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1 Introduction and Literature Review

In this paper we study the effects of operational characteristics of a power plant on optimal

dispatch decisions for a monopolist. In the relevant literature, we don’t see a theoretical model

showing the effects of operational characteristics of the generators on capacity withholding decisions.

The first aim of this paper is to give a mathematical model to show those operational characteristics

and uncertainty result in economic withholding. Therefore we’ll be able to identify effects of these

operational characteristics on the market price. These operational characteristics include: total

maximum production capacity, minimum operation level, start-up cost and shut-down cost. Firms

in the industry adjust their production or take start-up/shut-down decisions for their power plants

according to realization of industry-wide exogenous demand shock.

Strategic actions in the electricity industry has been long lasting focus of researchers and policy

makers alike. In general, studies of strategic bidding and capacity withholding behaviors are focused

on the determination of the shortcomings of current market designs. Mainly focused on California

electricity market crisis in 2001, an important number of studies including Wolfram (1998), Harvey

and Hogan (2001), Joskow and Kahn (2002), Borenstein, Bushnell and Wolak (2002) and Wolak

(2003) were published to understand what went wrong during the crisis and how we can overcome

those problems in the future.

Some of the previous studies focus on the capacity withholding behavior in the electricity market.

As Twomey, Green, Neuhoff and Newberry (2005): there are two types of withholding- economic

withholding where output is reduced because it is bid into the market above competitive prices, and

physical withholding, where output is not bid into the market at all. Hence in the case of physical

withholding, market supply curve shifts to the left and total maximum market supply decreases by

the amount of capacity withheld. On the other hand, in the case of economic withholding, market

supply curve (partially) shifts upwards and total maximum market supply is unchanged.

Focusing on the economic withholding, Harvey and Hogan (2001) point out FERC’s economic

withholding criterion as ”during periods of high demand and high market prices, all generation

capacity whose incremental costs do not exceed the market price would be either producing energy

or supplying operating reserves”. They further discuss the effects of start-up and minimum load

costs by saying: ”conclusions regarding the exercise of market power cannot be drawn based on a
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comparison of prices and incremental costs of off-line units”. As a result, they indicate that even

if price levels are above marginal cost of production, a generator might not be dispatched because

of the existence of start-up costs. This is simply because, marginal costs don’t reflect the total

incremental costs that are incurred by the firm to start the production.

Similarly Brennan (2003), on the construction of competitive supply curve, points out: ”prices

will have to exceed not just average variable costs, but produce enough revenue to cover start-up

and shut-down costs before a generator will go online”. He also mentions the demand uncertainty

faced by generators must also be taken into account.

In the relevant literature, including Harvey&Hogan (2001), we don’t see a theoretical model

showing that operational characteristics of the generators will result in economic withholding.

Hence, the first aim of this paper is to give a mathematical model to show that operational char-

acteristics indeed result in economic withholding. Furthermore, by including demand uncertainty

into the model, we find the thresholds where generators dispatch electricity(or economically with-

hold capacity). This way, we argue that uncertainty is also a reason for economic withholding.

As suggested in the Møllgaard&Nielsen(2004) we use real options analysis to determine optimal

dispatch decisions of generators facing start up and shut down costs under uncertainty.

At this point, it would be good to have a look at the literature where valuation and optimal

operation of generation technologies were studied using real options methods. Gardner and Zhuang

(2000) study a short-term and discrete-time real options model for power plant valuation under

some operational constraints, including start-up costs and minimum generation level. By using

New England power pool data they calculate that operating constraints, specifically, minimum

generation levels can have a significant effect on power plant valuation.

Deng and Oren (2003) use a real options based valuation for power plants incorporating start-up

and shut-down costs. They also use price and cost uncertainties in their model. They conclude

that the start-up costs reduce the ”option value” of a power plant. Furthermore, they show that,

under the mean-reversion models for prices, ignoring the start-up cost alone can explain a sizeable

portion of the overstated capacity value of a power plant.

Thompson, Davison and Rasmussen (2003) also study valuation and optimal operation of hy-

droelectric and thermal power generators. For thermal power plants they focus on variable start-up

costs and minimum generating levels. As mentioned in Thompson and Rasmussen (2003), related
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literature on valuation and optimal operation of generation technologies, it is common to have

price taking firms in the market. Furthermore, relevant literature also focus on the ownership of a

single generation technology. In contrast, we look into a monopolist having two different genera-

tion technologies facing start up, shut down costs and minimum operating levels as the operational

characteristics of the generators.

