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Abstract

An important decision in the development of a mixed oil and natural gas field is whether to
produce or re-inject the natural gas. There is a trade-off between the income from the sale of
natural gas and the higher oil production obtained from re-injection. We consider the optimal
timing problem of when to stop natural gas injection for a set of offshore petroleum fields using
a real options approach. The real options valuation prices the option to switch significantly
higher than a net present value approach. A two-factor price model is implemented for both
the oil price and the gas price. The option valuation is based on the Least-Squares Monte
Carlo simulation algorithm.
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1 Introduction

We study the flexibility related to extraction timing in offshore petroleum production and its effect on the total value
of the reservoir. As fewer new fields are discovered, decisions related to fields already in production become more
important. An important choice in this respect is whether to re-inject the produced natural gas in order to produce
more oil or to sell the produced natural gas. On the Norwegian Continental Shelf, injected water is the most common
pressure support, but several fields employ natural gas injection (Norwegian Petroleum Directorate (2009)). Examples
include the fields Oseberg, where natural gas export has been delayed several times in order to extract more oil, and
Ula, where natural gas is purchased from a nearby field for injection. Oseberg contained 2.3 billion barrels of oil when
it went into production, making even a small increase in producible reserves a project worth millions, if not billions, of
dollars. At the Prudhoe Bay field, the largest one in North America, operators have increased the recovery factor sub-
stantially due to gas injection together with other techniques (Szabo and Meyers (1993)). As oil production from the
field falls, a gas pipeline to export the gas is being discussed; necessary infrastructure for large-scale gas export is not
currently present. Gas is also used for enhanced oil production in the Middle East. In 2008 around 16% of Iran’s gas
production was re-injected to increase oil production1. We intend to value the flexibility related to stopping injection,
and exporting the produced natural gas. Since 2000, oil and gas prices have been increasingly volatile, thereby making
it more difficult to determine an optimal switching time using static valuation approaches such as deterministic net
present value (NPV) calculations. The problem of optimal extraction timing may be interesting for both practitioners
assessing field strategies as well as analysts and researchers forecasting future petroleum supply.

Real option valuation (ROV) has been applied to petroleum projects for a long time as they have attributes such as
a large irreversible initial investment, a risky and easily traded output commodity, reservoir uncertainty which is re-
solvable only through drilling, and strategic flexibility over choices related to timing, technology and capacity. Siegel,
Smith, and Paddock (1988) assess investing in offshore petroleum leases and compare ROV with both NPV approaches
and observed bid prices. In contrast, Cortazar and Schwartz (1998) use a Monte Carlo model to find the optimal tim-
ing of investing in a field with a set oil rate that declines exponentially and with varying but deterministic operating
costs. With this predetermined production rate the value of the field becomes a function of the oil price, which is
modeled as a two-factor model where the spot price follows a geometric Brownian motion and the convenience yield
follows a mean-reverting process. Similarly, McCardle and Smith (1998) consider the timing of investment, the option
to abandon, and the option to tie in surrounding fields. Both prices and production rates are modeled as stochastic
processes, where the price follows a geometric Brownian motion process. Ekern (1988) also values the development
of satellite fields and adding incremental capacity using a binomial ROV model. Lund (1999) considers an offshore
field development by using a case from a North Sea field, Heidrun, employing a dynamic programming model that
takes into account the uncertainty regarding both reservoir size and well rates, in addition to the oil price. The pa-
per assumes the price follows a geometric Brownian motion process, and uses a binomial lattice valuation model to
find the optimal size of the rig and investment timing. Dias, Lazo, Pacheco, and Vellasco (2003) utilize Monte Carlo
simulations together with non-linear optimization in order to find an optimal development strategy for oil fields when
considering three mutually excluding alternatives. Chorn and Shokhor (2006) combine dynamic programming and
real options valuation to value investment opportunities related to petroleum exploration. Dias (2004) provides a more
thorough review of real option valuation related to the petroleum industry, and Suslick and Schiozer (2004) give an
overview of risk analysis for petroleum exploration and production.

1EIA Iran Country Analysis Briefs, www.eia.doe.gov/cabs/Iran/pdf.pdf, retrieved 28.05.2010
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In this work we take into account price risk and reservoir risk in a ROV model based on the Least Squares Monte
Carlo simulation algorithm presented in Longstaff and Schwartz (2001). We do not consider the problem of initial
investment, as it has been applied to petroleum projects and a large range of other industries before. Also, in their
comparison of a option valuation and a discounted cash flow approach, Siegel et al. (1988) could not prove that the
option valuation gave a different result for the price of a set of real-world oil tracts. Lund (1999) found that the value
of deferring an investment is generally low in petroleum production as opportunity costs associated with delaying are
high and new information rarely change the investment decision. Instead, we focus on decisions being made as the
field is in production, specifically when to begin exporting the gas.

In Section 2, we present the data. In Section 3, we introduce the price models, reservoir model and valuation framework
used in this work. We apply these in Section 4 to three real-life cases, and present our conclusions in Section 5.

2 Data

To study the long-term behavior of the oil price and to find a suitable time-series model, we have used forward prices
of crude oil with siix expiration maturities from 0.25 years to 2.5 years2. The forward series have weekly observations.
Using these data, we estimate the long- and short-term volatility, as well as risk-neutral price growth. An equivalent
forward series for gas forwards have been used for estimating the gas price process. The forwards for natural gas are
from NYMEX2, and are converted into USD per standard cubic meter oil equivalent, USD/Sm3o.e.

There are several methods for estimating the risk-free rate. Bruner, Eades, Harris, and Higgins (1998) argue that on the
one hand, 90-day T-bills are more consistent compared to long-term bonds and truly reflect risk-free returns. On the
other hand, short-term interest rates fluctuate over time, thereby introducing reinvestment risk when considering long
periods. Long-term bonds reflect the default-free holding period returns closer than short-term T-bills for long invest-
ment periods and avoid the reinvestment problem. The empirical study performed by Bruner et al. (1998) shows that
practitioners have a strong preference for using long-term bonds to estimate long-term risk-free interest rates. Koller,
Goedhart, and Wessels (2005) recommend using liquid long-term zero-coupon government securities. To estimate the
USD-denominated risk free rate, we have used 20-year US Treasury bonds2. The risk-free rate is estimated to be 4.3%
per year.

The reservoir data used in the case study are from the Norwegian Petroleum Directorate (2009), where reserves and
production data for all Norwegian fields can be found. Observed production rates for Oseberg are also retrieved3.

3 Methodology

Several key choices needs to be made when constructing a ROV model. These include which uncertainties to take
into account, how to model these, and which simplifications to make. Bickel and Bratvold (2008) make a survey of
which uncertainties oil and gas practitioners find most relevant. The most important uncertainties from the survey are
subsurface risk followed closely by hydrocarbon prices. Subsurface risk cover a wide range of uncertainties, from
reservoir properties to the well-flow response to new production or injection wells. In our model, we take account of
subsurface risks by modeling the extractable reserves as uncertain. We also include price risk. The valuation procedure
is presented in Section 3.3.

