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Abstract

This article o¤ers some economic insights for the debate on the reversible geological

disposal of radioactive waste. Irreversibility due to large sunk costs, an important degree of

�exibility and several sources of uncertainty are taken into account in the decision process

relative to the radioactive waste repository. We draw up a stochastic model in a continuous

time framework to study the decision problem of a decision-maker that must carry out a

reversible repository project for the radioactive waste, with multiple disposal stages. We

consider that the value of reversibility of a radioactive waste package is jointly a¤ected

by economic and technological uncertainty. They are modelized, �rst, by a 2-Dimensional

Geometric Brownian Motion, and, second, by a Geometric Brownian Motion with a Poisson

jump process. A numerical analysis and a sensitivity study of various parameters are also

proposed.
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1 Introduction

The motivation for this research relates to current concerns about the radioactive waste disposal

in many countries that produce nuclear energy. Governments have progressively set up legal

frameworks for the radioactive waste management. Recently, the research on waste disposal

has led to the conclusion that for the highly radioactive waste (HLW), the disposal in deep

geological layers (at depths between 250 m and 1000 m) is the best option for the safety of

current and forthcoming populations and the protection of the environment. Consequently,

this option is under investigation in several countries including France, Sweden, Finland, USA,

etc.1 Given di¤erent political, social and mainly geological conditions for disposal, projects of

deep geological facilities of highly radioactive waste diverge from one country to another. As

yet, no deep geological disposal facilities are in operation.2 Thus, the waste material keeps

continuing to be accumulated in storage facilities and kept under close and active monitoring.

Contrary to surface storage, deep geological repositories are passively safe and designed

to provide the isolation from the human environment without future maintenance. However,

an important advantage of surface storage is the ease of retrieving the radioactive material if

necessary. This allows future generations to take di¤erent decisions concerning the existing

radioactive waste. Though, recent research shows that a geological repository could technically

be designed so that closure of the facility can be delayed for a period of several hundred years.

In this period, the repository and the surrounding environment can be monitored if necessary,

and the facility can be designed to allow for retrieval of the emplaced material if required.

To understand the main points at stake for reversibility, let us evoque the French case.

It is currently considered as one of the most evoluated in the debate on reversible disposal3.

In France, the Planning Act n� 2006-739 of 28 June 2006, institutes deep geological disposal

1These aspects were recently discussed at the International Conference on Reversibility and Retrievability,

held in Reims, France, in December 2010. Experts from 16 NEA (Nuclear Energy Agency) member countries

have participated in this conference.
2However, we can mention some important experimental laboratories like Forsmark in Sweden or Bure in

eastern France. In France, the Government has authorized ANDRA (National Agency for the Radioactive

Waste Management) to carry out geological investigations over an area of about 30 km2 in order to site the

geological disposal facility CIGEO (Industrial Center for Geological Disposal), which must accomodate HLW.

The operational phase could start by 2025, if its licence is granted in 2015.
3A more detailed description of the French project can be found in Aparicio (2010).
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as a norm. The Act also prescribes the fact that the repository must be reversible for a

minimal period of one hundred years. The reversibility implies that at each step of decision

di¤erent options are available: being able to retrieve the radioactive waste if the arrival of new

information justi�es it, to reevaluate the disposal process, to modify the system parameters

or to continue on the same path. Hence the issue that the decision maker is facing in the

management of the radioactive waste concerns di¤erent types of possible decisions at di¤erent

dates. It makes appear di¤erent possible stages of retrievability of the waste packages, as

illustrated on Figure 1.

Figure 1: Lifecycle stages of the waste in a deep geological repository Source: ANDRA 2011

Reversibility is ensured by the existence of multiple disposal stages, with changing degrees

of retrievability, passive safety and active controls for the waste packages in the deep geological

repository. This ability to act on the disposal process itself provides �exibility by giving the

decision-maker, but also the forthcoming generations, the possibility to change the repository

design concept according to advances in research, to experience feedback and to technical

progress. For instance, if a new technology, much safer or more space saving emerges or if a

new use of waste is discovered in the future, the disposal process needs to be reevaluated and

it may worth to retrieve the waste packages.

Therefore, the considerable amount of uncertainty, the arrival of new information in the
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future and the exceptional dimension of temporality are important aspects that must be taken

into account in the decision process when de�ning the concept of reversibility. Among the

most signi�cant uncertainties related to the subject we can cite: the value of the radioactive

waste, which may be a¤ected by economic and technological factors, the long-term cost of deep

disposal facilities during the operational phase, the additional costs implied by an eventual

extraction of radioactive waste containers, some possible delays concerning the deep geological

disposal in reason of a non-authorization to use a certain location (the starting date of deep

storage could be postponed and consequently new costs of encapsulation and maintenance are

to be supported).

Hence, there is a need for a better understanding of how uncertainty a¤ects the decision

process of a regulator through time. For instance, knowing the existence of possible, but

uncertain changes in the retrieval value of the radioactive waste, should the decision-maker

in charge of the radioactive waste management keep continuing to dispose of the packages on

the current stage, or should she switch to a stage with a higher/lower degree of retrievability?

What is the value associated with each of these possible alternatives? What are the optimal

triggers values for which the option to switch is exercised? What are the main parameters that

in�uence the value of these switching options?

In order to answer these questions, we propose a real options model in a continuous time

framework. We consider two sources of uncertainty: the uncertain market value of radioactive

materials contained in the waste packages and the uncertain evolution of technological progress

in the nuclear waste management techniques. The value of the radioactive waste follows, �rst,

a 2-Dimensional Geometric Brownian Motion process, and, second, a compound Geometric

Brownian Motion and Poisson process. Given these underlying stochastic processes, our objec-

tive is to provide an explicit characterization of the value of the di¤erent options to switch from

one disposal stage to another at each possible date. We also show how each option depends on

future options: we deal with compound switching options and we use the real option theory

as developed earlier by Myers (1976), Brennan and Schwartz (1985) and McDonald and Siegel

(1986).

Since their work, there has been an increasing literature concerning applications of the real

options approach to investments involving uncertainty and �exibility in the decision process. In

particular, the valuation of bene�ts resulting from investments in �exible modes of production
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or technologies, is addressed by Kulatilaka (1993), Dixit and Pindyck (1994), Childs, Ott and

Triantis (1998), Cortazar, Schwartz, and Casassus (2001)4. In most of these papers the value of

�exibility is derived from the possibility for a �rm to move in the future to an alternative mode of

production, as a response to initially unforeseen changes in economic and technological aspects

The decision to switch to a di¤erent alternative involves switching costs and new expected

payo¤s. Typically the value of the option to switch is de�ned as the di¤erence between the

expected bene�ts from investing in a �exible rather than a rigid technology.

Other studies that include technological uncertainty in the real option framework are those

of Grenadier and Weiss (1997) and Farzin et al. (1998), which focus on the uncertainty in tech-

nological progress. They analyze the optimal time for a technology adoption with a stochastic

innovation process for the pro�t and the arrival time. Grenadier and Weiss (1997) considers

the technological adoption strategy of a �rm given a sequence of stochastic technological in-

novations in the future. Upon arrival of a new technology, the �rm may decide to adopt or

not this new technology. This decision depends on its previous decision on current technology.

