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Abstract: Investment in toll road normally involves a portfolio of real options. We
model a portfolio of real options with cost contingency and government subsidy at the
operation stage. We demonstrate that the investment value is highly sensitive to cost
and revenue uncertainties. Our numerical example suggests that the investment value of
risky project is higher when net income guarantee is used instead of minimum revenue
guarantee.
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1 Introduction

There are two main sources of uncertainties in Build-Operate-Transfer (BOT) road in-
vestment, namely cost and revenue shortfall. During the construction stage, BOT con-
cessionaire often faces cost overrun, which results in construction delay. This uncertainty
can be dealt with by cost contingency reserve. Also at the operation stage, revenue can
be adversely affected by jumps in running cost. Cost management is therefore major
challenge for even the most experienced BOT concessionaire.

In the case of Channel Tunnel project, the total investment cost was estimated at £2600
million in 1985, however, when the construction was completed in 1994, the completion
actual cost incurred in 1994 was £4650 (in 1985 prices, Anderson et al. [2], Flyvbjerg
[11]). It observed an 80% cost overrun, and financing costs were 140% higher than forecast.
Another example of cost overrun is the M6 toll road in the United Kingdom, which had
an increase in construction cost from the intitial estimate of £485 million to £900 million

1Working paper to present at the 14th International Conference on Real Options, Rome July 2010.
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on completion. In the Philippines, the construction of Subic-Clark-Tarlac Expressway
experienced Philippine peso (P) 5.1 million per day during the delays from December
2007 to February 2008, which required P6.5 billion in the supplement fund. In the US,
the avarage estimated percentage cost increase over the whole country was 5.8% in 2003,
12.7% in 2004 and 17.1% 2005. In some states, at the bidding stage, the estimated cost
was much higher, for example, 21% in Texas in 2003, 45% in California in 2004 and 70%
in Utah in 20053.

At the bidding stage, while cost underestimation and revenue overestimation can make the
bid successful, but ultimately it may result in project failure. Although cost contingency
of 15% - 25% of the total projected cost to completion is a normal practice for dealing
with cost uncertainty, it is not always adequate because it often falls far short of the actual
cost overrun. On the revenue side, the concessionaire and the government negotiate the
minimum revenue guarantee. While an agreement via the minimum revenue guarantee
can mitigate to some extents the revenue shortfall, however, it may not be sufficient to
cover the jumps in runing cost at the operation stage. Therefore, it is in the interest
of both pulic and private parties to reach an agreement on the basis of the project net
income rather than minimum revenue guarantee on the revenue alone. Our aim in this
paper is to model a BOT road investment using the real options approach and to show
that the net income guarantee provides a framework for more effective risk sharing rather
than the minimum revenue guarantee approach currently in use.

The rest of the paper is organized as follows. Section 2 presents a review of the literature
on BOT road investment. In Section 3, we model the value of the project to the con-
cessionaire during the operation stage with minimum revenue guarantee and net income
guarantee. Section 4 provides the model of the construction cost overrun and the value of
the investment as a portfolio of options. Section 5 presents a numerical example of both
minimum revenue guarantee and net income guarantee. Section 6 concludes.

2 Real options in BOT road investment

One of the earliest studies that introduces the real options approach in project finance
is Pollio [22]. More recently, Ho and Liu [14], Garvin and Cheah [12] and Yang and Dai
[27] develop concession decision model of BOT projects based a real options approach.
The authors highlight the shortcomings of the discounted-cash-flow (DCF) approach for
investment projects with embedded management flexibility. The seminal work of Dixit
and Pindyck [8] laid the foundation to the development of a wide range of real options
models. The more recent literature on BOT road investment focuses on valuation of
individual real options. The studies by Rose [23] and Alonso-Conde et al. [1] consider
option to abandon the operation when the revenue (or project value) shortfall is below
a specified maximum loss threshold, or when the investor’s DCF rate of return becomes
smaller than a certain agreed value; The option to abandon early at the construction stage
is essential when the construction takes place in stages over time (Bowe and Lee [6], Huang
and Chou [15]). Another strand of the literature considers the option to defer or postpone
the construction (Wooldridge et al. [26], Ford et al. [10], Bowe and Lee [6], Yui and Tam

