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Abstract

This paper studies the optimal investment strategy of a firm having the managerial freedom to acquire

both flexible or dedicated production capacity. Flexible Capacity is more expensive but allows the firm

to switch costlessly between products and handle changes in relative volumes among products in a given

product mix. Dedicated capacities restrict to manufacture one specific product but for lower acquisition

cost. Specifically, I model the investment decision of a monopolistic firm selling two products in a market

characterized by price-dependent and uncertain demand, in a continuous time setting. The paper takes

a real option approach to consider optimal capacity investment decisions under uncertainty. Besides the

timing of the investment, the firm can choose the optimal capacity level and is free to undergo investment

in flexible or dedicated capacity. The sensitivity of the firm’s optimal capacity investment considering

flexible and dedicated capacity to key problem components is analyzed. The main focus is on the effect

of demand variability - a key driver of flexibility - as well as substitutability and product profitability

effects.

I find that if uncertainty goes up the firm invests later in higher capacity. Flexibility especially

pays off when uncertainty is high, substitutability low, and profit levels between the two products are

substantially different. In the flexible case, under high demand the firm just produces the most profitable

product, if demand is low the firm produces both products to make total market demand bigger. In the

dedicated case the firm invests in both capacities only if the substitutability rate is low and profitability

∗I would like to thank my supervisors Prof. Peter M. Kort and Dr. Kuno J.M. Huisman for many interesting and fruitful

discussions about this topic. Furthermore I would like to thank participants of the Economics Workshops Seminar at Tilburg

University for helpful discussions and comments.
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of both products high enough. Otherwise, it restricts investment to one dedicated capacity for the more

profitable product.

1 Introduction

Flexibility in manufacturing operations is becoming increasingly more important to industrial firms. Increas-

ing market demand volatility, internationalization of markets and competition, as well as shorter product life

cycles pose new challenges for companies. Since the investment cost in flexible capacity mostly exceeds the

investment cost of dedicated capacity, firms need to know how much this flexibility is worth for them. This

work will focus on the effect of demand volatility on firm’s investment decisions and the value of product

flexibility, which is widely cited as one of the most (if not the most) strategically important flexibility types

(see for example Goyal and Netessine (2006), Jordan and Graves (1995)).

The automotive industry is a good example for an industry where manufacturers’ decisions on investing

in production capacity and on the optimal level of flexibility are critical. On one hand, expanding already

installed capacity is very expensive (Andreou (1990)) and therefore, the installed capacity must be sufficient

for the whole life cycle of the product and easy adaptable to new product lines. On the other hand, the

profitability of the products are threatened by low utilization of capacity as well as under-capacity. Japanese

carmarkers very early implemented the concept of flexibility, which constituted them a significant advantage

compared to their US and European competitors that traditionally built plants that were dedicated to

producing a single car model. Tardy, also the European and American car industry started to activate in

terms of flexibility. The BMW group for example recently advertised that a new production factory in Leipzig

added new production capacity with a high level of flexibility1. Despite this recent approach of European

and US car manufacturers to strive for more manufacturing flexibility, Japanese companies still lead in this

aspect, which is according to Goyal et al. (2006) “an advantage that is at least partially responsible for the

increasing market share of the Japanese carmakers”.

The investment in and management of flexible capacity has received significant attention in the operations

literature. While early research in this field has focused on scenarios with exogenously given prices and

static time models, recent papers extend this approach including responsive pricing and multi-stage decision

problems. These multi-stage decision models are built up in the structure of: first invest in capacity, then

receive additional information and finally exploit capacity optimally according to revealed information. While

this structure shows a characteristic of real option models, the models are restricted to one-period models

1The BMW groups states that the production program includes not just the full range of cars of the BMW 1

Series (three-door, Coup and Convertible) but also the BMW X1. At the Volkswagen plant in Zwickau (Ger-

many) Passat and Golf run off the same assembly line. Additional to the flexibility of the assembly line also the

supply to the production line is fully flexible. This allows to change between the models and different interior

equipment without any adaption costs neither time lags. See http://www.bmwgroup.com/d/nav/index.html?http://

www.bmwgroup.com/d/00wwwbmwgroupcom/produktion/produktionsnetzwerk/produktionsstandorte/produktionsstandorte.shtml
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not taking into account timing. This work applies a continuous time setting as done in the real options

literature which allows to gain insight in the optimal timing of the firm’s investment decision. The theory

of real options explored flexibility mainly as it is related to the timing structure of capacity acquisition and

did not deal with technologies that exhibit flexibility per se. This work presents a model which takes into

account both aspects: flexibility in timing and investment in flexible capacity.

Specifically, this paper studies the investment decision of a monopolistic firm having the managerial

freedom to acquire flexible or dedicated manufacturing capacity, in a continuous time setting. Flexible

capacity allows the firm to manufacture all of its products with the same production facility while dedicated

capacity restricts to one product. Since product flexibility has not been clearly define in the literature, for

the purpose of this study product flexibility is defined as a system’s ability to switch costlessly between

products, and handle changes in relative volumes among products. Products differ in substitutability and

profitability in the market. The firm wants to protect efficiently against uncertainty in demand for all of its

products. It can choose the timing as well as the quantity of the investment and is free to invest in flexible

or dedicated production capacity, choosing the one that leads to the highest expected profit.

I analyze the results with a specific focus on four cases of product combinations. The four cases differ

regarding profitability and substitutability rate between the products: (1) The first case considers a product

combination of two almost similarly profitable products with a low substitutability rate. The car models

Passat and Golf of Volkswagen are an example for such a product combination. In the Volkswagen plant

in Mosel these two car models are produced at an assembly line that is fully flexible in switching between

the two models without adaption time lags nor costs. (2) National-brand manufacturers that additional to

their brand product also produce private label products, are an example for firms that produce two good

substitutable products for the same market while producing one product (their own manufacturer brand) is

more profitable for them than manufacturing the second product for a private label retailer. This describes

an example for the second case of a product combination analyzed with highly substitutable goods that

substantially differ in profit. Danone, the famous French food-products corporation for example, produces a

variation of their popular cream cheese dessert “Fruchtzwerge” also for the private label product “Desira” of

Germany’s biggest discounter Aldi2. (3) The third case depicts the scenario of a firm producing two products

for the same market that are almost equally profitable and highly substitutable. For brand manufacturers

with less successful national brands, so called B and C brands, the production of private labels can be almost

as profitable as producing their own brand product. Concorp group, a Dutch confectionery company for

example states publicly that they do produce for dual branding3. (4) The fourth case considers a firm selling

2See on p. 39 in ’Aldi - Welche Marke Steckt Dahinter? 100 Aldi-Top-Artikel und Ihre Prominenten Hersteller.’ Muenchen:

Suedwest Verlag by Schneider, Martina.
3Concorp group states on its website that they “...build brands and deliver private label concepts with added

value in all segments of selected national and international confectionery markets.” Concorp group produces

candy foam and boiled sweets for three different brand names in its production site in Waddinxveen. See

http //www.concorp.nl/international/pdf/concorp international overview.pdf
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two products with a low substitutability rate and a substantial difference in profitability, in the same market.

