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Abstract

In this paper we consider N−phased investment opportunities where the time evolution of the
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1 Introduction

As several researchers have noted, R&D investments are essentially real growth options because the

value of early projects stems not so much from their expected cash �ows as from the follow-up op-

portunities they may create. At each stage the company may decide to exercise the option or not,

that is to continue to invest in the project or to shut it down. This is, for instance, the case of the

development of new drugs, which begins with research that leads with some probability to a new com-

pound and which continues with testing and concludes with the construction of a production facility

and the marketing of the product. Inventors in this �eld regularly �le applications on a large number

of drugs and therapies before knowing whether those drugs will be safe and successful1. Given the

�exibility and uncertainty involved in such projects, traditional tools fail to capture the value of R&D

investments.

In the present paper we consider R&D investment opportunities that are by their nature sequential

and where strategically relevant, new information may arrive at each investment stage. Such invest-

ments can be best modeled as an N−fold compound option on the commercialization phase where in

each of the N stages the company faces the option of shutting the project down or of continuing its

operations, that is, to continue to invest in the project. The arrival of new strategically important

information at discrete points in time can be accommodated by modelling the dynamics of the project

value as a jump-di�usion process2, where the Gaussian di�usion process represents business-as-usual

uncertainty and where punctuated jumps at random intervals represent exceptional events such as

major project failures or important breakthroughs. Indeed, apart from the obvious market risk, re-

search intensive �rms face a number of risks, that, for convenience, we summarize under the heading

"rare events". Under the assumption of lognormality of the jump distribution we analytically solve

the valuation problem of an N−staged investment opportunity under two di�erent scenarios. Firstly,

we consider the case where investment costs are deterministic and perfectly known at the beginning

of the project. Secondly, we consider the case where investment costs are stochastic and unknown at

the beginning of the project, but where it is known that they follow a jump-di�usion process.

The paper is organized as follows. Section 2 provides an overview of the related economic litera-

1In the USA, for example, because of FDA regulation, R&D activity for a new drug can be divided into �ve major
phases: (1) discovery and pre-clinical research, (2) phase I clinical trials, (3) phase II clinical trials, (4) phase III clinical
trials and (5) regulatory review and approval. Each phase represents an option on a new phase of the process. Therefore,
R&D projects can be considered as N−fold compound options. See, for example, Cassimon et al., (2004) where R&D
projects of pharmaceutical companies are valued using 6-fold compound options.

2Recent literature argues that jump-di�usion processes better represent the return dynamics of �nancial and real
asset. Such processes may account for fat tails and skewness of probability distributions. See Boyarchenko (2004) for
further information.
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ture. Section 3 provides a description of the economic model and derives a closed-form solution for

a N−fold compound call option with a mixed jump-di�usion process. An extension to the pricing of

a N−fold compound option where both the underlying project value and the investment cost follow

jump-di�usion processes is presented in Section 4. In Section 5, we provide numerical results. The

�nal section concludes the paper.

2 Literature review

The literature on the valuation of real investments under jumps is growing quickly. Pennings and Lint

(1997) provide a real options model for valuing R&D projects, which assumes a pure jump process for

the underlying project value and studies the consequences of this modelling in a real-world investment

context. Martzoukos and Trigeorgis (2002) value single stage investment options when the underlying

project value follows a log-normal jump-di�usion process involving multiple types of rare events. In

this way, they are able to simultaneously represent the discontinuous changes of the project value

due to di�erent, unexpected events (i.e., political, technological, competitive etc.). Our model is

related to Martzoukos and Trigeorgis's work but we value an N−staged investment project when the

underlying asset undergoes only one class of rare events in each time interval. We also consider the case

of investment costs following jump-di�usion dynamics, whereas in Martzoukos and Trigeorgis (2002)

investment costs are assumed to be constant. Moreover, Wu and Yen (2007) develop a simple model

for pricing (non-nested) real growth options that considers uncertainty regarding the project value,

investment cost, and the jumps in the underlying value, and do not consider jumps in the investment

cost. Some papers incorporate di�erent distributions of jump sizes into the valuation problem of real

options. Boyarchenko (2004), for example, extends the standard model of irreversible investment under

uncertainty to a wide class of jump-di�usion processes, namely Lévy processes. Analytical solutions

for (real) option prices under Lévy processes are also given by Mordecki (2002) e Agliardi (2009).