3See detailed report in [9]
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[28], Pimental et al. [20]) to derive the optimal timing for investment; At the operation
stage, the concessionaire also has the option to expand (Bowe and Lee [6], Zhao and Tseng
[29], Zhao et al. [30], Wei-Hua and Da-Shuang [24]), has the rehabilitation option (Zhao
et al. [30]) or the option to contract (Bowe and Lee [6]) and alter the scale of the project;
A number of studies have considered non-standard real options including option to adjust
concession price and to develop surrounding land (Wei-Hua and Da-Shuang [24]), and
option to set flexible toll charge (Harley [13]).

There are several different forms of government guarantees, each designed to mitigate
the shortfall in traffic revenue. For the concessionaire, the government minimum revenue
guarantee is essentially a put option (Irwin [16], [17]) which can be exercised at any time
during the project life. This put option can be valued using the standard Black-Scholes
model (Huang and Chou [15]). Apart from the revenue shortfall, the government and the
concessionaire also negotiate other forms of guarantee including tariff, debt and maximum
funding cost guarantee (Wibowo [25]). Most studies however assume that the construction
cost is fixed and therefore cost uncertainty does not affect the investment value. This is
an over simplification of the problems facing the concessionaire in practice. Yui and Tam
[28] seems to be the only study that considers construction cost uncertainty.

Our main purpose in this paper is to fill the gap in the existing literature by modeling
the cost jump at both construction as well as operation stages in a BOT road project. As
mentioned earlier, cost overrun is a critical factor in determining the project success or
failure. Given that unexpected jump in cost entails additional capital requirement for the
concessionaire, it can result in substantial loss in the value of the project and subsequently
causing investment delay. The loss to the society can be considerable whenever the road
is not utilized at its optimal capacity. In the interest of the society as well as the private
benefit to the concessionaire, it is crucial for the government to take into full account
the adverse consequences of cost jump, not just the loss of revenue to the concessionaire.
One way to address this problem of social cost is to find an efficient mechanism for risk
sharing of cost overrun through loss in income to the concessionaire rather than revenue
shortfall. In our model, we specify a risk sharing agreement between the government and
the concessionaire based on upper and lower thresholds of fluctuations in net income. In
contrast to the existing literature, the upper and lower thresholds incorporate the value
of saving from potential delays in investment to the society.

3 Value of the project at operation stage

3.1 Minimum revenue guarantee

To begin, let us assume that the revenue stream, R(t), of BOT road project follows the
following diffusion-jump process:

dR = αRRdt+ σRRdzR −RdqR (1)

where αR is the instantaneous conditional expected percentage change in R per unit time;
σR is the instantaneous conditional standard deviation per unit time; dzR is the increment
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of a standard Wiener process for R; and dqR is jump following a Poisson distribution.
Mean arrival of the jump is θdt and the jump side is φR. During the time when the
operation and maintenance (OM) work takes place, there will be a negative jump in the
revenue. The mean arrival rate of the event, θ, is therefore identical to the frequency
of OM. The Special Purpose Vehicle (firm) set up by the concessionaire receives the
completed project at date τ . The project value V, at date τ , will be contingent on the
revenue R. Denoting C the running (OM) cost, we have the profit of the project given
by π(R) = [R− C]. In BOT project finance, it is a common practice to assume that C is
known with certainty. By Ito’s Lemma value of the project satisfies:

1

2
σ2
RR

2V ′′ + (r − µR + αR)RV ′ − (r + θ)V + θV [(1− φR)R] + π(R) = 0 (2)

The homogeneous part of differential equation (2) gives the familiar general solution for
V (R) = A1R

β1 +A2R
β2 where β1 and β2 are positive and negative roots of the nonlinear

equation:

Q(β) =
1

2
σ2
Rβ(β − 1) + (r − µR + αR)β − (r + θ) + θ(1− φR)β = 0 (3)

and A1 and A2 are the two constants remain to be determined. The first boundary
condition for V is V (0) = 0.