For an example think of a technology company producing a newly established touch screen mobile and a

less successful obsolescent model in the same production facility.

This work focuses on the effect of demand variability - a key driver of flexibility - together with substi-

tutability and product profitability effects. I show that in the flexible case, under high demand the firm

just produces the most profitable product, if demand is low the firm produces both products to make total

demand bigger. Comparing the optimal flexible investment strategies for the previously mentioned cases

the firm selling two products with a low substitutability rate and high profitability difference invests in

significantly higher capacity. Capacity size is growing more than proportionally with the uncertainty level.

This confirms the intuition that a firm producing two almost equally profitable products with a low sub-

stitutability rate profits the most by the down size potential to increase the market size by producing both

products. In the dedicated case the firm invests in both capacities if substitutability rate is low and prof-

itability of both products high enough. In all other cases the firm decides to ignore demand for one product

in the market and installs one dedicated capacity for the more profitable product. In this case the firm can

just gain from the downside potential when demand levels are very low and therefore the negative effect of

restriction to produce up to full capacity once it has installed capacity for both products, is dominating.

For both, dedicated and flexible capacity investment, the result holds that the firm invests later in higher

capacity if demand uncertainty increases. A result also obtained for production flexible capacity investment

by Hagspiel et al. (2010) and Dangl (1999).

In order to study the value of flexibility, I consider as a benchmark the situation in which a firm relies

on maximal two dedicated capacities rather than on one flexible capacity. Flexibility especially pays off

when uncertainty is high, substitutability low, and profit levels between the two products are substantially

different. In this case the flexible firm has the possibility to increase its total market demand if demand falls

low by including the production of the less profitable second product. The dedicated firm on the other hand

relinquishes production of one product completely by acquiring just one dedicated capacity for the more

profitable product.

Two streams of literature are relevant to this study: the first considers the issue of product flexibility

from an operations management perspective. The issue of resource flexibility has become a significant

interest in the management science community beginning of the nineties, following the increasing viability

of flexible, computer-controlled manufacturing systems. From the operational management literature this

work is closely related to the relatively recent stream of papers about resource flexibility initiated by work

of Fine and Freud (1989). Fine and Freud derive necessary and sufficient conditions for the acquisition of

flexible capacity that are based on a two-stage convex quadratic program. In the first stage a technology

investment decision is made. After observing demand realization, an optimal production decision is made

at the second stage. Inspired by Fine and Freud, Van Mieghem presents closely related work that disproves

Fine and Freud’s claim that flexible capacity would not provide additional value when product demands
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are perfectly positively correlated. They show that in addition to its adaptability to demand mix changes,

product-flexible technology provides another opportunity for revenue improvement through its ability to

exploit differentials in price (margin) mix. He argues that product flexibility generates an option to produce

and sell more of highly profitable products at the expense of less profitable products and show that this

option can remain valuable even with perfectly positively correlated product demand.

Most closely related to my work are two recently published papers of Chod & Rudi (2005) and Bish &

Wang (2004), who study the resource investment decision of two-product, price setting firm that operates in

a monopolistic setting. Chod & and Rudi look at the effect of demand variability and demand correlation

on the optimal flexible resource investment decision and show that expected profit is increasing in variability

and decreasing in the correlation of normally distributed demand. Bish & Wang’s model is more general than

that one of Chod & and Rudi in allowing the firm to invest in flexible and dedicated resources at the same

time but they do not include cross-price effects. Both previously mentioned papers present two-stage models

that allows them to gain insight in the optimal resource size and allocation but deprives the timing aspect of

investment decisions. Unlike these papers, I focus on an economic environment where uncertainty in demand

of the two products arises from one single market. The investment decision is made facing uncertainty in the

general economic situation. This becomes especially interesting for an industry that just recently witnessed

one of the biggest economic crises in history that affected the whole global market.

Applying a continuous time setting allows me to gain insight in the optimal timing of the firm’s invest-

ment strategy. For evaluating investment decisions that have the following three characteristics: (1) the

investment considered is irreversible, (2) their is uncertainty about future rewards and (3) a leeway about

timing of investment, the theory of real options is used to evaluate such investment decisions. But real

options theory explores flexibility mainly as it related to the timing structure of capacity or information

acquisition or commitment of resources: that means that the firm looses flexibility when it makes an irre-

versible commitment. Most papers do not deal with technologies that exhibit flexibility per se. Now that

more and more firms undergo investment in flexible capacity because it appears for them to be a necessary

tool to hedge against highly volatile demand, it is important to develop these models further with a special

attention to include the ability of flexible capacity. This paper wants to take a crucial step in this direction.

I explicitly consider the use of a flexible (product-) technology.

Though there are a few real option papers that deal with investments in flexible capacity. These papers

consider product flexible capacity by evaluating the option to switch between different products but do not

look at capacity that can handle more products at the same time. Early approaches have been presented by

Kulatilaka (1988) and Triantis and Hodder (1989). Triantis and Hodder evaluate product(-mix) flexibility

based on option principles. Kulatilaka (1988) applies option pricing principles to the same problem using

a stochastic dynamic programming formulation that includes clostly switching between modes of operation.

Andreou (1990) published a more applied study associated with the General Motors Research Laboratories

that focuses on the economic evaluation of product flexibility. He presents a financial model for calculating
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the dollar value of flexible plant capacity for two products under conditions of uncertain market demand.

While these papers do evaluate investment in flexible technology based on option theory, the do not include

the timing decision and capacity choice.

This work was inspired by the increasing interest in development of the real options theory regarding

technological flexibility shown by the operations and production management sector . Bengtsson (2001)

presented a work that relates the real options literature to manufacturing flexibility from an industrial

engineering/production management perspective. He refers to product flexibility as one of the flexibility

types that have not been treated as real options yet. While his work addresses a wide range of manufacturing

flexibility, Bengtsson and Olhager (2002) use real options theory to evaluate one specific type, i.e. product-

mix flexibility, in a real case analysis. Their main focus is on solving for the value of a production system

with multiple products which is applied to real case data, while the timing or capacity size decisions are

not considered. Furthermore, there is an increasing number of real data cases and empirical analysis in this

area. Two recent papers are for example Goyal et al. (2006) or Fleischmann et al. (2006), both focusing on

the automotive industry.

The paper is organized as follows. The next section presents the general model and solves the optimization

problems for the flexible capacity and dedicated capacity case. The optimal investment triggers for size and

time of investment are derived. The first part of Section 3 analyzes the capacity and timing decision for

flexible capacity investment and shows how investment timing and size are affected by demand uncertainty.

The second part concentrates on analyzing investment in dedicated production capacity. Section 4 studies

the optimal investment strategy of a firm having the option to choose between flexible and dedicated capacity

investment and quantifies the value of flexibility. Section 5 concludes.

