), 0} = V (τ2) −
c

r
> 0. (8)

Note that, if V (τ2) − c/r = 0, this means default.
Because the underlying process (P, V ) is homogeneous both in time and in space

and the value function is given by (7), we can divide the whole state space (0,∞)×
(0,∞) of (P, V ) into the three mutually exclusive regions: ordinary operation Ĉ,
default D̂ and liquidation L̂. Associated with each region is the PDE satisfied by
the value function F̂ (p, v). That is,

F̂ (p, v) = v − c

r
, for (p, v) ∈ L̂,

AF̂ (p, v) + p − ηv − c = 0, for (p, v) ∈ Ĉ,

F̂ (p, v) = 0, for (p, v) ∈ D̂,

(9)

where A is the operator defined by (4).
The three regions in Equation (9) are not yet determined. In other words, we

must determine the boundaries between Ĉ and L̂ and between Ĉ and D̂ simultane-
ously when we solve the PDE (9). Hence, our problem is the so-called free-boundary
problem in the two-dimensional setting.

It is well known (see, e.g., Fleming and Soner, 1993) that a function satisfying
the PDE (9) as well as the value-matching and smooth-pasting conditions is the
value function F̂ (p, v). More specifically, denote the boundary between Ĉ and L̂ by
B̂CL. Then, the value-matching condition is given by

F̂ (p, v) = v − c

r
, (p, v) ∈ B̂CL, (10)

and the smooth-pasting condition is stated as

F̂p(p, v) = 0, F̂v(p, v) = 1, (p, v) ∈ B̂CL.

For the boundary B̂CD between Ĉ and D̂, the following conditions hold:

F̂ (p, v) = 0, F̂p(p, v) = 0, F̂v(p, v) = 0, (p, v) ∈ B̂CD. (11)

The PDE (9) must be solved under these conditions.
The difficulty to solve the PDE (9) arises in our setting. Because of the constant

coupon rate c, we cannot apply the change-of-variable method, z = p/v, which was
successfully used in the pure equity case (i.e., c = 0). In the following numerical
examples, we solve the PDE (9) with value-matching and smooth-pasting conditions
by using a finite difference method. To this end, it is helpful to obtain the boundary
conditions for F̂ (p, v) when p and/or v tend to either 0 or infinity. The importance
of these results in the numerical analyses will become clear later.
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2.3.1 The case that p and/or v are sufficiently large

Suppose that p and/or v are sufficiently large. Then, because the coupon rate c is a
constant, c/p and/or c/v can become negligible, and the PDE (9) coincides asymp-
totically with the PDE (3) of the pure equity case. Hence, the value function F̂ (p, v)
is asymptotically given by (5) in Proposition 1 and the boundary B̂CL approaches
to b∗ for large v and/or p.

2.3.2 The case that v → 0

Suppose that the value function F̂ (p, v) is sufficiently smooth. Then, when v → 0, it
follows from the PDE (9) that the function F̂ (p, 0+) satisfies the ordinary differential
equation (ODE for short)

1

2
σ2

pp
2F̂pp + µppF̂p − rF̂ + p − c = 0.

This is so, because equity holders receive the dividend p, pay the coupon c, and
no maintenance cost ηV , when the tangible asset value v becomes negligible. Also,
liquidation never occurs, while default occurs when p goes down to some threshold
K̂. The next result is standard and the proof is omitted.

Proposition 2 As v → 0, the equity value F̂ (p, 0+) of the levered firm is given by

F̂ (p, 0+) =


p

r − µp

− c

r
+

c

r(1 − β)

(
p

K̂

)β

, for p > K̂,

0, for p ≤ K̂,

where the default threshold is given by

K̂ =
β

β − 1
(r − µp)

c

r
,

and β is the negative root of the characteristic quadratic equation

1

2
σ2

pβ(β − 1) + µpβ − r = 0. (12)

2.3.3 The case that p → 0

As p → 0, it follows from the PDE (9) that the function F̂ (0+, v) satisfies the ODE

1

2
σ2

vv
2F̂vv + µvvF̂v − rF̂ − ηv − c = 0. (13)

This is so, because equity holders pay the coupon c and the maintenance cost ηv,
even though earnings are zero (i.e., EBIT p → 0).

Note that, in this case, equity holders do not only wait for default, but can also
receive the positive residual asset value by liquidating the firm and repaying the
debt, if the value of tangible assets, V , is sufficiently high. That is, equity holders
either liquidate the firm, if V goes up to some upper threshold Û , or default the firm
at some lower threshold L̂. The proof of the next result is given in Appendix A.2.
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Proposition 3 As p → 0, the equity value F̂ (0+, v) of the levered firm is given by

F̂ (0+, v) =


v − c

r
, for v ≥ Û ,

A1v
γ1 + A2v

γ2 − ηv

r − µv

− c

r
, for L̂ < v < Û,

0, for v ≤ L̂,

where the default threshold L̂ and the liquidation threshold Û are given, respectively,
by

L̂ =
γ1c

r

/{
k1−γ2(γ1 − 1)

(
r − µv + η

r − µv

)
− η(γ1 − 1)

r − µv

}
, Û = kL̂, (14)

with k > 1 being the root of the equation

γ2(γ1 − 1)k1−γ2 − γ1(γ2 − 1)k1−γ1 =
η(γ1 − γ2)

r − µv + η
. (15)

Here, γ1 < 0 and γ2 > 1 are the roots of the characteristic quadratic equation

1

2
σ2

vγ(γ − 1) + µvγ − r = 0,

and the coefficients A1 and A2 are given, respectively, by

A1 =
L̂−γ1

γ2 − γ1

(
ηL̂(γ2 − 1)

r − µv

+ γ2
c

r

)
, A2 =

L̂−γ2

γ1 − γ2

(
ηL̂(γ1 − 1)

r − µv

+ γ1
c

r

)
.

2.4 Debt and Firm Values of the Levered Firm

As stated in Assumption 1, debt holders receive coupon payments c until either
default epoch τ1 or liquidation time τ2, whichever happens first. If equity holders
decide to liquidate before defaulting the firm, debt holders receive the face value c/r
at τ2 from Equation (8). On the other hand, if equity holders decide to default the
firm, debt holders will take over the firm at τ1 and the firm becomes a pure equity
firm. The debt holders will then receive the profit ξp, where ξ < 1 is the efficiency
loss of EBIT p, until they liquidate the firm at time τ3. The liquidation time τ3 is
determined so as to maximize the value of the pure equity firm.

More specifically, let X(p, v) represent the value of the firm taken over by debt
holders, when P (0) = p and V (0) = v. Because the firm is a pure equity firm, we
can find X(p, v) analytically as

X(p, v) = sup
τ3∈T0

E
[∫ τ3

0

e−rt(ξP (t) − ηV (t))dt + e−rτ3V (τ3)

]
, (16)

=


ξp

r − µp

− ηv

r − µv

+
(r − µv + η)v

(1 − λ)(r − µv)

(
p

bv

)λ

, for
p

v
> b,

v, for
p

v
≤ b,

(17)
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where λ is given as in Proposition 1 and the liquidation threshold is given by

b =
λ

λ − 1

r − µp

r − µv

r − µv + η

ξ
, (18)

which should be compared with the threshold given in (6). The debt value is now
obtained as

D̂(p, v) = sup
τ3∈T0

E
[∫ τ1∧τ2

0

e−rtcdt + 1{τ1>τ2}e
−rτ2

c

r

+ 1{τ1≤τ2}

(∫ τ3

τ1

e−rt(ξP (t) − ηV (t))dt + e−rτ3V (τ3)

)]
= E

[∫ τ1∧τ2

0

e−rtcdt + 1{τ1>τ2}e
−rτ2

c

r
+ 1{τ1≤τ2}e

−rτ1X(P (τ1), V (τ1))

]
.

Of course, the debt value D̂(p, v) satisfies the following PDE:
D̂(p, v) =

c

r
, for (p, v) ∈ L̂,

AD̂(p, v) + c = 0, for (p, v) ∈ Ĉ,

D̂(p, v) = X(p, v), for (p, v) ∈ D̂.

(19)

Since the boundaries are known, this is not a free-boundary problem and can be
solved numerically by, e.g., the ordinary finite difference method. To do that, how-
ever, it is helpful to have analytical formulas for its boundary values as v, p → 0.
The next result is similar to Propositions 2 and 3, and the proof is omitted.

Proposition 4 As v → 0, the debt value is obtained as

D̂(p, 0+) =


c

r
− (ξ − 1)β + 1

1 − β

c

r

(
p

K̂

)β

, for p > K̂,

ξp

r − µp

, for p ≤ K̂,

where β and the default threshold K̂ are given as in Proposition 2. As p → 0, the
debt value is given by

D̂(0+, v) =


c

r
, for v ≥ Û ,

c

r
+ B1v

γ1 + B2v
γ2 , for L̂ < v < Û,

v, for v ≤ L̂,

where

B1 =
L̂ − c/r

L̂γ1 − L̂γ2Ûγ1−γ2

, B2 = −B1Û
γ1−γ2 ,

and where γi, i = 1, 2, the default threshold L̂, and the liquidation threshold Û are
given as in Proposition 3.
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Finally, the value of the levered firm is obtained as

Ŵ (p, v) = F̂ (p, v) + D̂(p, v)

= E
[∫ τ1∧τ2

0

e−rt(P (t) − ηV (t))dt + 1{τ1≤τ2}e
−rτ1X(P (τ1), V (τ1))

+ 1{τ1>τ2}e
−rτ2V (τ2)

]
, (20)

where the stopping times τ1 and τ2 are selected by equity holders and τ3 by debt
holders. When p → 0 or v → 0, we obtain closed-form solutions for Ŵ (p, v).

Proposition 5 As v → 0, the firm value is obtained as

Ŵ (p, 0+) =


p

r − µp

− (ξ − 1)β

1 − β

c

r

(
p

K̂

)β

, for p > K̂,

ξp

r − µp

, for p ≤ K̂,

where β and the default threshold K̂ are given as in Proposition 2. As p → 0, the
firm value is given by

Ŵ (0+, v) =


v, for v ≥ Û ,

− ηv

r − µv

+ (A1 + B1)v
γ1 + (A2 + B2)v

γ2 , for L̂ < v < Û,

v, for v ≤ L̂,

where the coefficients B1, B2 are given as in Proposition 4, and where γi, i = 1, 2,
the default threshold L̂, the liquidation threshold Û , and the coefficients A1, A2 are
given as in Proposition 3.