Compound options have been extensively used in the �nance literature to evaluate sequential in-

vestment opportunities. Geske (1979a) shows that risky securities with sequential payouts can be

valued as compound options. Carr (1988) analyzes sequential compound options, of the form of op-

tions to acquire subsequent options to exchange an underlying risky asset for another risky asset3.

Gukhal (2004) derives analytical valuation formulas for 2−fold compound options when the underly-

ing value follows a log-normal jump-di�usion process. He then applies these results to value extendible

3Lee and Paxson (2001) have applied Carr's compound exchange option formula to R&D investments valuation.
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options and American call options on stocks that pay continuous and discrete dividends. Using some

properties of multivariate normal integrals, the present paper generalizes Gukhal's (2004) result for

jump-di�usion compound options to the case of N−fold compound options and applies the result to

the valuation of sequential investment options in which both the project value and investment cost

(i.e., the strike price) follow log-normal jump-di�usion processes. Agliardi and Agliardi (2005) derive a

closed-form solution for European-style N−fold compound call options in the case of time-dependent

volatility and interest rate. Their procedure consists of solving N−nested Black-Scholes partial dif-

ferential equations4. Di�erently from their approach, we consider a real investment problem and use

the risk-neutral argument (Harrison and Kreps, 1979) to calculate the expected present value of the

N−fold compound option and moreover we consider jump-di�usion processes for the underlying values.

Lee et. al., (2008) also propose a generalized pricing formula and sensitivity analysis for sequential

compound options by using the risk-neutral method but assume that uncertainty is one-dimensional

by modeling the underlying value as a geometric Brownian process.

3 A valuation formula for sequential investment opportunities

We consider the valuation problem of a risk-neutral entrepreneur who, at time 0, considers to invest

in a project whose commercial phase cannot be launched before a pilot phase consisting of N stages of

investment is completed. Let T1 be the time of the market launch of the product, when, upon bearing

the commercialization cost I1, the �rm earns the project value V . The project payo� at time T1 is

max {V − I1, 0} and let F1 (V, t) denote the value at time t of this simple investment opportunity. We

assume that the commercialization phase is reached upon investing an amount Ik, at time period Tk,

for k = 2, ..., N and with T1 ≥ T2 ≥ ... ≥ TN
5. TN is therefore the time period the project starts and

IN is the start up cost, while Tk and Ik are maturities of intermediate phases which lead up to the

commercialization phase and their respective investment costs. The N−staged investment problem

may be viewed as a compound option, that is options on options, and its value may be derived in a

recursive way. Let us now de�ne a sequence of call options, with value Fk, on the call option whose

value is Fk−1, with exercise price Ik and expiry date Tk, for k = 2, ..., N . The k−fold compound option

value can be written in a recursive way and its �nal payo� at the option's maturity date Tk is given

4In essence, at the �rst step the underlying option is priced according to the Black-Scholes formula then, compound
options are priced as options on the securities whose values have already been found in earlier steps.

5Following the capital budgeting literature, we assume that the option's maturities Tk are deterministic. This is
because in many industries (e.g. pharmaceuticals) R&D managers break down R&D programs into a sequence of
decision points, where they can decide either to abandon the underlying project or to enter the next stage of R&D.
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by:

Fk (Fk−1 (V, Tk) , Tk) = max {Fk−1 (V, Tk)− Ik, 0} , (1)

for k = 2, ..., N and where Fk−1 (V, Tk) stands for the value of the underlying compound option at time

Tk and Ik is the exercise price. According to (1), at time Tk, the �rm faces the option of investing

an amount Ik, gaining access to stage k − 1 of the project whose value is Fk−1 (V, Tk), or to shut the

project down. The option will be exercised if Fk−1 (V, Tk)> Ik, that is, if the expected present value

of the project at time Tk exceeds the investment cost.