2 Model

Consider a firm that produces two products, indicated by product A and B. The firm has to decide about

the optimal capacity investment. This involves three decisions: when to invest, the size of the capacity and

in which type of capacity to invest. The firm can invest in maximal two dedicated capacities, each of which

can produce only one product, or in a more expensive, flexible production capacity, which can produce both

products.

The firm is uncertain about future demand where the inverse demand function are assumed to be linear.

The inverse demand functions for the two products are given by

pA(θ, qA, qB) = θ − qA − γqB,

pB(θ, qB, qA) = αθ − qB − γqA,

where the demand intercept θ follows the geometric Brownian motion

dθt = µθtdt+ σθtdWt. (1)
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In this expression µ is a constant representing the trend, σ is the uncertainty parameter and dWt is the

increment of a Wiener process implying that it is independently and normally distributed with mean 0 and

variance dt. I often refer to the uncertainty in demand intercepts simply as “demand uncertainty” in this

paper. γ ∈ (−1, 1) is the product substitutability parameter, and γ > 0 (γ < 0) signifies that the products are

substitutes (complements). Since products made by the same flexible resource tend not to be complements,

most applications are characterized by a nonnegative γ. Therefore, this work will focus on the case of the

products being substitutes. The two products are assumed to be sold in the same market. Product A is the

more profitable product in this market, i.e. α < 1. α ∈ (0, 1) is referred to as the profitability parameter of

product B. Denote production quantity of product A (B) at time time by qt,A (qt,B). From now on I drop

the time subscript whenever there can be no misunderstanding. For simplicity variable production costs are

not considered yet. It follows that the profit flow is defined by

Π(θ) = max
qA,qB

[pAqA + pBqB].

For simplicity, variable cost of production are not included in the model. Total production output, i.e.

q = qA + qB, is restricted to be up to full capacity. This means that the firm utilizes all of its available

resources after investment. The flexible capacity is denoted by KF and the dedicated capacities by KDA
and

KDB
, respectively. The investment cost are sunk and assumed to be linear (for the same assumption see for

example, Fine & Freud (1990), Van Mieghem (1998) or Chod & Rudi (2005)). Let ci denote the unit cost of

investing in resource Ki, i = F,DA, DB, where cDA
, cDB

< cF . After investment the firm always produces

up to full capacity, a constraint also referred to as capacity clearance.

2.1 Flexible Capacity

Consider a firm that has to decide about investment in flexible capacity. Flexible capacity allows it to

produce both products, A and B, on the same production line. It decides about the optimal time to invest

and the optimal capacity size invested in, considering that it has to produce always up to full capacity

after the moment of investment. The optimal output rate for the two products q∗A and q∗B , respectively, is

determined by maximizing the profit flow considering the capacity clearance constraint (qA+ qB = KF ) and

the upper and lower boundaries for each of the two output rates, 0 ≤ qB, qA ≤ KF . This gives

q∗A =







θ(1−α)
4(1−γ) +

KF

2 for θ < 2(1−γ)
(1−α) KF

KF for θ > 2(1−γ)
(1−α) KF

q∗B =







−
θ(1−α)
4(1−γ) +

KF

2 for θ < 2(1−γ)
(1−α) KF

0 for θ > 2(1−γ)
(1−α) KF

where we denote the boundary 2(1−γ)
(1−α) KF as θ̂. For low demand, θ ∈ [0, θ̂), the firm will produce both

products . If demand increases, i.e. θ ∈ [θ̂,∞), the firm will switch to use full capacity KF for production
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of the more profitable product A and suspend production of product B. Expressions (2) and (2) imply that

the profit flow is given by

Π(θ) =







(1−α)2

8(1−γ)θ
2 + (1+α)

2 θKF −
(1+γ)

2 K2
F for θ < 2(1−γ)

(1−α) KF

(θ −KF )KF for θ > 2(1−γ)
(1−α) KF

(2)

In order to find the value of this investment project (V (θ,KF )), the dynamic programming approach is

applied. Then this value function must satisfy the Bellman equation

V (θ,K) = π(θ,K)dt+ E
[

V (θ + dθ,K)e−rdt
]

,

where r is the (constant) discount rate. Applying Ito’s Lemma, substituting and rewriting leads to the

differential equation (see, e.g., Dixit and Pindyck (1994))

1

2
σ2θ2

∂2V

∂θ2
+ µθ

∂V

∂θ
− rV +Π(θ) = 0.

Solving this equation for V (θ,K), considering that we have two different regions, and ruling out bubble

solutions, we get the following value of the project:

V (θ) =







A1θ
β1 + a1θ

2 + a2θKF + a3K
2
F for θ < 2(1−γ)

(1−α) KF

B2θ
β2 + θKF

r−µ
−

K2

F

r
for θ > 2(1−γ)

(1−α) KF

(3)

with a1 = (1−α)2

8(1−γ)(r−2µ−σ2) , a2 = (1+α)
2(r−µ) and a3 = −

(1+γ)
2r . V (θ) must be continuously differentiable across

the boundary θK = 2(1−γ)
(1−α) KF .

Using the fact that V (θ,KF ) must be continuously differentiable across the boundary θK one can derive

the constants A1 and B2:

A1(KF ) = K2−β1

F

1

β2 − β1

[

2(1− γ)

1− α

]

−β1

(1− γ)

[

(2 − β2)

2(r − 2µ− σ2)
−

(1− β2)

(r − µ)
−

β2

2r

]

B2(KF ) = K2−β2

F

1

β2 − β1

[

2(1− γ)

1− α

]

−β2

(1− γ)

[

(2 − β1)

2(r − 2µ− σ2)
−

(1− β1)

r − µ
−

β1

2r

]

Corollary 1 in Appendix A shows that A1 is negative for all parameter values and B2 positive.

The value of the investment project in the region θ < θK consists of four terms where the last three terms

constitute the cash flow generated by the sales. The first term A1 (KF ) θ
β1 , which is negative, corrects for

the fact that in an mathematically optimal case the production quantity of product B would turn negative

for θ > θ̂. Economically this does not make sense and therefore the output quantity is constrained by q∗B ≥ 0.

The absolute value of this term decreases with θ.

In the region θ ≥ θ̂, demand is that large that the firm uses all of its installed capacity to produce the

more profitable product A. This generates a discounted cash flow stream that is reflected in the second and

third term of the value of the investment project associated with this region. The first term, B2 (KF ) θ
β2 ,
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describes the option value that accounts for the additional possibility that in case demand decreases the

company can switch its production back to two products and therefore gains revenue. This option value is

decreasing for large θ.

Knowing the value of the project, V (θ,KF ), one is able to derive the optimal investment strategy. In

general the procedure is as follows. First, the optimal capacity choice K∗

F (θ) is determined for a given level of

θ by setting the marginal value of the project equal to the marginal investment costs cF . Second, one derives

the optimal investment threshold θ∗. For this demand level θ∗ it holds that the firm is indifferent between

investment and waiting with investment. Investment (waiting) is optimal for a θ being larger (lower) than

θ∗.