2EcoWin Reuter Database, retrived 03.02.2010
3Norwegian Petroleum Directorate Web page, fact section, www.npd.no, retrieved 07.05.2010
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3.1 Time-series analysis of oil and gas prices When considering the decision to switch from oil to natural gas
production, two critical factors that must be included are the oil and natural gas prices. Time series of these are shown
in Figure 3. The two variables are thought to be cointegrated to a certain extent. In the United States, oil power plants
have been able to switch between using oil and natural gas as fuel. This connects the two prices as producers choose
the most economical fuel. Today, there are a smaller share of power plants than before that can switch between the
two fuels (Brown 2005). The crude oil and natural gas prices are still to some degree linked since they are substitutes
in other areas as well, i.e. heating. Crude oil and natural gas are used as substitutable inputs in refineries, with the
result that the two petroleum prices are more cointegrated than they otherwise would be. Another factor linking the
prices of oil and natural gas is that natural gas is often a co-product of oil production, meaning that if one increases
oil production, then the gas production will also often increase. An increased demand in crude oil following a price
increase may also lead to increased costs related to petroleum extraction (Villar and Joutz 2006). This will increase
the marginal cost of natural gas as well, thereby creating an upwards pressure on gas prices.

Villar and Joutz (2006) show that natural gas and crude oil prices have had a stable relationship historically, even
though there are periods where they have appeared to decouple. Brown and Yücel (2008) also document a long-term
relationship between the two prices. Brown (2005) found that U.S natural gas prices are related to crude oil prices,
with natural gas prices adjusting to changes in the crude oil prices. Most Liquefied Natural Gas (LNG) contract are
indexed to oil prices. This creates a direct link between crude oil and natural gas prices (Foss 2005).

The geometric Brownian motion (GBM) and the Ornstein-Uhlenbeck process has often been used to describe the
movement of oil prices. Pindyck (1999) argues that oil price can be forecasted by incorporating mean reversion to a
stochastically fluctuating trend line. Even though the mean-reversion model often is used, Pindyck (1999) finds that
the rate of mean reversion is low for oil, coal, and natural gas prices. This suggest that the GBM process may be a
fair approximation for many applications. Schwartz and Smith (2000) demonstrate that the two-factor model outper-
forms the simpler one-factor models. For that reason, we use this two-factor model to estimate the oil and gas price
processes. We proceed by testing the two time series obtained from the two-factor model and analyze if they have the
characteristics assumed in the model description. This provides an indication on whether the two-factor model renders
a good explanation of observed price behavior.

3.1.1 A two-factor model for commodity prices by Schwartz and Smith (2000) Schwartz and Smith (2000) develop
a two-factor model of commodity prices that allows mean reversion in the short-term price while the long-term price
follows an arithmetic Brownian motion process. The two-factor model combines the Brownian motion and mean-
reverting effects seen in commodity prices, and gives a more realistic representation of commodity price movement
than any of the two one-factor models on their own. Forward prices are used to separate the long-term and short-term
components. The changes in the long-term prices reflect the changes in demand and supply following political situa-
tions, exhaustions and discovery of commodities and improving technology, while changes in short-term price reflects
changes in demand resulting from variations in weather or intermittent problems (Schwartz and Smith 2000).

The two factor risk-neutral processes are given by:

ln(St) = χt +ξt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)

3



dχt = (−κχt −λχ)dt +σχ dzχ . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)

dξt = µ
∗
ξ

dt +σξ dzξ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)

St denotes the modeled spot price, dzχ and dzξ are increments of risk-neutral Brownian motion processes with
dzχ dzξ = ρχξ dt. The short-term deviation, χt , is an Ornstein-Uhlenbeck process reverting to −λχ/κ rather than
zero as assumed in the true process, while the equilibrium prices or the long-run price, ξt , is a Brownian motion pro-
cess with drift µ∗

ξ
. κ denotes the mean-reversion coefficient, λχ the short-term risk premium, and ρχξ the correlation

in increments while σχ and σξ denote the volatility for the short-term deviation and the equilibrium price level, re-
spectively (Schwartz and Smith 2000).

3.1.2 Implementation of the two-factor model To estimate the model parameters, we fit the constructed forward
curve from the model to the observed forward curve for a number of observations, and change the parameters in order
to minimize the sum of squared errors. We use equations (4) and (5) in order to estimate a forward curve, Ft,T , which
is the price of a forward contract with maturity at T observed at time t.

ln(FT,t) = ln(E∗[ST ]) = e−κT
χt +ξt +A(T ) (4)

A(T ) = µ
∗
ξ

T − (1− e−κT )
λχ

κ
+

1
2

(
(1− e−2κT )

σ2
χ

2κ
+σ

2
ξ

T +2(1− e−κT )
ρχξ σχ σξ

κ

)
. . . . . . . (5)

The estimation is done in three steps following Lucia and Schwartz (2002). In the first step, while estimating a set of
reasonable parameters, a linear least-squares regression is performed to estimate the long-term and short-term compo-
nents that give the smallest error between the models forecast and market forward prices. Each time-step is estimated
independently from the others. In the second step, the variance and correlation estimate is updated, and the regression
is repeated until the short-term and long-term estimated variance and correlation is close to the observed values. The
correlation between the oil and gas prices is estimated from the modeled short-term and long-term time-series. In the
third step, long-term and short-term prices and variances are fixed, and a non-linear optimization is performed in order
to find the values of κ , µ∗

ξ
, and λχ that minimize the sum of squared errors in the forward curve fit. For the non-linear

optimization, we have used the interior-point solver Ipopt developed by Wachter and Biegler (2006). The three steps
are then repeated until the parameters converges.

3.1.3 Oil model The forward curve is obtained from NYMEX crude oil futures maturing at 3, 6, 9, 12, 18, 24, and
30 months, with observations from week 36 in 1995 to week 5 in 2010, a total of 749 observations for each of the seven
futures. Figure 1 compares the spot price to the modeled spot price and the long-term price. We see that the modeled
price is close to the historical spot price. The mean absolute deviation between the spot price and the estimated spot
price from the model is 1.66% of the average spot price.

Statistical analysis of the oil price data In order to decide if the model is suitable for describing the price move-
ments, then one needs to examine if different characteristics can be found in the series. Schwartz and Smith (2000)

4



2000 2005 2010

2.5

3.0

3.5

4.0

4.5

5.0

Log price

Year

Oil spot price 
Long−run price 

Modelled oil price 
 

Figure 1: Comparing log-values of spot price, modeled spot price and long-term price denominated in log USD per
bbl

Table 1: Testing oil two-factor model for unit root

Time series DF Result DF KPSS Result KPSS
χ -2.73 Reject H∗

0 0.577 Reject H∗∗
0

ξ -0.075 Do not reject H0 3.00 Reject H∗∗∗
0

∆ξ -22.5 Reject H∗∗∗
0 0.17 Do not reject H0

model the long-term price as an arithmetic Brownian motion process in the two-factor model. In order to examine if
our model is in pursuant with the theory, we test for a unit root. In a random walk, a unit root and no serial correlation
should be present.