Remark 1 If we assume a tax benefit for coupon payments, we can consider the
optimal capital structure of the firm as in Leland (1994), where the optimal coupon
level is selected so as to maximize the firm value Ŵ (p, v). However, since the
boundaries BCL and BCD depend on the model parameters such as coupon rate
c, in order to obtain the optimal capital structure of the firm, we need to solve the
free-boundary problem repeatedly until the firm value is maximized with respect to
the coupon rate c. This is not an easy numerical problem, although not impossible.

2.5 Numerical Analyses

We solve the PDE (9) with value-matching and smooth-pasting conditions (10)–
(11) by using the finite difference method explained in Appendix C. Unless stated
otherwise, we take 750×750 meshes9 with equal spaces on the state space [0, 1]×[0, 1]
for the transformed variables (x, y); see (C.3). The numerical procedure is very
stable.

9The algorithm presented in Appendix C is iterative, so that the required CPU time is propor-
tional to the number of meshes N2, where N is the number of partitions in each axis.
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Table 1: Base Parameters
σp σv µp µv ρ η ξ r c

30% 15% 4% 2% 0.7 1% 0.7 6% 8%

The base parameters used in the numerical examples are given in Table 1. Cal-
culation results of the default and liquidation boundaries are depicted in Figure 1,
where the horizontal and vertical axes represent p/(r − µp) and v, respectively.10

[Figure 1 is inserted around here.]

In Figure 1, the dashed line represents the straight line p/v = b∗ and the chained
line represents the straight line p/v = b. While a pure equity firm is liquidated in
the region above the line p/v = b∗, debt holders liquidate their firm above the line
p/v = b, if they have become new owners of the firm. Note from Equations (6)
and (18) that b < b due to the efficiency loss ξ < 1 of EBIT. Moreover, the area
surrounded by the curve in the top-left (bottom-left, respectively) corner represents
the liquidation region L̂ (default region D̂). The other area represents the ordinary
operating region Ĉ. We recognize the liquidation region L̂ to be in the top-left
corner from Proposition 3. Similarly, the default region D̂ is located in the bottom-
left corner because of the results in Propositions 2 and 3. The point c/r = 1.3333
is added on the v-axis. Note that Û = 1.4693 and L̂ = 1.2220 on the v-axis, and
K̂ = 0.01397 on the p-axis in the case of base parameters given in Table 1.

2.5.1 Comparison with the one-factor case

As explained in Appendix B, our model is a bivariate counterpart of the model
considered in Mella-Barral and Perraudin (1997). In order to make the significance
of our extension clearer, we compare the boundaries and possible sample paths in
the two models, and discuss how default and liquidation occur differently.

Figure 2 depicts the calculation results of the one-factor model (see Appendix B),
where we set w = 0 and the other parameters are chosen from Table 1. Although
v is just a parameter in the one-factor case, we depict the figure on the (p, v)-plane
for the sake of comparison. Similar to Figure 1, the dashed and chained lines in
Figure 2 represent the straight lines p/v = b∗1 and p/v = b1, respectively. These
straight lines have different slopes, i.e., b∗ 6= b∗1 and b 6= b1, due to the effect of
correlation ρ and volatility σv of the stochastic collateral V . However, we know that
K̂ = K̂1 if w = 0 and the boundaries Û and L̂ converge to c/r as σv → 0. Of course,
all the boundaries in Figure 1 converge to those depicted in Figure 2. As a result,
the default region D̂1 in the one-factor model becomes a rectangular and the gap
between D̂1 and L̂1 (liquidation region) disappears.

[Figure 2 is inserted around here.]

10To make the boundaries smooth enough, we take 1, 000 × 1, 000 meshes with equal spaces for
the calculation of Figures 1, 10 and 19. All the figures in this paper are plotted on the (p, v)-plane
with the horizontal axis p/(r − µp), the net present value of future EBIT.
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In Figures 1 and 2, we add typical sample paths of the process (P, V ) in order to
explain the default/liquidation mechanism in the two models. Note that the sample
paths in Figure 1 start from the same initial value (p, v), while the process P in
the one-factor model can move only on the pre-specified horizontal line for a given
initial value v.

To be more specific, in the one-factor model (see Figure 2), typical sample paths
are the following. Starting from the operating region Ĉ1 with different value of v;

1. The process P hits the default region D̂1 before crossing the line p/v = b1. In
this case (sample path (a’)), equity holders default and debt holders take over
the firm. The firm is operated as a pure equity firm with suffering the efficiency
loss ξ of EBIT. After some time, the firm is liquidated when the process P
hits the line p/v = b1. Note that, if the firm started as a pure equity firm,
liquidation would occur at the line p/v = b∗1. Since b1 < b∗1 due to the efficiency
loss ξ < 1, the firm taken over by debt holders will be liquidated earlier than
the hypothetical pure equity firm. This phenomenon is often called an early
liquidation.

2. The process P first crosses the line p/v = b1 and then touches the default
region D̂1. In this case (sample path (b’)), equity holders default and debt
holders liquidate the firm immediately (they do not take over the firm). Since
liquidation occurs before the process P crosses the line p/v = b∗1, it is also an
early liquidation.

3. The process P touches the line p/v = b∗1 first since v > c/r (i.e., the debt is
safe). In this case (sample path (c’)), equity holders liquidate tangible assets
and repay the face value of debt to debt holders in order to receive the residual.

Hence, there exist only three patterns depending on the initial parameter values,
and we know a priori which pattern will occur by looking at the parameters.

In contrast to the one-factor case, there are more patterns in our model and each
pattern occurs stochastically, depending on the sample paths of the process (P, V ).
For example (see Figure 1), starting from the same point (p, v) in the operating
region Ĉ;

1. The process (P, V ) hits the default region D̂ below the line p/v = b. In this
case (sample path (a)), equity holders default and debt holders take over the
firm. Later, the firm is liquidated when the process (P, V ) crosses the line
p/v = b, whence it is an early liquidation.

2. The process (P, V ) hits the default region D̂ above the line p/v = b. In
this case (sample paths (b) and (d)), equity holders default and debt holders
liquidate the firm immediately (they do not take over the firm). If liquidation
occurs before the process (P, V ) crosses the line p/v = b∗ (sample path (b)),
it is an early liquidation. On the other hand, if liquidation occurs beyond the
line p/v = b∗ (sample path (d)), it is a late liquidation.

3. The process (P, V ) hits the liquidation region L̂ before visiting the default
region D̂. In this case (sample path (c)), equity holders liquidate tangible
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assets and repay the face value of debt to debt holders in order to receive the
residual. Since this pattern occurs after the process crosses the line p/v = b∗,
it is a late liquidation.

In the one-factor model such as Mella-Barral and Perraudin (1997) and Mella-
Barral (1999), there is a possibility that the Modigliani–Miller theorem hold. In
particular, if ξ = 1 in Mella-Barral and Perraudin (1997), the firm value is unchanged
when debt is issued. However, in our model, this is not the case because of the
possibility of liquidation (sample path (c)). That is, the Modigliani–Miller theorem
cannot hold for any parameter set in our model.

To see this, compare Equation (2) with Equations (16) and (20). Then, we
recognize that the difference between W ∗(p, v) and Ŵ (p, v) comes not only from the
difference between τ0 and τ3 but also from the difference between τ0 and τ2. While
the former difference is due to the efficiency loss ξ < 1 of EBIT after debt holders
take over the firm, the latter appears because liquidation selected by equity holders
does not maximize the total firm value. Hence, if ξ = 1, we have τ0 = τ3; however,
this does not ensure τ0 = τ2, because equity holders can select liquidation for their
own. Therefore, as far as the possibility of liquidation (sample path (c)) exists, the
firm value decreases when debt is issued, i.e., W ∗(p, v) > Ŵ (p, v).

2.5.2 Significance of tangible assets

As we have seen through the comparison of the two models, equity holders in our
model have two options, either to default or to liquidate the firm, and which option
is exercised is determined by the sample paths of the underlying process, i.e., it
will happen stochastically. Also, our model admits both early and late liquidations,
irrespective of the starting point. Note that these flexibilities are not possible in the
one-factor case.

Besides these merits, we can also point out other important features in our model.
For example, sample path (d) possibly occurs only when the value of tangible assets
is stochastic. To see this, as the volatility σv of tangible assets tends to zero, the
gap between default region D̂ and liquidation region L̂ beyond the line p/v = b∗

shrinks and diminishes. In fact, as we shall see later, sample path (d) can represent
liquidity default when debt renegotiation is possible.

When the value of tangible assets is sufficiently high and the EBIT is substan-
tially low, our model selects liquidation (see sample path (d) in Figure 1). As stated
in Assumption 2, the liquidation is induced by M&A (usually in declining indus-
tries). Note that the asset value V fluctuates even after the M&A, depending on
economic circumstances. It is possible that V becomes worthless before the EBIT
is improved, resulting in a failure of M&A. Hence, our model can explain M&A
undertaken primarily for liquidation and the possibility of its failure.

Finally, suppose that the value of tangible assets is somewhere in the gap, i.e., the
firm is in operation due to enough collaterals although the earnings are substantially
low. Then, it is possible for equity holders to supply short-term funds by increase in
capital despite of the low earnings. Note that, in the existing literature, the incentive
of increase in capital is limited to high earnings and continuation of renegotiation. In
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reality, however, firms with enough collaterals have incentives to increase in capital,
as our model suggests.

2.5.3 Numerical evaluation of security values

Figure 3 shows the equity value F̂ (p, v) as a function of tangible asset value, v, and
the net present value of future EBIT, p/(µp − r). The lines with squares and circles
on the (p, v)-plane plot the optimal default and liquidation boundaries, respectively.
Since equity holders select these boundaries so as to maximize the equity value, we
observe that the equity value is a convex function of (p, v).

[Figure 3 is inserted around here.]

On the other hand, Figure 4 depicts the debt value D̂(p, v). Since we have already
derived the boundaries, the debt value can be calculated by solving the PDE (19)
using the ordinary finite difference method.11 Note from Proposition 4 that both
D̂(p, 0) and D̂(0, v) in the region Ĉ are strictly concave.12 However, the debt value
D̂(p, v) is not concave with respect to (p, v) in the region Ĉ. This is so, because from
(20) we can rewrite the total firm value as

Ŵ (p, v) =
p

r − µp

− ηv

r − µv

+ E
[
1{τ1≤τ2}e

−rτ1

(
X(P (τ1), V (τ1)) −

∫ ∞

τ1

e−rt(P (t) − ηV (t))dt

)
+ 1{τ1≥τ2}e

−rτ2

(
V (τ2) −

∫ ∞

τ2

e−rt(P (t) − ηV (t))dt

)]
.