Investment can take place either in region I or in region II. Investing while θ < θ̂ means that the firm uses

the capacity invested in, to produce both products right after the investment has been undertaken, while

investing in region θ ≥ θ̂ implies that the full capacity level is used to produce only product A

The following proposition provides equations that implicitly determine the threshold θ∗F and the corre-

sponding capacity level K∗

F (θ
∗) in each of the two cases. The optimal investment decision corresponds to

the case that provides the largest expected value of the investment project.

Proposition 1 Concerning the firm’s investment policy there are two possibilities:

1. Given that the firm produces a positive amount of both products right after the investment moment, the

optimal capacity level K∗

F (θ) is implicitly determined by

∂A1

∂KF

θβ1 + a2θ + 2a3K
∗

F (θ)− cF = 0 (4)

In case the obtained K∗(θ) is such that from the resulting production quantity it follows that it is not

an interior solution, the optimal capacity is replaced by the boundary solution

K∗ (θ) = θ
(1− α)

2(1− γ)
. (5)

If the solution of equation (4) is negative, the optimal capacity is set to zero, i.e.

K∗ (θ) = 0. (6)

The investment threshold θ∗ is implicitly determined by

a1(β1 − 2)θ∗2 + a2(β1 − 1)θ∗K∗

F (θ
∗) + β1a3K

∗

F (θ
∗)2 − β1cFK

∗

F (θ
∗) = 0 (7)

2. Given that the firm uses full capacity to produce the more profitable products A right after the investment

moment, the optimal capacity level K∗

F (θ) is implicitly determined by

∂B2

∂KF

θβ2 +
θ

r − µ
−

2

r
K∗

F (θ) − cF = 0. (8)

In case the obtained K∗(θ) does not constitute an interior solution the optimal capacity is replaced by

the boundary solution (5) If the solution of (8) is negative the optimal capacity is set to zero.
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The investment threshold θ∗ is implicitly determined by

B2θ
∗β2(β1 − β2) +

θ∗K∗

F (θ
∗)

r − µ
(β1 − 1)− β1

K∗

F (θ
∗)2

r
− β1cFK

∗

F (θ
∗) = 0 (9)

Out of these two possibilities the firm chooses the one that gives the highest expected value of the project

discounted back to an initial demand intercept level θ0, which is given by
(

θ0
θ∗

F

)β1

V (θ∗F ,K
∗

F (θ
∗

F )) .

2.2 Dedicated Capacity

The difference with the previous section is that the firm has to decide about optimal investment in dedicated

capacities. Dedicated capacity can satisfy only one product. It is assumed that the firm invests at the same

time in both capacity levels, provided that the firm wants to produce both products. The firm has to decide

when to invest and in how much capacity. The firm has the following two investment options: it can invest

in two dedicated production capacities, each of which is restricted to produce one of the two products A and

B, respectively. The second option applies if the production of product B is not profitable enough in this

market. In that case it is optimal for the firm to ignore demand for product B in the market and invest in

just one dedicated production facility for product A. The unit cost of capacity are equal for product A and

product B, i.e. cDA
= cDB

= cD. The firm will choose for option with the highest expected project value.

After investment the firm has to produce up to full capacity forever.

For the latter case the profit of the firm is given by

Π = (θ − qA)qA. (10)

Considering the capacity clearance constraint, qA = KD,A, the profit flow can be rewritten as a function of

dedicated capacity KD,A:

Π = (θ −KD,A)KD,A.

Familiar steps lead to the following value of the investment project:

V (θ,KD,A) =
θKD,A

r − µ
−

K2
D,A

r
.

In case that the firm invests at the same time in two dedicated production facilities, for product A and

product B, respectively, the profit of the firm Π = pAqA + pBqB is maximize w.r.t to the output rates

qA and qB . Considering the capacity clearance constraints for each product respectively, qA = KD,A and

qB = KD,B, implies that the profit flow is given by

Π(θ,KD,A,KD,B) = (θ −KD,A)KD,A + (αθ −KD,B)KD,B − 2γKD,AKD,B.

Familiar steps lead to the following project value

V (θ,KD,A,KD,B) =
θ

r − µ
[KD,A + αKD,B]−

K2
D,A + 2γKD,AKD,B +K2

D,B

r
.

10



The optimal capacity level for every relevant value of θ is derived by maximizing the project value minus

investment cost cD(KD,A+KD,B) for a given demand intercept level θ. In case the obtained KD,i (i = A,B)

is negative, the optimal capacity is replaced by the boundary solution K∗

D,i(θ) = 0. Knowing the optimal

capacity level for all relevant demand levels, the optimal investment threshold θ∗ is derived. The following

proposition provides the expressions for threshold θ∗ and the corresponding capacity level K∗

D(θ∗) in each

of the two cases. The optimal investment decision corresponds to the investment strategy that provides the

largest expected project value for the firm.

Proposition 2 Concerning the firm’s investment policy for dedicated capacity there are two possibilities:

1. Given that it is optimal for the firm to invest in dedicated production capacity for both products the

optimal capacity levels for product A and B, respectively are given by

K∗

D,A(θ) =







0 for θ < θ̂A

θr
2(r−µ)

(1−αγ)
1−γ2 −

cDr
2(1+γ) for θ > θ̂A

K∗

D,B(θ) =







0 for θ < θ̂B

θr
2(r−µ)

(α−γ)
1−γ2 −

cDr
2(1+γ) for θ > θ̂B

where θ̂A = cD(r−µ)(1−γ)
(1−αγ) and θ̂B = cD(r−µ)(1−γ)

(α−γ) . Total optimal dedicated capacity is given by

K∗

D(θ) =



















0 for θ < θ̂A

θr
2(r−µ)

(1−αγ)
1−γ2 −

cDr
2(1+γ) for θ̂A < θ < θ̂B

θ r
2(r−µ)

(1+α)
(1+γ) − cD

r
(1+γ) for θ̂B < θ

(11)

The investment thresholds are given by

θ∗D =
β1cD(r − µ)(1 + γ − 2γ2)

β1(1 + αγ)− 2(1 + (β1 − 1)γ2)
(12)

for region θ̂A < θ < θ̂B and

θ∗D1
= cD

(

β1 − 1

β1 − 2

)[

(1 + α2 − 2αγ)

4(1− γ)(1 + α)(r − µ)

]

+

r

(1 + γ)(r − µ)

√

(β1 − 1)2(1 + α)2 − 2β1(β1 − 2)
1 + α2 − 2αγ

1− γ

θ∗D2
= cD

(

β1 − 1

β1 − 2

)[

(1 + α2 − 2αγ)

4(1− γ)(1 + α)(r − µ)

]

−

r

(1 + γ)(r − µ)

√

(β1 − 1)2(1 + α)2 − 2β1(β1 − 2)
1 + α2 − 2αγ

1− γ

for region θ > θ̂B.