The technological progress is modeled as a Geometric Brownian Motion process. Farzin et

al. (1998) consider a continuous-time model where the uncertainty concerns the timing and

importance of technological improvements. By including the technical change modeled with a

Poisson process, they extend the model of Dixit and Pindyck (1994). They obtain that a higher

degree of uncertainty leads to a delay in the technology adoption. Murto (2007) considers a

revenue uncertainty, modeled as a Geometric Brownian Motion, and technology uncertainty

with innovations arriving at a Poisson process rate. With innovations, the costs of the un-

derlying investment decrease. The option to invest is exercised when the investment cost is

su¢ ciently low and the output is su¢ ciently high. With the combined uncertainty, the overall

e¤ect is a delay in the investment.

Our paper contributes to the existing work by formulating a model with sequentially em-

bedded options and by applying it to the case of radioactive waste management. The geological

disposal of radioactive waste with a real option approach is also investigated in Gollier and

Devezeaux de Lavergne (2001) and in Loubergé et al. (2001). The �rst paper highlights the

idea that the value of reversibility is a real option that can be exercised by a future generation.

Given a stochastic evolution of the value of raw materials contained in radioactive waste, the

4A more detailed survey of each of these contributions can be found in Heraud and Ionescu (2010).
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authors analyze the costs and the bene�ts of the reversibility. They show that it is socially

optimal to implement a reversible storage only if when the radioactive row material�s value

reaches a given threshold.

Loubergé et al.(2001) investigate the optimal timing to switch from surface storage to

deep geological disposal of radioactive waste. They use a real options approach based on the

minimization of di¤erent costs of the project. While surface storage entails high stable costs,

deep disposal involves initial investment and random future expenses due to unanticipated

future actions. However, they do not take into account the possibility to retrieve the waste

once disposed of in deep repository.

Besides, it is only possible in the quoted papers to switch from the interim storage to the

deep geological disposal. However, as seen in Figure 1, the reversibility as de�ned by the

Nuclear Energy Agency implies that more than two stages should exist. Hence in our paper,

we consider a more sophisticated model and we focus on the impact of future technological

improvements on the option value of switching among several possible disposal stages. In

particular, we analyze the interaction between the switching options at each date and we show

how they are in�uenced by di¤erent stochastic processes.

Our results show that, generally, the uncertainty leads to a delay in the decision to retrieve

the waste packages. It is shown that this delay is more pronounced in the GBM with positive

jumps case, when the increased probability of important innovations that may arrive in the

future, increases the value of the option to wait in order to be sure of the optimality of the

retrieval. The decision-maker may prefer to retain �exibility in the deep geological repository

in order to assimilate information about the evolution of the value of the radioactive waste

packages. One of the main insights of our model is that the reversibility implied by the deep

geological repository with multiple stages may act like a hedge against the randomness of the

�uctuations of future values of waste packages. For instance, the decision-maker may switch

earlier to a less reversible stage, bearing in mind that he has the option to reverse the decision

for higher values in the future and also the subsequent option to switch to a stage with an even

lower degree of retrievability, if the value of radioactive waste packages is su¢ ciently low.

We organize the paper into two sections in addition to this introduction. The second

section presents, �rst, the model and, second, the determination of the optimal switching value

for each stage of retrievability for radioactive waste disposal. In the third section we report
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the numerical results and conduct the sensitivity analysis.

2 The model

In this section we present our modeling framework for the decision problem in the reversible

radioactive waste repository. As explained above, the reversibility of the repository of the

radioactive waste with multiple disposal stages gives the decision-maker the option to change

or postpone decisions at each, given, decision node. We therefore analyze the decisions to

switch ultimate waste packages from a stage with a higher/lower degree of retrievability to one

with a lower /higher degree of retrievability as a dichotomy of choices. We touch here one of

the most important features of our model: the interdependences between multiple sequential

switching options.

2.1 Assumptions

Consider a decision-maker in charge with the radioactive waste management. She must build

a reversible repository involving multiple disposal stages with di¤erent degrees of retrievability

for the waste packages. Such repository implies that the decision-maker can either adopt the

initial disposal stage during the entire lifetime of the project or switch to another stage as soon

as future changes in factors in�uencing the process makes it valuable, while keeping the option

to switch back. This option to switch does not come for free, implying di¤erent switching costs.

The decision-maker must then analyze the conditions under which the switching is valuable,

given current features and uncertain future evolutions.

Let us assume that the repository displays three disposal stages, di¤erentiated by the degree

of retrievability. We denote with S = fs� 1; s; s+ 1g the discrete set of possible stages. Stage

s�1 is the most retrievable (for instance, the surface storage), which means that the radioactive

waste package is really easy to retrieve (in technical and monetary terms). Stage s + 1 is the

less retrievable (closure phase of the repository), while stage s is the intermediary stage (access

gallery may be closed). For instance, going to a less retrievable stage means to make the

individual waste packages more compact, more isolated by concrete barriers, etc. Returning to

the preceding stage involves de-compacting and successively reopening the barriers, etc.
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The horizon time for the decision process is �nite and the �nal date is T.5

The operating costs associated with the radioactive waste packages on each stage and the

switching costs among stages are known with certainty. Because of technical reasons, it is

only possible to switch from one stage to one immediate neighbor stage. Moreover, operations

related to the withdrawal of packages, like opening the gallery or a seal, are more expensive

than operations that concern emplacement. Indeed, they are technically more complex and

they often involve components that have already changed over the life cycle. This implies that

the state of the packages and their structure may be di¤erent at the time of the retrieval,

implying the setting up of new protection measures or additional equipment. Lastly, the more

retrievable the current stage, the lower the cost of switching to an even more retrievable stage.

These fair assumptions on the switching costs are formalized as followed:

Assumption 1 The costs of switching from stage i to stage j are denoted as ci;j with i =

s� 1; s; s+ 1, j = s� 1; s; s+ 1, and ji� jj = 1. For instance, they satisfy:

cs;s�1 > cs;s+1 (1)

In addition, each stage of retrievability implies di¤erent operating costs of radioactive waste

packages. These costs are constant in time for a given stage of retrievability. It is fair o assume

that the more reversible the stage, the higher the operating costs.

Assumption 2 We denote as ci, i = s� 1; s� s+ 1 the operating cost induced by the main-

tenance of a waste package at stage i. This cost is due at each period and it satis�es:

ci+1 < ci i = s� 1; s: (2)

Actually, the passivity of the repository which increases with stages represents the funda-

mental di¤erence between deep disposal and storage. The observation and monitoring system

is less intense as the development of the repository proceeds and along the various sealing

stages. Thus, the maintenance costs decrease until the closure phase, characterized by total

passivity.

Furthermore, we consider that the cash-�ow (output) o¤ered by a radioactive waste package

di¤ers according to the ease of retrieval. For example, a package disposed on the last stage

5T is su¢ ciently large to be able to consider several generations.
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of retrievability (closure phase of the repository) provides a minimum value in terms of cash-

�ows, for it cannot be used rapidly. Therefore for each disposal stage, di¤erent output values

are to be considered. We formalize this by introducing a so-called "index of retrievability", a

proportionality factor, which captures the intrinsic properties of each disposal stage, which by

their nature slow down or accelerate the use of the waste package. The ordering condition of

the retrievability indices is:

�s�1 > �s > �s+1 8s 2 S (3)

In the model the strategic variable will be the value of a waste package at a given date

t. We denote it as wt and, as it will be de�ned in the next subsection, this value is a¤ected

through time by economic and technological uncertainties.

The decision-maker decides to either switch from the current retrievability stage to another,

neighbor one, or to keep staying on the same path at date t with respect to the observed value

of the package wt: the higher (lower) this value, which encompasses the future expected values,

the more the chance to switch to more (less) retrievable stage. Because switching and operating

costs are di¤erent at each stage, the threshold of the value wt that induces a switch to a more

retrievable stage will be di¤erent from the one that induces a switch to a less retrievable one.

