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Abstract 

We study the combined effects of uncertainty, competition and “technological complementarity” on 

firms’ investment behaviour in a leader/follower pre-emption investment game. Our results 

contradict the conventional wisdom which says that “when a production process requires two 

extremely complementary inputs, a firm should upgrade (or replace) them simultaneously”. We 

found that when competition and uncertainty are considered, this is very unlikely to be the case for 

the leader and mixed strategies are possible for the follower. Some of the illustrated results show 

nonlinear and complex investment criteria and significant differences between the leader’s and the 

follower’s investment behavior.  
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1. Introduction 

Since the pioneering work of Smets (1993), the effect of uncertainty and competition on investment 

behavior in a duopoly has been extensively studied in the real options literature
2
, but the influence 

of the degree of complementarity between the inputs of an investment on firms’ investment 

decisions has been neglected. However, firms often use inputs whose qualities are complements, 

such as computer and modem, equipment and structure, train and track, and transmitter and 

receiver.  In such cases, investment decisions on upgrades or replacements must consider the degree 

of complementarity between investments. In this paper, “complementarity” exists if the adoption of 

one technology increases the marginal or incremental return to other technology in terms of cost 

savings. More generally, in the context of industrial organization, complementarity exists if the 

implementation of one practice increases the marginal return to other practice (Carree et al., 2010). 

When the implementation of a technology/practice decreases the marginal return to the other 

technology/practice, there is “substitutability” (or subadditivity)
3
.  

 

The concept of complementarity has been used to study economic decisions in many contexts. In 

the context of a country, it is used to set innovation policies, for instance, the optimization of the 

balance between technology imports and in-house R&D (Braga and Wilmore, 1991) and (Cassiman 

and Veugelers, 2004), the allocation of financial resources to industries (Mohnen and Roller, 2000), 

to enhance innovation and/or to favor clustering (Anderson and Schmittlein, 1984), and to define 

production policies, for instance, the coordination between product and process innovation 

(Miravete and Pernías, 1998). 

 

R&D is an area where the concept of complementarity plays an important role, since when planning 

their R&D activities, firms make strategic decisions regarding the degree of complementarity 

(sometimes called compatibility) between the new products they aim to launch in the future and the 

complement products that are already available in the market and those they conjecture will be 

launched by their opponents in the future, in the sense that the diffusion of an innovation depends, 

to some extent, on the diffusion of complement innovations which amplify its value
4
. It has been 

                                                 
2
 Dixit and Pindyck (1994), chapter 9, Grenadier (1996), Lambrecht and Perraudin (1997), Huisman (2001), 

Weeds (2002) and Paxson and Pinto (2005), Pawlina and Kort (2006) address such problems.  
3
 See Carree et al. (2010) for further details on this issue. 

4
 Note that, in R&D contexts, firms who do not have a dominant market position and want to growth quickly 

tend to guide their R&D efforts in order to launch new products that are compatible with those from their 

opponents who have a dominant market positions; firms who have dominant market positions tend to guide 

their R&D efforts in order to launch new products that are, as much as possible, not complements 
(compatible) with rivals. An example of the later strategy is the nine-year battle between the European Union 

(EU) commission and Microsoft that culminated in October 2007 with a fine of €497 million due to its 

supposed misconduct in developing software that does not allow open-source software developers access to 
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also argued that the pace of modernization of an industry is quite often influenced by the degree of 

technological complementarity between the new technologies adopted in that industry
5
.  

 

The concept of complementarity between economic activities (sometimes referred in the literature 

as synergy) plays also an important role in mergers and acquisitions since these are guided by the 

level of complementarity between firms’ businesses processes, technologies, IT applications, 

clients, geographic location, etc. The merger between Air France and KLM and the acquisition of 

Abbey by Santander, in 2004, are two good examples of the importance of the complementary 

concept. In the former case, both firms justified the merger on the strong complementarity between 

their businesses in terms of the optimization of networks based on two powerful hubs, the 

possibility of using a more effective redeployment of passenger and cargo activities and expanding 

the offer of aircraft maintenance services, and the existence of cost savings in purchasing, sales 

distribution and IT applications; in the latter, Santander justified the acquisition of Abbey based on 

similar arguments and emphasizing the fact that, apart from other important business 

complementarities, the existence of a strong complementarity between the two banks IT 

applications was very important in the outcome of its decision given that  it facilitates the 

integration of the two banks businesses
6
.  

 

Examples of relevant contributions to the literature around the concept of “complementarity” and its 

use in economic analyses are Milgrom and Roberts (1990, 1995), who use the theories of 

supermodular optimization and games as a framework for the analysis of systems marked by 

complementarity; Milgrom and Roberts (1994), who study the Japanese economy between 1940 

and 1995 to interpret the characteristic features of Japanese economic organization in terms of the 

complementarity between some of the most important elements of its economic structure; and 

Colombo and Mosconi (1995), who examine the diffusion of flexible automation production and 

design/engineering technologies in the Italian metalworking industry, giving particular attention to 

the role of the technological complementarity and the learning effects associated with the 

experience of previously available technologies.  

 

                                                                                                                                                     
inter-operability information for work-group servers used by businesses and other big organizations (see Etro 

(2007), p. 221, and Financial Times, October 23, 2007, p. 1). 
5
 Smith and Weil (2005) investigated how changes in retailing and manufacturing industries, together, 

affected the diffusion of new information technologies in the U.S. apparel industry between 1988 and 1992, 

and suggest that there is a significant effect of the complementarity between new technologies on the pace of 

modernization of interlinked industries. 
6
 For detailed information about this and other merger and acquisitions in EU see the “European Foundation 

for the Improvement of Living and Working Conditions” website: http://www.eurofound.europa.eu/. 
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Conventional wisdom says that “when a production process requires two extremely complementary 

inputs, a firm should upgrade (or replace) them simultaneously”, i.e., when raising the quality of 

one input it should upgrade its complements at the same time (Javanovic and Stolyarov, 2000, p. 

15). From Milgrom and Robert (1990, 1995) models, we infer that it is relatively unprofitable to 

adopt only one part of the modern manufacturing strategy. In Milgrom and Roberts (1990, p. 524), 

it is suggested that “we should not see an extended period of time during which there are substantial 

volumes of both highly flexible and highly specialized (i.e., non-complementary) equipment being 

used side-by-side”. Cho and McCardle (2009) show that the economic dependence that inherently 

defines cost relationships inside the firm can significantly influence the timing of adoption, by 

expediting or delaying the adoption of an improved technology. 

 

However, the conclusions above have been made for contexts where uncertainty and competition 

are ignored. We study the effect of the complementarity between two technologies on their optimal 

time of adoption, considering competition between (two) firms and uncertainty about revenues and 

investment costs. Smith (2005) studies a similar problem but neglects competition.  

 

Our initial intuition is that when uncertainty or drift differences about the investment cost of the 

technologies is considered, the conventional wisdom stated above may not hold, since due to 

technological progress the cost of a technology can decline rapidly.  When firms anticipate that the 

cost of technologies may not fall at the same rate, it may pay to adopt first the technology whose 

cost is falling more slowly and wait to adopt the technologies whose cost is falling more rapidly.  

The manufacturing industry is by nature a sector where the concept of technological (or 

performance) complementarity applies to and where some of our results can be empirically tested. 

Azevedo and Paxson (2008) use empirical evidence from two firms from the Portuguese textile 

industry, whose production activities (units) have strong efficiency complementarity, to show   

some of the results highlighted in this research.  

 

In our model, the word “complementarity” between the two technologies means the degree to which 

two technologies are better off when operating together rather than operating alone; 12  in 

inequality  12 1 2    , is the parameter that represents the degree of complementarity between 

the two technologies, where, 1  and 2  are defined as the proportion of the firm’s revenues that are 

expected to be saved if tech 1 and tech 2, respectively, are adopted alone (i.e., firms operate with 

one technology, tech 1 or tech 2), and 12  is the proportion of the firm’s revenues that are expected 
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to be saved if both technologies are adopted together (i.e., firms operate with the two technologies 

at the same time). 

 

There are econometric techniques to test/estimate complementarity between industrial organization 

practices, namely the “adoption” or “correlation” approach and the “production function” approach 

(Carree et al., 2010). Detailed descriptions of the techniques and empirical examples of the concept 

of “complementarity” can be found in Arora and Gambardella (1990), who suggest a test for 

complementarity, and Arora (1996), Athey and Stern (1998), and Miravete and Pernías (1998, 

2010).  

 

We use a real options methodology to derive, for a duopoly market with a first-mover advantage, 

analytical expressions for the value functions of the leader and the follower and their respective 

investment threshold values. We assume that the market is composed of two idle firms
7
; at the 

beginning of the investment game there are two new (complementary) technologies available, tech 

1 and tech 2; firms are allowed to invest twice; firms’ cost savings are a proportion of the firms’ 

revenues; and both the revenues and the cost of each technology are uncertain, following 

independent, and possible correlated, geometric Brownian motion (gBm) processes. 

 

The rest of this paper is organized as follows. In section 2, we outline the model assumptions and 

define the duopoly investment game. In section 3, we derive the firms’ value functions and their 

investment threshold values. Section 4 presents the results. Section 5 concludes and offers some 

guidelines for possible extensions of this research. 