2. Given that it is more profitable for the firm to invest in just one production capacity for product A

ignoring demand for product B, the optimal capacity level for product A is given by

11



K∗

D,A(θ) =
r

2(r − µ)
θ −

r

2
cD. (13)

The investment threshold is determined by

θ∗D =

(

β1

β1 − 2

)

(r −mu)cD.

Out of these choices the firm chooses the one that gives the highest expected value of the project dis-

counted back to an initial demand intercept level θ0, which is given by
(

θ0
θ∗

D

)β1

V (θ∗D,K∗

D(θ∗D)) .

3 Results

This section presents results for investment in flexible and dedicated capacity independently. The optimal

investment strategy of a firm considering both flexible and dedicated capacity, will be analyzed in Section 4.

3.1 Flexible Capacity Investment

As shown in section 3, the flexible firm can either invest in the θ-region I, i.e. θ ∈ [0, 2(1−γ)
1−α

KF ), where the

firm sets an upper bound for output at the moment of investment and uses this capacity to produce both

products right after the moment of investment, or invest in the second θ-region, i.e. θ ∈ [ 2(1−γ)
1−α

KF ,∞).

Investing in region II means that the firm invests in flexible capacity that is used up to full extend for

production of the more profitable product A. Once investment has been made the firm is flexible to adapt

the relative production volumes among products to the changing demand level. Facing low demand it will

make use of the downside potential to produce both products in order to increase total market size. For

high demand levels the firm will use the full available capacity to produce the more profitable product A.

Figure 1 shows an example of two good substitutable products with substitutability parameter γ = 0.8,

assuming a substantial difference in the profitability of the two products. Product B is much less profitable

than product A with a profitability parameter of value α = 0.2. The other parameter values assumed are

µ = 0.02, σ = 0.1, r = 0.1 and cF = 100. Solving equations (4) and (8) the optimal capacity choice for

the two regions is derived. Comparing the expected values of the investment project for the two regions it

can be concluded that it is optimal to invest in the second region at the investment trigger θ∗ = 21.147,

provided that the initial θ-value lies below this θ∗. In particular, the firm invests immediately if the current

value of θ exceeds θ∗, while otherwise it waits with investment until θ becomes equal to θ∗. The optimal

size of acquired capacity is K∗(θ∗) = 8.22. After the investment the firm can adapt the relative production

volume among products according to changing demand to receive the highest possible profit. For this specific

numerical example the firm will continue using full capacity to produce just product A unless demand drops

drastically, i.e. below a θ-bound of θ̂K = 4.11. Since the two products are good substitutes in the market

but producing product B results in significantly less profit for the firm, it is optimal for a wide range of

12
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Figure 1: Case: α = 0.2, γ = 0.8 — Optimal Investment Capacity as a function of demand intercept θ.

Region I constitutes the region where the capacity level for a specific demand realization is used to produce

a relative volume of both products. Region II describes the (K(θ, θ)) area where it is optimal for the firm to

use full capacity for the production of the more profitable product A. (Parameter values: r = 0.1, µ = 0.02,

σ = 0.1 and cF = 100)

demand realization to keep producing just one product, i.e. the more profitable product A, with flexible

capacity. Just for very low demand realizations the firm can gain profit from the downside potential to avoid

overcapacity by increasing total market size including demand for product B.

Choosing a relatively low substitutability parameter (γ = 0.2) but a high profitability for product B

(α = 0.8) increases the value of this downside potential for the firm significantly. In fact, it is optimal for

the firm to invest in capacity at investment threshold θ∗F = 22.669. For this parameter choice the investment

moment lays in region II which means that the firm uses purchased capacity to produce both products at

the moment of investment. Figure 2 (which illustrates this example) shows the optimal capacity choice as a

function demand intercept θ. The figure shows that unlike the previous example, the capacity function K∗(θ)

switches at θ̂S = 9.902 from optimal investment in region II to optimal investment in region I. Compared to

the previous example flexible capacity is very valuable for a firm selling two almost equally profitable products

with a low substitutability rate. The firm purchases significantly higher capacity K∗(θ∗) = 12.94. Figure

3 illustrates the advantage of flexible production capacity for a firm selling two almost equally profitable

products with a low substitutability rate by means of the following numerical example. The upper plot of

Figure 3 shows a simulation of the demand intercept θ with a drift rate of µ = 0.02 and volatility σ = 0.1

for a time period of 10 years, i.e. t ∈ [0, 10]. The firm will invest as soon as the demand intercept hits

the value θ∗F = 22.669 for the first time, which is (for this specific simulation) after 1.6 years. The second

plot (Figure 3) shows the optimal production decision from the moment of investment on. Flexible capacity

allows the firm to adapt the relative production volume of the two products, relatively, in order to obtain the

highest possible profit facing its capacity constraint of K∗

F (θ
∗) = 12.94. For low demand the firm uses full

13
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Figure 2: Case: α = 0.8, γ = 0.2 — Optimal Investment Capacity as a function of demand intercept θ

(Parameter values: r = 0.1, µ = 0.02, σ = 0.1 and cF = 100)

capacity to produce both products. If demand raises above a certain threshold, i.e. when demand intercept

reaches the level θ̂ = 103.52, it is most profitable to suspend production of product B and use full capacity

(i.e. K∗

F (θ
∗) = 12.94) to produce just product A. Being able to adapt relative production volume optimally

across the two products allows the firm to avoid over- as well as under capacity for a wide range of possible

demand intercepts.

Subsequently I analyze the effect of demand variability on the flexible investment decision. Four specific

“extreme” cases that arise from different combinations of product profitability and substitutability are com-

pared: The first case considers a product combination of two almost similar profitable products with low

substitutability rate, indicated as ’Case: H - L’. For the numerical example the parameter values α = 0.9

and γ = 0.1 are chosen. ’Case H - H’ represents a product combination of two highly substitutable and

almost equally profitable products. The numerical parameter values are α = 0.9 and γ = 0.9. The third

case, indicated with ’Case: L - H’, represents the setting of a firm producing two products that are highly

substitutable but one product is significantly less profitable than the other (parameter values α = 0.1 and

γ = 09). And last but not least the case of two products with low substitutability rate (α = 0.1) and

significant difference in profitability (γ = 0.1) between the products is considered. This case is referred to

as ’Case: L - L’.

The magnitude of the impact of demand variability on the optimal capacity size and investment threshold

are illustrated in Figure 4. This figure is based on the values r = 0.1, µ = 0.02 and cF = 100 which forms the

base case for numerical illustrations throughout the rest of the paper. It confirms the widely accepted result

that higher uncertainty increases capacity size but delays investment. When uncertainty goes up, a higher

demand level is needed before it is optimal to invest. This effect is partly caused by the fact that capacity

increases with uncertainty, and partly due to the real options result that in a more uncertain economic

environment the firm has a higher incentive to wait for more information before undertaking the investment

14
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(see Dixit and Pindyck (1994)).