Formally, we denote them ws;s+1t and ws;s�1t at stage s. At stage s� 1 (respectively s+ 1) we

only have a lower (upper) threshold ws�1;st (respectively ws+1;st ). For any value higher (lower)

than the upper (lower) threshold, a switch to a more (less) retrievable stage occurs. At stage

s (respectively s� 1; s+ 1), no switch occurs at date t if ws;s+1t < wt < w
s;s�1
t (respectively if

ws�1;st < wt; wt < w
s+1;s
t ).

In the following subsection, we analyze the decision-maker�s problem for each of the three

disposal stages and at each date using dynamic programming.

2.2 Valuing the switching options among disposal stages with a Geometric

Brownian Motion

The future value of the radioactive waste packages is uncertain and we denote wt the net

present value of a package at date t. It depends on the expected, and discounted, values at

future periods. New information can arrive over the lifetime of the project at each date t and

consequently, the net present value wt of a package is a¤ected by two types of uncertainty:
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the market uncertainty which represents variation in economic parameters related to the ra-

dioactive industrial sector (prices of materials contained in the ultimate radioactive waste or in

the container itself that may be recovered), and technological uncertainty (the arrival of new

technologies or the occurrence of unexpected drawbacks). Thus, the value of the radioactive

waste package at each date is de�ned by the stochastic process fwtgt�0 : In this section, we

assume that it follows a bi-dimensional Geometric Brownian Motion (GBM). This means that

small technological changes occur in a continuous way, so that incremental technological in-

novation is considered. In the subsection 2.3., we introduce discrete and radical innovation or

breakthrough, formalized by a Poisson process.

A detailed justi�cation for a GBM for the market value of materials contained in the

radioactive waste is described by Gollier and Devezeaux de Lavergne (2001). Our assumption

of a GBM for the technological progress follows Grenadier and Weiss (1997) or Bethuyne (2001).

Let us de�ne pt as the price of radioactive materials on the market and �t the variable

which represents the arrival of a new information concerning smooth technological changes.

Here the technological progress in the radioactive �eld changes in a continuous way following

a certain trendline (di¤erent technologies or equipment may improve with many but relative

small increments). Thus, �t denotes the latest developed technology or the state of the current

technological research in the radioactive waste �eld. The technological progress or, alternatively

the state of research (gradual progress through knowledge), variates exogenously at a rate ��.

The strength at which exogenous random shocks react on this rate is represented by ��: Also,

the higher �t, the more signi�cant the technological progress.

The following GBM processes are considered:

dpt = �pptdt+ �pptd"p (4)

d�t = ���tdt+ ���td"� (5)

with �� > 0, �p > 0, �� � 0; �p � 0 and the initial conditions p0 = p � 0, �0 = � � 0:

The increments of standard Brownian processes are represented by d"� and d"p, while ��,

�p are the instantaneous volatilities. The parameters �� and �p represent the instantaneous

expected returns. Moreover, for the sake of simplicity, we consider that the two stochastic

processes are uncorrelated, E(d"pd"�) = 0: This means that the random shocks on each variable,

that lead them to deviate from their expected trend, are due to independent events.
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Hence the value wt of a radioactive waste package at date t is explained by both processes

(market uncertainty and technological uncertainty):

wt = f(�t; pt) (6)

Applying Itô�s Lemma to the function f(�t; pt) we obtain:

df(�t; pt) = dwt = (���tf� + �pptfp +
1

2
�2��

2
t f�� +

1

2
�2pp

2
t fpp)dt+ f��t��d"� + fppt�pd"p

where f�; fp and f��; fpp are the partial derivatives of function f(�t; pt):

Following McDonald and Siegel (1986) or Cortazar et al. (2000), we consider a multiplicative

relation between �t and pt: wt = �tpt. This means that a given increase of any of these variables

has a similar e¤ect on the value of the reversible project. For future reference in the paper

it is worth noticing that wt follows a stochastic process, with a total drift �w = �� + �p ,

volatility �w =
q
�2� + �

2
p and the standard Wiener process "w =

1

�w
(��d"� + �pd"p). Indeed

with f� = pt; fp = �t and f�� = fpp = 0 we have:

dwt = (���tpt + �ppt�t)dt+ pt�t��d"� + �tpt�pd"p

=
�
�� + �p

�
wtdt+ (��d"� + �pd"p)wt

= �wwtdt+ �wwtd"w (7)

with w0 = w:

Besides, a variable with initial value w0 that follows a GBM process displays the following

expected value for some future date t:

E [wt] = w0e
�wt (8)

Now we are able to analyze the decision-maker�s problem. Her objective is to maximize the

expected total value of the reversible disposal project over its lifetime, by choosing at each date

the optimal disposal stage knowing the preceding one. She observes the current value of the

radioactive waste package wt and she must decide for a given stage s 2 S whether to continue

on this stage or to switch to a less or a more retrievable one, given the uncertainty and the

operational constraints.

We denote by V0 the expected discounted value at t = 0 of the reversible disposal project

until the �nal date T, for one radioactive waste package, with ci;j the switching costs and
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�i;j the cumulative probabilities6 of reaching the threshold values. Finally, the maximization

program is:

Max
fj2Sg

V0( ew) = TZ
0

24X
i2S

X
j2S
�i;j(�jE( ew)� cj)

35 e�rtdt�X
i2S

X
j2S
�i;jci;je�rt

i;j
(9)

with cs;s = 0; ti;j� the dates for switching from stage i to stage j, and r the discount rate with

r > �w by assumption
7.

To solve this program we must take into account all the options associated with each possible

switch between stages, which in turn are determined by the threshold values of the radioactive

waste package. In particular, the net present value of the reversible disposal project for one

radioactive waste package stored on the intermediary stage s at the date t, namely V st (wt); is

determined by taking into account that once the packages are on the disposal stage s; it may

be optimal to switch back to the stage s � 1, if the value wt becomes large enough and go

further to the stage s+ 1; if wt is su¢ ciently low:

V st (wt)=

8>>><>>>:
vst + F

s;s+1(wt) + F
s;s�1(wt); if ws;s+1t � wt � ws;s�1t

vs+1t + F s+1;s(wt)� cs;s+1; if wt � ws;s+1t

vs�1t + F s�1;s(wt)� cs;s�1; if wt � ws;s�1t

(10)

F s;s�1(wt) represents the value of the option to switch from the disposal stage s to the

stage s�1 2 S. Moreover, vst is the net expected value of the project if the waste package were

staying on stage s 2 S until the terminal date T . It is de�ned as following8:

vst = E

TZ
t

(w� � �s � cs)e�r�d� (11)

Furthermore, from the dynamic programming principle, the decision-maker takes the deci-

sion to switch or not to switch at date t i such a manner that the option value satis�es:

F s;s�1(wt) = argmax
�
e�rdtEt

�
F s;s�1(wt+1)

��
(12)

6The expression for the cumulative probabilities are given in Appendix 1.
7The restriction r > �w, commonly use in real options models, is necessary to ensure that there is a strictly

positive opportunity cost of holding the option, so that it will not be held inde�nitely.
8 In Appendix 2 we show that this gives

vst =
w0 � �s
r � �w

(1� e�(r��w)(T�t))� cs

r
(1� e�r(T�t)):
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The decision-maker�s objective at each date t is to maximize the sum of current cash �ow

from not exercising the option (zero) and the discounted value of having the option at the

next date. Thus, she maximizes her return from holding the option, which is just equal to the

option�s capital appreciation. According to Bellman�s principle, we have: 9

rF s;s�1(wt)dt = E
�
dF s;s�1(wt)

�
(13)

From Ito�s Lemma, we obtain the following di¤erential equation:

1

2
�2 (wt)

2 F s;s�1ww (wt) + �wwtF
s;s�1
w (wt)� rF s;s�1 (wt) = 0 (14)

with the following general solution, where D is the option value of switching to a less

retrievable stage and U the option value of switching to a more retrievable stage:

F s;s�1 (wt) = Dw
�
t + Uw

�
t (15)

where � < 0 and � > 1 are the solution of the following characteristic equation10:

1

2
�2w�(� � 1) + �w� � r = 0 (16)

There is no clear economic meaning for parameters � and �. However, they can be consid-

ered as a factor describing the distance between the deterministic case and the uncertainty,

given their explicit dependence on the drift and the volatility of the GBM. Hence, they allow

to study the dependence of the threshold for the radioactive waste packages on the parameters

of the stochastic process.