On the irreversibility of investments, Dixit&Pindyck (1994 p.249): ”Investment is partially or

totally irreversible when some or all of its costs are sunk.” Pindyck (2008) also discusses sunk

costs as: ”... a prospective sunk cost is quite relevant for the firms decisions, which is why sunk

costs play an important role in antitrust analysis. A firm might find it uneconomical to enter a

market, for example, if entry involves a large prospective sunk cost”. In our analysis, by taking

start up and shut-down costs as ”prospective sunk costs”, we use an optimal switching decisions

under uncertainty model (Dixit&Pindyck, Chapter 7).1

The rest of the paper is organized as follows: In section 2, we give the formal model and initial

derivations. In section 3, we adopt the model to the corresponding social planner’s problem to

set a benchmark to distinguish the effects of market power. In section 4, we give an example

with a specific inverse demand function. In section 5, we give a discussion on economic capacity

withholding.

2 The model

As mentioned in the previous section, we use a continuous time ”optimal switching decisions

under uncertainty model” to show the effects of start-up and shut down costs (alongside minimum

operating levels and uncertainty) on the optimal operation of the generators. We are not concerned

with either initial investment problem for the existing generators or investment in new generators.

A main property of our model is having a hypothetical monopolist using two different generation

technologies. We made this assumption/simplification because in the electricity industries, own-

ership of multiple generation technologies is not uncommon. One can also refer this situation as

having electricity generation portfolio.2

1Harvey and Hogan 2001, also identify start up costs as sunk costs in real time.
2Another reason we have two generation technologies is if one of the generators temporarily shut downs, the other

generator will still be operating. Therefore, there won’t be blackouts when one of the generators shut downs.
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In our model, we will combine Dixit&Pindyck(Chapter 7)’s optimal switching model with

Hagspiel, Huisman and Kort (2010)’s flexible production under uncertainty model. In this pa-

per, each generator will be able to have flexible production capabilities and optimal switching will

mean utilizing one of the generators or switching on the other to utilize both of them. In other

words, switching on the inactive generator doesn’t mean shutting down the other.

2.1 Assumptions and Setup

The industry consists of a monopolist producing electricity. The monopolist have two types of

electricity generation technologies in its disposal. For simplification, we assume that the monopolist

only have one baseload(B) and one peaker(P ) generation unit. Each generation unit is characterized

by (Ki, Ii, ci, qi) for i = B,P . Where each generation unit has initial capacity Ki, start-up cost Ii

and constant marginal cost of production ci.3 In addition, qi shows the minimum possible operation

level of the generator i. Therefore, at each instant in time, production level qi of the active generator

i satisfies: 0 < qi ≤ qi(t) ≤ Ki.4 Furthermore, the peaker have shut-down cost EP .

Generators have infinite lifetime and they are differentiated such that IB > IP and cB < cP .

This assumption is in line with literature where peaker generators have higher marginal cost and

lower start-up cost. We further assume that there are no transmission costs and generators can

adjust their output without a cost.

Our initial problem is to solve for the optimal operation of generation technologies. In general,

firms operate their baseload generators almost throughout the year and start peaker generators

when price is high enough. For simplification, we’ll assume that the monopolist always keeps

baseload generator operational5 and minimum operation level for the baseload generator (qB) is

equal to zero. So, our problem boils down to optimal operation of the peaker generator.

At time t, the monopolist produces Q(t) = qB(t) + qP (t) units of output. Since generators are

capacity constrained, we’ll have: KB + KP ≥ Q(t) ≥ 0 for all t. Price of electricity fluctuates

3In reality, start-up costs may depend on the capacity, technology and the total off-time of the generator. But
since we have predetermined capacities and technologies, we’ll also treat start-up costs as constant.