We assume deterministic investment costs Ik, for k = 1, 2, ..., N , which are perfectly known at time

0; the project value is unknown and uncertain and, denoting by Vt the time t ∈ [0, T1] evaluation of

the project, we assume that Vt follows a jump-di�usion process:

dVt = αVtdt+ σVtdzt + (Y − 1)Vtdqt, (2)

where α is the drift rate, σ is the volatility of the Brownian part of the process, conditional on no

jumps occurring, dz is a standard Gauss-Wiener process and dq is a Poisson process with constant

intensity λ (> 0). Therefore, dq = 0 with probability 1−λdt and dq = 1 with probability λdt, or, in

other words, over a small time period dt, the probability of a jump in V is λdt, where the random

variable (Y − 1) accounts for the relative jump amplitude. The average relative jump size, E [Y − 1]

is denoted by K, where E is the expectation operator over the distribution function of Y under the

objective probability measure P. We assume that the random variable Y and the Poisson process dq

are independent of each other and also independent of the Brownian motion dz.

The project value V as given by (2) has two sources of uncertainty. The term σdz corresponds to

"business-as-usual" uncertainty, while the term dq describes rare events. For example, new drugs can

turn into mega-selling blockbuster products or alternatively, su�er clinical trial failures and withdrawal

from the market. If the Poisson event does not occur (dq = 0), then the return dynamics would be

identical to those presented by Black and Scholes (1973) and Merton (1973). If, on the other hand

the Poisson event occurs, then (Y − 1) is an impulse function which takes the project value from V to

V Y , where we assume that Y is drawn from a lognormal distribution with parameter
(
µJ , σ

2
J

)
6. The

coe�cients
(
µJ , σ

2
J

)
are constants.

6That is, E [ln (Y )] = µJ and Var[ln (Y )] = σ2
J , so E [Y ] = exp

(
µJ + 1

2
σ2
J

)
. We impose this assumption on the

distribution of jump sizes since this is the simplest type of model that illustrates the intuition underlying an N−fold
compound options valuation with jumps.
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We assume that the �rm achieves risk neutrality by holding a diversi�ed portfolio of activities.

In other words, we assume that its portfolio of activities features negatively correlated risk factors,

thereby gaining risk insulation and earning, in expected terms, the exogenously given risk-neutral rate

of return r ≥ 0. Under this assumption, the risk-neutral project value can be described by the following

stochastic di�erential equation:

dVt = µ∗Vtdt+ σVtdz
∗
t + (Y − 1)Vtdqt, (3)

where dz∗ is a standard Wiener process7, dq, Y are as above, independently distributed of dz∗ and µ∗

is such that the discounted project value is a martingale under Q:

µ∗ = r − λK = r − λ
[
exp

(
µJ +

1

2
σ2
J

)
− 1

]
.

In the sequential investment model, we want to determine the value of the investment opportu-

nity Fk (Fk−1 (V, Tk) , Tk) at each stage Tk, k = 2, ..., N , of the project, with Fk (Fk−1 (V, Tk) , Tk) =

max {Fk−1 (V, Tk)− Ik, 0} , being the boundary condition. Let V ∗k denote the value of V such that the

underlying option is at the money at time Tk, i.e.,

VTk = V ∗k

where V ∗k solves:

Fk−1 (V, Tk)− Ik = 0

for k ≥ 2 and V ∗1 = I1. Then,

Fk [Fk−1 (V, Tk) , Tk] =

{
Fk−1 (V, Tk)− Ik if VTk ≥ V ∗k

0 if VTk < V ∗k
.

In other words, if the value of V at time Tk, is greater than V
∗
k , the �rm continues to invest in the

project, i.e. the compound option will be exercised, while for values less than V ∗k it will be abandoned.

Note that the critical values V ∗k are determined recursively and their existence and uniqueness are

7If through portfolio diversi�cation the investor replicates the market valuation of the project and if the jump risk is
diversi�able, then according to the CAPM α = r′+βσ, where βσ is the risk premium, r′ is the risk free interest rate and
therefore dz∗ = dz+ βdt. Note that in such a context the jump risk yields a zero risk premium if it is uncorrelated with
the market as a whole, as it is the case, for example, if jumps are due to innovations in technology, actions undertaken
by competitors and changes in the �rm's strategy. See, for example, Lint and Pennings (1997) and Martzoukos and
Trigeorgis (2002).
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guaranteed in view of the expression of Fk−1 (see Remark 2).