Proposition 1 If the radioactive waste package is disposed on the intermediary disposal stage

s at the date t, by combining both opportunities to switch upward and downward on the re-

trievability scale, we obtain the following expression for the net present value of the project:

V st =

8>>><>>>:
vst +Ds+1w

�
t + Us�1w

�
t ws;s+1t � wt � ws;s�1t

vs�1t +Dsw
�
t + Us�2w

�
t � cs;s�1; wt � ws;s�1t

vs+1t +Ds+2w
�
t + Usw

�
t � cs;s+1; wt � ws;s+1t

(17)

9See Dixit and Pindyck (1994) for a detailed description.
10See Appendix 3 for the derivation of the characteristic equation.
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with Ds+1w�t the value of the option for the downward switch to the stage s+ 1 2 S

with Us�1w
�
t the value of the option for the upward switch to the stage s� 1 2 S

Proof. See Appendix 4

Now we must �nd ws;s�1and ws�1;s, the trigger values of the stochastic process fwtgt=1;::;T
at which it becomes optimal to switch from one stage to another one. We also need to determine

Ds; Us; Ds+1; Us�1;the coe¢ cients of the switching options values.

For each switching point, we apply the optimality conditions of value-matching (18) and

(19), and smooth pasting (20) and (21). The value matching condition re�ects the fact that

for a given trigger value, the value of project before the switch must equal the value of the

project after the switch, minus the switching cost. The smooth pasting conditions are �rst

order conditions. 11

V s(ws;s�1t ) = V s�1(ws;s�1t )� cs;s�1 (18)

V s�1(ws�1;st ) = V s
�
ws�1;st

�
� cs�1;s (19)

and h
V s(ws;s�1t )

i0
=
h
V s�1(ws;s�1t )� cs;s�1

i0
(20)h

V s�1(ws�1;st )
i0
=
h
V s
�
ws�1;st

�
� cs�1;s

i0
(21)

For the case with three available disposal stages, we obtain a system of eight equations

non-linear in threshold values, with eight unknown variables: the option values coe¢ cients

for the downward switch and upward switch, respectively Ds; Ds+1; Us; Us�1, and the trigger

values ws;s�1t ; ws;s+1t ; ws�1;st ; ws+1;st . Since generally, closed-form analytical solutions cannot be

obtained for this non-linear system, we perform a numerical analysis in the third section12.

Given that the optimal strategy of switching from one disposal stage to another is based

on the threshold values and option coe¢ cients, their identi�cation permits the decision-maker

to better understand and evaluate each disposal scenario for the radioactive waste.

Because at each stage the decision-maker may go further to a less (more) reversible stage or

to continue on the same stage, the reversible project of geological disposal involves a series of

11More detailed explanation of these conditions can be found in appendix C of chapter 4 in Dixit and Pindyck

(1994).
12An extended form of the system of equations (18) to (21) can be found in Appendix 4.
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compound options (options on options) which may create follow-up opportunities and interac-

tions. For example, realizing an earlier real option (such as closing the galleries of access) can

change the value of future options for the retrieval of waste packages. This type of interactions

between various options involved in the reversible disposal of radioactive waste are important

in the valuation of the project. They need to be valued together because their combined value

may di¤er from their separate values.

2.3 Switching options with a compound Geometric Brownian Motion and

Poisson process

In this subsection, the market price p of the waste packages keeps following a GBM. Never-

theless, we consider here discrete technological changes contrary to the preceding subsection.

The technological progress in the nuclear sector is no longer a smooth process, but rather a

process where radical innovations can occur ponctually. For instance, think about innovation

programs such as the transmutation of the high level waste or the regeneration of �ssile mate-

rial. This property is formalized by assuming that the technological variable follows a Poisson

jump process.

Finally, the value w of the radioactive waste package follows a combined GBM and Poisson

jump process. Technological changes are �events� of a Poisson process and between techno-

logical jumps, the radioactive waste value is assumed to evolve according to a GBM, re�ecting

the economic conditions.

A change in technological progress causes the value w to jump by some percentage � > 0

or �� < 0 of the current level, other things being equal. A jump � implies improvement in

research, while a jump �� implies drawbacks of the technological progress. The probability

of a technological change during any short period of time dt is �dt, and the probability of no

change is 1� �dt, where � represents the mean arrival rate of an event during the interval dt.

We denote with  the probability of a positive jump once a jump occurs. Hence the Poisson

process q is such that:

dq =

8>>><>>>:
0 with probability 1� �dt

� with probability �dt

�� with probability (1� )�dt

(22)
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And �nally, w follows the stochastic process characterized by:

dw = �wdt+ �wd"+ wdq (23)

where dq is assumed to be independent of d": E(dqd") = 0.

As shown by Merton (1976), a variable that follows a jump-di¤usion process has the fol-

lowing expected value:

E [wt] = w0 exp [�+ �� � (1� )��] (24)

This means that a positive � leads to di¤erent expected percentage changes in the value of w

in each period (positive or negative, depending on �).

We show in Appendix 5 that the expected time until w takes a Poisson jump over the

project horizon T is given by:

E(�) =
1

�
� T � e��T � e

��T

�
(25)

Still we show in Appendix 6 that the expected value vs(wt) of the project for a radioactive

waste package that would be disposed on a given and unchanged stage s from date t to date

T , is:

vs(wt) = E

24 TZ
t

(�s � w� � cs)e�r�d�

35 (26)

=
�s � w0

r � (�+ �� � (1� )��)(1� e
�(r�����+(1�)��)(T�t))� c

s

r
(1� e�r(T�t))

Finally, applying Ito�s Lemma13 to the combined GBM and poisson stochastic process leads

to:14

1

2
�2wtF

s;s�1
ww (wt) + �wtF

s;s�1
w (wt) + �F

s;s�1 [(1 + �)wt]� (�+ r)F (wt) = 0 (27)

It has the following general solution

F s;s�1ww (wt) = Dw
�
t + Uw

�
t ; (28)

13As shown in Appendix 7, the second term from the standard Ito�s Lemma contains a part due to GBM and

another one due to the Poisson Process.

dF s;s�1(w) =
@F s;s�1(w)

@t
dt+

@F s;s�1(w)

@w
dw

14See Appendix 7 for the derivation of the characteristic equation and its solutions.
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where D and U are constants to be determined, and � and � are the roots of the characteristic

equation:

1

2
�2� (� � 1) + �� + � (1 + � � (1� )�)� � (�+ r) = 0 (29)

The solution for � and � must be solved numerically.