 

 

 

 

 

 

 

                                                 
7
 In this paper, an idle firm means a firm which is inactive or that it is active but operating without the most 

recent technology. For instance, a firm operating with an old rail train with old tracks is idle in not yet 

adopting high-speed trains and new tracks, if available.  
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2. The Investment Game 

In Figure 1 we represent the investment game using an extensive-form representation
8
. 
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Figure 1 - Extensive-form Representation of a Continuous-time Real Option Game (CTROG)  

with Two Firms and Two Complementary Technologies. 

 

Regarding the notation above, 
,

( )
k kiF  , represents the firm’s value function for a particular 

investment game scenario, where  ,i L F , with “L” and “F” meaning “leader” and “follower”, 

respectively,  1,2,12k  , with “1”, “2” and “12” representing, respectively, the case where the 

firm operates with “technology 1 alone”, “technology 2 alone” or with “technology 1 and 2 at the 

same time”; k is the ratio “market revenue” ( X ) over the cost ( I ) of technology k, /k kX I   
9
; 

the superscripts “SM” and “SQ” on some of the value functions mean “simultaneous investment” 

                                                 
8
 For a detailed description of this type of game representation see Gibbons (1992). For an extensive literature 

review on real option games, with detailed descriptions about the game theory concepts and how to combine 

them with the real option framework, see Azevedo and Paxson (2010). 
9
 In the game-tree we drop the subscript k for simplicity of notation. 
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(i.e., investment on tech 1 and tech 2 at the same time) and “sequential investment” (i.e., investment 

on tech 1 and tech 2 sequentially), respectively
10

.  

 

In section 3 we derive the firms’ value functions and investment thresholds for the scenarios 

identified in Figure 1 as (S1), (S2) and (S3). Below we characterize these investment scenarios.  

 

Scenario 1 (S1): firm i adopts first tech 1(2) and becomes the leader, firm j adopts later tech 1(2), 

and becomes the follower. The payoffs for firm i and j are given, respectively, by 
1,1

( )LF   

and
1,1

( )FF  . Scenario 2 (S2): firm i adopts first tech 1 and tech 2 (tech 12) simultaneously, and 

firm j does the same later. Firm i becomes the leader and firm j the follower and their payoffs are, 

respectively, 
12,12

( )SM

LF   and 
12,12

( )SM

FF  . Scenario 3 (S3): in the first two rounds of the game, firms i 

and j adopt tech 1 or tech 2 (tech 1(2)). Firm i adopts first (first round) and becomes the leader, firm 

j adopts second (second round) and becomes the follower. Then, at the third and fourth rounds of 

the game, both firms adopt the remaining technology available tech 2(1), again, one after the other, 

firm i first and firm j second, and the firms’ payoffs are given by 
12,12

( )SQ

LF   and 
12,12

( )SQ

FF  , 

respectively for firm i and j. 

 

In the next section we derive analytical expressions for the firms’ value functions marked in Figure 

1 with an ellipse (S1, S2 and S3). Figure 2 below is an illustration of the investment scenarios 

denoted in Figure 1 by (S1) and (S3), i.e., timelines for the investment thresholds of the leader and 

the follower, for the cases where the two technologies are adopted sequentially, first tech 1(2), (S1 

in the game-tree), and then tech 2(1), (S3 in the game-tree). 

 

 

    Time    0              
*

1L
                

*

1F
               

*

1 2L
           

*

1 2F
             

     
Figure 2 – Firms’ Investment Thresholds when the Two Technologies  

are Adopted Sequentially. 

 

                                                 
10

 For instance, 
1,1

( )LF   and 
1,1

( )FF   represent, respectively, the value functions of the leader (L) and the 

follower (F) for the scenario where both firms operate with tech 1; 
12,12

( )SM

LF   and 
12,12

( )SM

FF   represent, 

respectively, the value function of the leader and the follower for the scenario where both firms adopted tech 

1 and tech 2 simultaneously; 
1 2,1 2

( )SQ

LF
 

  and 
1 2,1 2

( )SQ

FF 
 

 represent, respectively, the value function of the leader 

and the follower for the scenario where both firms adopted tech 1 and tech 2 sequentially, first tech 1 and then 

tech 2. Similar rationale applies to the notation used for the rest of the value functions in the game-tree. 
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*

1L
  represents the leader’s investment threshold to adopt tech 1, given that none of the technologies 

have been adopted; 
*

1F
  denotes the follower’s investment threshold to adopt tech 1, when the leader 

is operating with tech 1 and the follower is not yet in the market; 
*

1 2L
   is the leader’s investment 

threshold to adopt tech 2 given that tech 1 is in place; and 
*

1 2F
   is the follower’s investment 

threshold to adopt tech 2 given that it has adopted tech 1 and the leader is already operating with 

both tech 1 and tech 2. 

 

Figure 3 represents the firms’ investment threshold for the scenario where at the beginning of the 

investment game none of the technologies have been adopted and the two firms, one after the other, 

adopt the two technologies simultaneously (S2 in the game-tree); 
*

12L
 and 

*

12F
  represent, 

respectively, the leader’s and the follower’s investment thresholds. 

 

 

      Time       0                       *

12L
                             *

12F
                     

Figure 3 – Firms’ Investment Thresholds when the Two Technologies  

are Adopted Simultaneously. 
 

 

Table 1 is a summary of the investment thresholds. 

 

* The mathematical expressions for the firms’ investment threshold to adopt tech 1 and tech 2 alone are exactly the same, only the subscripts (1, 2) 

change. 

** In the derivation of these expressions we assumed firms adopt tech 1 first and afterwards tech 2. However, nothing would change if we had assumed 

the other way round, apart from reversing the subscripts (1, 2).  

Note: the terms S1, S2 and S3 above represent the investment game scenarios identified in the game-tree, p. 6. 

 

Table 1 - Investment Thresholds for the Scenarios where Firms Adopt the Two  

Technologies, Sequentially and Simultaneously. 

Firms’ Investment 

Trigger Values 

The Adoption*  

of Tech 1 or Tech 2 alone 

Sequential Adoption** 
(tech 1/tech 2) 

Simultaneous Adoption 

(tech 1 + tech 2) 

Leader 

*

1L
  

Equation (28) 

(S1) 

*

2L
  

Equation (28) 

(S1) 

*

1 2L
   

Equation (16) 

(S3) 

*

12L
  

Equation (32) 

(S2) 

Follower 

*

1F
  

Equation (24) 

(S1) 

*

2F
  

Equation (24) 

(S1) 

*

1 2F
   

Equation (11) 

(S3) 

*

12F
  

Equation (30) 

(S2) 

 

Due to the high number of the investment scenarios available, to avoid unnecessary complexity and 

without any lost of insight, we focus our derivation and analyses only on the scenarios marked in 

Figure 1 with an ellipse, i.e., (S1), (S2) and (S3). In addition, we assume that firms are not allowed 

to invest at the same time, i.e., if that occurs one of the firms will become the leader by flipping a 



 9 

coin. Nevertheless, these constrains in our analyses do not impose any lost of insight because, the 

framework and the nature of the methodology used to derive the firms’ value functions and 

respective investment thresholds for scenarios (S1), (S2) and (S3) are informative enough to infer 

the results for the other investment scenarios. Additional information about another investment 

game scenario is provided in the Appendix A, section 5.  

2.1 The Pre-emption Game 

In games of timing the adoption of new technologies, the potential advantage of being the first to 

adopt may introduce an incentive for pre-empting the rival, speeding up the first adoption. 

Fudenberg and Tirole (1985) studied the adoption of a new technology and illustrate the effects of 

pre-emption in games of timing. We use their concept of pre-emption to derive the firms’ value 

functions and investment thresholds.  

3. The Model 

In a risk-neutral world, at the beginning of the investment game, there are two new 

(complementary) technologies available, tech 1 and tech 2, and two idle firms, i and j, which are 

considering the adoption of the two technologies, one after the other or both simultaneously 

depending on which one of these choices is the best.  

 

The firms’ cost savings flow is given by the following expression: 

 

( )
i jk k kX t ds 

 
                 (1) 

where, k  represents the proportion of a firm’s  revenues that is expected to be saved through the 

adoption of technology k, with  0,1,2,12k  , where 0 means that firm is not yet active and 1, 2 

and 12 mean that firm operates with  tech 1 only, tech 2 only or tech 1 and tech 2 at the same time, 

respectively; ( )X t  is the total market revenue flow; 
i jk kds 

 
 is a competition (deterministic) factor 

that ensures a first-mover market share (revenue) advantage, with  ,  ,i j L F , where L means 

“leader” and F “follower”, and represents the “proportion of the total market revenues”
 11

 that is 

held by each firm for each investment scenario. The relationship between these competition factors 

is governed by inequality (2).  

                                                 
11

 Suppose that by adopting a new technology a firm can get a 10% reduction in its operating costs per unit. 

Hence, within a certain production range, the more it produces/sales the more it saves due to the adoption of 

the technology.  
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The intuition used to justify the first-mover “market share advantage” is similar to that used by 

Dixit and Pindyck (1994), following Smets (1993). Implicitly we also assume that firms are 

symmetric in their ability to operate with the new technologies and that spillover information is not 

allowed, i.e., firms’ “first-mover market share advantage” holds forever. In addition, the exit 

strategy is no allowed. 