With minimum revenue guarantee, the government agrees to cover the revenue shortfall
when realized revenue is smaller than minimum revenue guarantee threshold, Rg = gE(R̃)
with (g < 1). In return, the firm will give up 1 − χ (with 0 < χ < 1) percentage of the
excess profit to the government if the realized revenue is above the maximum revenue cap
threshold Rc = cE(R̃) with c > 1. Therefore, the final solution for V therefore is4:

V =



A1R
β1 +

Rg − C
r

if R < Rg

D1R
β1 +D2R

β2 +
R

δR
− C

r
if Rg < R < Rc

A2R
β2 +

Rc − C
r

+
χ(R−Rc)

δR
if R > Rc

(4)

4In the region R < Rg, the revenue shortfall is topped up to Rg by the government under the minimum
revenue guarantee agreement. Also, in this region, the event of R rising above C becomes very small
excepts in the very remote future, forcing A2 become zero and the final solution for V in this region is

V (R) = A1R
β1 +

Rg − C
r

. In the region Rg < R < Rc, the solution for V is a linear combination of the

power solutions of the homogeneous part and the expected present value of future profit contingent on R
and C. The firm holds the option to receive positive profit in the future once R becomes greater than C,

and also the option to return to receive Rg when R falls below Rg. V (R) = D1R
β1 +D2R

β2 +
R

δR
− C

r
where D1 and D2 are the two constants remain to be determined. In the region where R > Rc, the
firm firstly receives Rc plus χ percentage of the excess revenue, R − Rc. There is little possibility that
the abandonment is involved, so we rule out the positive power of β by making A1 = 0. The value of
the project is simply the summation of the option to receive government guarantee and the positive net

worth Rc −C + χ(R−Rc). The solution for V in this region is V (R) = A2R
β2 +

Rc − C
r

+
χ(R−Rc)

δR
.
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Solving equation (4) with the relevant value-matching and smooth-pasting conditions at
Rg and Rc, the four constants are found as:

A1 =
(β2 − 1)(δR − r)(RgRc)

−β1(Rβ1
c Rg −RcR

β1
g )

r(β1 − β2)δR
(5)

A2 =
(β1 − 1)(δR − r)(RgRc)

−β2(Rβ2
c Rg −RcR

β2
g )

r(β1 − β2)δR
(6)

D1 = −(β2 − 1)R1−β1
c (δR − r)

r(β1 − β2)δR
(7)

D2 =
(β1 − 1)R1−β2

g (δR − r)
r(β1 − β2)δR

(8)

Next, we relax the assumption of deterministic running cost and assume that it follows
the following diffusion-jump process:

dC = αCCdt+ σCCdzC + CdqC (9)

where αC is the instantaneous conditional expected percentage change in C per unit time;
σC is the instantaneous conditional standard deviation per unit time; dzC (ε[dzRdzC ] = 0)
is the increment of a standard Wiener process for C ; and dqC is jump following a Poisson
distribution5. The negative jumps in revenue may occur when major OM work takes
place. The mean arrival rate of the jump in C is θ. The value of the project is now
contingent on both stochastic R and C, and by Ito’s Lemma is as follows6:

1

2
σ2
RR

2VRR +
1

2
σ2
CC

2VCC + (r − δR + θφR)VRR + (r − δC − θφC)VCC (10)

−(r + 2θ)V + θV [(1− φR)R] + θV [(1 + φC)C] + π(R,C) = 0

The homogeneous part of this partial differential equation (p.d.e) has a general closed-

form solution for V(R,C) as V (R,C) = A3

(
R

C

)β3
+ A4

(
R

C

)β4
with C > 0, and β3 and

β4 are positive and negative roots of the non-linear quadratic equation:

Sβ =
1

2
σ2
Rβ(β − 1) +

1

2
σ2
Cβ(β + 1)− (δR − δC − θφR − θφC)β (11)