This is done in the next section where our intention is to compare this more realistically

stochastic process with the smooth evolution for the value of the radioactive waste. We expect

di¤erent results, given that the switching thresholds will di¤er not only through the e¤ects of

�; but also through the new solution for � and �; which depend now on �; �; �; � and r.

3 Numerical analysis with French data and discussion

This section provides some simulations that permit a deeper analysis of the characteristics

of the decision-maker�s optimal strategy. We consider both cases studied below (GBM and

combined GBM/Poisson). We study how the dynamic stochastic model reacts to changes in

key parameter values. We also focus on the impact of a change in the trigger values on the

decision to switch.

3.1 French Data and trigger values

The numerical analysis is performed by building on costs data provided by the French Agency

in charge with the radioactive waste management (ANDRA).

First let us state that T = 100 years. It corresponds to the reversibility period as stated

in the Planning Act No. 2006-739 of 28 June 2006 concerning the sustainable management of

radioactive materials and waste. Second, given our available data, we consider the �rst three

retrievability stages concerning the geological disposal of Figure 1, with the intermediary stage

s = 2. The values used below for operating and switching costs for the highly radioactive

waste (HLW), unknown today, were estimated relatively to the costs for intermediary level

waste(ILW), normalized at 1.15The switching cost c1;2 induced, for instance, by the addition of

new protective barriers around the waste emplacement cell , is set to 0:6. The cost of closing

15Costs estimations were conducted by ANDRA for the near-surface disposal (at depths of tens of meters) of

the ILW, which is currently in operation at Centre de l�Aube in France.
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the storage area (the access gallery remains open), c2;3, equals 2. The switching costs when

going from stage 3 to stage 2 are about 5 times higher than those prevailing when switching

from stage 2 to stage 1: we assume that c3;2 = 15 and c2;1 = 3. In addition, the operating

costs are c1 = 6; c2 = 4; c3 = 2. All these costs are considered for 1 m3 of radioactive waste

package. These cost values justify the assumptions made in subsection 2.1. The retrieval of a

waste package is more expensive than its emplacement in the geological area and the operating

costs are higher for stages with a higher degree of retrievability. The risk-free interest rate, r,

is set to 0:03 for the base case16.

The deterministic case, with no uncertainty (�w = �w = 0), will serve as a benchmark. It

permits us to obtain some initial values for the triggers.

Concerning the 2-Dimensional GBM case we use, as Gollier et al.(2001) and Loubergé et

al. (2001), the following parameters that describe the stochastic trend of the value of a 1 m3 of

radioactive waste package: �p = 0:01; �� = 0; �w = 0:01, �p = 0:03; �� = 0:07; �w = 0:076.

Two additional assumptions must be made when dealing with the combined GBM and

Poisson stochastic process . First, we consider � = 0:002 (important innovations or drawbacks

are rare). Second the probability of a positive jump is assumed to be very high,  = 0:8, and �

is equal to 0:8, because we would like to examine the decision process behavior after the arrival

of important news.

Table 1 summarizes the ranges of trigger values obtained for each of both considered cases.

Obviously, they are dependent upon the parameters assumptions outlined above. The range

obtained for the thresholds values w1;2; w2;1, w3;2 and w2;3 is mainly explained by the inter-

action between switching costs and thresholds, which is intuitive. For instance, if the retrieval

cost w2;3 is large, the value of the option to switch is large and the value of radioactive waste for

which the retrievability is justi�ed must be high. Each switching cost a¤ects its corresponding

threshold.

When uncertainty is introduced, we observe that the required trigger values for switching to

a more (respectively less) reversible stage of disposal increase (respectively decrease), compared

to the deterministic case. One can also observe that the di¤erence between w2;1 and w2;3

16 The future costs of deep geological disposal are to be supported by waste producers. Thus, the cost of

waste disposal is discounted in terms of accounting standards applied by producers. For example, the discount

rate used is 3% net, equivalent to 5% yield and 2% in�ation.
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Trigger NPV 2D-GBM GBM+Poisson GBM+Poisson

values �w= 0 �w= 0:01 (positive jumps) (negative jumps)

�w= 0 �w= 0:076 � = 0:002 � = 0:002

 = 0:8  = 0:2

w1;2 1.9811 1.7370 1.7815 1.6489

w2;1 2.0947 2.6743 2.7083 2.5762

w2;3 1.9369 1.4706 1.4963 1.4121

w3;2 2.4736 3.2743 3.2864 3.1953

Table 1: Trigger values of the radioactive waste package

increases with uncertainty (higher in the GBM-Poisson and 2-Dimensional GBM cases than in

the NPV case). Indeed the decision-maker shall wait on an intermediary disposal stage for more

extreme di¤erences in downward and upward trigger values. In the context of our example the

retrieval of waste packages becomes optimal more "rapidly" when the value w of the package is

stationary and deterministic (NPV model). Then follows the GBM-Poisson case with negative

jumps, the 2-Dimensional GBM case, and �nally the GBM-Poisson case with positive jumps.

The economic explanation is as follows.

For instance, an increase in the uncertainty (this means an increase in the volatility) in-

creases the chance that the decision maker learn in the future that the value w may fall enough

to make the switch to a more reversible stage sub-optimal. This creates an opportunity cost of

switching early to a more reversible stage and the value of the option to switch is equal to this

opportunity cost. Hence in order to avoid this cost, it will be in the interest of the decision

maker to keep the waste package a longer time on a less reversible stage. This explains the

higher threshold for the retrieval, compared to the deterministic case. Inversely, the decision

maker will be more reluctant to switch to a less reversible stage, if the value of the radioactive

waste package rises enough to justify the retrieval.

For the GBM with positive jumps case, the decision-maker switches earlier to a less re-

versible stage and later to a more reversible stage. In this case, the probability of positive

jumps a¤ects positively the expected change in the value of the waste package (as can be seen

from equation (24))and also the instantaneous variance of changes. This increases the value of
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the opportunity to switch to a more reversible stage, and thus increases the opportunity cost

of switching earlier than waiting. The decision-maker prefers to retain the option until the

value of the waste package has reached a level that makes optimal the switching to a more re-

versible stage. The higher the probability of technological progress in the future, the higher the

needed threshold for optimal retrieval. Moreover, given the �exibility of the whole project, the

decision-maker keeps in mind the fact that he has also the option to switch to a less reversible

stage if the value of the package is su¢ ciently low. When positive jumps are important, the

threshold value for switching to a less reversible stage is higher, and thus the option value of

waiting is smaller relative to the value of waiting for the upward switch. Actually, one of the

main insights of our model is that reversibility implied by the deep geological disposal may

cover the risk of �uctuations of future values of waste packages, since some decisions are re-

versible (for example, the decision of partial back�lling may be made by bearing in mind the

reversibility).

For the GBM with negative jumps, the decision-maker will have some incentives to hold

a longer time the option to switch to a less reversible stage, while switching early to a more

reversible stage. The higher the probability of smaller values for the waste package, the lower

the threshold that satis�es the optimality of switching to a less reversible stage.

Table 2 presents the results for the coe¢ cients of switching options values. The highest

ones are those obtained with the GBM-Poisson model with positive jumps.

Option values 2D-GBM GBM+Poisson GBM+Poisson

coe¢ cients �w= 0:01 (positive jumps) (negative jumps)

�w= 0:076 � = 0:002 � = 0:002

 = 0:8 � = 0:2

D2 142.6414 200.0801 98.9484

U1 51.5029 65.4380 39.1740

D3 5.6681 6.7611 4.5001

U2 10.2392 12.3299 7.9998

Table 2: Option values coe¢ cients

We note that the coe¢ cient for the option to switch down from stage 1 to 2 (D2) is
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signi�cantly larger than the others. This is because the value of this �rst option to switch

to a less reversible stage includes the option to switch further to the subsequent stage or to

reverse decisions at the optimal time (compound options).