 

Consequently, for the leader, inequality (2) holds:  

 

12 0 1 0 2 0 12 1 12 12 1 1 2 2L F L F L F L F L F L F L F
ds ds ds ds ds ds ds           

                        (2) 

 

As in a duopoly, the market share of the follower is a complement of the leader’s, i.e., 

1
F L L Fk k k kds ds  , with  1,2,12k  , inequality (3) holds for the follower: 

 

1 1 2 2 12 12 1 12 0 12 0 1 0 2F L F L F L F L F L F L F L
ds ds ds ds ds ds ds           

                        (3) 

 

The economic interpretation for inequality (2) is the following: for firm L (the leader), the best 

investment scenario, in terms of market share, is when it is active with either tech 1 or tech 2, alone, 

or with both technologies at the same time, and its rival firm F (the follower), is inactive 

12 0 1 0 2 0L F L F L F
ds ds ds   

12
; its second best investment scenario is when it adopts both technologies 

first, and its rival adopts later only tech 1 ( 12 1L F
ds ); its third best investment scenario is when both 

firms adopt both technologies but the leader does so earlier ( 12 12L F
ds ); its fourth best investment 

scenario is when both firms adopt one technology, tech 1 or tech 2, but the leader does so earlier 

1 1 2 2L F L F
ds ds  

. It is implicitly assumed that ( 0 0 0 0 0
L F L F

ds ds  ), i.e., when both firms are 

inactive their payoff is zero
13

. Similar rational applies to the follower’s inequality. A practical 

illustration about how these factors work in practice and their influence on the determination of the 

firms’ value functions and the equilibrium of the game is given in Appendix B, sections 3 and 4. 

 

                                                 
12

 We assume that tech 1 and tech 2 are symmetric. Hence, 
1 0 2 0L F L F

ds ds ; 
2 2 1 1L F L F

ds ds , i.e., the leader’s 

first-mover market share advantage is the same regardless of the technology chosen. Our framework allows 

however the use of different assumptions in this regard.  
13

 Note that, by assumption, the leader is the firm who adopts first. Hence, the scenario in which the follower 

is active and the leader is inactive is not considered.  
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In addition, we assume that total market revenues, ( )X t , follow a geometric Brownian motion 

given by the following equation: 

 

X X XdX Xdt Xdz         (4) 

 

where, 
X  is the trend rate of growth of market revenues, X  is the volatility of the market 

revenues and 
Xdz  is the increment of a standard Wiener process. 

 

We consider that tech 1 alone provides a net cost savings, 1S , that is a fraction, 1 , of the firm’s 

market revenues, 
i jk kX ds 

 
: 

 1 1 i jk kS X ds  
 

                 (5) 

 

Since the firms’ cost savings are proportional to revenues and revenues follow a gBm process, so 

firms’ cost savings also follows a gBm process. 

 

Similarly, the use of tech 2 alone provides a cost savings equal to: 

 2 2 i jk kS X ds  
 

                   (6) 

 

And the simultaneous use of both technologies yields cost savings equal to: 

 

 12 i jk kS X ds  
 

                 (7)  

 

The technological complementarity between the two technologies is given by the following 

inequality: 

 

 12 1 2                (8) 

 

In practice, 1  and 2  are technology/product-specific, independent, and not necessarily correlated. 

For instance, technologies used to produce multi products/services may have different degrees of 

complementarity regarding each of the product/service. This fact explains why firms with huge 
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fixed assets, manufacturing sector for instance, tend to guide their R&D policies to take advantage 

of the assets (technologies) in place. 

 

Furthermore, we assume that the costs of adopting tech 1 and tech 2, respectively, 1I  and 2I , follow 

gBm processes as well, given by: 

 

1 1 11 1 1I I IdI I dt I dz                  (9) 

and  

2 2 22 2 2I I IdI I dt I dz                 (10) 

 

where, 
1I

  and  
2I  are the trend rates of growth of the cost of tech 1 and tech 2, respectively; 

1I
  

and 
2I  are the volatility of the cost of tech 1 and tech 2, respectively; and 

1I
dz  and 

2Idz  are the 

increments of the standard Wiener processes for the costs tech 1 and tech 2, respectively. For 

convergence reasons 0X kr      holds. 

 

In some cases, correlation between “revenues” and “cost of tech 1(2)” and between “cost of tech 1” 

and “cost of tech 2” are possible. This fact is considered in our model, Equations A2, A6, A9, 17, 

18 and 22.       

3.1 Technology 1 is in place 

3.1.1 The Follower’s Value Function 

In this section we derive the follower’s value function, 
1 2,1 2 2( )SQ

FF 
 

, and investment threshold, 

*

1 2F
  , to adopt tech 2 assuming that tech 1 is in place. Below are the results. See Appendix A, 

section 1, pp. 27-30, for a detailed derivation. 

 

The follower’s investment threshold, 
*

1 2F
  , is given by equation (11): 

 

2* 1
1 2

1 12 1 12 12 1 1 12

( )

1 ( )F

F L F L

X Ir

ds ds

 


   


 


        

                           (11) 

 

With 1 2A   given by equation (12): 
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 
1

2

*

1 2 12 1 12 12 1 1 12

1 2

1

( )

1

F F L F L

X I

ds ds
A

r



   

  







       
  

                              (12) 

 

And the follower’s value function is given by equation (13):  

 

1

1 2,1 2

1 1 12 *2
1 2 2 2 1 2*

1 2

2

12 12 12 * *

2 2 1 2

       

( )

                          

F L

F

F

F L

F F

XSQ

F

X

X ds
A I

r
F

X ds
I

r


 

 
 




 


 

 





        
    

     


                          (13) 

Scenario (S3) in the game-tree, p. 6. 

 

Equation (13) tells us that for the follower, before 
*

1 2F
   is reached, its value, when it adopts the two 

technologies sequentially, is given by the value of operating with tech 1 forever, 1 1 12F L

X

X ds

r





 
 


, plus 

its option to adopt tech 2, 
1

2
1 2 2*

1 2

 

F

A I










 
 
 
 

; as soon as 
*

1 2F
   is reached and it adopts tech 2, its value 

is equal to the present value, in perpetuity, of the cost savings obtained from operating with both 

technologies from 
*

1 2F
   until infinity, 12 12 12 *

2

F L

F

X

X ds
I

r





 
  


. 

3.1.2 The Leader’s Value Function 

Assuming that both firms are operating with tech 1 and that the follower will adopt tech 2 at 
*

1 2F
   

(derived above), the leader’s value function is described by the following expression: 

 

2 2
2

2

( )
*

12 12 1 2 12 12 12
0

LF L

L F L L F
F

T T rTr r

t T
E X ds e d I e X ds e d 

    
  



                          (14) 

 

where, the first integral represents the leader’s cost savings in the period where it operates with the 

two technologies and the follower operates with tech 1; the second integral represents the leader’s 

cost savings for the period where both firms are operating with the two technologies, tech 1 and 

tech 2; 
*

2L
I  is the cost of tech 2 at the leader’s adoption time. 
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Applying the methodology used in Dixit and Pindyck (1994), pp. 309-315, we get the following 

expression for the leader’s value function:  

 

1

1 2,1 2

12 12 1 *1 2
12 12 12 12 1 2 2 1 2*

1 1 2

2

12 12 12 * *

2 2 1 2

     
1

( )

                                                            

L F

L F L F F

F

L F

L F

XSQ

L

X

X ds
ds ds I

r
F

X ds
I

r


  

  
  




 


 







                 
     





                 (15) 

Scenario (S3) in the game-tree, p. 6. 

 

Expression 12 12 1L F

X

X ds

r





 
 



 corresponds to the leader’s total payoff if it operates alone with the two 

technologies forever; 
1

1 2
12 12 12 12 1 2*

1 1 21 L F L F

F

ds ds I



 


  

 
       

 is negative, given that 
12 12 12 1 0

L F L F
ds ds   

 

(inequality 2, p. 10), and corresponds to the correction factor that incorporates the fact that in the 

future if 
*

1 2F
   is reached the follower will adopt tech 2 and the leader’s profits will be reduced. 

12 12 12 *

2

L F

L

X

X ds
I

r





 
  


 is the leader’s total payoff if it operates with the follower, both with the two 

technologies from 
*

1 2F
   until infinity. 

 

There is no closed-form solution for the leader’s investment threshold value. However, numerical 

methods can be used to solve to equation (16) for 
*

1 2L
  . Equation (16) is derived by equalizing the 

value functions of the leader and the follower, for 
*

2 1 2F
   .  

 

1 1

12 12 1 1 1 12* *1 2 2
2 12 12 12 12 1 2 1 12 2* *

1 1 2 1 2

0
1

L F F L

L L F L F F

F FX X

X ds X ds
I ds ds I I A I

r r

 
   


     

                            

      (16) 

 

3.2 None of the Technologies have been adopted 

Now that we have the value of the implicit option on tech 2 if tech 1 has been adopted, we can 

analyse the first-stage decision to adopt tech 1. Similarly as we have done for the scenario where we 

assume that tech 1 is in place, here we derive the firms’ value functions and investment trigger 

values for the scenario where neither of the technologies has been adopted.                     
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3.2.1 The Follower’s Value Function  

Let 1 2( , , )F X I I  be the value of the option to adopt either one or both technologies. Setting the 

return on the option rF equal to the expected capital gain on the option and using Ito’s lemma, we 

obtain this differential equation for the region in which the firm waits to invest: 

 

1 2 1 1 2 2

1 2 1 2 1 2

2 2 2 2 2
2 2 2 2 2 2

1 2 1 22 2 2

1 2 1 2

2

1 2 1 2

1 2 1 2

1
0 2 2 ...