+ θ(1− φR)β + θ(1 + φC)−β − (r + 2θ) = 0

When Rg and Rc in the minimum revenue guarantee framework exist, V(R,C) is then
bounded with the values of Rg and Rc. Since R = 0 is an absorbing barrier for R, the
final solution for V(R,C) is:

5The jumps may occur due to increase of raw material cost or extra capital requirement for OM work
6The subscripts denote partial derivatives of V with respect to R and C
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V (R,C) =



A3

(
R

C

)β3
+
Rg

r
− C

δC
when R < Rg

D3

(
R

C

)β3
+D4

(
R

C

)β4
+
R

δR
− C

δC
when Rg < R < Rc

A4

(
R

C

)β4
+
Rc

r
− C

δC
+
χ(R−Rc)

δR
when R > Rc

(12)

Again, the constants of this equations system are found with value-matching and smooth-
pasting conditions at Rg and Rc. The general forms for these constants are:

A3 =
(δR − r)

[
(β4 − 1)R1−β3

c + (1− β3)R1−β3
g

]
(rδR)(β4 − β3)C−β3

−
(
Rg

C

)−β3 (Rg

r
− Rg

δR

)
(13)

A4 =
(δR − r)

[
(β4 − 1)R1−β4

c + (1− β3)R1−β4
g

]
(rδR)(β4 − β3)C−β4

+

(
Rc

C

)−β4 (Rc

δR
− Rc

r

)
(14)

D3 =
(δR − r)(β4 − 1)R1−β3

c

(rδR)(β4 − β3)C−β3
(15)

D4 =
(δR − r)(1− β3)R1−β4

g

(rδR)(β4 − β3)C−β4
(16)

A range of V(R,C) then must be found numerically with a range of C and relevant
constants of the above equation system.

3.2 Net income guarantee

Next, we assume the net income stream, Y, of the project follows the following diffusion-
jump process:

dY = αY Y dt+ σY Y dzY − Y dqY (17)

where αY is the instantaneous conditional expected percentage change in Y per unit
time; σY is the instantaneous conditional standard deviation per unit time; dzY is the
increment of a standard Wiener process for Y ; and dqY is jump following a Poisson
distribution. This process implies that over each time interval, the drift rate of the
project net income αY and it fluctuates with standard deviation σY . When jumps in C
and R are negatively correlated, Y will have negative jumps with mean arrival rate of
θ, and jump side φY = φR + φC . By Ito’s Lemma, the differential equation for V (Y )
contingent on Y is:

1

2
σ2
Y Y

2V ′′ + (r − µY + αY )Y V ′ − (r + θ)V + θV [(1− φY )Y ] + πY = 0 (18)
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Solution to the homogeneous part of this differential equation takes the form of V (Y ) =
A5Y

β5 +A6Y
β6 where β5 and β6 are positive and negative roots of the nonlinear equation:

N(β) =
1

2
σ2
Y β(β − 1) + (r − µY + αY )β − (r + θ) + θ(1− φY )β = 0 (19)

and must be found numerically. A5 and A6 are the two constants remain to be determined.

Assume that the minimum level of net income guarantee is Yg < 0. The government
guarantee will come into effect when cost exceeds revenue by Yg. In turn, the firm agrees
to forgo χ% of the net income exceeding the upper threshold Yc > 0. Solving equation
(18) with (19), the equation system for V(Y) is7:

V (Y ) =



A6 (−Y )β6 +
Yg
r

when Y < Yg < 0

D5 (−Y )β5 +
Y

δY
when Yg < Y < 0

0 when Y = 0

E5Y
β5 +

Y

δY
when 0 < Y < Yc

H6Y
β6 +

Yc
r

+
χ (Y − Yc)

δY
when 0 < Yc < Y

(20)

The four constants in equation (20) are found with the value-matching and smooth-pasting
conditions at the boundaries Yg and Yc as:

7The equation system (20) tells that in the region when Y < Yg < 0, the firm receives Yg with certainty.
It is likely that Y goes to −∞, and we thus rule out A5 with positive β5. With the negative β6, the value
of the random variable which is captured in the term A6Y