In this analysis, the logarithmic values of the short-term and long-term prices are used. We find evidence of some
positive autocorrelation in the long-term oil price residuals. When autocorrelation is detected the estimates will still
be unbiased, but they will be inefficient and have larger standard errors.

Unit root test results The Dickey-Fuller (DF) test presented in Dickey and Fuller (1979) investigates if a series is
stationary or not by trying to prove that it does not contain a unit root. If there are no unit roots in a series, then
it is stationary. We also test for a unit root using a Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test (Kwiatkowski,
Phillips, Schmidt, and Shin 1992). The null hypothesis for a KPSS-test is the reverse of a DF-test. By using both,
one tests the robustness of the result, which is shown in Table 1. H∗

0 indicates a rejection of H0 on a 10% significance
level, 5% level for H∗∗

0 , and 1% level for H∗∗∗
0 .

The DF test indicates that a unit root is present; hence the series does not seem to be stationary. This is confirmed
by the KPSS test, which rejects the stationarity of the long-term price on a 1% significance level. The long-term
returns are, however, deemed to be stationary by the DF test, also on a 1% significance level, which is corroborated
by the KPSS-test. Both results support the assumption that the long-term price can be modeled as a Brownian motion
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Figure 2: Price estimation sensitivity to short-term risk premium parameter denominated in log USD per bbl

process.

The DF test statistic for the short-term price rejects the null hypothesis at a 10% significance level. According to a
KPSS test, stationarity is rejected on a 5% level. The results from the DF and the KPSS tests conflict, which implies
that the conclusion is not robust. Since we cannot prove that the short-run price series is stationary, it could signify
that the two-factor model is too simple for this commodity. We still use the two-factor model as our results are in-
conclusive, and since it captures main properties of interest in capital budgeting analysis, including a (nonstationary)
long-term uncertainty. Furthermore, Schwartz and Smith (2000) have found it to be a good model for commodity
prices including crude oil.

Convergence and sensitivity The parameter estimation was performed from several different starting points, in or-
der to discover possible sub-optimal local minima and to assess the convergence of the algorithm. When attempting
different starting points for all parameters, the procedure converges to the same values for all parameters, except the
short-term risk premium, λχ . Two local minima were discovered, one with a sum of squared residuals of 0.5599 and
a λ of -0.012. The best result had a sum of squares for the residuals of 0.5598, and with a λ of 0.086. The difference
between the two minima is very modest. The other parameters did not change significantly. This large difference in
the short-term risk-premium has a large impact on the absolute values of the short-term and long-term prices. The
shapes of the long-term and short-term curves are, however, not affected, as can be seen in Figure 2. The estimation
procedure compensates for changes in the short-term risk premium by changing the level of the short-term price. This
makes it difficult to assess which of the models is more correct, as the difference in squared residuals is very small.

6



Table 2: Comparing oil model with results from Schwartz and Smith (2000)

Parameter Description Schwartz and Smith estimates Oil model
κ Short-term mean reversion rate 1.49 0.789

σχ Short-term volatility 0.286 0.267
λχ Short-term risk premium 0.157 0.086
µ∗

ξ
Equilibrium drift rate -0.0125 -0.0137

σξ Equilibrium volatility 0.145 0.161
ρξ χ Correlation in increments 0.300 -0.124

Results The two-factor model results are given in Table 2. We see that the results are similar to those given in
Schwartz and Smith (2000). They use data from NYMEX futures from 1/2/90 to 2/17/95. The parameters are similar
to the estimates from Schwartz and Smith (2000) and have the same signs, except the correlation in increments, which
has an opposite sign, and the short-term mean reversion rate, which differs substantially. One obvious reason for the
difference in the estimates is that the data-set used by Schwartz and Smith (2000) is older than the data used in our
model.
Negative correlation in increments indicates that when there is a positive shock in the equilibrium price one can to
some extent expect the short-term price to fall. This suggests that there is some inertia in the spot price, as a long-term
change is to some degree offset by a short-term price adjustment in the opposite direction.

3.1.4 Gas model Gas prices are more regional than the oil price. There are several regional gas markets around the
world, and, in contrast to the oil market, the different gas markets does not have as much influence on each other. One
important link between the different gas markets is the LNG shipments, which transport natural gas over long dis-
tances. We use data from the Henry Hub gas market traded on NYMEX. Henry Hub is one of the largest gas markets
in the world and should be more liquid and complete than smaller markets. This is discussed further in Section 3.4.
Villar and Joutz (2006) show that while the changes in oil price have an impact on gas prices, the natural gas price does
not influence oil price considerably. And though the prices of crude oil and natural gas at times have appeared to drift
away from each other, oil and gas have still had a stable relationship (Villar and Joutz 2006). There are several rules
of thumb regarding the relationship between oil and gas prices, but none of these rules of thumb has been consistently
accurate over time. We see in Figure 3 that the crude oil price and natural gas price have followed each other and have
the same characteristics.

To estimate the model parameters, we follow the procedure in Section 3.1.3 and fit a forward curve from the model
to the observed forward curve for a number of observations. We then change the parameters in order to minimize the
sum of squared errors. The forward curve is obtained from Henry Hub spot price and futures maturing at 3, 6, 9, 12,
18, 24, and 30 months, with observations from week 15 in 1996 to week 5 in 2010, a total of 719 observations. The
estimated forward curve is found using equations (4) and (5).

Analysis of the gas model We model the gas price by using a two-factor process. In order to analyze the data, we do
the same unit root tests as for the oil price model. We analyze the logarithmic values of the short-term and long-term
prices for natural gas in the period from week 15 in 1996 to week 5 in 2010 (a total of 710 observations). The results
of the DF-test and the KPSS-test are shown in Table 3.
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Figure 3: Comparing natural gas log-prices denominated in log USD per Sm3o.e and oil log-prices denominated in log
USD per bbl using weekly observations from 1995 to 2010

Table 3: Testing gas two-factor model for unit root. H∗
0 indicates a 10% significance level, H∗∗

0 a 5% level and H∗∗∗
0 a

1% level.