Let us de�ne ni the number of Poisson arrivals in the time interval [Ti+1, Ti] , i = 1, 2, ..., N, and let

us set TN+1 = 0. Consequently, let sk =
N∑
i=k

ni
8be the total number of arrivals in the interval [0, Tk],

for k = 1, 2, ..., N . The time interval [0, T1] is divided into subintervals of length τk = Tk − Tk+1, for

k = 1, 2, ..., N with τN = TN .

Let σ2
sk

= σ2+
skσ

2
J

Tk
be the total variance conditional on the occurrence of sk jumps in the interval

[0, Tk], for k = 1, 2, ..., N. Moreover, let xt = ln
(
Vt
V0

)
be the logarithmic return9. The correlation

between xTj and xTi , over the overlapping time interval Tj < Ti, for 1 ≤ i ≤ j ≤ k and k = 1, 2, ..., N ,

conditional on observing sj and si jumps, respectively, is:

ρsisj =
σsj
√
Tj

σsi
√
Ti
. (4)

For any k, 1 ≤ k ≤ N , let Ξk denote a k−dimensional symmetric correlation matrix with typical

element ρsisj and unitary elements on the principal diagonal and Ξ1 = 1. Let ℵk(ζk, ..., ζ1; Θk) denote

the k−dimensional multinormal cumulative distribution function, with upper limits of integration

ζk, ..., ζ1 and correlation matrix Θk.

Our aim is to obtain a valuation formula for the N−fold compound option. Let V ∗N denote the

value of V such that FN−1 (V, TN )− IN = 0. Then, if the project value V , at time TN , is greater than

the critical value V ∗N , the �rm should exercise the option, that is to start to invest in the project.

Proposition 1 If the project value follows a jump-di�usion process (3), then the expected present

value of the N−staged investment project with �nal pay-o� max {V − I1, 0} and with investment costs

Ik at time Tk, k = 2, ..., N is:

FN (V, 0) =
N∏
j=1

[
∞∑

nj=0

e−λτj (λτj)
nj

nj !
V0e
−δs1T1ℵN (asN , ..., as1 ; ΞN )

]
+

−
N∑
j=1

{
N∏
k=j

[ ∞∑
nk=0

e−λτk (λτk)
nk

nk!
Ije
−rTjℵN+1−j

(
bsN , ..., bsj ; ΞN+1−j

)]}
,

(5)

where:

δsk = −
sk
(
µJ + 1

2σ
2
J

)
Tk

+ λ

[
exp

(
µJ +

1

2
σ2
J

)
− 1

]
, for k = 1, 2, ..., N,

8Here the upper limit of the summation refers to the degree of compoundness of the compound option.
9The logarithmic return xt evolves as: dxt =

(
r − λK − 0.5σ2

)
dt+ σdz∗t + ln (Y ) dqt, under the pricing measure Q.
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bsk =
ln
(
V0

V ∗
k

)
+
(
r − δsk − 1

2σ
2
sk

)
Tk

σsk
√
Tk

,

ask = bsk + σsk
√
Tk.

Proof. See appendix.

Remark 1 It is easy to see that:

∂

∂V
Fk =

k∏
j=1

 ∞∑
nj=0

e−λτj (λτ j)
nj

nj !
e−δs1T1ℵk (ask , ..., as1 ; Ξk)

 > 0,

and

lim
V−→+∞

Fk−1 (V, t) = +∞,

and therefore V ∗k solving Fk−1 (V, Tk)− Ik = 0 is unique for every k, 1 ≤ k ≤ N.

According to equation (5), the pricing formula has the following interpretation. The price of the

jump-di�usionN−fold compound option can be expressed as the weighted sum of theN -fold compound

option prices where each weight equals the joint probability that a Poisson random variable with

constant intensity λ will take on exactly the value ni in each time interval [Ti+1, Ti] , for i = 1, 2, ..., N .