β6 must be positive, and this term becomes
A6 (−Y )

β6 as value of the option to abandon the project had the value of this option become lower than
absolute value of the maximum loss. This means the lower the net income, the farther it is away from
Yg and the smaller the value of the option to abandon. In the region when Yg < Y < 0, the firm receives
Y. Values of Y in these region are still negative, but with the likelihood to reach 0(−). Eliminating the

infinity term by ruling out the constant A6, the speculative terms in this region is D5 (−Y )
β5 , which

represents the value of the option to gain profit once the net income becomes positive. In the region
when Y = 0, the firm is indifferent with the net zero net difference of the revenue to receive and the
running cost to pay. Value of the project is therefore equal zero. In the region when 0 < Y < Yc, Y has
possibility to go to 0(+). We therefore eliminate the infinity term with the negative β6, leaving the term

E5Y
β5 as value of the put option to share the profit with the government once the net income exceeds the

profit sharing threshold Yc. Finally, in the region when 0 < Yc < Y , the firm receives Yc with certainty,
and share (1− χ)% of the exceeding net income with the government, ending up χ(Y − Yc) net income
receivable. The constants A5 in the general solution for this region is set to be zero because Y β5 may go
to +∞ when Y goes to +∞. The term H6Y

β6 exits in the solution as the value of the option to receive
the minimum net income guarantee should the net income reduces to and/or below Yg.

7



A6 =
(1 + β5)(r − δY )(−Yg)−β6Yg

(β5 − β6)δY r
(21)

D5 =
(1 + β6)(r − δY )(−Yg)−β5Yg

(β5 − β6)δY r
(22)

E5 =
(1− β6)(δY − r)Y 1−β5

c

(β5 − β6)δY r
(23)

H6 =
(1− β5)(δY − r)Y 1−β6

c

(β5 − β6)δY r
(24)

4 Investment value at construction stage

Let K̃ be the construction cost to completion that has an expected value K = E(K̃).
At the start of the construction stage, the required construction cost is K0. Following
Pindyck [21] and Dixit and Pindyck [8], we assume that the evolution of K follows:

dK = −ξK0dt+ σKKdzK −K0dqK (25)

where ξK0 is the instantaneous conditional expected change in K per unit time; σK is
the instantaneous conditional standard deviation per unit time; dzK is the increment of
a standard Wiener process for K, ε[dzRdzK ] = ε[dzCdzK ] = 0; and dqK is jump following
a Poisson distribution.

In the absence of cost uncertainty, expected time to completion is τ . The maximum
investment volume per unit of time is κ = ξK0 = E(K̃)/τ , and the total construction
cost to completion at τ is E(Kτ ) = 0. The solution to the investment valuation problem
is to find the maximum value of the investment opportunity contingent on the expected
value of the project, Ṽ , and the (certain) cost K. Let this investment opportunity value
f(K,V ) = f {K,V ;κ} be this investment opportunity value, Pindyck [21] and Dixit and
Pindyck [8] show that this investment value satisfies:

f(K,V ) = max

Ṽ e−rτ − τ∫
0

ξK0e
−rtdt

 = max
[(
Ṽ + κ/r

)
e−rK0/κ − κ/r, 0

]
(26)

The investment takes place so long as f(K,V ) > 0, which means the expected cost to
completion K is smaller than the critical construction cost threshold which satisfies:

K∗ =
κ

r
ln

(
1 + r

Ṽ

κ

)
(27)

When cost uncertainty is introduced, the noise σ2
K in equation (25) describes the input

cost uncertainty which makes the realized changes in K at times slower and at times
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faster than expected. From equation (25), during τ there exit some large jumps with a
small probability λdt in K such that the construction cost paid increases to (1+φK) times
its original value of ξK0, causing an increase in the absolute value of the change in K.
The process for K therefore has negative jumps. We assume that the firm commits to
deliver the construction at τ . In each time interval, the firm now pays an investment rate
of (ξ + λφK)K0. The total expected construction cost is E(K̃ ′) = τ(ξ + λφK)K0. The
investment problem to solve is again to find out the maximized value of the investment
opportunity contingent on the value of the expected project value and the uncertain cost,
f = f(K,V ) = f {K,V ; (ξ + λφK)K}, which satisfies:

f(K,V ) = max
(ξ+λφK)K(t)