Figure 2 shows the di¤erent options in the 2-D GBM case. Given our data, the most

signi�cant option is the option to start the switching of the radioactive waste from surface

storage to deep geological disposal. The value of the options to switch up increases with the

value of the waste package. As expected, the option value to dispose the waste packages on

less reversible stages increase for low values of radioactive waste packages and decreases for

high values. In addition, the option to retrieve the waste from the last disposal stage is more

important than the option to retrieve the package when it is disposed on the intermediary stage

for all levels of waste package value, given that c3;2>c2;1 by a large amount. Let us mention

that the convexity of options functions is due to the values of parameters � and �, the roots

of the fundamental quadratic equation (16).
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Figure 2: 2-D GBM case-Values of downward and upward switching options

Figure 3 depicts the evolution of switching options values for the GBM-Poisson (positive

jumps).17 Compared to the 2-D GBM, the options values to switch to a more reversible stage

17See Appendix 8 for illustrations in GBM-Poisson (negative jumps) case.
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increase more rapidly with the value of waste packages. This result holds because of the

opportunities of important technological innovation or unexpected jumps in the market price

of the radioactive materials.
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Figure 3: Switching options values in GBM-Poisson (positive jumps) case

In both cases, for the intermediary stage s, we can see that for high values of waste package,

the value of the option to retrieve the waste package relative to the option to transfer it on a

less reversible stage is more important. Given the �exibility of the project, the decision-maker

must consider these options simultaneously.

3.2 Comparative static for the 2-Dimensional GBM model

In this subsection we analyze the evolution of the option values and the trigger values in the

2-Dimensional GBM case when parameters r; �p; ��; �p,�� and switching costs vary. The base

case to which all the values are compared was described in Subsection 3.1.

Figure 4 displays a forecast of the evolution of the radioactive waste package value w, with

a starting value of 0.1, a drift parameter of 0.01 and volatility of 0.07. The current social and

economic conditions permit us to consider a nearly zero value for the ultimate waste. The

x-axis represents the time-scale (100 years) and the y-axis represents the GBM paths for w.
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Figure 4: Sample path of 2D-GBM process for the value of radioactive waste package

We observe that certain thresholds values may be attained, and consequently important

decisions will have to be taken in the future. This can justify the decision of the French

decision-maker to consider a su¢ ciently large period of reversibility (minimum 100 years).

Also, given that in the near future the value of radioactive waste package is low, the decision-

maker has more incentives to realize today the switch of waste packages to the reversible deep

facilities.

Figure 5 presents the evolution of the value of radioactive waste package with respect to

variations in the discount rate, the volatility and the drift parameter.

An increase in the discount rate lowers both threshold values for upward and downward

switching options. This means that when the discount rate is high, that is the opportunity cost

of waiting is high, the decision-maker is more willing to exercise the option of switching the

radioactive waste package on disposal stages with a higher degree of retrievability. As shown

by Gollier (2007), for the minimal period of reversibility of storage of 100 years, di¤erent

discount rates may be applied. For a period of time inferior to 30 years, the decision-maker

may apply a higher discount rate, but for periods beyond 30 years, r must be very low (1%,

2%). We consider an intermediate rate, i.e 3%, as taken by assumption by the radioactive

waste producers to evaluate their provisions.
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Figure 5: 2-D GBM-Evolution of the thresholds with respect to volatility, discount rate and growth

rate

Concerning the volatility parameter, we obtain that w2;1and w3;2are quite sensitive to

variations in volatility. The thresholds for the upward switch on the retrievability scale increase

with uncertainty and the thresholds for the downward switch decrease. On one hand, the

decision-maker will be less willing to retrieve the waste packages for a higher volatility of the

waste package value. On the other hand, if the waste package is disposed on a stage with a

higher degree of retrievability, the decision-maker is more reluctant to switch the packages on

a less reversible stage. This result is highlighted in the real options theory.

Finally, a higher value of the growth parameter induce an increase of all thresholds. Ob-

viously, the higher the growth parameter, the higher the chance that the value of radioactive

package be high in the future. Thus, the decision-maker will be more reluctant to switch to a

more reversible stage and more willing to go to a less reversible stage.

Figure 6 displays the relation between the threshold values and the switching costs. The

impact of the cost of switching to a more reversible stage, c2;1 on the corresponding threshold,

w2;1 is obvious. If it increases, the decision to switch up becomes more costly and the threshold
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Figure 6: 2-D GBM -Thresholds values as functions of switching cost

for retrieval increases. On the other hand, the impact of the switching cost c2;1 on the threshold

w2;3 is hard to observe on the �gure. Nevertheless, it seems intuitive that an increase in the

cost of switching to retrieval induces a decrease of the threshold relative to a switch to a less

reversible stage. The decision-maker switches to a stage with a lower degree of retrievability

less likely if she will have to pay large switching costs in order to retrieve the packages whenever

the value of the radioactive waste increases in the future. The impact of the switching cost c1;2

on the threshold w2;1 also needs further explanation. If the value of the waste package falls in

the near future, the decision-maker is reluctant to lose the value of the option to remain on

the intermediary stage, and thus avoiding to support again large costs for switching to stages

where the ease of retrieval is small.

We also obtain that for large values of c2;1, the threshold for switching from the intermediary

stage 2 to stage 1 becomes higher than the threshold w3;2 that signals the retrieval from the

last disposal stage. The relation between thresholds and corresponding switching costs just

mentioned above explains this changing order. Consequently, for large values of c2;1 the decision

to completely retrieve the waste is delayed. In addition, when the switching cost for complete
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retrieval is large, the �gure shows that it may be optimal to accelerate the closure phase of the

repository, given that the threshold concerned, w2;3; is higher than the threshold w1;2. Similar

e¤ects can be induced from an increase of c2;3 and c3;2 on the thresholds w2;3 and w3;2:

3.3 Comparative static for the Compound GBM and Poisson case

Let us consider that the value of the radioactive waste package, w, follows a combined GBM-

Poisson process, as described by equation (23). The parameter � is the mean arrival rate of

jumps in the value of waste packages. As � increases, the time gap between jumps falls, so

that for any given value of �, a larger � leads to more frequent jumps. As stated in Table 1,

the threshold values are higher than those in the 2-D GBM and NPV cases for positive jumps

and lower for negative, large, jumps.

Figure 7 displays both processes for comparison. As in the 2-D GBM case, because of

the nearly zero today value of waste packages and the fact that in the nuclear �eld radical

innovation are rare (this is captured by a low value of �), it takes a very long time to reach

the thresholds during the reversibility period of 100 years. However, opportunities to revise

decisions may also appear. For example, if research and development provide ways to reduce

the degree of di¢ culty of retrieval or changes a¤ecting long term safety previous steps may be

reevaluated.
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Figure 7: Sample path of GBM-Poisson process for the value of radioactive waste package
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Figure 8: Variation of thresholds with respect to lambda

Figure 8 shows how the critical waste package values vary with � for negative and positive

values of �. A higher � with a positive (negative) � implies higher (lower) thresholds values.