2

  ... 2

X I I XI X I XI X I

I I I I X I I

F F F F F
X I I XI XI

X I I X I X I

F F F F
I I X I I rF

I I X I I

     
     

      

   
    

    

        

     

       (17) 

 

where, 
1XI  and 

2XI  are the correlation coefficients between market revenues and cost of tech 1 

and market revenues and cost of tech 2, respectively, and 
1 2I I  is the correlation coefficient 

between the cost of tech 1 and the cost of tech 2. 

 

In the region where the firm is waiting to adopt, this value can be separated into the value of the 

option to acquire tech 1 plus the value of the option to acquire tech 2 as well. Assuming first-order 

homogeneity, i.e., 
1 2 1 1 1 2 12 2( , , ) ( / ) ( / )F X I I I f X I I f X I  , the relevant partial derivatives yield: 

 

1 1 1

2 2 2

2
2 1 1 1 1

1 1 12

1 1

2
2 12 2 12 2

2 2 122

2 2

( ) ( )1
0 ( ) ( ) ...

2 ( ) ( )

( ) ( )1
   ... ( ) ( )

2 ( ) ( )

m X I I

m X I I

f f
r f

f f
r f

 
     

 

 
     

 

  
      

  

  
     

  

                             (18) 

 

where, 
1 1 1 1

2 2 2 2m X I XI X I         and 
2 2 2 2

2 2 2 2m X I XI X I        . 

 

In the region where the current value of the ratio “market revenues” over “cost of tech 2” is lower 

than the threshold to adopt tech 2 if tech 1 is already in place, i.e., in the region where 
*

2 1 2F
    

(see Equation 11),  the second bracketed expression is equal to zero, leaving this second-order 

linear differential equation equal to
14

: 

                                                 
14

 The rationale underlying this derivation is the following: the investment threshold to adopt tech 2 if tech 1 

is in place is 
*

1 2F
  , which, due to the effect of complementarity between tech 1 and tech 2 , is lower than the 

threshold to adopt tech 2 alone, 
*

2F
 . Hence, before 

*

1 2F
   is reached, it is not optimal to adopt tech 2 alone, 

i.e., the option to adopt tech 2 is worthless. 
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1 1 1

2
2 1 1 1 1

1 1 12

1 1

( ) ( )1
0 ( ) ( )

2 ( ) ( )
m X I I

f f
r f

 
     

 

  
     

  

                      (19) 

 

Therefore, the economically meaningful solution is: 

 

1 2

1 1 1 1 1 1( ) ( ) ( )f A B                            (20) 

 

where, 1(2)  is the characteristic quadratic function of the homogeneous part of equation (18), given 

by: 

1 1 11 1 1

1
( 1) ( ) ( ) 0

2
m X I Ir                                (21) 

 

Solving the equation above for 1  leads to: 

 

1 1 1

1 1 1

2

1 2 2 2

( ) 2( )1 1

2 2

X I X I I

m m m

r    


  

   
     

 
 

                 (22) 

 

As the ratio revenues over the cost of tech 1, 1 , approaches 0, the value of the option becomes 

worthless, so 1 0B  . Using the “value matching” and the “smooth pasting” conditions at the 

threshold ratio, 
*

1F
 , we obtain: 

1

1

*
1 1 11

1

1 1

F LF

X I

ds
A

r

  
 

  

 

  
                                     (23) 

 

1* 1
1

1 1 1 1

( )

1F

F L

X Ir

ds

 


  
 

 


 
                                (24) 

 

1

1

1,1

1 1 1 *1 1
1 1*

1 1

1

1 1 1 * *

1 1 1

       
1

( )

                      

F L

F

F

F L

F F

X I

F

X

dsI

r
F

X ds
I

r

       
      
     





 
   




 


                                      (25) 

Scenario (S1) in the game-tree, p. 6. 
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Since we did not differentiate the two technologies, the expressions for the case of tech 2 are 

exactly the same as those derived above for the case of the adoption of tech 1. The only difference 

is the subscript used in the notation for the complementarity parameters and the competition factors, 

where the subscript “2” replaces “1”.  

 

Notice that 
*

1F
 is the follower’s threshold for adopting tech 1 alone; 

*

1 2F  is the follower’s 

threshold to adopt tech 2 given that tech 1 is in place.  From Equations 24 and 11, which represent 

the thresholds above, respectively, we can see that when the two technologies are complements, the 

degree of complementarity does not affect the decision to adopt either technology by itself, but does 

reduce the threshold for adopting the other technology if one technology is adopted.  

3.2.2 The Leader’s Value Function 

Focusing again on the adoption of tech 1, the leader’s expected value is given by: 

1 1
1

1

( )
*

1 1 0 1 1 1 1
0

F L L

L F L L F
F

T T rTr r

t T
E X ds e d I e X ds e d 

    
  



                               (26) 

 

The first integral represents the leader’s payoff when alone in the market; the second integral 

represents the leader’s payoff when operating with the follower, both with tech 1; 
*

1L
I , is the cost of 

tech 1 at the time of the adoption.  

 

Applying similar procedures as those used in previous section (see pages 12 to 14 and appendix A, 

section 1), following the methodology used in Dixit and Pindyck (1994), pp. 309-315, we get the 

following expression for the leader’s value function: 

 

1

1,1

1 1 0 *1 1
1 1 1 0 1 1 1*

1

1

1 1 1 * *

1 1 1

       
1

( )

                                                   

L F

L F L F F

F

L F

L F

X

L

X

X ds
ds ds I

r
F

X ds
I

r


  

 
  




 


                 
     


                   (27) 

Scenario (S1) in the game-tree, p. 6. 

 

Again, there is no closed-form solution for the leader’s trigger value. However, numerical methods 

can be used to solve equation (28) for 
*

1L
 . Equation (28) is obtained by equalizing the value 

functions of the leader and the follower, for 
*

1 1F
  .   
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1 1

1

1 1 0 1 1 0 1 11 1 1 1
1 1 1 0 1* *

1 1 1 1

0
1 1

L F F L F L

L F L F

F FX X I

X ds ds dsI
ds ds I

r r

 
   

      

                           

              (28) 

 

The procedure used to get this equation is the same as that used for Equation (16). 

3.3 Simultaneous Adoption 

Following similar procedures as those used in previous sections we get the expressions for the 

firms’ value functions and investment threshold values for the case where the two technologies are 

adopted simultaneously. For simplicity of notation we use 
1 2 12

I I I  . 

 

     3.3.1 The Follower’s Value Function 

1

12,12

*12 12
12 12*

1 12

12

12 12 12 * *

12 12 12

              
1

( )

      

F

F

F L

F F

SM

F

X

I

F

X ds
I

r




 

 



 



  
  

    
     


                                      (29) 

Scenario (S2) in the game-tree, p. 6. 

 

Investment Trigger Value: 

12* 1
12

1 12 12 12

( )

1F

F L

X Ir

ds

 


 

 


  
 

                                                  (30) 

 

    3.3.2 The Leader’s Value Function 

 

1

12,12

12 12 0 *1 12
12 12 12 0 12 12 12*

1 12

12

12 12 12 * *

12 12 12

       
1

( )

                                                        

L F

L F L F F

F

L F

L F

XSM

L

X

X ds
ds ds I

r
F

X ds
I

r


  

 
  




 


                 
     


              (31) 

Scenario (S2) in the game-tree, p. 6. 

  

Investment Trigger Value: 

 

1 1

12 12 0 * 1 12 12 12
12 12 12 12 0 12* *

1 12 1 12

0
1 1

L F

L L F L F

F FX

X ds I
I ds ds I

r

 
   

    

                        

                (32) 
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3.4 Other Investment Scenarios 

In the game-tree, Figure 1, p. 6, there are investment scenarios which we did not fully characterize 

in our derivations in section 3. Indeed, to avoid unnecessary complexity we focused only on the 

three investment scenarios marked with an ellipse. However, this does not lead to any lost of insight 

in our results/analyses, since the characterization of those three scenarios are informative enough to 

show that conventional wisdom does not always hold for contexts where uncertainty and 

competition hold.  On the other hand, the characterization of the other investment scenarios can be 

easily done by following the same rationale and the technique used in section 3, as we exemplify in 

Appendix B, table B2, p. 35. 

4. Results and Sensitivity Analysis 

In this section we analyse the sensitivity of our real options model to changes in some of its most 

important parameters. To illustrate our analysis we use the following basic model inputs
15

: 60X  , 

1 7.0I  , 2 7.0I  , *

1 6.0
L

I  , *

1 5.0
F

I  , *

2 6.0
L

I  , *

2 5.0
F

I  , 0.05X  , 
1

0.05I   , 
2

0.10I   , 

0.4X  , 
1 2 12

0.20I I I     , 0.09r  , 
1 2 12

0XI XI XI     , 1 0.10  , 2 0.10  , 

12 0.30  . The competition factors used are: 1 0 2 0 12 0 1.0
L F L F L F

ds ds ds   , 

1 1 2 2 12 1 0.60
L F L F L F

ds ds ds   , 1 1 2 2 1 12 0.40
F L F L F L

ds ds ds   , 12 12 0.55
L F

ds  , 12 12 0.45
F L

ds  . 