Hence, as observed by Leland (1994), the firm value Ŵ (p, v) consists of the three
terms: the value of business assets (EBIT), the value of default costs, and the value
of option to default/liquidate. Recall that equity holders possess options to default
or to liquidate, while debt holders do not. Hence, by a similar manner to Leland
(1994), we observe that the debt value can be concave and convex, depending on
the domain of the state variables (p, v). In fact, the debt value is equal to X(p, v),
which is convex in the region D̂, as given in Equation (17).

[Figure 4 is inserted around here.]

Finally, Figure 5 shows the credit spread c/D̂(p, v) − r. The numbers labeled
on the contour lines represent the credit spreads (bp). The solid and dash-dotted
curves plot the optimal default and liquidation boundaries, respectively. The solid

11Again, we employ the change-of-variable technique (C.3) and perform the finite difference
method for the transformed PDE. Although this is not a free-boundary problem, we employ the
successive over-relaxations method, because the PDE (19) is elliptical and the system of equations
produced by discretization has huge unknowns.

12As Black and Scholes (1973) observed, stock is a call option written on the firm’s asset with
exercise price being equal to the face value of the outstanding debt. The value of debt is equal to
the value of firm minus the value of stock. In this case, the concavity of debt value results from
the convexity of equity value.
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and dotted lines depict the straight lines p/v = b∗ and p/v = b, respectively. The
parameters are taken from Table 1. It is observed that a firm with few tangible
assets has high credit spreads even if its EBIT is large. Also, even if a firm has
enough tangible assets to secure the debt principle c/r, its debt is not risk-free,
because the value of tangible assets is stochastic. Note that the credit spreads are
constant with respect to p in the region that debt holders decide to liquidate after
they take over the firm.

[Figure 5 is inserted around here.]

2.5.4 Agency problems

Jensen and Meckling (1976) argue that equity holders like to make the firm’s activi-
ties riskier, ceteris paribus, so as to increase the equity value at the expense of debt
value. Because our model has two sources of risk that affect the values of securities
and the debt value is not necessarily concave as shown in the previous section, it is
particularly important to investigate the impact of risk shifting on equity and debt
values.

First, we consider the impact of EBIT volatility σp (business risk) on the equity
value. Figure 6 illustrates the impact of σp on its percentage change, i.e.,

F̂ (p, v|σp = 0.4) − F̂ (p, v|σp = 0.3)

F̂ (p, v|σp = 0.3)
,

which shows the equity holders’ incentive to raise the business risk σp. As suggested
by Jensen and Meckling (1976), equity holders have a strong incentive to raise the
business risk even on the brink of default in our model.

[Figure 6 is inserted around here.]

On the other hand, Figure 7 depicts the impact of σp on the percentage change
of debt value, i.e.,

D̂(p, v|σp = 0.4) − D̂(p, v|σp = 0.3)

D̂(p, v|σp = 0.3)
,

which shows the debt holders’ incentive to raise the business risk σp. Since eq-
uity is a residual claim, equity holders gain from the fall of debt value (the asset
substitution problem), if the firm value is unchanged. This problem occurs in the
bottom-right corner in Figures 6 and 7, although we cannot see it in other areas.
In our model, equity holders gain by risk shifting, not because debt holders lose
their value, but because the firm value Ŵ (p, v) increases. Note that, at the brink
of default with v being less than unity, both equity holders and debt holders wish
to increase the business risk. This anomaly is also observed in Leland (1994). The
reason is that the default boundary changes as σp changes, and debt holders wish to
be far away from default boundary by increasing the business risk. As we shall see
later, this phenomenon has an important role in the analysis of risk shifting when
debt renegotiation is considered.

[Figure 7 is inserted around here.]
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Next, we consider the impact of tangible asset volatility σv (collateral risk) on
equity value. Figure 8 shows the impact of σv on its percentage change, i.e.,

F̂ (p, v|σv = 0.25) − F̂ (p, v|σv = 0.15)

F̂ (p, v|σv = 0.15)
.

We observe that equity holders have a strong incentive to increase risk σv at the
brink of default, while they have no incentive when the level of EBIT is sufficiently
high. This is so, because the equity value is almost linear with respect to p when p is
large. Note that the impact of σp on equity value is especially high in the right side
of the default boundary in Figure 6, while the impact of σv is especially high above
the default boundary in Figure 8. Hence, on the corner of the default boundary,
equity holders have much incentive to raise both risks σp and σv.

13

[Figure 8 is inserted around here.]

Figure 9 shows the impact of σv on the percentage change of debt value, i.e.,

D̂(p, v|σv = 0.25) − D̂(p, v|σv = 0.15)

D̂(p, v|σv = 0.15)
.

Unlike Figure 7, debt holders lose their value in the whole region. Note that anomaly
at the brink of default does not occur in this risk shifting. This might be a result
from the fact that the increase in σv raises the optimal liquidation boundary, which
guarantees debt holders to receive the full amount of face value.14

[Figure 9 is inserted around here.]

3 Pricing with Renegotiation

In this section, we consider the possibility of debt renegotiation as in Anderson and
Sundaresan (1996) and Mella-Barral and Perraudin (1997). That is, suppose that
debt holders and equity holders can renegotiate about coupon payments each other.
Throughout this section, we assume that equity holders have full bargaining power,
unless stated otherwise. In the word of Mella-Barral and Perraudin (1997), equity
holders can make the ‘take-it-or-leave-it’ offer to debt holders.

Let s(p, v) denote the service flow function, when strategic debt service is per-
formed. This means that equity holders can offer debt holders a discount of coupon
payments instead of default. The offered coupon rate in the state (p, v) is repre-
sented by the function s(p, v), which is determined by equity holders, because they
have full bargaining power. It is assumed that the service flow function is piecewise
right-continuous.

13The impact of σv is negative at the default boundary with v ≤ 0.5. This is so, because the
boundaries for σv = 0.15 and σv = 0.25 cross each other and the equity value for σv = 0.25
decreases.

14Similar to Figure 8, the reason why the impact of σv is negative is that the boundaries for
σv = 0.15 and σv = 0.25 cross each other and the debt value for σv = 0.25 decreases.
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Under the possibility of debt renegotiation, the equity and debt values are dif-
ferent from those without renegotiation. We denote by F (p, v) and D(p, v), respec-
tively, the equity and debt values under renegotiation. Recall that X(p, v) represents
the equity value after debt holders take over the firm.

As default approaches, the debt value D(p, v) becomes strictly larger than X(p, v).
Equity holders exploit the difference and offer a discount of coupon until D(p, v) be-
comes equal to X(p, v). Because debt holders have no bargaining power, they must
accept this offer. Hence, the service flow function s(p, v) is determined such that
D(p, v) = X(p, v). See Mella-Barral and Perraudin (1997) for details.

As before, we define the three mutually exclusive regions in (p, v): ordinary
operation C, default D, and liquidation L. In addition, we need to define the region
in which equity holders carry out the strategic debt service. This region is denoted
by S, which is disjoint from the other regions. Hence, under the possibility of debt
renegotiation, we have four mutually exclusive regions, C, D, L and S. When the
process (P, V ) is in C, equity holders pay the contractual coupon c. Once (P, V )
hits the region S, equity holders offer a discount of coupon instead of default. After
that, equity holders default when (P, V ) reaches the region D. Summarizing, we
assume the following for the case of debt renegotiation.

Assumption 3 (Strategic Debt Service) If equity holders can make the ‘take-
it-or-leave-it’ offer to debt holders regarding debt service, then there exist two mutu-
ally exclusive regions S and D such that:

1. Default occurs when the process (P, V ) first hits the region D,

2. For all (p, v) ∈ S, we have s(p, v) < c so that D(p, v) = X(p, v),

3. For all (p, v) ∈ C, we have s(p, v) = c.

We note that there is still a possibility of liquidation even in the presence of
debt renegotiation, because equity holders want to liquidate the firm before default
if the tangible asset value V is sufficiently high. This is a significant difference in
our model from Mella-Barral and Perraudin (1997). Also, from Assumption 3 and
Equation (17), the service flow function s(p, v) must be given by

s(p, v) =


c, for (p, v) ∈ C,

ξp − ηv, for (p, v) ∈ S1 := S ∩ {p/v > b},
(r − µv)v, for (p, v) ∈ S2 := S ∩ {p/v ≤ b},

(21)

in order to ensure the equality D(p, v) = X(p, v), where b is given by (18). Note
that the renegotiation region S is divided into two sub-regions S1 and S2.

3.1 Debt and Equity Values

As before, we denote the time of default by τ1 and the time of liquidation by τ2.
In the presence of debt renegotiation, debt holders will receive coupon payments
s(p, v) until either default epoch τ1 or liquidation time τ2, whichever happens first.
If equity holders decide to liquidate the firm before default, debt holders receive
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the face value c/r at the liquidation time τ2. If they decide to default, the firm
is taken over by debt holders. The strategic debt service is performed while the
process (P, V ) stays in the region S. Hence, the equity and debt values are given,
respectively, by

F (p, v) = sup
τ1,τ2∈T

E
[∫ τ1∧τ2

0

e−rt(P (t) − ηV (t) − s(P (t), V (t)))dt

+ 1{τ1>τ2}e
−rτ2

(
V (τ2) −

c

r

)]
,

and

D(p, v) = E
[∫ τ1∧τ2

0

e−rts(P (t), V (t))dt + 1{τ1>τ2}e
−rτ2

c

r

+ 1{τ1≤τ2}e
−rτ1X(P (τ1), V (τ1))

]
,

where T denotes the set of admissible stopping times in [0,∞) × [0,∞).
It is well known that the equity value F (p, v) satisfies the PDE

F (p, v) = v − c

r
, for (p, v) ∈ L,

AF (p, v) + p − ηv − c = 0, for (p, v) ∈ C,

AF (p, v) + (1 − ξ)p = 0, for (p, v) ∈ S1,

AF (p, v) + p − (η + r − µv)v = 0, for (p, v) ∈ S2,

F (p, v) = 0, for (p, v) ∈ D,

(22)

where the partial differential operator A is defined in (6). Because the boundaries
between the regions are not known in advance, the problem to solve the PDE (22)
is a free-boundary problem.