This is due to the fact that an increase in � leads to a larger expected change in w at each

period (recall equation (24)). This tends to increase (respectively decrease) the opportunity

cost of switching to a more reversible stage for � > 0 (respectively � < 0):

Figure 9 depicts the impact of di¤erent values of r, � and � on the thresholds among stages

when � > 0.18 The relationship is similar to the one found in the 2-D GBM model as the waste

package value still variates between jumps according to a GBM.

Figure 10 represents the variation of the switching thresholds with respect to the transition

costs. We observe a similar evolution following an increase of the switching cost c2;1: Never-

theless, an increase in emplacement costs c1;2 and c2;3, induce less sensible thresholds values

of retrieval, w2;1 and w3;2. Moreover, the threshold w3;2 is much more sensitive to an increase

of c3;2 than that of c2;3. The economic reasoning behind these interactions described in the

previous subsection still holds.

18The comparative statics for the GBM-Poisson process with negative jumps is available upon request.
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Figure 10: Evolution of thresholds as function of switching costs with GBM-Poisson (positive jumps)
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Both cases show that the decision-maker delays her switching decisions as the uncertainty

(volatility) on the value of the radioactive waste increases. The possibility of jumps in the

waste package value considered in the second model, was divided into two cases: one in which

the jumps were expected to be positive (associated with radical innovations in the technology

of disposal), and one in which they were expected to be negative (associated with failures in

the technology). When drawbacks are considered, the decision-maker exercises the option to

retrieve the waste sooner compared to the case where only technological progress is considered.

If the probability of important innovations increases, then the retrieval of waste packages is

calling to a highest threshold and it sees the longest delay before the decision-maker is convinced

of the optimality of the retrieval.
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APPENDIX

1.Cumulative probabilities of switching �i;j(i; j 2 S)

At each date the decision-maker must calculate the probability of meeting the conditions

for switch. She knows only the normal cumulative density functions 
(ws;s+1t );
(ws;s�1t ):

The di¤erent cumulative probabilities associated to the GBM process of wt are de�ned as

following:19
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�w
p
t

1CCCA

�s;s�1 = Pr(wt � ws;s�1t ) = 
(

ln
wt

ws;s�1t

+

�
�w �

1

2
�2w

�
t

�w
p
t

) +

 
ws;s�1t

wt

!2
�
�w �

1

2
�2w

�
�2w � 
(

ln
wt

ws;s�1t

�
�
�w �

1

2
�2w

�
t

�w
p
t

)

�s = Pr(ws;s+1t � wt � ws;s�1t ) = exp

0BB@2
�
�w �

1

2
�2w

�
�4w

ln
ws;s�1t

wt

1CCA�




0BBB@
ln
ws;s+1t

wt
� 2 ln w

s;s�1
t

wt
�
�
�w �

1

2
�2w

�
t

�2w
p
t

1CCCA

19For the determination of cumulative probabilities, see Harrison (1985).
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2. Proof of Equation (11)

Knowing that E [wt] = w0e�wt;we write the expectation factor as follows:

vs(wt) = E

24 TZ
t

(w� � �s � cs)e�r�d�

35 = E
24�s � TZ

t

w�e
�r�d�

35� E
24 TZ
t

cse�r�d�

35
E

24 TZ
t

w�e
�r�d�

35 = TZ
t

w0e
�w�e�r�d� ==

TZ
t

w0e
(�w�r)�d� =

w0
r � �w

(1� e�(r��w)(T�t))

E

24 TZ
t

cse�r�d�

35 = cs

r
(1� e�r(T�t)); given

TZ
t

xe�r�d� = x
1� e�rT

r

vs(wt) =
w0 � �s

r � �w
(1� e�(r��w)(T�t))� c

s

r
(1� e�r(T�t))

3. Proof of Equation (16)

Until the adoption time the option to switch has no return, so the only return from having

the option is the expected value E
�
dF s;s�1(wt)

�
which according to Bellman principle, must

equate the expected return on exercising the option. 20

rF s;s�1(wt)dt = E
�
dF s;s�1(wt)

�
(A.1)

We apply Itô�s lemma for the last equation and we obtain:

rF (wt) =
E
�
dF s;s�1(wt)

�
dt

= �wwtF
s;s�1
w (wt) +

1

2
�2w (wt)

2 F s;s�1ww (wt)

The following di¤erential equation, which is satis�ed by the option value, is derived from

Bellman principle:

�wwtF
s;s�1
w (wt) +

1

2
�2 (wt)

2 F s;s�1ww (wt)� rF s;s�1(wt) = 0 (A.2)

and has the associated general solution:

F s;s�1(wt) = Dw
�
t + Uw

�
t (A.3)

where � < 0 and � > 1 are the solutions of the quadratic equation

1

2
�2w�(� � 1) + �w� � r = 0 (A.4)

20See Dixit and Pindyck (1994) for a detailed description.
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�; � =

h
�(�w � 1

2�
2
w)�

q
(�w � 1

2�
2
w)
2 + 2�2wr

i
�2w

When F s;s+1(wt) = Uw
�
t ; the partial derivatives are: F

s;s+1
w (wt) = �Uw

��1
t and F s;s+1ww (wt) =

� (� � 1)Uw��2t . We substitute them in equation ( A.2) and we obtain:

�w�Uw
�
t +

1

2
�� (� � 1)Uw�t � rUw

�
t = 0�

1

2
�2� (� � 1) + �w� � r

�
Uw�t = 0

Thus, in order for F s;s+1(wt) = Uw�t to be a solution for the di¤erential equation (A.2),

the equation (A.4) must hold.

4. Proof of Proposition 1

For the intermediary stage s; the value of the reversible project is:

V st (wt)=

8>>><>>>:
vst + F

s;s+1(wt) + F
s;s�1(wt); if ws;s+1t � wt � ws;s�1t

vs+1t + F s+1;s(wt)� cs;s+1; if wt � ws;s+1t

vs�1t + F s�1;s(wt)� cs;s�1; if wt � ws;s�1t

(A.5)

For the disposal stage with the highest degree of retrievability, we have F s;s�1 = Dsw
�
t ,

given that Us�2 = 0 and for the last disposal stage , s+1 , we have F s+1;s = Usw
�
t ; given that

Ds+2 = 0

Then the value of the project for each of the three stages can be written as follows:

V s�1t =

8>><>>:
E(

TR
t

�s�1 � w� � cs�1)e�r�d� +Dsw�t ; wt � ws�1;st

E(
TR
t

�s � w� � cs)e�r�d� +Ds+1w�t + Us�1w
�
t � cs�1;s; wt � ws�1;st

V st =

8>>>>>>><>>>>>>>:

E(
TR
t

�s�1 � w� � cs�1)e�r�d� +Dsw�t + Us�2w
�
t � cs;s�1; wt � ws;s�1t

E(
TR
t

�s+1 � w� � cs+1)e�r�d� +Ds+2w�t + Usw
�
t � cs;s+1; wt � ws;s+1t

E(
TR
t

�s � w� � cs)e�r�d� +Ds+1w�t + Us�1w
�
t ws;s+1t � wt � ws;s�1t

V s+1t =

8>><>>:
E(

TR
t

�s�1 � w� � cs+1)e�r�d� + Usw�t ; wt � ws+1;st

E(
TR
t

�s � w� � cs)e�r�d� +Ds+1w�t + Us�1w
�
t � cs+1;s ; wt � ws+1;st
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We write analytically the expression for the value matching conditions associated to the

switches to disposal stages s� 1 2 S, when the radioactive waste is on the stage s 2 S :

vs�1(ws�1;st ) +Ds(w
s�1;s
t )� = vs(ws�1;st ) +Ds+1(w

s�1;s
t )� + Us�1(w

s�1;s
t )� � cs�1;s

vs
�
ws;s�1t

�
+Ds+1

�
ws;s�1t

��
+ Us�1

�
ws;s�1t

��
= vs�1

�
ws;s�1t

�
+Ds

�
ws;s�1t

��
� cs;s�1

vs
�
ws;s+1t

�
+Ds+1

�
ws;s+1t

��
+ Us�1

�
ws;s+1t

��
= vs+1

�
ws;s+1t

�
+ Us

�
ws;s+1t

��
� cs;s+1

vs+1(ws+1;st ) + Us(w
s+1;s
t )� = vs(ws+1;st ) +Ds+1(w

s+1;s
t )� + Us�1(w

s+1;s
t )� � cs+1;s

And making some arrangements, we obtain:

(Ds �Ds+1)
�
ws;s�1t

��
� Us�1

�
ws;s�1t

��
=

=
ws;s�1t (�s � �s�1)

r � �w
(1� e�(r��w)(T�t)) + c

s�1 � cs
r

(1� e�r(T�t)) + cs;s�1

Ds+1

�
ws;s+1t

��
+ (Us�1 � Us)

�
ws;s+1t

��
=

=
ws;s+1t (�s+1 � �s)

r � �w
(1� e�(r��w)(T�t)) + c

s � cs+1
r

(1� e�r(T�t))� cs;s+1

(Ds �Ds+1) (ws�1;st )� � Us�1(ws�1;st )� =

=
ws�1;st (�s � �s�1)

r � �w
(1� e�(r��w)(T�t)) + c

s�1 � cs
r

(1� e�r(T�t))� cs�1;s

Ds+1(w
s+1;s
t )� + (Us�1 � Us) (ws+1;st )� =

=
ws+1;st (�s � �s+1)

r � �w
(1� e�(r��w)(T�t)) + c

s+1 � cs
r

(1� e�r(T�t)) + cs+1;s

And the smooth pasting conditions are:

(Ds �Ds+1)�
�
ws;s�1t

���1
� �Us�1

�
ws;s�1t

���1
=
�s � �s�1

r � �w
� (1� e�(r��w)(T�t))

Ds+1�
�
ws;s+1t

���1
+ (Us�1 � Us)�

�
ws;s+1t

���1
=
�s+1 � �s

r � �w
� (1� e�(r��w)(T�t))

(Ds �Ds+1)�(ws�1;st )��1 � Us�1�(ws�1;st )��1 =
�s � �s�1

r � �w
� (1� e�(r��w)(T�t))

Ds+1�(w
s+1;s
t )��1 + (Us�1 � Us)�(ws+1;st )��1 =

�s � �s+1

r � �w
� (1� e�(r��w)(T�t))

5. Proof of Equation (25)

To determine E(�) we use the fact that the probability of no event occurs in interval (0; �) is

e��� :Therefore the probability that an event occurs on the short interval (� ; �+d�) is �e����d�:

Then we have:
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E(�) =

TZ
0

�e����d� = �

TZ
0

�e���d� We integrate by parts:

E(�) = �

8<:
�
�
e���

��

�T
0

�
TZ
0

e���

�� d�

9=;
E(�) = �

(�
�
e���

��

�T
0

�
�
e���

�2

�T
0

)

E(�) = E(�) =
1

�
� T � e��T � e

��T

�

6. Proof of Equation (26)

Knowing that E [wt] = w0e[�+���(1�)��]t;we write the expectation factor as follows:

vs(wt) = E

24 TZ
t

(�s � w� � cs)e�r�d�

35 = E
24�s � TZ

t

w�e
�r�d�

35� E
24 TZ
t

cse�r�d�

35
E

24 TZ
t

w�e
�r�d�

35 = TZ
t

w0e
[�+���(1�)��]�e�r�d� =

TZ
t

w0e
[�+���(1�)���r]�d�

=
w0

r � (�+ �� � (1� )��)(1� e
�(r�����+(1�)��)(T�t))

vs(wt) =
�s � w0

r � (�+ �� � (1� )��)(1� e
�(r�����+(1�)��)(T�t))� c

s

r
(1� e�r(T�t))

7. Proof of Equation (29)

We rewrite the Bellman equation:

rF s;s�1(wt)dt = E
�
dF s;s�1(wt)

�
Next we expand the right hand side of the Bellman equation as follows:

dF s;s�1(w) =
@F s;s�1(w)

@t
dt+

@F s;s�1(w)

@w
dw

>From the stochastic process GBM+Poisson jump, dw = �wdt+ �wd"+wdq and because

F s;s�1(w) is not a function depending explicitly on time, we have
@F (w)

@t
= 0:

The second term
@F s;s�1(w)

@w
dw can be separated in two parts, one due to the geometric

Brownian motion component (�wdt + �wd"), for which we can apply the standard version of

Ito�s Lemma, and the second due to the jump process wdq. Thus,
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-for the GBM part:

dF s;s�1(w) =
1

2
F s;s�1ww (w)dw2 + F s;s�1w (w)dw

-for the Poisson jump part:

dF s;s�1(w) = F s;s�1(w + �w � (1� )�w)� F s;s�1(w) = F s;s�1((1 + �� � (1� )��)w)� F s;s�1(w)

E
�
dF s;s�1(w)

�
=
�
dF s;s�1(w)

�| {z }
GBM

+ �dt
�
dF s;s�1(w)

�| {z }
Poisson

=

�
F s;s�1w E(dw) +

1

2
F s;s�1ww E(dw2)

�
+ �dt

�
F s;s�1(w + �w � (1� )�w)� F s;s�1(w)

�
=

�
F s;s�1w �wdt+

1

2
F s;s�1ww �2w2dt

�
+ �dt

�
F s;s�1(1 + �� � (1� )��)w)� F s;s�1(w)

�
E [dF (w)] =

1

2
F s;s�1ww �2w2dt+ F s;s�1w �wdt+ �dt

�
F s;s�1(1 + �� � (1� )��)w)� F s;s�1(w)

�
We substitute in the Bellman equation:

rF s;s�1(w)dt =
1

2
F s;s�1ww (w)�2w2dt+ F s;s�1w (w)�wdt+ �dt

�
F s;s�1(1 + �� � (1� )��)w)� F s;s�1(w)

�
rF s;s�1(w) =

1

2
F s;s�1ww (w)�2w2 + F s;s�1w (w)�w + �

�
F s;s�1(1 + �� � (1� )��)w)� F s;s�1(w)

�
1

2
F s;s�1ww (w)�2w2 + F s;s�1w (w)�w � (r + �)F s;s�1(w) + �F s;s�1(1 + �� � (1� )��)w) = 0

admitting the general solution:

F s;s�1(w) = Dw� + Uw�

Starting from the solution of the di¤erential equation, we calculate the derivatives of F (w)

and we replace them in the equation:

F (w) = Dw�;Fw(w) = �Dw
��1;Fww(w) = � (� � 1)Dw��2

1

2

h
� (� � 1)Dw��2

i
�2w2 +

h
�Dw��1

i
�w � (r + �)Dw� + �D [(1 + �� � (1� )��)w)]� = 0

Dw�
�
1

2
[� (� � 1)]�2 + ��+ � (1 + �� � (1� )��)� � (r + �)

�
= 0

Thus, � is the solution of the equation:

1

2
[� (� � 1)]�2 + ��+ � (1 + �� � (1� )��)� � (r + �) = 0
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8. Switching options values in GBM-Poisson (negative jumps) case
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Figure 11: Switching options values in GBM-Poisson (negative jumps) case
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