= E0

Ṽ e−µτ − τ̃∫
0

(ξ + λφK)K0e
−µtdt

 (28)

Pindyck [21] argue that for equation (25) to make economic sense, some other assumptions
must hold: (i) f(K,V ) is homogeneous of degree one in K, V and (ξ + λφK)K0; (ii)
fK(K,V ) < 0 implies that an increase in the expected construction cost always reduces
the investment value; (iii) The instantaneous variance of dK is bounded for all finite

K and approaches zero as K → 0; (iv) Since E0

τ̃∫
0

(ξ + λφK)K0dt is now the expected

construction cost to completion, the firm invests at the maximum rate (ξ+λφK)K0 until
the construction is completed at τ . As the drift and diffusion parameters of the process of
V are complicated expressions, assume that spanning applies, we now estimate the value
of f(K,V) as a function of the project revenue R and construction cost K, f(K,R), and
using the solution for V as the boundary conditions that hold at the optimal exercise
threshold. By Ito’s Lemma, f satisfies a p.d.e:

0 =
1

2
σ2
RR

2fRR +
1

2
σ2
KK

2fKK + (r − µR + αR)RfR − ξK0fK (29)

− (r + θ + λ)f − (ξ + λφK)K0 + θf [(1− φR)R] + λf [(1− φK)K]

This equation8 is linear in (ξ+λφR)K and therefore the rate of investment that maximize
f(K,R) always equals zero or the maximum investment rates, which yields:

κ =


(ξ + λφK)K0 for

−ξ
ξ + λφK

fK − 1 ≥ 0

0 otherwise.

(30)

Equation (29) is an elliptic p.d.e. It has a free boundary along the line K∗(R) such that
κ(t) = (ξ + λφK)K0 when K ≤ K∗ and κ = 0 otherwise. This constitutes the value-
matching condition that f(K,R) be continuous along K∗(R). From condition equation
(30), the smooth-pasting condition that fK(K,R) be continuous along K∗(R) is:

8Equation (29) is essentially the Bellman equation for the stochastic dynamic programming problem
in equation (28).
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fK(K∗, R) +
ξ + λφK

ξ
= 0 for κ = (ξ + λφK)K (31)

Since fK(K∗, R) in (31) is always negative, K always changes and f(K,R) > 0 for any
finite K. The option to invest, f(K,R), has the features of a put option. The value of
K∗(R) must be solved as part of the solution for f(K,R) and therefore the other three
boundary conditions for the p.d.e (29) are:

f(0, R) = V (R) (32)

lim
R→0

f(K,R) = 0 (33)

lim
K→∞

f(K,R) = 0 (34)

These conditions show that: When K approaches zero, the construction is completed
and the firm receives the payoff V(R); When the project revenue goes to zero, and V
goes to zero, there is no rationality for the firm to invest, and therefore the option value
equals zero; And when K becomes very large relative to the total revenue constituting
the project value, the value of the option approaches zero. A solution for f(K,R) along
with the critical construction cost threshold K∗(R) can be found numerically9.

When K > K∗(R), we have κ = (ξ + λφK)K0 = 0, the firm makes to construction
payment, equation (29) becomes:

1

2
σ2
RR

2fRR +
1

2
σ2
KK

2fKK + (r − µR + αR)RfR (35)

−(r + θ + λ)f + θf [(1− φR)R] + λf [(1− φK)K] = 0

The general solution form for f in this region for K is f(K,R) = G

(
K

R

)ν
where G is a

constant to be determined, and ν is the negative root of the non-linear quadratic equation:

Q(ν) =
1

2
σ2
Rν(ν + 1) +

1

2
σ2
Kν(ν − 1)− (r − µR + αR)ν (36)

+ θ(1− φR)−ν + λ(1− φK)ν − (r + θ + λ)