Note again that the second equation in (22) has no closed-form solution due to
the constant term c. In contrast, the fourth equation has a closed-form solution and
the boundary BDS2 between S2 and D is determined by the corresponding value-
matching and smooth-pasting conditions. That is, applying the ordinary arguments,
we obtain

F (p, v) =
p

r − µp

− (η + r − µv)v

r − µv

+
(r − µv + η)v

(1 − λ)(r − µv)

( p

bv

)λ

, for (p, v) ∈ S2

where λ is given in Proposition 1 and the default threshold is

b =
λ

λ − 1

r − µp

r − µv

(r − µv + η),

which is the same as in (6), whence we obtain b = b∗. This means that the default
epoch is pushed back to the liquidation time of the pure equity firm in the presence
of debt renegotiation. This is so, because debt holders accept the take-it-or-leave-
it offer until they do not want to take over the firm. Hence, the boundary BDS2

between S2 and D is given by the straight line p/v = b∗. As soon as the process
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(P, V ) hits this boundary, debt holders stop the renegotiation and liquidate the firm
immediately.

Similarly, the third equation in (22) has a closed form solution and the boundary
BS1S2 between S1 and S2 is already known as in (21).15 Hence, we obtain

F (p, v) =
(1 − ξ)p

r − µp

+
(1 − ξλ)(r − µv + η)v

ξλ(1 − λ)(r − µv)

(
p

bv

)λ

, for (p, v) ∈ S1

where b is given by (18).
The boundary BCL (BCD, respectively) between L (D) and C should be obtained

as a part of the free-boundary problem for the first (fifth) and second equations in
(22). It remains to determine the boundary BCS between S = S1 ∪ S2 and C. This
boundary is selected by equity holders so as to minimize the debt value D(p, v),
where D(p, v) is equal to X(p, v) in the region S.16 Moreover, from the fact that
W (p, v) = F (p, v) + D(p, v) and the firm value W (p, v) is irrelevant to the existence
of debt renegotiation (see Equation (24)), minimization of D(p, v) is equivalent
to maximization of F (p, v). Therefore, the boundary BCS1 (BCS2 , respectively) is
obtained as a part of the free-boundary problem for the second and third (fourth)
equations in (22).

Next, the debt value D(p, v) satisfies the following PDE:
D(p, v) =

c

r
, for (p, v) ∈ L,

AD(p, v) + c = 0, for (p, v) ∈ C,

D(p, v) = X(p, v), for (p, v) ∈ S,

D(p, v) = v, for (p, v) ∈ D.

(23)

Given the boundaries that have been obtained by solving the free-boundary prob-
lem (22), the second equation must satisfy the value-matching condition to the other
equations on the boundaries.

Finally, the firm value is defined by W (p, v) = F (p, v)+D(p, v), so that it satisfies
the following PDE:

W (p, v) = v, for (p, v) ∈ L,

AW (p, v) + p − ηv = 0, for (p, v) ∈ (L ∪ D)c,

W (p, v) = v, for (p, v) ∈ D.

(24)

Here, the second equation must satisfy the value-matching condition to the other
equations on the boundaries.

As before, we solve the PDEs (22) and (23) numerically by using a finite difference
method. For this purpose, it is helpful to derive the value functions in closed form
for v, p → 0 and for sufficiently large p and/or v. Note that, because strategic debt
service is never performed for sufficiently large p and/or v, the value functions there
are the same as those without renegotiation.

15Of course, the boundary BS1S2 (straight line p/v = b) is derived by solving the corresponding
value-matching and smooth-pasting conditions of the third and fourth equations in (22).

16Mella-Barral and Perraudin (1997) derive the boundary BCS by using no-arbitrage arguments.
However, it can be readily verified that the no-arbitrage condition is equivalent to minimizing the
debt value.

21



3.1.1 The case that v → 0

Suppose that the value function F (p, v) is sufficiently smooth. Then, from (21),
there is some threshold K so that the service flow function is given by

s(p, 0+) =

{
c, for p > K,

ξp, for p ≤ K.

Also, from (22), the value function F (p, 0+) satisfies the following ODE for some
default threshold K̃:

1

2
σ2

pp
2Fpp(p, 0+) + µppFp(p, 0+) − rF (p, 0+) + p − c = 0, for p > K,

1

2
σ2

pp
2Fpp(p, 0+) + µppFp(p, 0+) − rF (p, 0+) + (1 − ξ)p = 0, for K̃ < p ≤ K,

F (p, 0+) = 0, for p ≤ K̃,

because liquidation never occurs from Proposition 2. Looking at the second and
third equations, we find that K̃ does not exist and default never occurs either.
Since the threshold K is selected by equity holders so as to maximize the equity
value F (p, 0+), this is a free-boundary problem.

Using the ordinary arguments, we then have the following.

Proposition 6 The equity value F (p, 0+) is obtained as

F (p, 0+) =


p

r − µp

− c

r
+

1

1 − β

c

r

( p

K

)β

, for p > K,

(1 − ξ)p

r − µp

, for p ≤ K,

where β is given as in Proposition 2 and the threshold is obtained as

K =
β

β − 1

r − µp

ξ

c

r
.

Note that, since equity holders never default the firm and K > K̂, renegotiation
occurs earlier than the default without renegotiation.

The debt value is obtained by the value-matching condition on the given threshold
K as

D(p, 0+) =


c

r
− 1

1 − β

c

r

( p

K

)β

, for p > K,

ξp

r − µp

, for p ≤ K.

Of course, the firm value is given by

W (p, 0+) = F (p, 0+) + D(p, 0+) =
p

r − µp

,

which coincides with the pure equity case.
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3.1.2 The case that p → 0

When p → 0, we know that there are thresholds U and L so that F (0+, v) = v − c
r

for v ≥ U and F (0+, v) = 0 for v ≤ L. That is, equity holders liquidate the tangible
assets when v ≥ U , while they choose default when v ≤ L. For L < v < U , suppose
that renegotiation is applicable. Then, from Equation (22), the service flow function
should be given by

s(0+, v) =

{
c, for v > M,

(r − µv)v, for v ≤ M,

for some M ∈ (L,U). However, when p → 0, the state (0+, v) for 0 < v ≤ M
automatically satisfies the condition p/v ≤ b∗, so that debt holders choose default
rather than renegotiation. This means that renegotiation is not applicable when
p → 0. These results are summarized in the next proposition.

Proposition 7 When p → 0, strategic debt service is not applicable, and the equity
value is the same as that given in Proposition 3. Of course, the debt and firm values
are unchanged and given by Propositions 4 and 5, respectively.

3.2 Numerical Analyses

In this section, we provide numerical examples to explain how strategic debt service
is performed. Figure 10 depicts the calculation results for the base case with pa-
rameters listed in Table 1, where the four regions (operating C, debt renegotiation
S, default D and liquidation L) are obtained by solving the free-boundary prob-
lem (22).17 As before, we employ the finite difference method with successive over-
relaxations in terms of the transformed variables (x, y) defined by Equation (C.3),
which are then converted back to the values of (p, v). Note the difference between
Figures 1 and 10. In Figure 10, the default region without renegotiation surrounded
by a curve in the bottom-left corner is divided into three parts: default region D
above the line p/v = b∗, renegotiation region S1 with service flow ξp− ηv below the
line p/v = b, renegotiation region S2 with service flow (r − µv)v between D and S1.
The other regions look similar, although they are not the same as before because of
the possibility of debt renegotiation.

[Figure 10 is inserted around here.]

As in Figure 1, the dashed and chained lines in Figure 10 represent the straight
lines p/v = b∗ and p/v = b, respectively. The points c/r = 1.3333, Û = 1.4693 and
L̂ = 1.2220 on the v-axis and the point K = 0.01996 on the p-axis are also appended
there.

As before, in Figure 10, we add typical sample paths of the process (P, V ) in
order to explain the renegotiation/default/liquidation mechanism in our model. For
example, starting from a point (p, v) in the operating region C;

17These regions are recognized based on the results in Propositions 6 and 7.
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1. The process (P, V ) hits the region S1 before default and liquidation. In this
case (sample path (a)), equity holders offer the service flow ξp − ηv and debt
holders accept it. The firm is operated by equity holders. After that, the
service flow may change to (r − µv)v when the process (P, V ) hits the line
p/v = b. Moreover, the firm may be liquidated by debt holders if the process
(P, V ) hits the line p/v = b∗. If the process (P, V ) returns to the region C, the
service flow goes back to the contractual coupon c and the debt renegotiation
is reset.

2. The process (P, V ) first crosses the line p/v = b and then hits the region S2. In
this case (sample path (b)), equity holders offer the service flow (r−µv)v and
debt holders accept it. After that, the firm may be liquidated if the process
(P, V ) hits the line p/v = b∗. If the process (P, V ) returns to the region C, the
service flow goes back to c and the debt renegotiation is reset.

3. The process (P, V ) first crosses the line p/v = b∗ and then hits the liquidation
region L without visiting the default region D. In this case (sample path (c)),
equity holders liquidate tangible assets and repay the face value of debt to
debt holders. Since liquidation occurs above the line p/v = b∗, it is a late
liquidation.

4. The process (P, V ) first crosses the line p/v = b∗ and then hits the default
region D without visiting the liquidation region L. In this case (sample path
(d)), equity holders default and debt holders liquidate the firm immediately.
Since liquidation occurs above the line p/v = b∗, it is a late liquidation.

3.2.1 Significance of tangible assets

First, our model admits a late liquidation, because there is an operating region
beyond the line p/v = b∗ between default region D and liquidation region L. Recall
that this gap shrinks and diminishes as the volatility σv of tangible assets tends to
zero.

The gap between default and liquidation regions can also produce the possibility
of liquidity default. As Hart and Moore (1994, 1998) emphasize, it is important to
distinguish liquidity default from strategic default. While strategic default occurs
when the firm fails to pay full amount of debt service in debt contract even though
it possesses the resource to do so, liquidity default occurs when the firm’s cash flows
are insufficient to cover the debt service. In our model, default following sample path
(d) in Figure 10 corresponds to liquidity default, because default occurs when the
value of tangible assets is relatively high and the EBIT is substantially low. In this
case, the firm must pay a high maintenance cost for the tangible assets despite of
the low earnings, so that equity holders cannot afford to carry out the debt contract,
resulting in liquidity default. Our model can treat strategic and liquidity defaults
within the same framework.

Note that one-factor models can produce only strategic default, but not liquidity
default (see Figure 2). Also, as sample path (c) ((d), respectively) suggests, equity
holders may default (liquidate) the firm without offering the strategic debt service
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in our model. This behavior does not appear in the framework of Mella-Barral and
Perraudin (1997).

3.2.2 Contribution of strategic debt service to credit spreads

Using numerical examples, we investigate how much strategic debt service con-
tributes to credit spreads. Recently, Davydenko and Strebulaev (2007) showed that
(i) the corporate bond prices are affected by the possibility of renegotiation, espe-
cially when the costs of liquidation are likely to be high, and (ii) changes in corporate
bond price due to renegotiation are high, especially when the credit quality of the
issuer is relatively row. In our model, (i) high cost of liquidation means a low value
of tangible assets, and (ii) low credit quality means a small value of tangible assets
or small value of EBIT. The additional credit spreads shown in Figure 11 support
these empirical findings.