Time-series DF Result DF KPSS Result KPSS
χ -4.71 Reject H∗∗∗

0 0.90 Reject H∗∗∗
0

ξ -1.34 Do not reject H0 2.86 Reject H∗∗∗
0

∆ξ -28.43 Reject H∗∗∗
0 0.16 Do not reject H0

The DF test statistic for the long-term price series implies that the null hypothesis cannot be rejected and there can be
a unit root present. This result is confirmed by the KPSS test, which rejects stationarity. The long-term returns DF test
indicates that the return is stationary on a 1% confidence interval, while the KPSS test cannot reject stationarity. This
is consistent with the assumption that the long-term price can be modeled as an arithmetic Brownian motion process.

The test statistic for the short-term natural gas price is significant at a 1% confidence interval, thereby suggesting
that the series does not contain a unit root. The KPSS test rejects stationarity, however. The results for the short-run
price series are not robust, and it is difficult to say if the stationarity assumptions for the two-factor model should be
rejected. This is the same conclusion as for the crude oil price. The reason for the inconclusive result may be that
the time period in the analysis is too short. We find no evidence of autocorrelation in the long-term natural gas price
residuals. This is according to the two-factor assumptions.

Results gas model Figure 4 compares the modeled gas price against the time series of the natural gas spot price.
The model fits the time series very well, as the mean absolute deviation between the time series of the spot price and
the modeled gas price is 0.19% of the average gas spot price. The reason why this value is lower than for the oil price
is mainly because we have included the spot price in the estimation of the natural gas price model. When excluding
the spot price, the accuracy of the model was low when encountering price spikes. We find that the short-term price
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Figure 4: Comparing log values of natural gas spot price, modeled spot price and long-term price denominated in
denominated in log USD per Sm3o.e

on average is close to −λχ/κ even though this was not a specified restriction in our gas model. This is in accordance
with the risk-neutral two-factor model assumptions, where the short-term deviations are expected to have a mean of
−λχ/κ .

The two-factor model results are given in Table 4. The results from the model developed in this paper are compared

Table 4: Comparing natural gas model with futures data found in Cartea and Williams (2008)

Parameter Description Cartea and Williams estimate Gas model
κ Short-term mean reversion rate 10.18 7.0

σχ Short-term volatility 1.38 0.5
λχ Short-term risk premium 1.29 0.12
µ∗

ξ
Equilibrium drift rate 0.15 -0.04

σξ Equilibrium volatility 0.24 0.24
ρξ χ Correlation in increments -0.33 -0.05

to the futures data given in Cartea and Williams (2008). The data set in Cartea and Williams (2008) use data from
IPE Natural Gas Futures from Aug 2003 - Jan 2006. Our parameters seem reasonable compared to the estimates from
Cartea and Williams (2008). Their values are estimated for the European gas market, and one would expect to see
some differences. They have also removed seasonality in their model. This will also cause some deviation from our
results. A difference is that we found the short-term volatility and the correlation in increments to be lower. Both mod-
els have high short-term mean-reversion rates, suggesting that the price reverts quickly to a short-term mean value.
This is explained by price spikes in natural gas, which last for a short period before reverting back to a more normal
level. As in the estimates from Cartea and Williams (2008), we have a negative correlation in increments, but it is
almost zero. This means that for this gas market, increments in the short-term price and increments in the equilibrium
level seem to be almost uncorrelated with each other.

The results given in Cartea and Williams (2008) are estimated using the London-based IPE futures. That our results
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Table 5: Correlation matrix for two-factor components in natural gas and oil. (∗) indicates a 10% significance level,
(∗∗) a 5% level and (∗∗∗) a 1% level against a two-tailed test.

Short-run gas Long-run gas Short-run oil Long-run oil
Short-run gas 1.00 −0.06∗ 0.14∗∗∗ 0.05
Long-run gas −0.06∗ 1.00 0.11∗∗ 0.21∗∗∗

Short-run oil 0.14∗∗∗ 0.11∗∗ 1.00 −0.12∗∗

Long-run oil 0.05 0.21∗∗∗ −0.12∗∗ 1.00

are fairly close to their estimates, can be an indication that the behavior of the two gas markets is similar. We assume
that our estimates are satisfactory to apply in the case studies from the North Sea.

3.1.5 Estimating oil and natural gas correlation Finally, we need to determine how the oil and natural gas time
series are correlated. Villar and Joutz (2006) found that the natural gas price depends on the oil price, and Brown and
Yücel (2008) found the natural gas price to be anchored in a long-term relationship with crude oil prices but with the
short-term dynamics of natural gas prices driven by exogenous factors. After estimating a two-factor model for the
crude oil price and one for the natural gas price, we have a total of four time series. In Table 5, we show the correlation
between the first differences of the time series. We see that the strongest correlation is between the two long-run time
series, and the second strongest between the two short-run time series. In each case, we also have negative correlation
between the short-run and long-run processes for both the oil and the natural gas prices. We note that all correlations
are significant except the correlation between long-run oil price and short-run gas price.

3.2 Reservoir model To determine the effect from the switching decision, the consequences the switch will have
on oil and gas rates need to be estimated as well as the price behavior. Hence, a reservoir model is necessary. There
are many ways of modeling a petroleum reservoir, from simple zero-dimensional tank models, which only model the
reservoir as a scalar to full compositional models that considers the amount of different hydrocarbons and H2S in a
spatial three-dimensional cell grid system. Wallace, Helgesen, and Nystad (1987) argue that simpler models might be
preferable for general studies or for ranking many different project opportunities and that the more complex models
are preferable for finding optimal production patterns in specific fields. For our analysis, we have chosen to use a
tank model in order to keep the analysis transparent. However, the valuation method is possible to implement employ-
ing commercial reservoir simulators, as the only outputs required are production profiles of the different production
modes.

3.2.1 Model specifications To estimate the option value of producing natural gas, the production volumes and the
time of production are required. In this work, a zero-dimensional model based on the models in Wallace et al. (1987)
is modified to include gas injection. The model treats the reservoir as a tank with a uniform fluid and with uniform
properties in the whole reservoir. Thus, it does not account for differences in permeability in different areas or local
differences in pressure caused by the well flow as the areas surrounding the producing wells empty. It is a simple
model that has great computational advantages compared to more complex reservoir models, and it creates the shape
of reservoir production profiles of a wide range of petroleum fields (Lund 1999).
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Table 6: Reservoir Parameters

Pw,0 - Initial reservoir pressure
Pw,t - Reservoir pressure at time t
Pmin - Abandonment pressure
R0 - Initial reservoir volume
Rt - Reservoir volume at time t
qr,t - Maximum reservoir depletion rate at time t
qw - Maximum well rate
qmax - Maximum capacity, or plateau production
qramp−up,t - Maximum production during field development
Nt - Number of wells producing at time t

The reservoir pressure and volume are related as follows:

Pw,t = Pw,0 −
R0 −Rt

R0
∗ (Pw,0 −Pmin) . . . . . . . . . . . . . . . . . . . . . . . . . . . (6)

The reservoir pressure provides the maximum well flow, which decays exponentially with time with continuous pro-
duction if there are no other constraints on the well flow. The maximum well rate is based on the capacity of the wells
installed.