 

According to the inputs above tech 1 and tech 2 are symmetric except regarding their cost growth 

rates, the cost of tech 1 is expected to fall at 5% per annum (
1

0.05I   ) and the cost of tech 2 is 

expected to fall at 10% per annum (
2

0.10I   ). 

 

Table 2 shows the results for investment scenarios S1, S2, S3. The variables Ф1(t), Ф2(t) and Ф12(t)  

represent the current value of the ratios “revenues (X)/cost of tech 1 (I1)”, “revenues(X)/cost of tech 

2(I2)”, and “revenues(X)/the sum of the costs of tech 1 and tech 2( I1+I2=I12)”, respectively; Ф*
1L, 

Ф*
2L and Ф*

12L are the leader’s investment thresholds to adopt tech 1 alone, tech 2 alone and tech 1 

and tech 2 at the same time, respectively; and Ф*
1F, Ф*

2F and Ф*
12F are the follower’s investment 

thresholds to adopt tech 1 alone, tech 2 alone, and tech 1 and tech 2 at the same time, respectively.  

 

                                                 
15

 In our simulations we use inputs that are generous for the leader. This shows the features of the model in 

extreme conditions.  
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Firms’ investment thresholds depend on the evolution of two stochastic underlying variables, 

revenues (X) and investment cost (Ik, with k=1, 2 and 12). Therefore, these investment thresholds 

are defined by straight lines plotted in the space (X,Ik) whose slope is equal to the value of the 

respective threshold their represent, and where points on the straight lines or on the area above the 

straight lines represent possible combinations of the variables X and Ik that lead firms to adopt 

technology k, and points on the area below the straight lines represent possible combinations of the 

variables X and Ik that lead firms to defer the adoption of technology k. Hence, for each firm and 

investment scenario, the higher the investment threshold (i.e., the slope of the investment threshold 

line), the later is the adoption of technology k.  

 

Current Values 

Follower’s Thresholds Leader’s Threshold 

 
Idle Firm 

Active Firm  
Idle Firm 

Active Firm 

Tech 1 
In place 

Tech 2 
In Place 

Tech 1 
In place 

Tech 2 
In Place 

Ф1(t) Ф2(t) Ф12(t) Ф
*
1,F Ф

*
2,F Ф

*
12,F Ф

*
1+2,F Ф

*
2+1,F Ф

*
1,L Ф

*
2,L Ф

*
12,L Ф

*
1+2,L Ф

*
2+1,L 

8.57 8.57 4.29 14.53 26.70 8.34 16.67 8.58 0.92 1.44 6.77 0.33 0.17 

Investment decision: wait wait wait wait invest Invest invest wait invest invest 

 

Table 2 – Firms’ Investment Thresholds  

In Table 2 we can see that the investment thresholds for an idle leader and follower, for the 

scenarios where tech 1 is adopted alone, tech 2 is adopted alone and tech 1 and tech 2 are adopted at 

the same time, are, respectively, 0.92, 1.44 and 6.77, and, 14.53, 26.70 and 8.34. These results show 

that the “leader should adopt tech 1 and tech 2 sequentially”, first, tech 1, as soon as Ф*
1,L= 0.92 is 

reached, and second, tech 2, as soon as Ф*
2,L= 1.44 is crossed the first time; the “follower should 

adopt tech 1 and tech 2 simultaneously”, as soon as Ф*
12,F= 8.34 is reached. For all investment 

scenarios considered here, the leader adopts before the follower, as expected. In addition, the results 

also show that when sequential adoption is optimal, firms should adopt first the technology whose 

cost is decreasing more slowly, tech 1 (
1

0.05I   ), and, second, the technology whose cost is 

decreasing more rapidly, tech 2 (
2

0.10I   ).  

In Table 2 we have also results for the investment thresholds for an active leader and follower, i.e., 

for the case where firms are operating with one of the technologies. In these simulations we assume 

that at the beginning of the investment game firms are active (operating) with either tech 1 or tech 

2. If firms are active with tech 1(2), firms have the option to adopt tech 2(1)
16

. Our results show that 

when the follower is active with tech 1, it should adopt tech 2 as soon as Ф2(t) reaches Ф*
1+2,F 

                                                 
16

 Note that as soon as one of the technologies, tech 1 or tech 2, is adopted, the option to adopt both 

technologies at the same time is eliminated. 
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=16.67, and when active with tech 2 it should adopt tech 1 as soon as Ф 1(t) reaches Ф*
2+1,F = 8.58.  

When the leader is active with tech 1, it should adopt tech 2 as soon as Ф 2(t) reaches Ф*
1+2,L = 0.33, 

and when active with tech 2 it should adopt tech 1 as soon as  Ф1(t) reaches Ф*
2+1,L=0.17. The 

asymmetry in firms’ investment behavior regarding the adoption of tech 1/tech 2 is due to the use of 

different cost growth rates (
1

0.05I   , 
2

0.10I   ) and the asymmetry between the leader’s 

and the follower’s investment behavior is due to the first-mover market share advantage. 

Consequently, both the leader and the follower should adopt tech 1 and tech 2 sequentially. 

Conventional wisdom says that “when a production process requires two extremely complementary 

inputs, a firm should upgrade (or replace) them simultaneously”. The results above show, however, 

that this view neglects the effects of competition and uncertainty on investment timing.  

 

Figures 4 and 5 show the follower’s investment threshols as a function of the “difference between 

the cost growth rates of tech 1 and tech 2”, 
1 2

[ ]I I  , for two scenarios, respectively: (i) the 

adoption of tech 1 alone, and (ii) the adoption of tech 1 and tech 2 simultaneously. In Figure 4 we 

simulate Ф*
1,F using the following “cost growth rates of tech 1”:  

1
0, 0.05, 0.10I    . In Figure 

5, we simulate Ф*
12,F using the following degrees of “complementarity between tech 1 and tech 2”, 

 1 2[ ( )] 0.1,0.2,0.5      . The variables Ф1(t)=8.57 and Ф12(t)=4.29, in Figures 4 and 5, 

respectively, are the current value of the underlying variables of the investment on “tech 1 alone” 

and “tech 1 and tech 2 simultaneously”. Note that these variables do not depend on 
1 2

[ ]I I  , so 

they are represented by horizontal straight lines
17

.  

 

 

                    Figure 4              Figure 5 

                                                 
17

 In Figures 4, 5, 6 and 7 to compute 
1 2

[ ]I I   we set 
1

0.05I   , base case, and changed 
2I  according to 

 
2

0.05, 0.10, 0.15, 0.20, 0.25I       .    

A 
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In Figure 4, the follower’s threshold lines to adopt tech 1 alone, Ф*
1,F, for each of the cost growth 

rates used,  
1

0, 0.05, 0.10I    , do not depend on 
1 2

[ ]I I  , so they are horizontal straight lines, 

where the more negative the cost growth rate of tech 1, 
1I

 , the higher is the investment threshold 

(i.e., the later is the adoption).   

 

In Figure 5, the follower’s investment threshold lines to adopt tech 1 and tech 2 simultaneously, 

Ф*
12,F, depend on 

1 2
[ ]I I  . Ceteris paribus, the higher the 

1 2
[ ]I I  , the higher is the investment 

threshold (i.e., the later is the adoption of tech 1 and tech 2 simultaneously). The results also show 

that the higher the complementarity between tech 1 and tech 2, the lower is the investment threshold 

(i.e., the sooner is the adoption of both technologies at the same time). When we set 

12 1 2( ) 0.50      , the early adoption of both technologies at the same time is  optimal for low 

values of 
1 2

( )I I  . In this scenario, mixed strategies are possible for the follower, and point A is a 

strategic “switching point”, where if 
1 2

[ ]I I   decreases, it is optimal to adopt both technologies at 

the same time, and if 
1 2

[ ]I I   increases crossing point A, it is optimal to defer such simultaneous 

investments. 

 

The illustration in Figure 5 shows that the existence of high degrees of complementarity between 

two technologies, tech 1 and tech 2, for instance [
12 1 2( ) 0.50      ], in contexts of uncertainty 

and competition (first-mover advantage) does not necessarily mean that the adoption of both 

technologies at the same time is optimal. Notice that, high “complementarity between two 

technologies” is an incentive for the follower to adopt both technologies at the same time, but, a 

high “difference between the cost growth rates of the two technologies” 
1 2

[ ]I I   is an incentive 

for the follower to adopt the two technologies sequentially, first, the technology whose cost is 

decreasing  slowly and, second, the technology whose cost is decreasing  rapidly.  These two effects 

can offset each other.  

 

Figures 6 and 7  illustrate the results for the leader, regarding the adoption of tech 1 alone and the 

adoption of tech 1 and tech 2 at the same time, respectively. Figure 6 shows that the leader’s current 

value of the adoption of tech 1 alone, Ф1(t)=8.57, is significantly higher than the leader’s 

investment thresholds lines for the scenarios analyzed, Ф*
1,L= 2.45 (

1
0.20I   ) and Ф*

1,L= 1.94 

(
1

0.15I   ). Hence, it is optimal for the leader to adopt tech 1 alone, even when high rates of 

decrease in the cost of tech 1 hold. In Figure 7 the leader’s current value of the adoption of tech 1 



 23 

and tech 2 at the same time, Ф12(t)=4.29, is lower than the leader’s investment threshold lines, 

Ф*
12,L. Therefore, the adoption of both technologies at the same time is not optimal for the leader, 

even when high degrees of complementarity between tech 1 and tech 2 (0.20 or 0.50) hold.   