4qi is purely a technological constraint and could be as small as possible.
5This assumption can be justified by very high start up costs for baseload generators. If the firm shut downs

the baseload generator, it’ll have to incur a very high start up cost to restart the generator. Furthermore, very low
marginal costs would also be in favor of this assumption.
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stochastically according to:

P (t) = D[X(t), Q(t)] (1)

where D : Θ x R+ → R is (twice) continuously differentiable inverse demand function with

∂D/∂X > 0 and ∂D/∂Q < 0. X(t) is the demand shock following a Geometric Brownian Mo-

tion(GBM ) on the filtered probability space (Ω,F , P ):

dX(t) = αX(t)dt + σX(t)dz (2)

Since, we are concerned with the optimal operation of the peaker, we’ll start to investigate the

state of economy when the baseload is producing at full capacity (i.e, qB(t) = KB) and the peaker

is idle. Therefore, producing an additional(or more precisely, producing at least qP ) unit of output

means making the peaker operational. In that case, the monopolist will incur the start-up cost IP

and start using the peaker. Afterwards, it can shut-down operation by incurring the shut-down

cost EP . In other words, the monopolist switches from operating only one of the generators to

operating both of them. We’ll be using a similar approach to Dixit&Pindyck(Chapter 7) where

we’ll determine thresholds XL and XH . The monopolist will start operating the peaker when

X(t) > XH and shut down the operation when X(t) < XL. (Therefore, we’ll also be able to

determine corresponding price thresholds for given demand functions.)

Proposition 1 The monopolist is not going to start the peaker unless the baseload is operating at

full capacity.

Proof. This proposition is a straightforward result of the assumption cB < cP . Because of this

assumption, when baseload generator is not operating at full capacity, producing an additional unit

is more profitable using the baseload than the peaker.

In general, state of the industry is characterized by [X(t), Q(t),ω] where ω = 1 when the peaker

is operational, and ω = 0 when the peaker is idle. So, in state [X(t), Q(t), 0] the monopolist decides

whether to start the operation of the peaker or not. In state [X(t), Q(t), 1], the monopolist decides

whether to shut down the operation of the peaker or not.

Let us denote V 0[X(t), q∗B(t)] as the expected net present value of the total investment when

the peaker generator is in idle state with future optimal strategies. Similarly, V 1[X(t), q∗B(t), q∗P (t)]
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is the expected net present value of the total investment when the peaker generator is in active

state with future optimal strategies. Using standard real options techniques, V 0[X(t), q∗B(t)] will

be the solution to Ordinary Differential Equation(ODE ):

1
2
σ2X(t)2V 0

XX + αX(t)V 0
X − rV 0 +ΠB [X(t), q∗B(t)] = 0 (3)

Similarly, , V 1[X(t), Q(t)] will be the solution to ODE :

1
2
σ2X(t)2V 1

XX + αX(t)V 1
X − rV 1 +ΠB+P [X(t), q∗B(t), q∗P (t)] = 0 (4)

Profit function of the peaker consists of three parts. First, peaker is losing money but keeps

operating at minimum level. Second, the peaker is making money and operating above minimum

level. Third, peaker is operating at full capacity and it would even be profitable to produce more

than that level. A thorough discussion on this issue can be found in the following section.

Therefore we’ll have,

V 0 =






A1Xβ1 + Z[X] if X < X̂

B1Xβ1 + B2Xβ2 + Y [X] if X̂ ≤ X < XH

V 1 − IP if X ≥ XH

Similarly,

V 1 =






V 0 − EP if X < XL

C1Xβ1 + C2Xβ2 + W [X] if X > X ≥ XL

D1Xβ1 + D2Xβ2 + U [X] if X > X ≥ X

F2Xβ2 + T [X] if X ≥ X

EP > 0 is the (constant) cost of shutting down the peaker, X̂ is the level where baseload

operates at the maximum level, X is the level where peaker operates at the minimum level, qP ,

and X is the level where peaker operates at the maximum level KP . Furthermore T [X], U [X],

W [X] and Z[X] are the solutions to the corresponding non-homogeneous ODE ’s. By using value

matching and smooth-pasting conditions we can identify the unknowns A1, B1, B2, C1, C2, D1, D2,

F2, XL and XH . Values X̂ , X and X will be calculated by the profit maximization with respect
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to the given inverse demand function.