qr,t = Nt ∗qw ∗
Pw,t −Pmin

Pw,0 −Pmin
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7)

Together, equations (6) and (7) become the simple equation

qr,t = Nt ∗qw ∗ Rt

R0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8)

This is the maximum production from the field given the pressure in the reservoir. It is rarely optimal to construct the
production unit so that it can produce at the maximum rate, qr,t , because this requires high investment costs. When
the platform maximum processing capacity is lower than the potential production from the wells installed at the field,
the production profile will have a flat region where the production is equal to the platform maximum capacity. This
level is called the plateau production. The optimal plateau level is mainly a function of investment cost, production
and required rate of return, since it is a trade-off between investment cost and the ability to get the petroleum quickly
out of the ground. There might also be technical reasons to limit the capacity. We have included a ramp-up period
of three years, which is similar to the case found in Robinson (2009). During this ramp-up period, we have assumed
that the production grows linearly to the capacity maximum over a two year period. The reason for including such a
ramp-up period is related to well drilling. It will not be possible to drill all wells at the same time, and connecting the
streams to the platform will also require some time. The actual production is the minimum of qr,t , qmax and qramp−up,t .

3.2.2 Oil and gas production When modeling production of both oil and gas, an important assumption is the ratio
between the two fluids in the production. This will be influenced by a large number of factors, where both individual
well placement and flow will be important. In a zero-dimensional model, we are not able to capture these effects
and, thus, have to make simplifying assumptions. We assume that the composition of the well flow is the same as the
reservoir composition, so that:
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Figure 5: Historical Oseberg oil and gas production

qo =
Vo

Vo +Vg
∗q (9)

qg =
Vg

Vo +Vg
∗q (10)

Vo and Vg are denominated in Sm3o.e. qo and qg represents the flow of oil and gas, respectively, denominated in Sm3o.e.

per year.

3.2.3 The effects of gas production Another complex question related to the joint production of oil and gas is the
interactions between the two fluid regions. In the case of the Troll field, the gas stabilizes the oil region so the oil does
not move upwards into the gas domain. This makes it possible to extract the oil. Producing the gas too early or too fast
can cause large amounts of oil to become impossible to extract4. This is one reason to re-inject the gas in the beginning
of the field’s lifetime. Another reason to inject gas is to push the oil towards the wells. The effect of gas injection is
dependent on the reservoir properties of each field, and placement of injecting and producing wells. We have assumed
that the oil production drops to zero when the gas is produced to capture the effect of reduced oil production. This
might be a fair approximation if the oil layer is thin, where many wells can move below the oil-water contact if this
shifts slightly upwards. In fields where gas is mostly used for moving the oil towards the wells this might be a poor
approximation, and more complex reservoir models will be necessary. In Figure 5, the production data from the field
Oseberg is shown. Gas production was started in 2000, fourteen years after the field started producing oil. The oil
production does not drop as quickly as we have modeled it to do, suggesting that in order to get realistic results a more
complex reservoir model must be used. For initial analysis and to identify key parameters in the ROV, the proposed
model should be sufficient, however.

4Norwegian Petroleum Directorate, Petroleum resources on the Norwegian Continental Shelf, 2009, http://www.npd.no/en/
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3.2.4 Uncertainty in production Production volumes are uncertain, and they remain uncertain during the entire field
lifetime. There are several elements contributing to this uncertainty. One of them is that the operator bases his/her
predictions and actions on imperfect information about the reservoir. As the field is producing, some of this uncer-
tainty will be resolved. Another important source of uncertainty is the development of technology (Haugen 1996).
The development of new technologies can cause jumps in the extractable reserves, where the effect, cost, and timing
of these innovations are uncertain.

Lund (1999) considers the uncertainty related to varying well capacity. The well capacities depend on a number of
factors including the location of the water/oil and oil/gas contact and the permeability and rock-fractures near the well.
These change over time and can be difficult to predict. Lund (1999) models the well capacity as a simple stochastic
function where the well can either have a high or a low oil rate. Each well capacity will be highly random, but with a
large number of wells the process resembles a mean-reverting stochastic process. The variance of the field production
will be very dependent on the number of wells connected to the field. McCardle and Smith (1998) take a different
approach by modeling the decline rate as a geometric Brownian motion process. This might be appropriate when the
field is in decline, but it does not take into account the effect of the production capacity limit and it does not clarify
which fundamental property that varies. Salomao and Grell (2001) estimate probability functions for the oil volume
and recovery factor in order to obtain the distribution of the recoverable oil. They provide numerical probabilities for
their test case, where the uncertainty in recoverable volume is 10% of the mean. If we assume that the process follows
an arithmetic Brownian motion process, then this leads to annual volatility of 2.2 % for a twenty-year lifetime. We use
the probability distribution from Salomao and Grell (2001) and assume that the recoverable resources vary according
to equation (11). We have assumed that the expected increase in reserves is zero. This leads to similar results as the
model by McCardle and Smith (1998) but includes the possibility of plateau production. To include the possibility of
future technological advances, one can include a growth term in the reserve function. We have chosen not to do this
due to the difficulty of assessing the expected growth in reservoir producible reserves.

dRt = σdZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (11)

3.3 Least-Squares Monte Carlo Simulation An important decision is the choice of valuation procedure. When
analytical solutions are not possible due to option complexity, numerical techniques can provide an answer. There
are several numerical methods that can be used to value American options. Of these, the most common are the finite
differences approach, lattice-based methods, and simulation methods. Geske and Shastri (1985) compare the binomial
model and a finite differences valuation of American calls and puts. They find that the binomial model is more intuitive
and easy to implement, while the finite differences method is more efficient. They conclude that a binomial approach
might be best for researchers evaluating relatively few options, and the finite differences model might be more suitable
for practitioners evaluating a large number of options. The binomial lattice method is developed by Cox, Ross, and
Rubinstein (1979). An issue with lattice-based methods is the size of the lattices. Due to the exponential increase
in size with the number of stochastic processes, they become computationally expensive to solve for more than one
stochastic element (Stentoft 2004a). This is especially an issue in real options valuation that often depends on several
stochastic factors.