In Figure 11, the contour lines show the additional credit spreads (bp), defined
by

c

D(p, v)
− c

D̂(p, v)
,

due to the debt renegotiation. The bold dashed and solid lines plot the optimal
default and liquidation boundaries without renegotiation, respectively, while the
white and black circles plot the optimal liquidation and renegotiation boundaries
with renegotiation, respectively. The parameters are taken from Table 1. It is
explicitly observed that the additional credit spreads are high when the value of
tangible assets is low and the value of EBIT is small. Note that, in Mella-Barral
and Perraudin (1997), additional credit spreads do not depend on the value of EBIT.

[Figure 11 is inserted around here.]

Davydenko and Strebulaev (2007) also showed that quantitative contribution
of strategic debt service to credit spreads is below transaction costs, assuming that
creditors have no bargaining power in their pricing model. This result contradicts the
results shown by the theoretical models of debt renegotiation, including Mella-Barral
and Perraudin (1997), Fan and Sundaresan (2000), and Anderson and Sundaresan
(1996). These theoretical models suggest that, when creditors have little bargaining
power, a large part of credit spreads may be due to the possibility of renegotiation
of debt service. Hence, based on the theoretical results, Davydenko and Strebulaev
(2007) conclude that bondholders are likely to have significant bargaining power.
However, our model suggests that, even though equity holders have full bargaining
power, the additional credit spreads due to debt renegotiation are significantly low
compared to the existing theoretical results, as is shown in Figure 11. This is because
our model considers the possibility of liquidity default, which allows no opportunity
of renegotiation for equity holders, despite that they have full bargaining power.

Through ample numerical experiments, we find that changes in credit spreads
due to renegotiation are likely to be affected in large parts by the parameter ξ as
shown in Figures 12. Also, the difference in optimal liquidation boundaries for the
models with and without renegotiation is quite low when the correlation ρ between
tangible asset value and EBIT is positive. In reality, efficiency loss of EBIT is likely
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to be small (i.e., ξ is close to unity) if creditors have enough knowledge about the
firm. Also, the asset value and the profit flow are positively correlated (i.e., ρ is
positive and away from zero). Hence, we conclude that, even when creditors have
little bargaining power, the actual contribution of strategic debt service to credit
spreads is relatively small, which agrees with the empirical findings reported in
Davydenko and Strebulaev (2007).

[Figure 12 is inserted around here.]

3.2.3 Sensitivity analysis of optimal boundaries

In this section, we perform comparative statics analyses of optimal boundaries with
respect to the model parameters. Again, we use the base parameters listed in Ta-
ble 1. Both the optimal default boundary B̂CD and liquidation boundary B̂CL with-
out renegotiation are appended to all the figures for the sake of comparison. Note
that, in all the cases, the optimal liquidation boundaries BCL and B̂CL with and
without renegotiation, respectively, are very similarly. Of course, the optimal rene-
gotiation boundary BCS looks very different from the optimal default boundary B̂CD

due to the possibility of renegotiation.
Figure 13 shows the optimal renegotiation boundary BCS and liquidation bound-

ary BCL for σv = 0.075, 0.15, 0.25, the volatility of tangible assets. As volatility σv

increases, the liquidation boundaries for the both cases move upward for relatively
small EBIT values,18 which gives equity holders a higher value of option to liqui-
date. As a result, the optimal default boundary B̂CD and renegotiation boundary
BCS move downward for higher volatility. In other words, for lower volatility, equity
holders decide more likely to default the firm earlier, because lower volatility pushes
the liquidation boundary downward and equity holders possess a smaller value of
option to liquidate.

[Figure 13 is inserted around here.]

Figure 14 illustrates the sensitivity of the optimal boundaries with respect to the
efficiency loss parameter ξ. It is observed that the optimal renegotiation boundary
BCS is quite sensitive to the value, which is consistent with earlier works.19 On the
other hand, the liquidation boundary BCL is not affected by ξ, as expected.

[Figure 14 is inserted around here.]

Figure 15 shows the sensitivity of the optimal boundaries with respect to the
correlation ρ. Note that, while the boundary BCL to liquidate the firm is very
sensitive to the correlation,20 the impact of correlation on the boundary BCS to

18Note that the optimal liquidation boundary b for pure equity firm is not linear with respect to
σv. Hence, the optimal liquidation boundaries cross each other as shown in Figure 13.

19Davydenko and Strebulaev (2007) show that the possibility of debt renegotiation is affected by
the cost of liquidation. Because they do not distinguish liquidation from default, their empirical
results apply for default cost.

20Note that the optimal liquidation boundary b for pure equity firm has a different slope for
different correlation ρ.
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enter renegotiation is very limited. This is important for practical use because the
correlation ρ is usually hard to estimate.

[Figure 15 is inserted around here.]

Finally, we find that the volatility of EBIT, σp, also has a significant impact on
the optimal boundary BCS. That is, higher volatility rises the values of option to
default and option to renegotiate. These results are explicitly observed in Figure 16.

[Figure 16 is inserted around here.]

Summarizing, the optimal renegotiation boundary BCS is sensitive to default
costs and the business volatility, while it is not sensitive to the correlation between
business assets and collaterals. The same results are applied to the optimal default
boundary B̂CD without renegotiation. On the other hand, the optimal liquidation
boundary BCL is not sensitive to default costs, while it is sensitive to the busi-
ness volatility and the correlation. The liquidation boundary is not affected by the
introduction of debt renegotiation.

3.2.4 Agency problems with renegotiation

For a levered firm, if the firm is on the brink of default, the equity value becomes very
low and equity holders have an incentive to raise the business volatility to increase
the expected payoff, because the equity is a call option written on the firm value.
In the case of no renegotiation, we observed through numerical experiments that
debt holders also have the same incentive at the brink of default in order to move
far away from default boundary. In this section, we perform the same numerical
experiments as before.

First, Figure 17 illustrates the impact of σp on the percentage change of equity
value, i.e.,

F (p, v|σp = 0.4) − F (p, v|σp = 0.3)

F (p, v|σp = 0.3)
,

which shows the equity holders’ incentive to raise the business risk σp. As expected,
equity holders have a strong incentive to raise the business risk, especially when
default becomes almost certain. Recall that the default boundary is changed to
the default boundary of a pure equity firm (the solid line) due to the introduction
of renegotiation. Compared with the incentive for the case of no renegotiation (see
Figure 6), we can say that debt renegotiation decreases the possibility of risk shifting.

[Figure 17 is inserted around here.]

On the other hand, Figure 18 shows the impact of risk shifting by equity holders
on the debt value. The contour line plots the percentage change of debt value, i.e.,

D(p, v|σp = 0.4) − D(p, v|σp = 0.3)

D(p, v|σp = 0.3)
,

which shows the debt holders’ incentive to raise the business risk σp. When the value
of EBIT is very high, debt holders have no incentive to raise the business risk as for
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the case of no renegotiation (see Figure 7). However, debt holders have an incentive
to raise the business risk in the region of renegotiation.21 This is so, because debt
holders are forced to act as if they had an option to liquidate the firm and then
suffered from the reduced service flow (21) in the region S = S1 ∪ S2. From (23),
the debt value in S is equal to X(p, v), which is strictly convex in (p, v). Hence,
debt holders wish to move away from the region of renegotiation to the operating
region C.

[Figure 18 is inserted around here.]

Note also that the debt holders’ incentive to raise the business risk does not
appear on the brink of default (the solid line; the default boundary for a pure equity
firm), unlike the case of no renegotiation (see Figure 7). The reason for this is that
debt holders wish to liquidate the firm at the boundary p/v = b, which comes earlier
than the liquidation boundary p/v = b∗ of a pure equity firm. When the eventual
default cannot be avoided after renegotiation with equity holders, debt holders have
no incentive to manage the firm’s risk any longer!

4 Some Discussions

In this section, we discuss two important topics using our model. The first one is
the case that debt holders have full bargaining power, and the other is the case of
departures from absolute priority rule (APR).

4.1 Debt Holder Offers

Suppose that debt holders have full bargaining power about coupon payments. Since
equity holders receive nothing if they default the firm, debt holders can exploit all
the firm value by renegotiation. See Mella-Barral and Perraudin (1997) for details.

We define the service flow function q(s, v) and the region Q in which debt holders
enter renegotiation as follows. First, the service flow that debt holders offer is given
by

q(p, v) =

{
c, for (p, v) ∈ C,

p − ηv, for (p, v) ∈ Q,

and the profit flow that equity holders accept is given by

f(p, v) =

{
p − ηv − c, for (p, v) ∈ C,

0, for (p, v) ∈ Q.

When debt holders carry out strategic debt service, equity holders must suffer from
the same situation as default.

On the other hand, the profit flow for debt holders is given by

d(p, v) =

{
c, for (p, v) ∈ C,

p − ηv, for (p, v) ∈ Q,

21Note that there exists some region in which the debt holders’ incentive to raise the business
risk is higher than that of equity holders.
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so that debt holders enjoy the same situation as if they owned the firm without any
loss by debt renegotiation.

Next, note that the region Q coincides with the region D̂ ∩ {p/v > b∗} and
only difference between the model with debt holders’ offer and the model without
renegotiation appears in the debt value D(p, v). Namely, while the equity value in
this case is F (p, v) = F̂ (p, v), the debt value is given by

D(p, v) =
c

r
, for (p, v) ∈ L = L̂,

AD(p, v) + c = 0, for (p, v) ∈ C = Ĉ,

AD(p, v) + p − ηv = 0, for (p, v) ∈ Q = D̂ ∩ {p/v > b∗},
D(p, v) = v, for (p, v) ∈ D = D̂ ∩ {p/v ≤ b∗}.

(25)

We explain how default and liquidation occur when debt holders have full bar-
gaining power using Figure 19. As shown in (25), we can use the same calculation
results as in Figure 1. The parameters are taken from Table 1. Note the difference
between Figures 1 and 19. In Figure 19, the default region in Figure 1 surrounded
by a curve in the bottom-left corner is divided into two parts: default region D
above the line p/v = b∗ and renegotiation region Q below the line p/v = b∗. In
Figure 19, the dashed line represents the straight line p/v = b∗ as in Figure 1. We
also add the points c/r = 1.3333, Û = 1.4693 and L̂ = 1.2220 on the v-axis, and the
point K̂ = 0.01397 on the p-axis in this example.

[Figure 19 is inserted around here.]