When K < K∗(R) the constant G is eliminated using the continuity of f(K,R) and

fK(K,R) at K∗, such that f(K∗, R) =

(
K∗

ν

)
fK(K∗, R) which yields condition

9Since the boundary condition in equation (32) applies, numerical values for V(R) are calculated for
the entire range of R. At the terminal boundary K = 0, equation (32) is set equal to V(R) for each
value of R. The boundary K∗(R) are found for each V and relevant R satisfying the other boundary
conditions, simultaneously with f(K,R)
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f(K∗, R) = −
(
K∗

ν

)(
ξ + λφK

ξ

)
(37)

when condition equation (31) applies. It is clear that the solution for f(K∗, R) in equation
(37) meets the condition for the values of the investment option to be non-negative. We
solve equation (29) numerically together with equation (37) and the boundary conditions
from equation (32) to equation (34), using a finite difference method.

5 Numerical example

In this section, we present a numerical example. We focus on the sensitiveness of the
investment value to revenue shortfall, construction and running costs with minimum rev-
enue guarantee and net income guarantee. Investment value with net income guarantee is
higher than with minimum revenue guarantee. The results obtained in this numerical ex-
ample are similar to the kinds of numerical results obtained by McDonald and Siegel [19],
Maij and Pindyck [18] and Pindyck [21] showing that cost uncertainty can be significantly
critical to an investment.

Unless otherwise stated, for construction cost we set τ = 5, E(K̃) = 10, λ = 1
2.5

= 0.4
and φK = 0.2. For OM cost, C = 3, µC = 0.12, σC = 0.2, θ = 1

6
and φC = 0.3. For

the revenue, R = 5, µR = 0.08, σR = 0.2, θ = 1
6

and φR = 0.15. For minimum revenue
guarantee, Rg = 1, Rc = 3. For net income guarantee, Yg = −1, Yc = 1. Retained revenue
and net income portion χ is 0.4 and risk-free rate r is 0.05.

Figure 1(a) shows values of the investment, f in the case of deterministic C. In the absence
of the construction cost uncertainty, value of the project in the case of deterministic C
is estimated with equation (2) to be 19.62. The critical construction cost threshold for
the investment to take place is estimated accordingly with equation (27) at 15.97. The
critical revenue threshold for the investment to take place, which satisfies the condition
V - E(K̃) = V - 10 = f = 0, is R∗ = 3.87.
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(b) Stochastic C

Figure 1: Investment opportunity values with minimum revenue guarantee
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With deterministic OM cost, the critical investment value, f ∗, is 12.47, 14.47, 16.19 with
K∗ as 5.82, 4.19, 2.79 when σK is 0.1, 0.3 and 0.5 respectively. When the construction
cost is uncertain, a standard deviation of 10% in K reduces the critical construction cost
threshold K∗ by two-third (from 15.97 to 5.82). In this example, to satisfy a correct net
present value rule, the project payoff must be about three times as large as the critical
construction cost threshold for the investment to take place. The effects of both construc-
tion cost uncertainty are quantitatively important to the value of the investment. When
C is stochastically driven, (figure 1(b)), in the absence of construction cost uncertainty,
value of the completed project is 10.14 and the critical construction cost threshold is 9.04.
Figure 1(b) shows the critical investment values (6.67, 7.66, and 8.51) and the relevant
critical construction cost thresholds (3.09, 2.21 and 1.46) for σK at 0.1, 0.3 and 0.5 respec-
tively. In both cases of with and without construction cost uncertainty, f ∗ and K∗ are
lower than those in the case of deterministic OM (figure 1(a)). This is because when OM
cost uncertainty is introduced, value of the completed project decreases. The investment
is undertaken with lower payoff and therefore with lower K∗ and f ∗.
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(a) Critical investment value f∗
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(b) Critical construction cost threshold K∗

Figure 2: f∗ and K∗ as functions of σK and σC . (φK = 0.2, φC = 0.3)
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(b) Critical construction cost threshold K∗

Figure 3: f*(K,R) and K* as functions of φK and φC . (σK = 0.3, σC = 0.2)