Using following value matching and smooth-pasting conditions we find corresponding constants

and thresholds:

A1X̂
β1 + Z[X̂] = B1X̂

β1 + B2X̂
β2 + Y [X̂ ] (5)

β1A1X̂
β1−1 + Z bX = β1B1X̂

β1−1 + β2B2X̂
β2−1 + Y bX (6)

B1X
β1
H + B2X

β2
H + Y [XH ] = D1X

β1
H + D2X

β2
H + U [XH ] (7)

β1B1X
β1−1
H + β2B2X

β2−1
H + YXH = β1D1X

β1−1
H + β2D2X

β2−1
H + UXH (8)

B1X
β1
L + B2X

β2
L + Z[XL] − EP = C1X

β1
L + C2X

β2
L + W [XL] (9)

β1B1X
β1−1
L + β2B2X

β2−1
L + ZXL = β1B1X

β1−1
L + β2B2X

β2−1
L + UXL (10)

C1X
β1 + C2X

β2 + W [X] = D1X
β1 + D2X

β2 + U [X] (11)

β1C1X
β1−1 + β2C2X

β2−1 + WX = β1D1X
β1−1 + β2D2X

β2−1 + UX (12)

D1X
β1 + D2X

β2 + U [X ] = F2X
β2 + T [X ] (13)

β1D1X
β1−1 + β2D2X

β2−1 + TX = β2D2X
β2−1 + ZX (14)

where β1 > 1 and β2 < 0 are roots of the quadratic equation:

1
2
σ2β2 +

(
α− 1

2
σ2

)
β − r = 0. (15)

2.2 Optimal Production and Characterization of The Profit Functions

The monopolist’s objective is to maximize the total discounted value of its’ investment. Because

of this objective, the monopolist will have to decide when to start&shut-down production and,

afterwards, maximize its’ profits whenever the generators are online. Therefore, we’ll have two

possible types of profit functions/flows. First, the profits when only the baseload generator is active,

and second when both of the generators are active. According to this objective, the monopolist

will face start-up and shut-down costs as well as the actual cost of production.
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2.2.1 Baseload-Only Generation

For baseload-only generation, when ω = 0, we have the profit function as:

ΠB [X(t), q∗B(t)] = supqB{D[X(t), qB(t)]qB(t) − cBqB(t)} (16)

s.t. 0 ≤ qB ≤ KB .

If the industry is at a state where ω = 0 then, by setup, q∗B(t) = KB as long as we have X ≥ X̂ .

And if we have X ≤ X̂ then q∗B(t) ≤ KB .

Note: Observe that X ≥ X̂. This result is an application of Proposition 1. If it is profitable

to operate the peaker at or above minimum level, the baseload must be already operating at full

capacity.

2.2.2 Baseload and Peaker Generation

According to the monopolist’s objective, the peaker generator will be started whenever it yields

positive additional profits compared to the baseload-only production case. In this case, the total

profit function consists of two parts: baseload profits and peaker profits.

ΠB+P [X(t), q∗B(t), q∗P (t)] = supqB(t),qP (t){ΠB [X(t), qB(t), qP (t)] +ΠP [X(t), qB(t), qP (t)]} (17)

Note: When peaker is operational(i.e, qP (t) > 0) this will negatively affect the profits coming from

baseload generation since the price will fall when output increases(∂D/∂Q < 0).

Knowing that baseload generator will be producing at full capacity whenever the peaker is

acive, a detailed formula for ΠP [X(t), qP (t)] is:

ΠB+P [X(t), qB(t), qP (t)] = D[X(t), qP (t) + KB ]qP (t) − cP qP (t) + D[X(t), qP (t) + KB ]KB − cBKB

(18)

Therefore, when both of the generators are online, the optimal generation for the peaker will
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be:

q∗P (t) =






0 if X < XL

qP if X > X ≥ XL

qP ≤ qP (t) < KP if X > X ≥ X

KP if X ≥ X

(19)

3 Social Planning and Competitive Equilibrium

In this section, we’ll investigate the social planner’s problem. Our aim is to use the solution

to the social planner’s problem as a benchmark. This way, we’ll be able to identify the effects of

market power for the corresponding monopolist case compared to the benchmark.

In the social planner’s problem, we’ll need to maximize the discounted total expected consumer

surplus. In that regard, we’ll use a similar approach to Dixit&Pindyck(Chapter 9). So, we’ll need

to find the total social surplus, total consumer surplus and total cost for a given production level.