In Figure 19, we add typical sample paths of the process (P, V ) in order to
explain the renegotiation/default/liquidation mechanism, when debt holders offer
the strategic debt service. Starting from a point (p, v) in the operating region C;

1. The process (P, V ) hits the region Q before default and liquidation. In this case
(sample path (a)), debt holders offer the service flow p−ηv and equity holders
accept it. The firm is operated by equity holders. After that, the firm may be
liquidated if the process (P, V ) touches the line p/v = b∗. If the process (P, V )
returns the region C, the service flow goes back to the contractual coupon c
and the debt renegotiation is reset.

2. The process (P, V ) first crosses the line p/v = b∗ and then hits the default
region D without visiting the liquidation region L. In this case (sample path
(b)), equity holders default and debt holders liquidate the firm immediately.
Since liquidation occurs above the line p/v = b∗, it is a late liquidation.

3. The process (P, V ) first crosses the line p/v = b∗ and then hits the liquidation
region L without visiting the default region D. In this case (sample path (c)),
equity holders liquidate tangible assets and repay the face value of debt to
debt holders. Since liquidation occurs above the line p/v = b∗, it is a late
liquidation.

Note that, in the case of sample paths (b) and (c), there is no debt renegotiation.
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4.2 Departures from Absolute Priority Rule

Now, we consider departures from absolute priority rule (APR) as in Mella-Barral
(1999). In Mella-Barral (1999), liquidation planned by equity holders can be earlier
or later than that of the corresponding pure equity firm, depending on the model
parameters. In the case of early liquidation, renegotiation can make the liquidation
(decided by equity holders) occur at the same timing as that of the pure equity
firm. In the case of late liquidation, this role is taken by departures from APR. See
Mella-Barral (1999) for details.

Recall that, unlike Mella-Barral (1999), liquidation planned by equity holders
can be earlier or later than that of the corresponding pure equity firm, even when
the process (P, V ) starts from the same initial value in our model (see Figure 10).
Also, as sample paths (a) and (b) in Figure 10 reveal, renegotiation can make the
liquidation of the levered firm (decided by equity holders) occur at the same timing as
that of the pure equity firm. However, renegotiation cannot eliminate late liquidation
as shown by sample paths (c) and (d). In order to avoid late liquidation, we need
to consider departures from APR in our setting too.

Late liquidation occurs after the process (P, V ) crosses the line p/v = b∗∩(p, v) ∈
C (see, e.g., sample paths (c) and (d) in Figure 10). This suggests us to define the
stopping time

τ̌0 = inf{t > 0 : p/v ≤ b∗ and (p, v) ∈ C}, (26)

which denotes the time to departure from APR, since the levered firm is liquidated
later than the corresponding pure equity firm if nothing is done at τ̌0. Suppose that
equity holders have full bargaining power. Then, there is nothing for debt holders
but to accept the value of late liquidation. Late liquidation has two possibilities:
liquidation by equity holders (sample path (c) in Figure 10) or liquidation by debt
holders just after default by equity holders (sample path (d) in Figure 10).

The expected value received by debt holders at time τ̌0 is given by

∆ = E
[
1{τ1≤τ2}e

−r(τ1−τ̌0)V (τ1) + 1{τ1>τ2}e
−r(τ2−τ̌0) c

r

]
,

where, as before, τ1 and τ2 are the default and liquidation times selected by equity
holders, respectively. If the firm is liquidated by equity holders at time τ̌0, debt
holders receive only ∆ and equity holders the residual. Therefore, the equity and
debt values in the case of departures from APR are obtained, respectively, as

F̌ (p, v) = sup
τ1,τ2∈T

E
[∫ τ̌0∧τ1

0

e−rt(P (t) − ηV (t) − s(P (t), V (t)))dt

+ 1{τ̌0≤τ1}e
−rτ̌0(V (τ̌0) − ∆)

]
,

Ď(p, v) = E
[∫ τ̌0∧τ1

0

e−rts(P (t), V (t))dt + 1{τ̌0>τ1}e
−rτ1V (τ1) + 1{τ̌0≤τ1}e

−rτ̌0∆

]
.

The total firm value is therefore given by

W̌ (p, v) = F̌ (p, v) + Ď(p, v)

= E
[∫ τ̌0∧τ1

0

e−rt(P (t) − ηV (t))dt + 1{τ̌0>τ1}e
−rτ1V (τ1) + 1{τ̌0≤τ1}e

−rτ̌0V (τ̌0)

]
.
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Since D ⊂ {p/v ≤ b∗}, we obtain τ̌0 ∧ τ1 = τ0 from (26), whence we have W̌ (p, v) =
W ∗(p, v).

5 Conclusion

In this paper, we propose a new pricing model for corporate securities issued by a
levered firm with the possibility of debt renegotiation. We take the structural ap-
proach that the firm’s earnings follow a geometric Brownian motion with stochastic
collaterals. As in Leland (1994), equity holders can default the firm for their own
benefits, when the earnings become insufficient to go on the firm. In addition, eq-
uity holders may want to liquidate the firm by repaying the face value of debt to
debt holders to get enough residuals, when the value of collaterals becomes suffi-
ciently high. Unlike the existing theoretical models, the bivariate structure can not
only capture realistic credit spreads observed in the market, but also explain many
empirical findings reported in the literature.

Structural pricing models with debt renegotiation have been studied, among oth-
ers, by Anderson and Sundaresan (1996), Mella-Barral and Perraudin (1997), Mella-
Barral (1999) and Fan and Sundaresan (2000), and suggest that a large part of credit
spreads may be due to the possibility of strategic default risk, when creditors have
little bargaining power. Debt renegotiation by strategic debt service successfully
provides realistic credit spreads observed in the market. However, recent empirical
studies such as Acharya et al. (2006) and Davydenko and Strebulaev (2007) point
out that the contribution of strategic debt service to credit spreads suggested by
the theoretical models is too large. Also, Davydenko and Strebulaev (2007) find the
fact that the bond prices are likely to be affected by the possibility of renegotiation,
especially when the costs of liquidation are likely to be high and credit quality of
the issuer is relatively low. Our model can explain these empirical findings.

Our model is an extension of the existing models to the bivariate framework by
introducing the value of tangible assets, which plays the role of collaterals. Because
of the bivariate feature, we can distinguish strategic default, liquidity default and
the ordinary liquidation. It is shown that, in our model, liquidity default can occur
when the value of collaterals is relatively high but the value of EBIT is substantially
low, irrespective of the bargaining power of equity holders. When the value of tan-
gible assets is sufficiently high and the EBIT is low, our model selects liquidation.
Otherwise, the firm terminates as strategic default; however, the patterns depend
on the sample path of the bivariate process, not the initial parameter values. This
means that equity holders can select either liquidity default or liquidation, depend-
ing on the economical condition, without entering debt renegotiation. This is a
significant difference between our model and the other existing models in the debt
renegotiation literature.

The possibility of liquidity default and liquidation without entering debt rene-
gotiation is quite important from the pricing perspectives. If renegotiation always
occurs in a given model, the effect of strategic debt service will be overstated and
its contribution to credit spreads evaluated from the model becomes too high, which
explains the empirical result reported in Davydenko and Strebulaev (2007). In fact,
our model can produce credit spreads consistent with the empirical findings even
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when equity holders have full bargaining power, as expected.
As future studies, it seems important to consider the optimal capital structure of

a firm in the bivariate setting. To this end, we need to develop an efficient numerical
method to solve the associated bivariate free-boundary problems, as mentioned in
Remark 1. Furthermore, we want to relax Assumption 2 to be more realistic. That
is, consider the situation that raiders choose the acquisition timing so as to maximize
their return under imperfect competitive market. It seems interesting to investigate
how equity holders’ strategy changes according to the change of liquidation time.

A Proofs

A.1 Proof of Proposition 1

Because the value function W ∗(p, v) is first-order homogeneous, we can define a new
function

W̄ (z) =
1

v
W ∗(p, v) = W ∗(z, 1)

or, equivalently,

vW̄ (z) = W ∗(p, v), (A.1)

by the change-of-variable z = p/v. All the partial derivatives for W ∗(p, v) can be
written in terms of the derivatives of W̄ (z) as

W ∗
p (p, v) = W̄ ′(z), W ∗

pp(p, v) =
1

v
W̄ ′′(z), W ∗

pv(p, v) = − p

v2
W̄ ′′(z),

W ∗
v (p, v) = W̄ (z) − p

v
W̄ ′(z), W ∗

vv(p, v) =
p2

v3
W̄ ′′(z).

Substituting these derivatives into the PDE (3), we obtain the ordinary differential
equation (ODE)

1

2
σ2

zz
2W̄ ′′(z) + (µp − µv)zW̄

′(z) − (r − µv)W̄ (z) + z − η = 0,

where σ2
z = σ2

p + σ2
v − 2ρσpσv. Following the standard arguments, the ODE can be

solved as

W̄ (z) =


z

r − µp

− η

r − µv

+
(r − µv + η)

(1 − λ)(r − µv)

( z

b∗

)λ

, for z > b∗,

1, for z ≤ b∗,

where λ and b∗ are given as in Proposition 1. The value function (5) can be derived
from (A.1) at once. ¤

A.2 Proof of Proposition 3

It is well known that the ODE (13) has a general solution of the form

F̂ (0+, v) = A1v
γ1 + A2v

γ2 − ηv

r − µv

− c

r
,
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where γ1 < 0 and γ2 > 1 are the roots of the characteristic equation given in
Proposition 3. The coefficients A1, A2 and the upper and lower thresholds Û , L̂ are
determined by the value-matching and smooth-pasting conditions.

If the value v of tangible assets becomes sufficiently large, equity holders prefer to
liquidate the firm and receive the residual value v − c/r. Therefore, for some upper
threshold Û , the following value-matching and smooth-pasting conditions hold:

F̂ (0+, Û) = Û − c

r
, F̂ ′(0+, Û) = 1.

On the other hand, if the residual value becomes worthless, then they prefer to
default the firm. Hence, for some lower threshold L̂, we have

F̂ (0+, L̂) = 0, F̂ ′(0+, L̂) = 0.

Now, we have four equations for four unknowns A1, A2, U and L. Hence, in principle,
we can derive the value function F̂ (0+, v) by solving the simultaneous equations.