Simulation procedures based on Monte Carlo simulations provide an alternative to the lattice-based methods. These
methods have the advantage of not growing significantly in size and computational demand when increasing the
number of stochastic elements compared to alternative methods. They are also considered to be flexible, easy to im-
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plement and modify (Boyle, Broadie, and Glasserman 1997). One issue with the Monte Carlo method is that many
simulation-paths may be required to obtain robust results, especially in complex problems. Boyle et al. (1997) list
several techniques to reduce variance, where the most common are antithetic draws and the control variate method. In
pricing American options using Monte Carlo simulation, the main challenge is to analyze the conditional expectation
and the value of early exercise. One of the more popular approaches is presented in Longstaff and Schwartz (2001),
and is known as Least-Squares Monte Carlo (LSM) simulation. The paper proposes a least-squares regression on a
set of basis functions to estimate the continuation value, including only in-the-money paths in the regression. The
convergence properties of the LSM method have been examined, and it is found that the algorithm converges to the
true price5. Moreno and Navas (2003) studied the robustness of the LSM to the number and choice of basis functions.
They found that for simple American options, the method produces similar valuation results with different choices of
basis functions, but that robustness is not guarantied when applied to more complex options. Stentoft (2004b) shows
that the LSM algorithm is more efficient than finite differences and the binomial model when considering options on
multiple assets, and that simple monomials are preferable to Laguerre polynomials when choosing basis functions.
Cortazar, Gravet, and Urzua (2008) have extended the approach to cover multi-factor risk models more suitable to
long-term commodity real options.

The LSM algorithm starts at the last possible exercise time, T , by calculating the exercise value, Vn,T = max(S−K,0).
The option is exercised if and only if the estimated value of exercising is positive, which provides input into
the continuation value regression in the previous period. The value of keeping the option alive is calculated by
approximating the continuation value, Fn,T−1, by Fn,T−1 = aT−1 ∗Xn,T−1, where X is the set of basis functions and at

represent the regression coefficients from Equations 14. The basis function coefficients are found solving the following
least squares problem:

~Xt = [X1
n,t ,X

2
n,t , ..,X

j
n,t ] (12)

~Yt+1 = ~Vn,t+1 (13)

at = (~Xt
T ∗~Xt)

−1~Xt
T ~Yt+1 (14)

By only including the realizations where the option exercise is positive in the regression, the accuracy of the algorithm
is increased significantly (Longstaff and Schwartz 2001). The value in each node, Vn,t , is the largest of the exercise
value and the discounted continuation value, se Equation 16. A higher exercise value will trigger early exercise in that
node for all t less than T.

Fn,t = at ∗Xn,t (15)

Vn,t = max(Fn,t ∗ er f ∗∆T ,Sn,t −K) (16)

3.4 Risk-neutral pricing Determining an asset’s price can be done by assessing the risk and return profile of the
asset, and estimating how much investors are willing to pay to own it. The capital asset pricing model (CAPM) de-
veloped by Sharpe (1964) and Lintner (1965) is a well-known example of this class of models. They argue that since
individual risk can be hedged by investing in other companies and industries there will be a risk premium only for

5See, for example, Clement, Lamberton, and Protter (2002) and Stentoft (2004a).
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the systematic risk, i.e. related to the asset’s correlation with the market. This model is widely used, but it has a
poor empirical track record (Fama and French 2003). Risk-neutral pricing is based on a different principle and avoids
having to estimate investors preference towards risk and reward. It is based on the assumption of no arbitrage and
prices derivatives by replicating their payoff using other traded securities. Since both the derivative and the portfolio
have the same payoff in all states, their prices need to be the same to avoid arbitrage. This treats risk in a consistent
manner compared to market prices and avoid biases that can occur otherwise (Laughton, Guerrero, and Lessard 2008).
The pricing formula for European options developed by Black and Scholes (1973) is based on this principle, and so is
the contingent claims approach as presented by Dixit and Pindyck (1994) for pricing real options.

In our case, the market for crude oil is a well-developed and global market. This allows us to use risk-neutral pricing
by treating the oil production as a portfolio of future oil sales. A similar argument is made for the natural gas price
risk. The markets for natural gas are to a high degree regional, however, and the price behavior might be different in
the different markets. Furthermore, according to Juris (1998), there have been few liquid and mature spot markets for
natural gas, and the only well-developed financial gas market is located in the United States. Due to this shortcoming,
we have used natural gas price data from Henry Hub, USA, to obtain risk-neutral parameters for the gas price model.
The reservoir risk is difficult to price in a risk-neutral framework as there is no traded asset that has the exact risk
profile of an individual petroleum reservoir. To price the reservoir risk, we use an argument similar to the CAPM
argument based on the assumption that the reserve risk is not correlated with the market. Thus, including reserve risk
in the valuation does not change the risk premium of the project.

3.5 Outline of the model The model solves the optimal timing problem of when to stop gas injection and start
producing natural gas. There can be significant costs related to switching, e.g., if gas processing equipment or pipe
lines need to be built. Once gas production is started, we assume that decision is irreversible. These elements make
the decision to switch a ROV candidate. The decision to switch is modeled as the option to buy a derivative worth the
risk-neutral expected income from future gas production less the expected income from the lost oil production and the
investment cost.

V (S, t0) = maxE [(St −K)∗ e−r f ∗∆T∗(t−t0),0] . . . . . . . . . . . . . . . . . . . . . . . (17)

Vt denotes the option value of switching, St the NPV from switching, and K the investment needed to switch. K is in
options terminology also known as the strike price. We see from equation (17), that the operator will only switch if it
is profitable at that time. He/she must also take into account that the decision to switch is irreversible. In equation (17)
V (S) is written as a conditional expectation that is a function of the observed S, the stochastic behavior of S and time.
In our models the cost of switching is assumed to be deterministic and not time dependent. This is a simplification as
the cost of pipelines are highly dependent on steel prices and laying costs that both are uncertain.

St =
i=T

∑
i=t

(Fg,t,i ∗E(Pg,t,i)−Fo,t,i ∗E(Po,t,i))∗ e−r f ∗∆T∗(i−n) . . . . . . . . . . . . . . . . . . (18)

T denotes the last period. Fg,t,i and Fo,t,i denotes the forward price at time t of gas and oil delivered at time i, E(Pg,t,i)

and E(Po,t,i) the expected production at time t of oil and gas in time i and e−r f ∗∆T∗(i−n) is the risk-neutral discount
factor with continuous compounding. K represents the investment needed to switch production. The present value of
switching production, S, is the difference in value between oil and gas production based on the knowledge at that time.
In each time-step, a forward curve is observed, which combined with the expectation of the oil and gas production
generates a risk-neutral expectation of the value from the oil and gas production. This allows us to discount the
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cash-flows with a risk-free rate of return. The option value is dependent on the stochastic processes that the reservoir
production and petroleum prices follow, as these determine the form of the forward curves and the expected production.
Hence, the choice of price model and the description of the stochastic behavior impacts the option price. We also
compare the results from the ROV to a static net present value (NPV) maximization. The optimal NPV is found by
switching at the point giving the highest value:

NPV (S0) = maxE [(St −K)∗ e−r f ∗∆T∗t ,0] . . . . . . . . . . . . . . . . . . . . . . . . (19)

The difference between the NPV approach as implemented in equation (19) and the ROV in equation (17) is that the
NPV is based on the expected value seen from t=0, while the ROV uses updated conditional expectations at each time
step that take into account the development of prices and reservoir conditions. Updating the conditional expectations
will for example lead to a earlier switch decision if gas prices are higher than expected and oil prices lower than ex-
pected, and vice versa. This is most likely a more accurate description of the decision process of the operator than the
static NPV and will, thus, lead to a more accurate valuation of the switching option.