 

 

         Figure 6                 Figure 7  

 

Comparing Figure 5 (follower’s threshold lines to adopt tech 1 and tech 2 at the same time) with 

Figure 7 (leader’s threshold lines to adopt tech 1 and tech 2 at the same time), we concude that the 

leader is much less sensitive to changes in the degree of complementarity between the two 

technologies than the follower (the leader’s threshold curves, Ф*
12,L, in Figure 7, are much closer 

than the follower’s threshold curves, Ф*
12,F, in Figure 5). Through particular cases, we show that 

“conventional (simultaneous adoption) investment behavior” is more likely for the follower than for 

the leader. This asymmetry in the leader’s and the follower’s investment behavior is due to the so 

called effect of “fear of pre-emption”, which affects the leader and does not affect the follower. 

Given that in a leader/follower duopoly market, as soon as the leader invests the follower is in a 

monopoly-like position, so our results also show that “conventional investment behavior” regarding 

the adoption of complementary technologies is more likely to happen in markets where there is no 

competition. 

The huge area between the straight lines Ф1(t)=8.75 and Ф*
1,L=2.45, Figure 6, and between the 

straight lines Ф1(t)=4.29 and the curve Ф*
12,L for complementarity = 0.50, in Figure 11, is somewhat 

a “surprise”, since it means that even when conditions are extremely in favour of the adoption of 

tech 1 and tech 2 at the same time, when compared to the adoption of tech 1(2) alone, 

“simultaneous adoption” is still  unlikely to be justified for the leader
18

. This results show that, for 

                                                 
18

 Note that the inputs used, 
1

0.15I    and 
12 1 2( ) 0.50      , can be considered extreme conditions favoring 

the adoption of tech 1 and tech 2 simultaneously, since higher complementarity between tech 1 and tech 2 
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the leader, in a context of competition with first-mover advantage, the effect of the degree of 

complementarity between two technologies can be offset by the advantages from the leadership in 

the investment, and that in such cases the latter effect is likely to be the main driver of the leader’s 

investment behavior. The same does not happen, however, for the follower, where the degree of 

complementarity plays a more important role in its investment behavior (for similar conditions, 

simultaneous adoption is optimal for the follower if the “difference between the cost growth rates of 

tech 1 and tech 2” is not very high).  

 

Figures 8 and 9 shows the sensitivity of the firms’ investment threshold to changes in the 

“complementarity between the technologies” and the “leader’s market share advantage”
 19

.  

 

 

         Figure 8                 Figure 9  

 

The results show that both firms should delay the investment for all range of leader’s market share 

advantage and degree of complementarity (Ф12(t)=4.29 < Ф 
*
12,L and Ф12(t)=4.29 < Ф*

12,F) used. In 

addition, we can also see that the complementarity between the technologies affects significantly 

the follower’s investment threshold and has almost no effect on the leader’s investment threshold, 

and that the leader’s and the follower’s investment threshold increases as the first-mover advantage 

increases.  

 

Figures 10 and 11 show the sensitivity of firms’ thresholds to adopt tech k (with  1,2,12k  ) to 

changes in the volatility of the investment cost (
1I

 ,
2I and 

12I , respectively). The results show 

                                                                                                                                                     
favours “simultaneous adoption” and high rates of decrease in the cost of tech 1 favours a delay in the 

adoption of tech 1 alone, i.e., a non-sequential adoption.  
19

 For a total market of 100, in Figures 12 and 13, a “first-mover market share advantage” equal to 0.20 means 

that after both firms invest the leader gets 60 and the follower 40, i.e., a first-mover advantage equal to 20 

percent of the total market.  
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that the follower is much more sensitive to changes in the volatility of the cost of the 

technology(ies), than the leader and that for both the higher the volatility the higher are investment 

thresholds (i.e., the later is the adoption). The difference between the sensitivity of the leader and 

the follower to changes in the volatility of the cost of the technology(ies) is due to the pre-emption 

effect, which affects the leader and does not affect the follower.    

 

 

         Figure 10                 Figure 11  

 

Similar results apply to the volatility of the revenues, given that both ( )X t  and ( )I t  follow similar 

stochastic processes. Other complementary sensitivity analyses are supplied in Appendix C, p. 37.  

5. Conclusions and Further Research  

Firms’ investment thresholds to adopt each technology alone are not sensitive to changes in the 

degree of complementarity between the two technologies, since the option to adopt tech 1 is 

independent of the option to adopt tech 2 (i.e., 2  does not affect the firms’ investment threshold to 

adopt tech 1 and 1  does not affect the firms’ investment threshold to adopt tech 2, Equation 24, p. 

16). In addition, the option to adopt tech 1 and tech 2 at the same time is independent of the options 

to adopt tech 1 alone and tech 2 alone, i.e., in our model the proportion of the market revenues that 

can be saved when tech 1 and tech 2 are adopted at the same time, 12 , affects only the firms’ 

investment threshold to adopt the both technologies at the same time, and not the optimal time to 

adopt any of the technologies alone (Equation 30, p. 18).  

 

This research extends Huisman (2001, ch. 9) and Smith (2005). The former, studies the effect of 

competition and revenue uncertainty on timing the adoption of a technology for a context where 

there is one technology available and the possibility that a second and more efficient technology 
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arrives in the future, at a not yet known date, and firms adopt/operate with one technology only; the 

latter, studies the adoption of two complementary technologies for a context of uncertainty, but 

neglects competition. We develop a real options model which considers the simultaneous effect of 

three key variables in the optimization of the adoption of new technologies: uncertainty, 

competition and technological complementarity. In our days very few monopoly markets remain, 

hence Smith (2005) model is very limited. For many industries, for instance manufacturing, 

software and telecommunications, the degree of complementarity between technologies is very 

important. Huisman (2001, ch. 9) model neglects this aspect. In addition, Huisman considers only 

the uncertainty about the revenues. We extend the uncertainty to the investment cost as well. 

         

Our investment game setting is built under the assumption that there is a first-mover advantage 

(pre-emption game). An interesting extension of this research would be to derive a similar 

investment model for an economic context where a second-mover advantage (war of attrition game) 

holds. The extension of this model to oligopoly markets, although technically challenging, would 

also be an interesting complement of this research. 

 

In addition, we also assume that firms have two technologies available which can be adopted at the 

same time or at different times. Given that it is quite common to find projects that have more than 

two inputs whose functions are a complement, an interesting research would be to extend this model 

to investments with more than two complementary inputs, as well as the incorporation of stochastic 

complementarity and technology cost drifts.  
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Appendix A   

1. Derivation of the Follower’s Value Function and Investment threshold when 

Technology 1 is in place 

In this section we derive the follower’s option value to adopt tech 2 assuming that tech 1 is in place, 

12 2( , )f X I . Once we have 12 2( , )f X I , we will derive the expression for the total value 

12 2 1 12 2( , ) ( , )F X I V f X I  , where 
1V  is the follower’s expected value from operating with tech 

1 forever, and given by expression (13)
 20

: 

 

1 1 12

1

F L

X

X ds
V

r





 
 


                                (A1) 

 

Setting the returns on the option equal to the expected capital gain on the option and using Ito’s 

lemma, we obtain this partial differential equation (PDE) for the value function of an active 

follower (i.e., a follower which is operating with tech 1) in the region in which it waits to adopt tech 

2: 

 

 
2 2 2 2

2 2 2
2 2 2 212 12 12 12 12

2 2 2 1 1 122 2

2 2 2

1 1

2 2 F LX I X I XI X I k

F F F F F
X I XI X I X ds rF

X I X I X I
       

    
     

     

        (A2) 

 

where, 
2XI  is the correlation coefficient between the market revenues, X, and the cost of tech 2 , 

2I  and r is the riskless interest rate.  

 

Equation (A2) must be subjected to two boundary conditions. The first is the “value matching” 

condition: 

(i) There is a value of 12 2( , )F X I  at which the follower will invest and at that point in 

time the follower’s value equals the present value of the cash flows minus the 

investment costs (
*

2F
I ):  

 
* *

12 1 12 12 1 1 12 *

12 2 2

( )
( , ) F L F L

F

X

X ds X ds
F X I I

r

  



        


                                  (A3) 

                                                 
20

  Notice that in our framework the total market, ( )X t , is equal to 100 percent and, at each instant of the 

investment game, each firm gets a proportion, 
i jk kds , of ( )X t , which depends on whether it is the leader or 

the follower, active or inactive, and if active on whether it is operating with “tech 1 alone”, “tech 2 alone” or 

with “tech 1 and tech 2 at the same time”. 
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where, *

12 1 12 12( )
F L

X ds     
 represents the follower’s cost savings at the time it adopts tech 2; 

*

1 1 12F L
X ds  

 
 represents the follower’s cost saving while operating with tech 1, which concurs in 

determining the “value of waiting”; *

12 12F L
X ds 

 
 is the follower’s revenues share at the time of 

adoption of tech 2; *

1 12F L
X ds 

 
 is the follower’s revenue share while operating with tech 1 only; 

12 1( )   is the proportion of the follower’s revenues that is expected to be saved due to the 

adoption of tech 2 when tech 1 is in place; 
*X  and 

*

2F
I  are, respectively, the total market revenue 

and the cost of tech 2 at the follower’s adoption time. 