Total social surplus for a given production level, Q(t):

U [X(t), Q(t)] =
∫ Q(t)

0
D[X(t), Q(t)]dq. (20)

Total consumer surplus for a given production level, Q(t):

Sω[X(t), Q(t)] = maxQ {U [X(t), Q(t)] − Cω[Q(t)]} (21)

as before, superscript ω = 0, 1 shows whether both of the generators are online. In this setup

instantaneous consumer surplus at time t, Sω[X(t), Q(t)], will be analogous to the profit flow of a

firm. Therefore, using standard real options analysis as before, we can derive W 0[X(t), q∗B(t)] as

the expected net present value of the total investment when the peaker generator is in idle state

with future optimal strategies. Similarly, W 1[X(t), q∗B(t), q∗P (t)] is the expected net present value

of the total investment when the peaker generator is in active state with future optimal strategies.

Using standard real options techniques, W ω[X(t), q∗B(t)] will be the solution to Ordinary Differential

Equation(ODE ):

1
2
σ2X(t)2W ω

XX + αX(t)W ω
X − rW ω + Sω[X(t), Q(t)] = 0 for ω = 0, 1 (22)
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Therefore, as before, we’ll have,

W 0 =






A1Xβ1 + Z[X] if X < X̂

B1Xβ1 + B2Xβ2 + Y [X] if X̂ ≤ X < XH

W 1 − IP if X ≥ XH

Similarly,

W 1 =






W 0 − EP if X < XL

C1Xβ1 + C2Xβ2 + W [X] if X > X ≥ XL

D1Xβ1 + D2Xβ2 + U [X] if X > X ≥ X

F2Xβ2 + T [X] if X ≥ X

As it can be shown, main difference of social planner’s problem will entail different solutions for

corresponding non-homogeneous ODE’s. We’ll show the exact difference, given a specific example,

in the following section.

4 A Specific Example

In this specific example, we use a linear inverse demand function satisfying assumptions in

Section 2.

P (t) = X(t) − γQ(t) with γ > 0 (23)

For simplification, let’s assume that qB = 0 and cB = 0, cP ≥ 0.

4.1 Monopolist production

One can verify that for ω = 0, when the peaker is idle, we have (given that the optimal

production level for the monopolist must satisfy 0 ≤ q∗B(t) ≤ KB):

q∗B(t) =
X(t)
2γ

, P (t) =
X(t)

2
and ΠB(t) =

[X(t)]2

4γ
(24)

So,

q∗B(t) =






X(t)
2γ

if X < X̂

KB if X ≥ X̂
(25)
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Therefore, X̂ = 2γKB .

Hence,

ΠB =






[X(t)]2

4γ
if X < 2γKB

(X(t) − γKB)KB − cBKB if X ≥ 2γKB

(26)

Similarly, for the optimal production levels of the peaker when both of the generators are active:

q∗P (t) =






0 if X < XL

qP if X > X ≥ XL

X(t) − cP

2γ
− KB if X > X ≥ X

KP if X ≥ X

(27)

One can verify that X = [2γ(KB + KP ) + cP ] and X = [2γ(KB + qP ) + cP ]. And the total

profits at time t becomes:

ΠB+P =






0 if X < XL

(X(t) − γKB − γqP )(KB + qP ) − cP qP if 2γ(KB + qP ) + cP > X ≥ XL

(X(t) − cP )2

4γ
+ cP KB if 2γ(KB + KP ) + cP > X ≥ 2γ(KB + qP ) + cP

(X(t) − γKB − γKP )(KB + KP ) − cP KP if X ≥ 2γ(KB + KP ) + cP

(28)

Therefore we’ll have,

V 0 =






A1Xβ1 + X2

4γ(r−2α−σ2) if X < 2γKB

B1Xβ1 + B2Xβ2 + KB
r−αX − (cB+γKB)KB

r if 2γKB ≤ X < XH

V 1 − IP if X ≥ XH

Similarly,

V 1 =






B1Xβ1 + B2Xβ2 + KB
r−αX − (cB+γKB)KB

r − EP if X < XL

C1Xβ1 + C2Xβ2 + KB+qP
r−α X − γ(KB+qP )2+cP qP

r if 2γ(KB + qP ) + cP > X ≥ XL

D1Xβ1 + D2Xβ2 + 1
4γ

[
X2

r−2α−σ2 − 2cP
r−αX + c2P

r

]
+ cP KB

r if 2γ(KB + KP ) + cP > X ≥ 2γ(KB + qP ) + cP

F2Xβ2 + KB+KP
r−α X − γ(KB+KP )2+cP KP

r if X ≥ 2γ(KB + KP ) + cP
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Using above value functions and deriving value matching and smooth pasting conditions, we’ll have

a system of 10 equations.