We have implemented the ROV model using the LSM method using monomial polynomials as recommended by
Stentoft (2004b). 100 time steps and 100 000 price paths are simulated using antithetic draws, and the continuation
value is regressed on monomials up to the second order and cross terms of the five different stochastic factors. We also
calculate an optimal static NPV as a benchmark for the option value. The optimal static NPV is found by switching at
the time that gives the highest NPV when taking the mean of all simulations.

Long- and short-term oil and gas prices are simulated by Monte Carlo simulations of the two-factor model. We obtain
correlated normally distributed increments using a Cholesky decomposition. When the Cholesky decomposition is
applied to the correlation matrix and multiplied with a vector of uncorrelated samples, a vector with correlated normal
random variables is obtained. The method is described further in Lurie and Goldberg (1998). The simulation is done
by drawing four sets of correlated standard normally distributed increments. From the long- and short-term prices, a
set of forward prices are produced using equation (4) to form a risk-neutral expectation of future oil and gas prices.
The petroleum production is predicted based on the level of production in that node by using equation (11).

4 Case Studies

In this section, we apply the model to data sets based on the fields Norne, Oseberg, and Troll on the Norwegian Con-
tinental Shelf. In the three cases, we have assumed a lifetime of the production unit of twenty years, and an annual
maximum production of one tenth of the initial total reserves. Furthermore, we model the cost of switching to be equal
to the cost of a connecting pipeline, estimated at 200 MUSD. This was the cost of the gas pipeline connecting Norne
in 20016. We estimate an initial long-run oil-price of 60 USD per barrel and an initial long-run gas price of 155 USD
per Sm3o.e.. The short-run prices are assumed to be zero at the start of production. As the lifetime of the field is fixed,
we are not considering operating costs or initial investment costs as these will be incurred regardless of which decision
is made. Hence, both net present values and option values will reflect only the change in income from the switch and
not the overall value of the field.

6Norwegian Petroleum Directorate, Facts 2009 - The Norwegian petroleum sector, 2009

16



When it began production in 1997, the Norne field contained about 110 MSm3o.e.. About 85% of this was oil, the rest
was natural gas and natural gas liquids. Using parameters from Section 2 and 3.1, we obtain an optimal static NPV of
0, indicating that with a NPV approach switching production would not take place. Valuing the possibility to switch
as an option, we obtain a option value of 35.5 MUSD.

Oseberg is a larger field than Norne, containing 490 MSm3o.e. extractable reserves when brought on stream. Of these
75% was oil. In this case the static NPV is still 0, indicating the value of the oil lost still outweighs the value of the
gas. The option value of switching is 1170 MUSD. If we adjust for the size difference between Oseberg and Norne,
we obtain an option value of 225 MUSD. This is significantly higher than the 35 MUSD from the Norne case, and
shows that the relative oil and gas amount is an important parameter.

We also consider the case of Troll. Troll is primarily known for its large gas production, but it also have substan-
tial amounts of oil in the reservoir. In the western oil-producing part of the reservoir much of the produced gas is
re-injected in order to continue the oil production, while gas production is taking place at the Troll I platform. We
simplify by assuming one single production unit. The field initially contained 1600 MSm3o.e., of which around 15%
was oil. Switching to gas-production gives a NPV of 80 billion USD, and an option value of 84 billion USD. We also
note that when treating Troll like a single reservoir the optimal time to switch from a NPV point of view is after 6.5
years.

In Figure 6 we present the development of the NPV for the three fields. Troll is the only field where switching is
profitable in a static NPV framework. The shape of the NPV-curve is fairly flat around the maximum, indicating that
little value is lost if the operator switches at a sub-optimal time. This indicate that simpler, albeit sub-optimal, valu-
ation methods might be a viable alternative. The decision to change production at Oseberg have a significant option
value, even though the NPV-approach advices not to switch at any time. Hence, a ROV approach might be warranted
when considering this issue in fields where the switch is not very valuable at current prices. Figure 6 also display the
standard deviation. The future value of switching is uncertain, supporting the adoption of a ROV approach as new
information can have an impact on the optimal timing.

4.1 Sensitivity analysis Many of the parameters in the model are uncertain, and in order to investigate which
parameters that have a significant impact on the option value and the NPV we perform a sensitivity analysis. We
consider a model field with 200 MSm3o.e. in reserves, and of which 50% is oil and 50% is gas. The NPV-development
of the model field is shown in Figure 7.

4.1.1 Initial long-term prices An important parameter in our study is the initial oil and gas long-term prices. Since
both the oil and gas long-term price is modeled as a Brownian motion, the initial long-term price will have a large
impact on both the NPV and the option value. Figure 8a shows the development of the real option value and the
optimal static NPV when changing the initial long-term oil price. The option behaves like a put with respect to the oil
price, and having the option to switch can be seen as insurance against falling oil prices. We observe that the value of
switching is larger at all times than the optimal static rule. From this we conclude that arranging to adjust development
plans when facing changing prices is a better alternative than the best static policy found when starting extraction. The
long-term gas price is also expected to have a significant impact on the value of switching. In Figure 8b the NPV and
option value is shown with varying initial gas price. The option acts as a call with respect to the gas price, increasing
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(a) Norne (b) Oseberg

(c) Troll

Figure 6: Value of switching when varying the time of switching while considering the cost of switching, the value
from the gain in gas production and the lost income from the forfeited oil
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Figure 7: NPV development of the decision to switch considering the model field

in value as the gas price rise.

(a) Initial oil price (b) Initial gas price

Figure 8: Value sensitivity to initial long-term prices

4.1.2 Investment cost In the base case the investment cost taken into account is the cost of the pipeline. This is a
valid approximation, given that the production unit already has gas processing equipment and the platform has not
already been connected to a gas grid. The unit will need to separate the gas from the oil when re-injecting the gas, so
the gas processing equipment will in most cases be built before starting production. The gas pipe line might be built as
the platform starts producing, leading to a very low switching cost. In any case the cost of connecting the field will be
very dependent on the distance to existing infrastructure. We have investigated the effect of the investment cost on the
option value and static NPV. As expected, the NPV decreases linearly with the added switching cost. The option value
does not have a linear decrease, and is less sensitive to the switching cost. This implies that it is worthwhile to consider
the possibility of extracting natural gas from fields currently too far from existing infrastructure, since increased gas
prices, new infrastructure in surrounding areas or falling steel prices can make switching attractive.
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Figure 9: Value sensitivity to investment cost