 

The second boundary condition comes from the “smooth pasting” conditions, for the value of both 

the idle and the active follower: 

(ii) The first derivative, with respect to both stochastic variables, ( )X t  and 2 ( )I t , of the 

value functions equals the present value of the cash flows, at 
*

2( / )X I . Therefore, it 

holds that: 

 

*
12 1 12 12 1 1 1212 2

*

( )( , ) F L F L

X

ds dsF X I

X r

  



        
 

                    (A4) 

*

12 2

*

2

( , )
1

F

F X I

I


 


                              (A5) 

 

In the present case, the natural homogeneity of the investment problem, i.e., 

12 2 2 12 2( , ) ( / )F X I I f X I , where 12f  is the variable to be determined, allows us to reduce it to 

one dimension. Using the following change in the variables 2 2/X I  and substituting this 

relation in the PDE (A2) yields
21

: 

 

   
2 2 2

2
2 12 2 12 2

2 2 12 2 1 1 12

2 2

( ) ( )1
( ) ( ) ( ) ( ) 0

2 L Fm X I I

f f
r f X ds

 
       

 

 
     

 
            (A6) 

 

where, 
2 2 2 2

2 2 2 2m X I XI X I        . 

 

                                                 
21

 A detailed derivation of Equation (A6) is given in the Appendix C, p. 36. 



 29 

Equation (A6) is a homogeneous second-order linear ordinary differential equation (ODE) whose 

general solution has the form
22

: 

 

1 2

1 2 2 1 2 2 1 2 2( ) ( ) ( )f A B                              (A7) 

 

where, 1(2)  is the characteristic quadratic function of the homogeneous part of equation (A6), 

given by:  

2 2 2

2

1 1 1

1
( ) ( 1) ( ) ( ) 0

2
m X I Ir                           (A8) 

 

Solving the equation above for 1  leads to: 

 

2 2 2

2 2 2

2

1 2 2 2

( ) 2( )1 1

2 2

X I X I I

m m m

r    


  

   
     

 
 

                 (A9) 

 

Note that as the ratio of market revenues to cost of tech 2, 2 , approaches 0, the value of the option 

to adopt tech 2 becomes worthless; therefore, in Equation (A7) 1 2 0B   . Rewriting the boundary 

conditions we obtain the following “value-matching” condition: 

 

2

* *

12 1 12 12 1 2 1 1 12 1 2*

1 2 1 2

( )
( ) 1F L F F L F

F

X I

ds ds
f

r

    


 

 

 

        
 

                         (A10) 

where, 
*

2 1 2F
    is the follower’s investment threshold to adopt tech 2 given that tech 1 is already 

in place, and the “smooth-pasting” condition:  

 

2

*
12 1 12 12 1 1 121 2 1 2

*

1 2

( )( )
F L F LF

F X I

ds dsf

r

  

  

 



        
  

                            (A11)  

 

Solving together equations (A7), (A10) and (A11) we get the following value for 
*

1 2F
  , and the 

constant 12A : 

2* 1
1 2

1 12 1 12 12 1 1 12

( )

1 ( )F

F L F L

X Ir

ds ds

 


   


 


        

                                      (A12) 

                                                 
22

 Proof that homogeneity of degree one exists is given in this appendix, section 2. 
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 
1

2

*

1 2 12 1 12 12 1 1 12

1 2

1

( )

1

F F L F L

X I

ds ds
A

r



   

  







       
  

                                    (A13) 

 

where, 
*

1 2F
  is the follower’s threshold for adopting tech 2 if tech 1 is in place. 

 

Finally, using equations (A7), (A12) and (A13) we derive the follower’s value function:  

 

1

1 2,1 2

1 1 12 *2
12 2 2 1 2*

1 2

2

12 12 12 * *

2 2 1 2

         

( )

                             

F L

F

F

F L

F F

XSQ

F

X

X ds
A I

r
F

X ds
I

r


 

 
 




 


 







        
    

     


                                  (A14) 

Scenario (S3) in the game-tree, p. 6. 

 

Equation (A14) tells us that for the follower, before 
*

1 2F
   is reached, its value, when it adopts the 

two technologies sequentially, is given by the value of operating with tech 1 forever, 1 1 12F L

X

X ds

r





 
 



, 

plus its option to adopt tech 2, 
1

2
12 2*

1 2

 

F

A I


 
 
 
 






; as soon as 

*

1 2F
   is reached and it adopts tech 2, its 

value is equal to the present value, in perpetuity, of the cost savings obtained from operating with 

both technologies from 
*

1 2F
   until infinity, 12 12 12 *

2

F L

F

X

X ds
I

r





 
  


. 

 

2. Proof - Homogeneity of Degree One  

If the value matching relationship can be expressed as the equality between the option value 

denoted by  12 2,F X I  and the difference between the two functions, 2 ( )f X  and 3 2( )f I , 

representing  the net value generated from exercising the option, where the vectors X  and 2I , of 

size n  and m  respectively are defined by  1 2, , , nX X X X  and  1 2

2 2 2 2, ,..., mI I I I , then 

Euler’s theorem on homogenous functions applies (see Sydsaeter and Hammond, 2006). The value 

matching relationship is: 

 12 2 2 3 2, ( ) ( )F X I f X f I 
 

 

The associated smooth pasting conditions are: 
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12 2

312

2 2

i i

j j

F f
i

X X

fF
j

I I

 
 

 


  

 

 

These conditions imply: 

312 12 2
2 2

1 1 1 12

n m n m

i j i j

i j i ji j i j

fF F f
X I X I

X I X Y   

  
  

   
     

 

If the two functions, 2 ( )f X  and 3 2( )f I , possess the homogeneity degree-one property, then by 

Euler’s theorem: 

12 12
2 3 12

1 1 2

n m

i j

i ji j

F F
X Y f f F

X I 

 
   

 
   

 

which implies that  12F  is a homogenous function of degree one. The assertion that the option value 

is represented by a homogenous degree-one function can be tested by the value matching 

relationship and its associated smooth pasting conditions. Examining the value “matching 

conditions” we can easily prove that homogeneity exists. Taking the “value matching” condition 

given by Equation A3, p. 29, reproduced here as Equation A15, we have: 

 

* *

12 1 12 12 1 1 12 *

12 2 2

( )
( , )

F L F L

F

X

X ds X ds
F X I I

r

  



       
 


                               (A15) 

 

Therefore, if the option value is 
12 2( , )F X I  and the value after exercising the option is 

* *

12 1 12 12 1 1 12 *

2

( )
F L F L

F

X

X ds X ds
I

r

  



       




, with both X (market revenues) and 2I  (investment cost) 

stochastic, then if 
* *

12 1 12 12 1 1 12 *

12 2 2

( )
( , )

F L F L

F

X

X ds X ds
F X I I

r

  



       
 


 holds, doubling 

*X  and *

2F
I  

doubles 
12 2( , )F X I , if so there is homogeneity of degree one. If the “value matching” relationship 

exhibits homogeneity of degree one, then the two variables (X, 2I ) can be replaced by, in this case, 

the ratio 2 2/X I  . This can be easily proved empirically using the model inputs of section 4 with 

changes in the variables *X  and *

2F
I . More specifically, in Table A1 below, we compute 12 2( , )F X I  

for two scenarios from the “value matching condition” (A15); the difference between scenario 1 and 

1 is that in “scenario 2” we double the values of 
*X  and 

*

2F
I in Equation A15 (ceteris paribus). If 
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homogeneity exists, the value of 
12 2( , )F X I  for scenario 2 is twice that of scenario 1. This is the 

case, as shown in Table A1. Hence, homogeneity is proved. 

 

Value-matching 

Parameters (Equation B15) 
1  12  r  

X  
12 12F L

ds  
1 12F L

ds  *X  *

2F
I  12 2( , )F X I  

Scenario 1 0.10 0.30 0.09 0.05 0.45 0.40 60 5 70 

Scenario 2 

(doubling 
*X  and *

2F
I ) 0.10 0.30 0.09 0.05 0.45 0.40 120 10 140 

 

Table A1 –Homogeneity of Degree 1 

 

3. The Competition Factors 

In our framework the leader’s first-mover market advantage, altogether with the assumption about 

the technological complementarity, is ensured by inequality (2), page 10, replicated below as 

inequality B16, where each of the deterministic factors represents the leader’s market share for each 

investment scenario, given as a proportion of the total market.  

 

 
12 0 1 0 2 0 12 1 12 12 1 1 2 2L F L F L F L F L F L F L F

ds ds ds ds ds ds ds                                   (A16) 

 

For instance, for a market value of 10 million if we set 12 12 0.6
L F

ds   this means that when both 

firms are active operating with tech 1 and tech 2 at the same time, the leader gets 60 percent of the 

market revenues (6 million) and the follower the remaining 40 percent (4 million). In a duopoly 

market the sum of the market share of the leader and the market share of the follower is equal to 

100 percent, hence, 12 12 12 12 1.0
L F F L

ds ds  , i.e., if 12 12 0.6
L F

ds  , so 12 12 1 0.60 0.4
F L

ds    .  

 

In addition, inequality (A16) means that when the leader operates with tech 1 and tech 2 at the same 

time, its market share is higher if the follower is active operating with one technology alone than if 

the follower is active operating with both technologies at the same time (hence 12 1 12 12L F L F
ds ds ). 