Figure 4 shows that the capacity size is higher for the firm selling two products with a low substitutability

rate and high profitability difference. The difference in capacity size between ’Case: L- H’ and the other

cases gets more significant for higher uncertainty. First the difference in capacity of the 4 cases is not so large

while profit is already 50% higher (see results in Table3). While difference in profit remains approximately

constant for increasing the difference in capacity is growing more than proportionally. This confirms my

intuition that the high capacity size result is not just driven by the general argument of ’investing later in

more capacity’ but strengthened by the high value of product flexible capacity for firm producing two almost

equally profitable products with a low substitutability rate which increases the willingness to invest in a high

capacity level. See Panel A of Figure 3 that shows the high demand range in which the firm will benefit

from product-flexible capacity by producing both products for a wide demand range (θ ∈ [0, θ̂))and suspend

production of product B only facing extremely high demand.

Table 1 shows the effect of profitability on the optimal investment strategy keeping the substitutability

rate constant and low (γ = 0.1). Observe that the optimal capacity size and the expected profit of the

project are increasing in profitability of product B. The non monotonic effect on the investment threshold is

striking. For a graphical illustration of the non-monotonic behavior of investment timing see Figure 5. This

result is driven by two contrary effects: on one hand the firm invests later in more capacity while on the

other hand higher value of the project would lead the firm to invest earlier. The capacity effect is stronger

for low profitability parameters while the effect of higher project value dominates for cases of two almost

equally profitable products.

Figure 5 shows the optimal investment thresholds for the situation when the substitutability rate of the

two products is low and the profitability of product B changes from low (0.1) to high (0.9). The optimal

investment threshold is increasing in α for low value of α and decreasing for high values of α. This effect is

stronger for environment with high demand volatility. Capacity size and expected profit are both increasing

in α.

3.2 Dedicated Capacity Investment

Deriving the optimal investment thresholds for dedicated capacity, it is surprising that for most cases the

firm will decide to purchase just one dedicated capacity for the more profitable product and fully ignores

demand for product B. Table 2 shows the optimal investment thresholds for a specific parameter choice,

comparing the previously introduced four cases. For the case of almost equally profitable products with a

low substitutability rate the firm purchases significantly more dedicated capacity for product A than for

the (slightly) less profitable product B. For all other cases the firm would commit itself at the moment of

investment to have just one capacity for product A at its disposal forever. To built intuition for this result,

note that in the three latter cases demand would have to fall very low so that the firm can actually gain from

the possibility to make the total market size bigger with producing the second (less profitable) product B.
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Figure 4: Optimal Investment Strategy comparing the following Cases: ’Case H - L’: α = 0.1 and

γ = 0.9. ’Case H - H’: α = 0.9 and γ = 0.9. ’Case L - L’: α = 0.1 and γ = 0.1. ’Case L - H’:α = 0.1

and γ = 0.9. Panel A: Optimal Investment Threshold θ∗ as a function of demand volatility σ; Panel B:

Optimal Capacities invested in K∗(θ∗), as a function of volatility σ. (Parameter values: r = 0.1, µ = 0.02

and cF = 100)
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Table 1: Shows the optimal investment strategy for changing profitability parameter α and fixed substi-

tutability parameter γ = 0.1. The expected profit is discounted back to an initial demand value θ0 = 10 for

reasons of comparison. The left Panel shows the results for the case of uncertainty σ = 0.1, the right one for

σ = 0.2. (Parameter Values: r = 0.1, µ = 0.02 and cF = 100)

α γ θF K∗

F region ΠF θF K∗

F region ΠF

0.1 0.1 21.1933 8.28394 region II 60.7534 80.5503 51.1684 region I 204.144

0.2 0.1 21.2484 8.36382 region II 60.8294 81.9064 54.132 region I 208.054

0.3 0.1 21.4191 8.61164 region I 61.0404 83.2303 57.6358 region I 213.719

0.4 0.1 21.8966 9.35158 region I 61.746 84.2842 61.4848 region I 221.666

0.5 0.1 22.5608 10.6113 region I 63.6416 84.8279 65.4131 region I 232.462

0.6 0.1 23.058 12.0578 region I 67.4197 84.6654 69.1242 region I 246.706

0.7 0.1 23.1514 13.3313 region I 73.5772 83.6784 72.3382 region I 265.036

0.8 0.1 22.8103 14.2512 region I 82.5011 81.8363 74.8276 region I 288.148

0.9 0.1 22.1084 14.7773 region I 94.5956 79.1807 76.4309 region I 316.854
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Figure 5: Optimal Investment Threshold as a function of profitability parameter α (Parameter values:

γ = 0.1, r = 0.1, µ = 0.02 and cF = 100)
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Table 2: Investment Strategies of Dedicated Capacity investment for the previously introduced cases (de-

scription see figure 4). (Parameter values: L = 0.1, H = 0.9, r = 0.1, µ = 0.02 and cD = 100)

CASE: α = H, γ = L

σ θ∗ K∗

D,A(θ
∗) K∗

D,B(θ
∗) K∗

D(θ∗)

0.05 16.0587 4.6802 3.56501 8.24522

0.1 22.1392 8.17342 6.63597 14.8094

0.15 35.5252 15.8636 13.3966 29.2602

0.2 79.4644 41.1065 35.5881 76.6946

CASE: α = H, γ = H; Case: α = L, γ = L; and CASE: α = L, γ = H

σ θ∗ K∗

D,A(θ
∗)

0.05 15.3644 4.60274

0.1 21.1472 8.21699

0.15 33.8987 16.1867

0.2 75.7771 42.3607

For most demand intercept realizations it can gain highest profit satisfying just the demand for product A.

The threat of possible overcapacity of product B dominates the value of the downside potential to increase

total market demand by producing both products for low demand realizations.

Only the firm that faces a product combination of two similarly profitable products with a low substi-

tutability rate can profit from this downside potential at a wide range of demand.

4 Value of Flexibility

One of the main objectives of this paper is to quantify the value of flexible capacity. In order to derive the

flexibility value, the situation in which a firm relies on maximal two dedicated capacities rather than on

one flexible capacity is considered as a benchmark. The two optimal investment strategies for flexible and

dedicated capacity investment are compared assuming that the unit investment cost of flexible and dedicated

capacity are equally high, i.e. cD = cF =: c. The value of flexibility is therefore given by the difference in

expected profit of the flexible and dedicated capacity investment strategies.

In order to compare two investment strategies that have different optimal moments of investment, one

needs to compare the discounted expected project values. Assuming the optimal investment thresholds

derived in Section 2, the expression of the value of flexibility is equal to:

Vf =

(

θ0
θ∗F

)β1

V (θ∗F ,K
∗

F (θ
∗

F ))−

(

θ0
θ∗D

)β1

V (θ∗D,K∗

D(θ
∗

D)) , (14)
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where the expected project values are discounted back to the beginning of the considered time period with

the initial demand intercept θ0.