The expression:

N∑
j=1


N∏
k=j

[ ∞∑
nk=0

e−λτk (λτk)
nk

nk!
ℵN+1−j

(
bsN , ..., bsj ; ΞN+1−j

)] ,

can be interpreted as the joint probability of the multicompound option expiring in-the-money under

the equivalent martingale probability measure, so that the second component in (5) is the present value,

computed using risk adjusted probabilities, of the subsequent investment costs10. The expression:

N∏
j=1

 ∞∑
nj=0

e−λτj (λτ j)
nj

nj !
e−δs1T1ℵN (asN , ..., as1 ; ΞN )

 ,
can be interpreted as the joint probability that the multicompound option will be exercised, so that

the �rst component in (5) is the present value of receiving the future cash �ows at expiration of the

option.

10See Lajeri-Chaherli (2002) and Lee et al. (2008, p. 43) for a similar interpretation.
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4 Sequential investment opportunities and stochastic invest-

ment cost

R&D projects often involve considerable cost uncertainty. For example, jumps in the investment cost

can be especially important in the development of a new drug by a pharmaceutical company. When a

company discovers a new therapeutic target, it has to start a new project, eventually abandoning the

current one, with an increase in the investment cost. On the other hand, technological progress can lead

to sharp investment cost reductions. In this section we extend the previous model assuming that the

investment cost varies over time11 and that its dynamics are governed by a geometric jump-di�usion

process.

Using the same notation as in Section 3, the project payo� at time T1, the time of market launch,

is max {V − I, 0} where V and I are the underlying value and investment cost; let W1 (V, I, t) be the

value at time t of this simple investment opportunity. The investor observes two random processes

V and I and must decide at each stage Tk, for k = 1, 2, ..., N and T1 ≥ T2 ≥ ... ≥ TN , whether to

continue to invest in the project, that is access stage k−1 of the project, or not. We accordingly de�ne

a sequence of call options, with value Wk, whose underlying value is Wk−1, and with exercise price

(i.e. investment cost) ITkpk and expiry date Tk, pk > 0, for k = 2, ..., N , and p1 = 1. Note that pk

is a scaling factor that allows for greater �exibility in the modelling of investment costs. The k−fold

compound option value can be written in a recursive way and its payo� at the option's maturity date

Tk is given by:

Wk (Wk−1 (V, I, Tk) , Ipk, Tk) = max {Wk−1 (V, I, Tk)− pkITk , 0} ,

for k = 2, ..., N and where Wk−1 (V, I, Tk) stands for the value of the underlying compound option

at time Tk. Thus, at time Tk, the �rm faces the option of investing an amount ITkpk, and therefore

entering stage k− 1 of the project whose value is Wk−1 (V, I, Tk), or to shut the project down. Notice

that the option at time T1 can be viewed as a simple exchange option12 where the delivery asset is I

and the optioned asset is V and the phased investment problem can be viewed as a compound exchange

problem (see, for example, Carr, 1988).

Under the risk-neutral martingale measure Q, the dynamics of the underlying assets are given by

11See also Wu and Yen (2007) and Cortellezzi and Villani (2009).
12See Lindset (2007) for the pricing of exchange options under jump-di�usion processes.
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the following jump-di�usion processes13:

dVt = (r − λ1K1)Vtdt+ σ1Vtdz
∗
1,t + (Y1 − 1)Vtdq1,t, (6)

dIt = (r − λ2K2) Itdt+ σ2Itdz
∗
2,t + (Y2 − 1) Itdq2,t, (7)

σ1 and σ2 are the respective standard deviations, conditional on no jumps and dz∗1 and dz
∗
2 are standard

Brownian motions, under the risk-neutral measure Q. The process dq1 and dq2 are Poisson random

variables with constant rates λ1 and λ2, respectively, counting the number of jumps. The sizes Y1

and Y2 are random variables and it is assumed that Y1 (Y2) is lognormally distributed with mean

µ1,J (µ2,J) and variance σ2
1,J (σ2

2,J). K1 and K2 are the average relative jump sizes E [Y1 − 1] and

E [Y2 − 1], respectively. We assume that the Poisson processes dq1 and dq2 and the jump components

Y1 and Y2 are independent of each other and also independent of the Brownian motions dz∗1 and dz∗2 .