4.2 Social planner’s production

Similarly, when the peaker is idle, social planner’s problem will entail:

q∗B(t) =






X(t)
γ

if X < X̂

KB if X ≥ X̂
(29)

where, X̂ = γKB .

Note: Note that in the social welfare maximization, production is higher for a given demand shock.

Also, the generator reaches to full capacity at a lower demand shock level.

Additionally, when the peaker is active, social planner’s problem will entail:

q∗P (t) =






0 if X < XL

qP if X > X ≥ XL

X(t) − cP

γ
− KB if X > X ≥ X

KP if X ≥ X

(30)

where X = [γ(KB + KP ) + cP ] and X = [γ(KB + qP ) + cP ].

Therefore, value functions will be given by:

W 0 =






A1Xβ1 if X < γKB

B1Xβ1 + B2Xβ2 + KB
r−αX − (cB+γKB)KB

r if γKB ≤ X < XH

W 1 − IP if X ≥ XH

Similarly,

W 1 =






B1Xβ1 + B2Xβ2 + KB
r−αX − (cB+γKB)KB

r − EP if X < XL

C1Xβ1 + C2Xβ2 + KB+qP
r−α X − γ(KB+qP )2+cP qP

r if γ(KB + qP ) + cP > X ≥ XL

D1Xβ1 + D2Xβ2 + cP KB
r if γ(KB + KP ) + cP > X ≥ γ(KB + qP ) + cP

F2Xβ2 + KB+KP
r−α X − γ(KB+KP )2+cP KP

r if X ≥ γ(KB + KP ) + cP
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5 Numerical Results

For the purpose of getting numerical results, we use the derivations in the previous section by

taking: α = 0.01, σ = 0.05, r = 0.05, γ = 0.1, KB = 400, KP = 100, qB = 0, qP = 20, cB = 0,

cP = 38, IP = 1000 and EP = 100.

5.1 Monopolist production

Given above values for the parameters we have, X̂ = 80, X = 122 and X = 138. Therefore,

trigger demand shock level for switching on the peaker is, XH ∈ [122, 138]. Hence, trigger price for

switching on the peaker is, PH ∈ [82, 98]. Similarly, trigger demand shock level for switching off

the peaker is, XL ∈ [80, 122]. Hence, trigger price for switching off the peaker is, PL ∈ [38, 80].6

5.2 Social planner’s production

Given above values for the parameters we have, X̂ = 40, X = 80 and X = 88. Therefore,

trigger demand shock level for switching on the peaker is, XH ∈ [80, 88]. Hence, trigger price for

switching on the peaker is, PH ∈ [40, 48]. Similarly, trigger demand shock level for switching off

the peaker is, XL ∈ [40, 80]. Hence, trigger price for switching on the peaker is, PL ∈ [0, 38].

6 Discussion & Conclusion

In our method above we have showed that, by using real options analysis, the firm(s) will

wait until prices are well above marginal costs to start generation at peaker level. Therefore our

theoretical model supports what Harvey&Hogan (2001) argue on economic withholding.

Looking at the numerical results we can see some interesting and intuitive findings. First,

unsurprisingly, price(or underlying demand shock) trigger for switching on the peaker is higher in

the monopoly case. We can argue that the difference between monopoly and social planner cases,

stems from the existence and exercise of market power in the monopoly case. Second, even in the

benchmark social planner problem, trigger price for starting the generator exceeds the marginal

cost. Therefore, even in social planner’s case, uncertainty and operational constraints have to be

6Here, we use the properties that X ≤ XH ≤ X and bX ≤ XL ≤ X.
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taken into account and the peaker have to be switched on when the market price is above their

marginal cost.
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A Appendix Additional Model Details and Results

A.1 Monopolist production

A1 bXβ1 +
bX2

4γ(r − 2α − σ2)
= B1 bXβ1 + B2 bXβ2 +

KB

r − α
bX − (cB + γKB)KB

r
(31)

β1A1
bXβ1−1 +

2 bX
4γ(r − 2α − σ2)

= β1B1
bXβ1−1 + β2B2

bXβ2−1 +
KB

r − α
(32)