This is due to the fact that when the follower operates with one technology alone it does not benefit 

from the effect of the complementarity between the two technologies. Note that according to our 

assumptions, when the leader is alone in the market it gets 100 percent of the market revenues, 

regardless of which technology(ies) it has adopted, tech 1 alone, tech 2 alone, or tech 1 and tech 2 at 

the same time ( 1 0 2 0 12 0 1.0
L F L F L F

ds ds ds   ). Inequality (A16) also shows that the best scenario 

for the leader is when it is alone in the market, for obvious reasons.  
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Our investment model is set as a “zero-sum pre-emption game” with two firms competing for a 

percentage of the total market revenues. For each firm and investment scenario we deterministically 

assign a revenues market share. The relative market revenues advantage assigned to each strategy is 

guided by inequality (A16). Backed by inequality (A16), we can compare at each node of the 

investment game-tree (Figure 1, p. 6) the value functions of the leader and the follower (firms’ 

payoffs) for the investment strategies available and, consequently, determine their optimal decision. 

We derive the firms’ payoffs and their respective investment threshold values for some specific 

investment game scenarios (those marked in Figure 1, p. 6, with an ellipse), combining the real 

options theory with the Fudenberg and Tirole (1985, pp. 386-389) principle of rent equalization.  

 

4. The Firms’ Payoffs 

In our investment game there are two firms and two technologies available which can be adopted at 

the same time or at different times. Therefore, the number of investment scenarios grows 

substantially when compared with investment games with two firms but with only one technology 

or with the case where there are two technologies involved in the investment decision but they 

cannot be adopted at the same time. However, at each node of the game-tree, the use of the 

information underlying inequality (2), p. 10, simplifies substantially our work regarding the 

determination of the firms’ optimal strategy. Expression (B17) below replicates expression 1, p. 8, 

as the general expression for the firms’ value functions: 

 

( )
i jk k kX t ds 

 
             (A17) 

 

where, ( )X t  is the market revenue flow, k  represents the proportion of firm’s  revenues that is 

expected to be saved through the adoption of technology k, with  0,1,2,12k  , where 0 means that 

firm is not yet active and 1, 2 and 12 mean that firm operates with  tech 1 only, with tech 2 only or 

with tech 1 and tech 2 and the same time, respectively; 
i jk kds  is a deterministic factor that ensures a 

first-mover revenue advantage, with  ,  ,i j L F , where L means “leader” and F “follower”, and 

represents the proportion of the market revenues that is held by each firm (i, j) for each investment 

scenarios (see inequality 2, p. 10).  

 

Taking i as the leader and j as the follower, 12 1 12 12i j i j
ds ds  turns into 12 1 12 12L F L F

ds ds . This means 

that the leader’s revenues market share is higher when it operates with tech 1 and tech 2 and the 



 34 

follower operates with tech 1 only ( 12 1L F
ds ) than when the leader operates with tech 1 and tech 2 

and the follower as well ( 12 12L F
ds ). Using this logic at each node of the game-tree we determine the 

optimal investment strategy for the leader and the follower. 
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5.  Investment Scenarios 

 

Investment Game Scenarios  

Model 

Assumptions 

 

 

1. At each instant of the investment game, both firms are subjected to the same economic conditions (model 

parameters) except for the proportion of the “market share revenue”, 
i jk kds , which is asymmetric 

favoring the leader due to the first-mover advantage. 

2. At the beginning of the investment game, both firms hold two “independent” options: (i) the option to 
adopt tech 1 and the option to adopt tech 2. These option values are “independent” because the threshold to 

adopt tech 1 does not depend on the evolution of the ratio revenue over cost of tech 2, 
2 , and vice-versa 

–see Equation 24, p.16.    

3. Due to the first-mover advantage, the leader starts and ends (if that is the case) the game first. Hence, 

scenarios where the follower adopts both technologies before the leader are not possible. 
4. Firms are not allowed to exercise their options at the same time. We assume that when that is the case the 

leader will be chosen by flipping a coin. 

5. As soon as the leader invests in both technologies its game ends, and the follower is in a monopoly like 
thereafter. 

6. In section 3, tech 1 and tech 2 are assumed to be symmetric, i.e., the economic benefit from operating with 

one or the other is the same. Hence, the expressions for tech 2 are the same as those for tech 1, only the 
subscript changes. 

Modeled 

Scenarios 

Firms’ thresholds  

(Section 3) 
Comments 

S1 *

1L
 --- 

*

1F
  or 

*

2L
 --- 

*

2F
  

 

Characterized: see derivation pp. 14-18 and appendix B, section 1.  

S2 *

12L
 --- 

*

12F
  

 

Characterized: see derivation pp. 18-19 and appendix B, section 1. 

 

S3 

*

1L
 --- 

*

1F
 --- 

*

1 2L
  --- 

*

1 2F
   

or 

*

2L
 --- 

*

2F
 --- 

*

2 1L
  --- 

*

2 1F
   

 

 

Characterized: see derivation pp. 12-14 and Appendix B, section 1. 

 

Another  

(not modeled) 

Scenario 

Firms’ thresholds  Comments 

S4 

*

1L
 --- 

*

1 2L
  --- 

*

1F
 --- 

*

1 2F
   

or 

*

2L
 --- 

*

2 1L
  --- 

*

2F
 --- 

*

2 1F
   

 

This scenario (S4) is not fully characterized in section 3. However, 

the expressions for 
*

1L
  and 

*

2L
 , and, 

*

1 2F
 

 and 
*

2 1F
 

are the 

same as those derived for (S3), given that the conditions are the same; 

and the leader’s thresholds to adopt tech 2 when tech 1 is in place, 
*

1 2L
 

, or to adopt tech 1 when tech 2 is in place, *

2 1L
 

, can be easily 

derived by following the rationale and the technique used in the 
derivations of the investment thresholds of scenario (S3).  

 

Notice that, as soon as the leader adopts both technologies (i.e., *

1 2L
 

 

is crossed), its game ends, and the follower is in a monopoly-like 

thereafter. Hence, the follower’s threshold is given by: 

1* 1
1

1 1 12 1

( )

1F

F L

X Ir

ds

 


 

 


  
 

. Compared with *

1F
  of scenario (S3) –see 

equation 24, p. 15, the competition factor in the expression above 

changes to
1 12F L

ds  to reflect the fact that in this scenario (S4) when 

the follower adopts tech 1 the leader is operating with both 

technologies. Looking at inequality (3), p. 9, we conclude that this 

threshold is higher than that of (S3), since  
1 12 1 1F L F L

ds ds . Similar 

rationale applies to the derivation of  *

1 2L
 

 and *

2 1L
 

 and other 

uncharacterized investment scenarios. 
 

Table A2 –Investment Game Scenarios: Characterization of Investment Thresholds 
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Appendix B   

Derivation of the Ordinary Differential Equation (B6) 

Equation (A2), p. 27, is written as: 

 

2 2 2 2

2 2 2

2 2 2 212 12 12 12 12

2 2 2 122 2

2 22

1 1
0

2 2
X I X I XI X I

F F F F F
X I XI X I rF

X I X IX I
      

    
     

    
 

In order to reduce the homogeneity of degree two in the underlying variables to homogeneity of 

degree one, similarity methods can be used. Let 2

2

X

I
  , so: 

2 2 2 2

2

2 2
2

2 2 2

2 2

2

2 2 2

2 2

2 2 3

2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2 2

    ( , ) ( )

( , ) ( )
 ( )

( , ) ( )
 

( , ) ( )

( ) ( )

( , ) ( ) 1

( , ) ( )

 ( )

X
F X I f I f I

I

F X I fX
f

I I

F X I f

X

F X I f X

I I

F X I f

X I

F X I f X

X I I
























 
  

 

 
 

 

 


 

 


 

 


 

 
 

  

 

 

Substituting back to Equation (A2) we obtain Equation (A6): 

 

   
2 2 2

2
2 2 12 2 12 2

2 2 1 1 1 12 22

2 2

( ) ( )1
( ) ( ) ( ) ( ) 0

2 L Fm X I I

f f
X ds r f

 
       

 

 
     

 
 

where, 
2 2 2 2

2 2 2 2m X I XI X I        . 

 
 

 

 



 37 

Appendix C  

1. Complementary Results  

Figures C1 and C2 show the sensitivity analysis of the impact of the degree of complementarity 

between tech 1 and tech 2 on the leader and the follower investment thresholds to adopt the two 

technologies at the same time. 

 

                      

      Figure C1              Figure C2 

 

The results show that the higher is the complementarity between tech 1 and tech 2, 12 1 2( )     , 

the the lower are the leader and the follower investment thresholds, i.e., the earlier is the adoption of 

both technologies simultaneously, and that the leader’s threshold is a convex function of the 

complementarity measure and the follower’s threshold is a concave function of complementarity.  

 

Figures C3 and C4 show the trade-offs between the “degree of complementarity” between tech 1 

and tech 2 and the “difference between the rate of decrease in the cost of tech 1 and tech 2”, on the 

leader’s and the follower’s investment threshold. 

 

 
               Figure C3                           Figure C4 
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Although the scales are somewhat different for the leader and the follower, the leader’s 

simultaneous thresholds appear to eventually be insensitive to lower complementarity and greater 

drift differences, while the follower’s thresholds reach a peak at nil complementarity and large drift 

differences. 
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