4.1.3 Long-term volatility An important characteristic of price models like the geometric Brownian motion and the
Ornstein-Uhlenbeck process is that the expected value of the price is not a function of the variance. In the two-factor
model by Schwartz and Smith (2000) the expected value of the logarithm of the long-term price is ξ +µt, and will not
vary with changing volatility. The real long-term price will however be affected by the volatility. This can be explained
by Ito’s lemma in equation (20). The long-term price can be written as eξ and ξ follows dξ = (µ−λ )dt+σdZ∗ where
dZ∗ is increments of a standard Brownian motion. Ito’s lemma gives us:

deξ =
δeξ

δξ
∗dξ +

1
2

δ 2eξ

(δξ )2 ∗ (dξ )2 +
δeξ

δ t
∗dt . . . . . . . . . . . . . . . . . . . . . . (20)

deξ = eξ ((µ +
1
2

σ
2
ξ
)dt +σξ dZ∗) . . . . . . . . . . . . . . . . . . . . . . . . . . . (21)

As the volatility of the log-price increases, the expected increase with time of the long-term price will increase with
a factor of 1

2 σ . This is the reason for the negative impact on the NPV from the increased volatility in the log-price of
oil, and the positive impact from the gas volatility seen in Figure 10.

4.1.4 Short-term volatility Option values are known to increase with volatility, but this is not necessarily true for
the short-term volatility when considering long-term decisions. It will be difficult to take advantage of positive short-
term price shocks, as it will quickly revert back to normal levels. The sensitivity to short-term price volatiltiy is
seen in Figure 11. As illustrated, the sensitivity of both the option value and for the NPV to the short-term price
volatility parameter is very low. An increase in the oil price volatility has a slight tendency to decrease the value,
and similarly, an increase in the gas price volatility tend to increase value. This is explained by a similar argument as
in Section 4.1.3. We have calculated the increment in the short-term price, and we note that increased σχ causes an
increase in the mean-reversion level of short-term price. Unlike the increase in the long-term drift, the mean-reversion
level does not compound and the effect from the increased volatility should thus be smaller. This also explain the
slight negative slope from an increase in the short-term volatility of oil in Figure 10a, and the slight positive slope in
Figure 10b.

deχ = eχ((−κχ −λ +
1
2

σ
2
χ)dt +σχ dZ∗) . . . . . . . . . . . . . . . . . . . . . . . . (22)
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(a) Oil (b) Gas

Figure 10: Value sensitivity to long-term price volatility

(a) Oil (b) Gas

Figure 11: Value sensitivity to short-term price volatility

4.1.5 Short-term mean-reversion speed The mean-reversion speed is expected to have an impact on the option value.
A slower mean-reversion speed should increase the volatility, as short-term shocks diminish more slowly. This should
in turn increase the option price. Figure 12 shows that when the gas mean-reversion speed becomes very low, the
option value increases. The short-term volatility is much higher for the gas price compared to the oil price, and hence
the effect from the lower mean reversion speed is greater in the gas price case. However, in the relevant area around to
the modeled parameters of oil and gas at 0.8 and 7.0 the sensitivity is very low. Slight changes in the mean-reversion
speed over time should thus not make an impact on the switch-decision.

4.1.6 Short-term risk premium In the estimation procedure in Section 3.1 estimating the short-term risk premium
proved to be challenging and important, as it determined the mean level of the short-term price. It is interesting to see
how a mistake in the short-term risk premium influence the option value, since there is some uncertainty around the
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(a) Oil (b) Gas

Figure 12: Value sensitivity to short-term mean-reversion

true value of the parameter. An increase in short-term risk-premium will reduce the mean level of the short term price,
explained by equation (22). This explains why an increase in the short-term risk premium of oil (gas) has a positive
(negative) impact on the value of switching. Figure 13 show the option value and NPV as a function of the short-term
risk premium of oil and gas. The value is more sensitive to the risk premium of oil than that of gas, attributable to the
lower mean-reversion speed of oil. The log of the short-term mean price revert to −λ

κ
, causing the fast-reverting short-

term gas price to be less sensitive to the short-term risk premium. The short-term risk premium also seem to affect
the NPV more than it affects the option value in both cases. Decreasing oil prices make the decision to produce the
gas more attractive. The reduced uncertainty concerning whether the gas can be produced profitably should reduce the
difference between the two valuation methods. Similarly, as the gas price decrease the uncertainty increase, amplifying
the difference between the two approaches.

4.1.7 Sensitivity with respect to oil-percentage The amount of oil initially in the reservoir is likely to have a large
impact on the decision to switch. For a low oil-percentage, we expect the switch to be more valuable and to occur
earlier. This is confirmed in Figure 14, with a highly valuable switch when the oil-percentage is low. The value of the
switch is very sensitive to the oil content in the field. We also note that the option to switch has value even in cases
where the NPV of switching is zero. The advantage of the ROV-approach is higher in fields with a low gas content,
when the NPV of switching is close or equal to zero and the ROV-approach still has a value greater than zero.

4.1.8 Reservoir risk As illustrated in Figure 15 the reservoir-risk seem to have little effect on the option value. The
reservoir risk is small compared to other sources of risk, and the small effect on the option value indicate that reservoir
risk could be left out of the formulation. If reservoir-risk can be disregarded, several benefits can be realized. First,
leaving out reservoir risk let us simulate only one reservoir-simulation compared to 100 000 simulations needed in a
Monte Carlo simulation. The run-time can be significantly reduced by this as the reservoir model is one of the most
time-consuming parts of the algorithm. Second, as fewer simulations are needed, more complex and more realistic
simulation models can be utilized.
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(a) Oil (b) Gas

Figure 13: Value sensitivity to short-term risk premimum

Figure 14: Value sensitivity to reservoir oil-content ratio

5 Conclusion

In this paper, we investigate the flexibility related to the option to switch from oil production to gas production in a
petroleum reservoir containing both hydrocarbons. We find that option valuation is superior to a static NPV approach
for such real options and that taking into account the development of prices and reservoir behavior is important for
optimal management of a petroleum field. The main source of risk that influence the switch value is found to be the
long-term oil and gas prices. The short-term component of the price model seem to have little effect on the switch
decision. This can be explained by the fact that the decision to switch is a long-term decision, and short-term changes
will not affect the decision to a large degree. A simpler one-factor long-term price model might thus be a sufficient
alternative when considering this class of strategic decisions. Reservoir uncertainty as formulated in this paper have a
minor impact on the option value, and could be left out of the formulation.

For further work, we recommend incorporating a more realistic reservoir model. The reservoir model used in this
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Figure 15: Value sensitivity to reservoir risk

paper is a simple model that captures the main features of petroleum production profiles, but it does not capture the
complex interactions related to joint oil and gas production. Uncertainty in the development of the well flow is shown
to have little impact, and the production can be modeled as deterministic. Another interesting addition would be to
include a stochastic investment cost, which will likely be important in areas where large infrastructure investments are
needed.
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