Table ?? shows the results of the value of flexibility (Vf ) for the numerical example presented in the

previous section. The discounted expected project values, denoted by Πi for i = D,F are discounted back

to an initial demand level of θ0 = 10. Furthermore, the relation of expected profit of dedicated investment

to flexible investment, i.e. ΠD

ΠF
is given.

Table ?? shows that the value of flexibility is most significant if uncertainty is high, substitutability low,

and profit levels between the two products are substantially different (see Case α = L, γ = L). Assuming

demand uncertainty of σ = 0.2, substitutability parameter γ equal to 0.1 and low profitability of product B

compared to product A, the value of flexibility is substantially higher than for the other cases. Flexibility

especially pays off in this case because it allows the firm to avoid over-capacity by increasing the market size

including the less profitable product in production for cases of low demand, while a dedicated firm restricts

itself in the optimal case to just one capacity for the more profitable product. As the optimal investment

capacity for the flexible firm is significantly higher (K∗

F = 51.17) than for the dedicated firm (K∗

D = 42.36),

the flexible firm is additionally less threatened by under-capacity in high demand periods.

5 Conclusions

This paper considers the timing and capacity choice of a firm facing stochastic demand. Two types of capacity

investment are distinguished. The flexible capacity investment allows the firm to produce both products with

the same production facility, while investment in dedicated capacity investment restricts the firm to produce

just one product by purchased dedicated production facility. The firm makes three decisions: choice of

investment time, choice of capacity, and type of capacity investment, i.e. flexible or dedicated. Concerning

the timing and capacity decision I develop implicit solutions, which are investigated numerically. I show

that for both flexible and dedicated capacity investment, the firm invests later in higher capacity if demand

uncertainty increases. Flexibility especially pays off when uncertainty is high, substitutability low, and profit

levels between the two products are substantially different. In the flexible case, under high demand the firm

just produces the most profitable product, if demand is low the firm produces both products to increase

total demand. In the dedicated case the firm invests in both capacities if the substitutability rate is low and

profitability of both products high enough. Otherwise the firm will ignore demand for the less profitable

product in the market and install just one dedicated capacity.

Numerous extensions of this model deserve further analysis. This includes analyzing different cost struc-

tures, asymmetric demand curves, and different demand functions. While in this paper I consider that the

firm can investment at one moment in time in either flexible or dedicated capacity, I am currently in the

process of extending this model to allow for multiple investments. Specifically, this means that the firm is

free to either undergo investment in one step at a single freely chosen point of time (dedicated and flexible
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Table 3: Optimal Profits of flexible and dedicated investment, respectively, discounted back to the initial

demand level θ0 = 10 comparing four cases (description of these cases can be found in caption of Figure

4). ΠF denotes the discounted expected profit of the flexible capacity investment and ΠD the discounted

expected profit for dedicated investment. Expression Vf denotes the Value of Flexibility . (Parameter

values: L = 0.1, H = 0.9, r = 0.1, µ = 0.02 and c = 100)

CASE: α = H, γ = L

σ θ∗F K∗

F region ΠF θ∗D K∗

D,A K∗

D,B K∗

D ΠD Vf
ΠD

ΠF

0.05 16.0461 8.23173 I 52.6722 16.0587 4.6802 3.56501 8.24522 52.5854 0.0868 99.8352%

0.1 22.1084 14.7773 I 94.5956 22.1392 8.17342 6.63597 14.8094 94.3769 0.2187 99.7688%

0.15 35.4425 29.178 I 172.058 35.5252 15.8636 13.3966 29.2602 171.493 0.565 99.6716%

0.2 79.1807 76.4309 I 316.854 79.4644 41.1065 35.5881 76.6946 315.413 1.441 99.5452%

CASE: α = H, γ = H

σ θ∗F K∗

F region ΠF θ∗D K∗

D,A K∗

D,B K∗

D ΠD Vf
ΠD

ΠF

0.05 15.3644 4.60274 II 35.3001 15.3644 4.60274 0 4.60274 35.3001 0 100%

0.1 21.1521 8.22414 II 60.6937 21.1472 8.21699 0 8.21699 60.6864 0.0073 99.988%

0.15 33.9694 16.3011 II 107.423 33.8987 16.1867 0 16.1867 107.253 0.17 99.8417%

0.2 76.1413 43.022 I 194.666 75.7771 42.3607 0 42.3607 193.74 0.926 99.5243%

CASE: α = L, γ = L

σ θ∗F K∗

F region ΠF θ∗D K∗

D,A K∗

D,B K∗

D ΠD Vf
ΠD

ΠF

0.05 15.3644 4.60274 II 35.3001 15.3644 4.60274 0 4.60274 35.3001 0 100%

0.1 21.1933 8.28394 II 60.7534 21.1472 8.21699 0 8.21699 60.6864 0.067 99.8897%

0.15 34.7053 17.4918 I 108.981 33.8987 16.1867 0 16.1867 107.253 1.728 98.4144

0.2 80.5503 51.1684 I 204.144 75.7771 42.3607 0 42.3607 193.74 10.404 94.9036%

CASE: α = L, γ = H

σ θ∗F K∗

F region ΠF θ∗D K∗

D,A K∗

D,B K∗

D ΠD Vf
ΠD

ΠF

0.05 15.3644 4.60274 II 35.3001 15.3644 4.60274 0 4.60274 35.3001 0 100%

0.1 21.1472 8.21699 II 60.6864 21.1472 8.21699 0 8.21699 60.6864 0 100%

0.15 33.8988 16.1868 II 107.253 33.8987 16.1867 0 16.1867 107.253 0 100%

0.2 75.7797 42.3654 II 193.747 75.7771 42.3607 0 42.3607 193.74 0.007 99.9964%
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capacity) or in incremental steps at different points in time. Proceeding stepwise gives additional flexibility

as the firm can respond to resolving uncertainty by choosing the investment timing individually for each

step.