In this case, following the ordinary algebraic calculation, it is readily shown that
the coefficients A1, A2 are given as in Proposition 3. Also, we obtain

L̂−γ1

γ2 − γ1

(
ηL̂(γ2 − 1)

r − µv

+ γ2
c

r

)
=

Û−γ1

γ2 − γ1

(
ηÛ(γ2 − 1)

r − µv

+ (γ2 − 1)Û

)
, (A.2)

L̂−γ2

γ1 − γ2

(
ηL̂(γ1 − 1)

r − µv

+ γ1
c

r

)
=

Û−γ2

γ1 − γ2

(
ηÛ(γ1 − 1)

r − µv

+ (γ1 − 1)Û

)
. (A.3)

Suppose Û = kL̂ and substitute this into (A.3). The lower threshold L̂ is then
derived as in (14). Also, by substituting Û = kL̂ into (A.2), we obtain

L̂ =
γ2c

r

/{
k1−γ1(γ2 − 1)

(
r − µv + η

r − µv

)
− η(γ2 − 1)

r − µv

}
. (A.4)

Equation (15) is derived at once from (14) and (A.4). ¤

B The Mella-Barral and Perraudin Model

In this appendix, we show that our model is indeed an extension of the model
considered in Mella-Barral and Perraudin (1997). To this end, we consider a special
case of our model with

σv = µv = 0, ηv := w. (B.1)

Then, our model degenerates to a one-factor model with stochastic variable P , while
the asset value V becomes constant with V (t) = V (0) = v for all t ≥ 0. In order to
make the difference between the one-factor model and our bivariate model explicit,
we denote the value functions and thresholds in the one-factor model by using a
subscript 1.
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First, substituting the specification given in (B.1) into the value function (2), we
obtain the value of the pure equity firm as

W ∗
1 (p) = sup

τ0∈T0

E
[∫ τ0

0

e−rt(P (t) − w)dt + e−rτ0v

]
,

=


p

r − µp

− w

r
+

w + rv

(1 − β)r

(
p

b∗1v

)β

, for p > b∗1v,

v, for p ≤ b∗1v,

where P (0) = p and the liquidation threshold is given by b∗1v with

b∗1 =
β

β − 1

w/v + r

r
(r − µp). (B.2)

Next, substituting (B.1) into (7), we obtain the equity value of the levered firm
as

F̂1(p) = sup
τ1,τ2∈T

E
[∫ τ1∧τ2

0

e−rt(P (t) − w − c)dt + 1{τ1>τ2}e
−rτ2 max

{
v − c

r
, 0

}]
.

In the following, we consider the two cases, v ≤ c/r and v > c/r.
When v ≤ c/r, the debt is risky and there is the possibility of voluntary default.

Hence, the equity value is obtained as

F̂1(p) = sup
τ1∈T0

E
[∫ τ1

0

e−rt(P (t) − w − c)dt

]
,

=


p

r − µp

− w + c

r
+

w + c

(1 − β)r

(
p

K̂1v

)β

, for p > K̂1v,

0, for p ≤ K̂1v,

(B.3)

where the default threshold is given by K̂1v with

K̂1 =
β

β − 1

w + c

rv
(r − µp).

On the other hand, when v > c/r, the debt is safe and equity holders prefer
to liquidate the firm rather than default in order to receive the residual value. It
follows that

F̂1(p) = sup
τ2∈T0

E
[∫ τ2

0

e−rt(P (t) − w − c)dt + e−rτ2
(
v − c

r

)]
,

=


p

r − µp

− w + c

r
+

w + rv

(1 − β)r

(
p

K̂1v

)β

, for p > K̂1v,

v − c

r
, for p ≤ K̂1v,

(B.4)

where the liquidation threshold is given by K̂1v with

K̂1 =
β

β − 1

w/v + r

r
(r − µp) = b∗1,
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which coincides with the liquidation threshold for the pure equity firm given in (B.2).
Therefore, we obtain for v > c/r

F̂1(p) = W ∗
1 (p) − c

r
.

Similarly, substituting (B.1) into (16), we obtain the value of the pure equity
firm taken over by debt holders as

X1(p) = sup
τ3∈T0

E
[∫ τ3

0

e−rt(ξP (t) − ξ0w)dt + e−rτ3v

]
,

=


ξp

r − µp

− ξ0w

r
+

ξ0w + rv

(1 − β)r

(
p

b1v

)β

, for p > b1v,

v, for p ≤ b1v,

where ξ0 > 1 is the efficiency loss associated with cost and the liquidation threshold
is given by b1v with

b1 =
β

β − 1

ξ0w/v + r

r

r − µp

ξ
.

The debt value can be now obtained for each case. When v ≤ c/r, the debt is
risky and its value is given by

D̂1(p) = E
[∫ τ1

0

e−rtcdt + e−rτ1X(P (τ1))

]
,

=


c

r
+

(
X(K̂1) −

c

r

) (
p

K̂1

)β

, for p > K̂1,

X1(p), for p ≤ K̂1.

On the other hand, when v > c/r, the debt is safe and its value is indeed obtained
as

D̂1(p) = E
[∫ τ2

0

e−rtcdt + e−rτ2
c

r

]
=

c

r
.

Finally, we obtain the total firm value from Ŵ1(p) = F̂1(p)+D̂1(p) for each case.
When the debt is risky (v ≤ c/r), the firm value is obtained as

Ŵ1(p) =


p

r − µp

− w

r
+

(
X(K̂1) −

p

r − µp

+
w

r

)(
p

K̂1v

)β

, for p > K̂1v,

X1(p), for p ≤ K̂1v,

while it is given by
Ŵ1(p) = F̂1(p) + D̂1(p) = W ∗

1 (p)

when the debt is safe (v > c/r). These results coincide with the results obtained in
Mella-Barral and Perraudin (1997).
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C Linear Complementarity Formulation

Because we consider a fixed coupon payment c, there seems no analytical means to
solve the PDE (9) with value-matching and smooth-pasting conditions (10)–(11).
In this appendix, we explain how to solve the PDE (9) numerically. To this end, the
key ingredients are the change-of-variable technique and the linear complementarity
formulation.

First, the linear complementarity formulation of the problem (9) is given by(
AF̂ (p, v) + p − ηv − c

)
h(v) ≥ 0, AF̂ (p, v) + p − ηv − c ≥ 0, h(v) ≥ 0, (C.1)

where
h(v) = max

{
v − c

r
, 0

}
,

with the initial boundary conditions for F̂ (p, 0+) and F̂ (0+, v), which have been
obtained in Propositions 2 and 3, respectively, and the condition that

F̂ (p, v) →


p

r − µp

− ηv

r − µv

, for
p

v
> b∗,

v, for
p

v
≤ b∗,

as p → ∞ or v → ∞, (C.2)

which has been discussed in Section 2.3.1.
Second, we use the change-of-variable technique with the above boundary con-

ditions. That is, define

x =
p

p + 1
, y =

v

v + 1
, (C.3)

and set
G(x, y) = (1 − x)(1 − y)F̂ (p, v).

Note that, as p, v → 0, we have x, y → 0, while x, y → 1 as p, v → ∞, respectively.
Hence, the state space for (x, y) is given by (0, 1) × (0, 1).

The linear complementarity problem (C.1) can be written in terms of x and y,
after tedious algebra, as

ÃG(x, y) · g(p, v) ≥ 0, ÃG(x, y) ≥ 0, g(x, y) ≥ 0, (C.4)

where

ÃG(x, y) =
1

2
σ2

px
2(1 − x)2Gxx +

{
µpx(1 − x) + σpσvρ(1 − x)xy

}
Gx

+
1

2
σ2

vy
2(1 − y)2Gyy +

{
µvy(1 − y) + σpσvρ(1 − y)xy

}
Gy

+ σpσvρxy(1 − x)(1 − y)Gxy +
{

µxx + µyy + σpσvρxy
}

G

+ x(1 − y) − ηy(1 − x) − c(1 − x)(1 − y),

and where

g(x, y) = (1 − x)(1 − y)h(v) = max
{

(1 − x)y − c

r
(1 − x)(1 − y), 0

}
,
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with the initial boundary conditions

G(0+, y) = (1 − y)F̂

(
0+,

y

1 − y

)
, G(x, 0+) = (1 − x)F̂

(
x

1 − x
, 0+

)
, (C.5)

and the boundary condition
lim
y→1

G(x, y) = 1 − x, for x ≥ 1,

lim
x→1

G(x, y) =
1 − y

r − µp

, for y < 1.
(C.6)

The boundary condition (C.6) can be derived by noting that the set {(p, v) | p/v =
b∗, p → ∞ or v → ∞} ∈ [0,∞]× [0,∞] in the condition (C.2) can be replaced with
the singleton (x, y) = (1, 1) for G(x, y). Note that the function G(x, y) is bounded
in (x, y)

With a solution G(x, y) at hand after solving the linear complementarity prob-
lem (C.4) with the boundary conditions (C.5)–(C.6), we perform the reversed change
of variables by

F̂

(
x

1 − x
,

y

1 − y

)
=

G(x, y)

(1 − x)(1 − y)

in order to get the solution for the problem (9).
In actual numerical calculations, we divide the (x, y) space into a regular finite

mesh as usual, and take a finite-difference approximation of the linear complemen-
tarity equation (C.4). We then get a matrix form of Equation (C.4) with boundary
conditions, that is known as a constrained linear problem. There exists a general
means for solving such constrained linear problems, called the projected successive
over-relaxation method. We simply follow Wilmott et al. (1993) to get an approxi-
mated solution for the problem (C.4).
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Figures

Figure 1: Default and liquidation boundaries for the base case

(a)
(b)

(c)(d)

L̂ denotes the liquidation region, D̂ the default region, and Ĉ the operating region.
The default boundary B̂CD and liquidation boundary B̂CL are calculated by solv-
ing the free-boundary problem (9), where we employ the finite difference method
explained in Appendix C with 1, 000×1, 000 meshes in order to draw smooth bound-
aries. The dashed and chained lines represent the straight lines p/v = b∗ and p/v = b,
respectively. The parameters are taken from Table 1. Typical sample paths (a)–(d)
are depicted to explain the default/liquidation mechanism in our model. Sample
paths (a) and (b) correspond to early liquidation, while sample paths (c) and (d)
correspond to late liquidation.
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Figure 2: Default and liquidation boundaries for the one-factor model

0
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L̂1 denotes the liquidation region, D̂1 the default region, and Ĉ1 the operating re-
gion. The default boundary BC1D1 between Ĉ1 and D̂1 is a straight line obtained
in Appendix B. The dashed and chained lines represent the straight lines p/v = b∗1
and p/v = b1, respectively. Typical sample paths (a’), (b’) and (c’) are appended to
explain the default/liquidation mechanism in the special case. In this model, sample
paths (a’) and (b’) correspond to early liquidation, and sample path (c’) corresponds
to liquidation of pure equity firm. There is no late liquidation.
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Figure 3: Equity values for the base case
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Optimal Liquidation Boundary B̂CL