Uncertain C and K have substantial effects on value of the investment opportunity.
Figure 2 shows f ∗ and K∗ as functions of σC and σK . Higher value of σC increases the
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OM cost paid, reduces the project value makes both critical investment value f ∗ and
critical construction cost threshold K∗ fall. However, an increase in σK reduces K∗, and
as a result increases f ∗. Figure 3 shows value of f ∗ and K∗ as functions of φK and φC .
Increase in φC reduces value of the completed project and consequently forces f ∗ and K∗

to fall for the investment to take place. However, an increase in φK reduces the critical
construction cost threshold and therefore increases value of the investment opportunity.
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Figure 4: Investment opportunity value with net income guarantee, Yc = 1, Yg = -1

Figure 4 shows value of the investment opportunity as a function of K when net income
guarantee is used instead of minimum revenue guarantee. As is clear from figure 4 and
figure 1(b), both value of the investment opportunity and critical expected construction
cost increase remarkably with net income guarantee. For example, when σK = 0.3, f ∗ =
7.66 and K∗ = 2.21 with minimum revenue guarantee while f ∗ = 14.20 and K∗ = 4.15
with net income guarantee. This is because value of the completed project under a net
income guarantee increases when OM cost overrun is better shared with the government.
The firm is now more encouraged to undertake the investment even with higher critical
construction cost threshold.
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Figure 5: Investment opportunity value with net income guarantee, Yc = 0.2, Yg = -1

Figure 5 presents values of the investment, critical investment values and critical con-
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struction cost thresholds when net income guarantee thresholds change. In this case, we
set Yc to 0.2, indicating that the firm now shares profit with the government as soon as
the net income exceeds 0.2. Value of the completed project decreases, and as a result,
value of the investment opportunity decreases. The firm should therefore expect a lower
critical construction cost threshold. The numerical result shows that when σK = 0.3 and
Yc = 0.2, f ∗(K,R) = 8.68 and K∗ = 2.54.
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Figure 6: f∗ and K∗ as functions of σK and σY . (φK = 0.2, φY = 0.45)
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Figure 7: f∗ and K∗ as functions of φK and φY . (σK = 0.3, σY = 0.2)

Figure 6 shows value of the investment opportunity and the critical expected construction
cost as functions of σK and σY . Different from the case of minimum revenue guarantee
displayed in figure 2, when σY increases, both f ∗ and K∗ increase because the cost risk is
mitigated with net income guarantee. When σK increases, K∗ decreases and as a result
f ∗ increases. Compare the results of f ∗ and K∗ for the relevant values of σK in figure 2
(minimum revenue guarantee framework) and those in figure 6 (net income guarantee),
it is clear that both f ∗ and K∗ in the net income guarantee framework are higher. The
values of f ∗ and K∗ as the functions of φY and φK are displayed in figure 7. The numerical
results again show that an increase in φY results in decreases in both f ∗ and K∗ due to
fall in V (Y ). Nevertheless, when φK and φY holds, K∗ decreases and f ∗ increases. Value
of the put option increases with higher level of uncertainty. Again, values of f ∗ and K∗ in
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figure 7 are higher than those in figure 3. This is because with net income guarantee, the
cost risk is more effectively shared between the government and as a result the investment
value increases.

6 Conclusion

We model BOT toll road investment with cost and revenue uncertainties in the presence
of government guarantees. At the construction stage, the value of the investment is highly
sensitive to cost jumps while at the operation stage the revenue shortfall and maintenance
costs are the critical factors. We argue that during the operation stage jumps in cost can
result in delay and loss in the value of the project. Under this circumstance, it is important
for the government and the concessionaire to share risk in cost as well as revenue. Rather
than entering into an agreement on minimum revenue guarantee, it is in the best interest of
both parties to reach an agreement on net income guarantee. Our numerical results show
that the investment value is greater when net income guarantee is used. Furthermore, in
the presence of both construction cost and running cost jumps, the investment will only
take place when the completed project value significantly exceeds the critical construction
cost threshold.
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