A FLEXIBLE Capacity

V (θ) =







A1θ
β1 + a1θ

2 + a2θKF + a3K
2
F for θ < 2(1−γ)

(1−α) KF

B2θ
β2 + θKF

r−µ
−

K2

F

r
for θ > 2(1−γ)

(1−α) KF

(15)

In order to check the second order condition for the optimal capacities I derive

∂V (θ,KF )

∂K2
F

=







∂2A1

∂K2

F

θβ1 + 2a3 for θ < 2(1−γ)
(1−α) KF

∂2B2

∂K2

F

θβ2 − 2
r

for θ > 2(1−γ)
(1−α) KF

(16)

Sign of the parameters:

Corollary 1The constant A1 is negative for all parameter choices:

A1 = K2−β1

F

1

β2 − β1

[

2(1− γ)

1− α

]

−β1

(1− γ)

[

(2− β2)

2(r − 2µ− σ2)
−

(1− β2)

(r − µ)
−

β2

2r

]

K2−β1

F > 0

1

β2 − β1
< 0

[

2(1− γ)

1− α

]

−β1

(1− γ) > 0

[

(2− β2)

2(r − 2µ− σ2)
−

(1− β2)

(r − µ)
−

β2

2r

]

=

2r(µ+ σ2) + (−1)β2(2µ
2 + µσ2 + rσ2) > 0

The constant B2 is positive for all parameter choices:

B2 = K2−β2

F

1

β2 − β1

[

2(1− γ)

1− α

]

−β2

(1 − γ)

[

(2− β1)

2(r − 2µ− σ2)
−

(1 − β1)

r − µ
−

β1

2r

]

[

(2 − β1)

2(r − 2µ− σ2)
−

(1− β1)

(r − µ)
−

β1

2r

]

=

2r(µ+ σ2) + (−1)β1(2µ
2 + µσ2 + rσ2) =

still part missing First order derivative of A1 and B2 w.r.t KF :

∂A1

∂KF

= K1−β1

F

(2− β1)

β2 − β1

[

2(1− γ)

1− α

]

−β1

(1 − γ)

[

(2− β2)

2(r − 2µ− σ2)
−

(1− β2)

(r − µ)
−

β2

2r

]

∂B2

∂KF

= K1−β2

F

(2− β2)

β2 − β1

[

2(1− γ)

1− α

]

−β2

(1 − γ)

[

(2− β1)

2(r − 2µ− σ2)
−

(1− β1)

r − µ
−

β1

2r

]
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Second order derivative of A1 and B2 w.r.t KF :

∂2A1

∂K2
F

= K−β1

F

(1− β1)(2− β1)

β2 − β1

[

2(1− γ)

1− α

]

−β1

(1− γ)

[

(2 − β2)

2(r − 2µ− σ2)
−

(1− β2)

(r − µ)
−

β2

2r

]

∂2B2

∂K2
F

= K−β2

F

(1− β2)(2− β2)

β2 − β1

[

2(1− γ)

1− α

]

−β2

(1− γ)

[

(2 − β1)

2(r − 2µ− σ2)
−

(1− β1)

r − µ
−

β1

2r

]

∂A1

∂KF

= K1−β1

F

(

2− β1

β2 − β1

)[

(2− β2)a1P
2−β1

K + (1− β2)P
1−β1

K

(

a2 −
1

r − µ

)

− β2P
−β1

K

(

a3 +
1

r

)]

∂B2

∂KF

= K1−β2

F

(

2− β2

β2 − β1

)[

(2− β1)a1P
2−β2

K + (1− β1)P
1−β2

K

(

a2 −
1

r − µ

)

− β1P
−β2

K

(

a3 +
1

r

)]

with PK = 2(1−γ)
(1−α)

∂2A1

∂K2
F

= K−β1

F

(

(1− β1)(2− β1)

β2 − β1

)[

(2 − β2)a1P
2−β1

K + (1− β2)P
1−β1

K

(

a2 −
1

r − µ

)

− β2P
−β1

K

(

a3 +
1

r

)]

∂2B2

∂K2
F

= K−β2

F

(

(1− β2)(2− β2)

β2 − β1

)[

(2 − β1)a1P
2−β2

K + (1− β1)P
1−β2

K

(

a2 −
1

r − µ

)

− β1P
−β2

K

(

a3 +
1

r

)]

Derive the optimal investment threshold assuming Kbound is the optimal capacity choice for both regions:

B Dedicated Capacity

B.1 One Capacity Case

∂(V (θ,KD,A)− cDKD,A)

∂KD,A

= 0 (17)

resulting in

K∗

D,A(θ) =
r

2(r − µ)
[θ − (r − µ)cD] (18)

V (θ,K∗

D,A)− cDK∗

D,A =
r

4(r − µ)2
θ2 −

r

2(r − µ)
cDθ +

r

4
c2D (19)

The value of the option is

F (θ) = A1θ
β1 (20)

and value matching and smooth pasting results in the following investment threshold

θ∗ =

(

β1

β1 − 1

)

(r − µ)

[

KD

r
+ cD

]

(21)

Combining equation (18) and (21) gives

θ∗D = (
β1

β1 − 2
)(r − µ)cD

and

K∗

D(θ∗) =
1

(β1 − 2)
rcD (22)
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For product B we can derive the following optimal investment decisions

Π(θ) = αθ(1 −KD,B)KD,B (23)

V (θ,KD,B) =
αθ(1 −KD,B)KD,B

r − µ
(24)

K∗

D,B =
αθ − cD(r − µ)

2αθ
(25)

θ∗ =
(r − µ)

α
cD

(

β1 + 1

β1 − 1

)

(26)

θ∗1,2 = cD

(

β1 − 1

β1 − 2

)[

(1 + α2 − 2αγ)

4(1− γ)(1 + α)(r − µ)

]

+ /−
r

(1 + γ)(r − µ)

√

(β1 − 1)2(1 + α)2 − 2β1(β1 − 2)
(1 + α2 − 2αγ)

(1− γ)
(27)

When is θ∗1,2 > θ̂B? I should show here that for θ < θ̂B the case of one dedicated capacity investment is

always optimal.

B.2 Two Capacities Case

Proof of Proposition 2: Solving the threshold equation for region θ̂A < θ < θ̂B gives the two results

θ∗1,1 =
cD(r − µ)(1 − γ)

(1− αγ)

θ∗1,2 =
β1cD(r − µ)(1 + γ − 2γ2)

β1(1 + αγ)− 2(1 + γ2(β1 − 1))

θ∗1,1 = θ̂A and therefore not within the boundaries of the considered region. Therefore, θ∗1,2 is the unique

optimal investment threshold for this region.

Solving the threshold equation assuming that we are in region θ > θ̂B gives the following two threshold

results:

θ∗D2,1
= cD

(

β1 − 1

β1 − 2

)[

(1 + α2 − 2αγ)

4(1− γ)(1 + α)(r − µ)

]

+

r

(1 + γ)(r − µ)

√

(β1 − 1)2(1 + α)2 − 2β1(β1 − 2)
1 + α2 − 2αγ

1− γ

θ∗D2,2
= cD

(

β1 − 1

β1 − 2

)[

(1 + α2 − 2αγ)

4(1− γ)(1 + α)(r − µ)

]

−

r

(1 + γ)(r − µ)

√

(β1 − 1)2(1 + α)2 − 2β1(β1 − 2)
1 + α2 − 2αγ

1− γ

C Expected Present Value

The formula for E[e−rT ], when θ follows the geometric Brownian motion (1), and T is the random first time

the process reaches a fixed level θ̂ starting from the general initial position θ0, is given by

E[e−rT ] =

(

θ0

θ̂

)β1

(28)
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where T is the (random) first time when process θ reaches θ∗. See e.g. Dixit and Pindyck (1994) for further

explanation.
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