The surface plots the equity value F̂ (p, v) for the base case (see Table 1). The line
with black squares on the (p, v)-plane plots the optimal default boundary, while the
line with white circles plots the optimal liquidation boundary.
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Figure 4: Debt values for the base case
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The surface plots the debt value D̂(p, v) for the base case (see Table 1). The line
with black squares on the (p, v)-plane plots the optimal default boundary, while the
line with white circles plots the optimal liquidation boundary.
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Figure 5: Credit spreads for the base case
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The numbers labeled on the contour lines represent the credit spreads (bp),
c/D̂(p, v) − r. The solid and dash-dotted curves plot the optimal default and liq-
uidation boundaries, respectively. The solid and dotted lines depict the straight lines
p/v = b∗ and p/v = b, respectively. The parameters are taken from Table 1. A
firm with few tangible assets has high credit spreads even if its EBIT is large. The
credit spreads are constant with respect to p in the region that debt holders decide
to liquidate after they take over the firm.
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Figure 6: Impact of business risk σp on equity value F̂ (p, v)
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Optimal Liquidation Boundary B̂CL (σp = 0.4)

The numbers labeled on the contour lines represent the percentage change in the
equity value when σp changes from 30% (the base case) to 40%, which shows the
equity holders’ incentive to raise the business risk. The bold lines show the optimal
default boundary (solid line) and optimal liquidation boundary (dash-dotted line)
for σp = 30%, while the circles show the optimal default boundary (black circle) and
optimal liquidation boundary (white circle) for σp = 40%. The other parameters are
taken from Table 1. Equity holders have a strong incentive to raise the business risk
even on the brink of default in our model.
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Figure 7: Impact of business risk σp on debt value D̂(p, v)
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The numbers labeled on the contour lines represent the percentage change in the
debt value when σp changes from 30% (the base case) to 40%, which shows the debt
holders’ incentive to raise the business risk. The other lines and parameters are the
same as Figure 6. On the brink of default with v being less than unity, both equity
holders and debt holders wish to increase the business risk. This anomaly is also
observed in Leland (1994).
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Figure 8: Impact of collateral volatility σv on equity value F̂ (p, v)
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The numbers labeled on the contour lines represent the percentage change in the
equity value when σv changes from 15% (the base case) to 25%, which shows the
equity holders’ incentive to raise the collateral volatility. The bold lines show the
optimal default boundary (solid line) and optimal liquidation boundary (dash-dotted
line) for σv = 15%, while the circles show the optimal default boundary (black circle)
and optimal liquidation boundary (white circle) for σv = 25%. The other parameters
are taken from Table 1. Equity holders have a strong incentive to increase risk σv at
the brink of default, while they have no incentive when the level of EBIT is sufficiently
high.
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Figure 9: Impact of collateral volatility σv on debt value D̂(p, v)
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The numbers labeled on the contour lines represent the percentage change in the debt
value when σv changes from 15% (the base case) to 25%, which shows the equity
holders’ incentive to raise the collateral volatility. The other lines and parameters
are the same as Figure 8. Debt holders lose their value in the whole region. Anomaly
at the brink of default does not occur in this risk shifting.
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Figure 10: Default, liquidation and renegotiation boundaries for the base case

(a)(b)
(d) (c)

L denotes the liquidation region, D the default region, C the operating region, and
S the region for renegotiation. The renegotiation region S is further divided into
S1 with service flow ξp − ηv and S2 with service flow (r − µv)v. The renegotiation
boundary BCS , default boundary BCD and liquidation boundary BCL are calculated
by solving the free-boundary problem (22), where we employ the finite difference
method explained in Appendix C with 1, 000×1, 000 meshes in order to draw smooth
boundaries. The dashed and chained lines represent the straight lines p/v = b∗

and p/v = b, respectively. Typical sample paths (a)–(d) are added to explain the
renegotiation/default/liquidation mechanism in our model. In our model, sample
paths (a) and (b) correspond to strategic default, sample path (d) corresponds to
liquidity default, and sample path (c) corresponds to liquidation.
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Figure 11: Contribution of strategic debt service to credit spreads (ξ = 0.7)
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The numbers labeled on the contour lines represent the additional credit spreads (bp)
due to debt renegotiation, c(1/D(p, v) − 1/D̂(p, v)), The bold dashed and solid lines
plot the optimal default and liquidation boundaries without renegotiation, respec-
tively, while the white and black circles plot the optimal liquidation and renegotiation
boundaries with renegotiation, respectively. The thin solid and dotted lines depict
the straight lines p/v = b∗ and p/v = b, respectively. The parameters are taken from
Table 1. The additional credit spreads due to debt renegotiation are high when the
value of tangible assets is low and the value of EBIT is small. Note however that
they are significantly low compared to the existing theoretical results.
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Figure 12: Contribution of strategic debt service to credit spreads (ξ = 0.5)
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The numbers labeled on the contour lines represent the additional credit spreads (bp)
due to debt renegotiation, when the efficiency loss is ξ = 0.5. The other lines and
parameters are the same as Figure 11. Through ample numerical experiments, we
find that changes in credit spreads due to debt renegotiation are likely to be affected
in large parts by the parameter ξ.
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Figure 13: Sensitivity of optimal boundaries due to the change in σv
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The left and right panels show the changes of the optimal boundaries with respect
to the volatility of tangible assets from σv = 15% (the base case) to 5% and to 25%,
respectively. The solid and dashed lines depict the optimal boundaries without and
with renegotiation, respectively. The bold lines represent the optimal liquidation
boundaries (upper-left) and the optimal default boundaries (lower-left) for σv = 15%
in the both panels. The thin lines in the left and right panels depict the optimal
boundaries for σv = 5% and σv = 25%, respectively. The other parameters are taken
from Table 1. As volatility σv increases, the liquidation boundaries for the both case
move upward for relatively small EBIT values, which gives equity holders a higher
value of option to liquidate. As a result, the optimal default boundary B̂CD and
renegotiation boundary BCS move downward for higher volatility.
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Figure 14: Sensitivity of optimal boundaries due to the change in ξ

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

p/(r − µp)

v

 

 

ξ = 0.5 (with renegotiation)
ξ = 0.7 (without renegotiation)
ξ = 0.7 (with renegotiation)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

p/(r − µp)

v

 

 

ξ = 0.9 (with renegotiation)
ξ = 0.7 (without renegotiation)
ξ = 0.7 (with renegotiation)

The left and right panels show the changes of the optimal boundaries with respect
to the efficiency loss from ξ = 0.7 (the base case) to 0.5 and to 0.9, respectively. The
solid and dashed lines depict the optimal boundaries without and with renegotiation,
respectively. The bold lines represent the optimal liquidation boundaries (upper-left)
and the optimal default boundaries (lower-left) for ξ = 0.7 in the both panels. The
thin lines in the left and right panels depict the optimal boundaries for ξ = 0.5 and
ξ = 0.9, respectively. The other parameters are taken from Table 1. The optimal
renegotiation boundary BCS is quite sensitive to ξ, which is consistent with earlier
works. On the other hand, the liquidation boundary BCL is not affected by ξ, as
expected.
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Figure 15: Sensitivity of optimal boundaries due to the change in ρ
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The left and right panels show the changes of the optimal boundaries with respect
to the correlation from ρ = 0.7 (the base case) to 0.5 and to 0.9, respectively. The
solid and dashed lines depict the optimal boundaries without and with renegotiation,
respectively. The bold lines represent the optimal liquidation boundaries (upper-left)
and the optimal default boundaries (lower-left) for ρ = 0.7 in the both panels. The
thin lines in the left and right panels depict the optimal boundaries for ρ = 0.5 and
ρ = 0.9, respectively. The other parameters are taken from Table 1. While the
optimal boundary BCL to liquidate the firm is very sensitive to the correlation, the
impact of correlation on the boundary BCS to enter renegotiation is very limited.
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Figure 16: Sensitivity of optimal boundaries due to the change in σp
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The left and right panels show the changes of the optimal boundaries with respect
to the volatility of EBIT from σp = 30% (the base case) to 20% and to 40%, respec-
tively. The solid and dashed lines depict the optimal boundaries without and with
renegotiation, respectively. The bold lines represent the optimal liquidation bound-
aries (upper-left) and the optimal default boundaries (lower-left) for σp = 30% in the
both panels. The thin lines in the left and right panels depict the optimal boundaries
for σp = 20% and σp = 40%, respectively. The other parameters are taken from
Table 1. The volatility σp of EBIT has a significant impact on the boundary BCS .
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Figure 17: Impact of business risk σp on equity value F (p, v)
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The numbers labeled on the contour lines represent the percentage change in the
equity value when σp changes from 30% (the base case) to 40%, which shows the
equity holders’ incentive to raise the business risk σp. The bold lines show the optimal
renegotiation boundary (dashed line) and optimal liquidation boundary (dash-dotted
line) for σp = 30%, while the circles show the optimal renegotiation boundary (black
circle) and optimal liquidation boundary (white circle) for σp = 40%. The other
parameters are taken from Table 1. Equity holders have a strong incentive to raise the
business risk, especially when default becomes almost certain. The default boundary
is changed to the default boundary for the corresponding pure equity firm (the solid
line) due to the introduction of debt renegotiation. Compared with the incentive for
the case of no renegotiation (see Figure 6), debt renegotiation decreases the possibility
of risk shifting.
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Figure 18: Impact of business risk σp on debt value D(p, v)
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The numbers labeled on the contour lines represent the percentage change in the
debt value when σp changes from 30% (the base case) to 40%, which shows the
debt holders’ incentive to raise the business risk σp. The bold lines show the optimal
renegotiation boundary (dashed line) and optimal liquidation boundary (dash-dotted
line) for σp = 30%, while the circles show the optimal renegotiation boundary (black
circle) and optimal liquidation boundary (white circle) for σp = 40%. The other
parameters are taken from Table 1. When the value of EBIT is very high, debt
holders have less incentive to raise the business risk. Debt holders have an incentive
to raise the business risk in the region of renegotiation. However, the debt holders’
incentive to raise the risk does not appear on the brink of default (near the solid line;
the default boundary for the corresponding pure equity firm).
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Figure 19: Default, liquidation and renegotiation boundaries when debt holders offer

(a)

(c)(b)

L denotes the liquidation region, D the default region, C the operating region, and Q
the region for renegotiation by debt holders. The renegotiation region Q is given by
D̂ ∩ {p/v > b∗}. The other regions coincide with those in Figure 1. The dashed line
represents the straight line p/v = b∗. The parameters are taken from Table 1. Typ-
ical sample paths (a)–(c) are added to explain the renegotiation/default/liquidation
mechanism in this case.

57