B1Xβ1
H +B2Xβ2

H +
KB

r − α
XH − (cB + γKB)KB

r
= D1Xβ1

H +D2Xβ2
H +

1
4γ

"
X2

H

r − 2α − σ2 − 2cP

r − α
XH +

c2P
r

#
+

cP KB

r

(33)

β1B1Xβ1−1
H + β2B2Xβ2−1

H +
KB

r − α
= β1D1Xβ1−1

H + β2D2Xβ2−1
H +

1
4γ

»
2XH

r − 2α − σ2 − 2cP

r − α

–
(34)

B1Xβ1
L +B2Xβ2

L +
KB

r − α
XL− (cB + γKB)KB

r
−EP = C1Xβ1

L +C2Xβ2
L +

KB + qP

r − α
XL− γ(KB + qP )2 + cP qP

r
(35)

β1B1Xβ1−1
L + β2B2Xβ2−1

L +
2XL

4γ(r − 2α − σ2)
= β1C1Xβ1−1

L + β2C2Xβ2−1
L +

KB + qP

r − α
(36)

C1Xβ1+C2X
β2+

KB + qP

r − α
X−γ(KB + qP )2 + cP qP

r
= D1Xβ1+D2Xβ2+

1
4γ

"
X2

r − 2α − σ2 − 2cP

r − α
X +

c2P
r

#
+

cP KB

r

(37)

β1C1Xβ1−1 + β2C2Xβ2−1 +
KB + qP

r − α
= β1D1Xβ1−1 + β2D2Xβ2−1 +

1
4γ

»
2X

r − 2α − σ2 − 2cP

r − α

–
(38)

D1X
β1 + D2X

β2 +
1
4γ

"
X

2

r − 2α − σ2 − 2cP

r − α
X +

c2P
r

#
+

cP KB

r
= F2X

β2 +
KB + KP

r − α
X − γ(KB + KP )2 + cP KP

r

(39)

β1D1X
β1−1

+ β2D2X
β2−1

+
1
4γ

»
2X

r − 2α − σ2 − 2cP

r − α

–
= β2F2X

β2−1
+

KB + KP

r − α
(40)

where β1 > 1, β2 < 0, bX = 2γKB , X = [2γ(KB + KP ) + cP ] and X = [2γ(KB + qP ) + cP ].

A.2 Social planner’s production

A1
bXβ1 = B1

bXβ1 + B2
bXβ2 +

KB

r − α
bX − (cB + γKB)KB

r
(41)

β1A1
bXβ1−1 = β1B1

bXβ1−1 + β2B2
bXβ2−1 +

KB

r − α
(42)

B1Xβ1
H + B2Xβ2

H +
KB

r − α
XH − (cB + γKB)KB

r
= D1Xβ1

H + D2Xβ2
H +

cP KB

r
(43)
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β1B1Xβ1−1
H + β2B2Xβ2−1

H +
KB

r − α
= β1D1Xβ1−1

H + β2D2Xβ2−1
H (44)

B1Xβ1
L +B2Xβ2

L +
KB

r − α
XL− (cB + γKB)KB

r
−EP = C1Xβ1

L +C2Xβ2
L +

KB + qP

r − α
XL− γ(KB + qP )2 + cP qP

r
(45)

β1B1Xβ1−1
L + β2B2Xβ2−1

L +
KB

r − α
= β1C1Xβ1−1

L + β2C2Xβ2−1
L +

KB + qP

r − α
(46)

C1Xβ1 + C2Xβ2 +
KB + qP

r − α
X − γ(KB + qP )2 + cP qP

r
= D1Xβ1 + D2Xβ2 +

cP KB

r
(47)

β1C1Xβ1−1 + β2C2Xβ2−1 +
KB + qP

r − α
= β1D1Xβ1−1 + β2D2Xβ2−1 (48)

D1X
β1 + D2X

β2 +
cP KB

r
= F2X

β2 +
KB + KP

r − α
X − γ(KB + KP )2 + cP KP

r
(49)

β1D1X
β1−1

+ β2D2X
β2−1

= β2F2X
β2−1

+
KB + KP

r − α
(50)

where β1 > 1, β2 < 0, bX = γKB , X = [γ(KB + KP ) + cP ] and X = [γ(KB + qP ) + cP ].
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