Finally, we assume that Brownian motion components are correlated, with correlation coe�cient ϕ12,

i.e., corr[dz∗1 , dz
∗
2 ] = ϕ12dt.

Let us de�ne by V c the price ratio of V to I. This allows us to write14:

max {Wk−1 (V, I, Tk)− pkITk , 0} = ITk ·max
{
W c
k−1 (V c, Tk)− pk, 0

}
,

where ITk is the numeraire and W c
k−1 (V c, Tk) = Wk−1 (V c, 1, Tk) . Let us denote by V c∗k the critical

price ratio such that the underlying option is at the money at time Tk, i.e., V
c
Tk

= V c∗k , where V c∗k

solves:

W c
k−1 (V c, Tk)− pk = 0,

for k ≥ 2 and V c∗1 = p1 = 1. If the value of V c at time Tk, is greater than the threshold V c∗k , then the

�rm continues to invest in the project, i.e. the compound option will be exercised, while for values less

than V c∗k it will be abandoned.

Let us de�ne ni and mi the number of event occurrences, respectively, for the project value and

investment cost in the time interval [Ti+1, Ti] , i = 1, 2, ..., N. Again, TN+1 is set to zero. Consequently,

let s1,k =
N∑
i=k

ni and s2,k =
N∑
i=k

mi be the total number of arrivals in the interval [0, Tk], for k =

13Also in this case we assume that the �rm is diversi�ed, that is that he keeps a portfolio of activities which allows it
to value activities in a risk-neutral way.

14Given the above mentioned properties of V and I it can be shown that the homogeneity theorem holds where
Wk−1 (θV, θI, Tk) = θWk−1 (V, I, Tk) for θ ≥ 0. See for example Carr (1988) and Geman, El Karoui and Rochet (1995).
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1, 2, ..., N. For the following we set τk = Tk − Tk+1, with τN = TN .

Let σ2
s1,ks2,k

= σ2
c+

s1,kσ
2
1,J+s2,kσ

2
2,J

Tk
be the total variance of a percentage change in the price

ratio V c, conditional on the occurrence of s1,k and s2,k jumps in the time period [0, Tk] and σ2
c =

σ2
1+2σ2σ1ϕ12+σ2

2.Moreover, let xct = ln
(
V ct
V c0

)
be the logarithmic return15. The correlation coe�cient

between the logarithmic returns xcTj and x
c
Ti

over the overlapping time interval Tj < Ti, for 1 ≤ i ≤

j ≤ k and k = 1, 2, ..., N , conditional on the random event occurrences, is:

ρs1,is2,j =
σs1,js2,j

√
Tj

σs1,is2,i
√
Ti
,

For any k, 1 ≤ k ≤ N , let Φk denote a k−dimensional symmetric correlation matrix with typical

element ρs1,is2,j .

Proposition 2 If the project value V and the investment cost I follow jump-di�usion processes (6)

and (7), respectively, then the expected present value of a N−staged investment project with �nal pay-o�

max {V − I, 0} and with investment cost pkITk at time Tk, k = 2, ..., N , is:

WN (V, I, 0) =
N∏
j=1

[
∞∑

nj=0

∞∑
mj=0

e−(λ1+λ2)τj (λ1τj)
nj (λ2τj)

mj

nj !mj !
V0e
−δs1,1T1ℵN

(
cs

1,N
s
2,N

, ..., cs
1,1
s
2,1

; ΦN

)]
+

−
N∑
j=1

{
N∏
k=j

[ ∞∑
nk=0

∞∑
mk=0

e−(λ1+λ2)τk (λ1τk)
nk (λ2τk)

mk

nk!mk!
I0pje

−δs2,jTjℵN+1−j
(
ds1,Ns2,N , ..., ds1,js2,j ; ΦN+1−j

)]}
(8)

where:

δsi,k = −
si,k

(
µi,J + 1

2σ
2
i,J

)
Tk

+ λi

[
exp

(
µi,J +

1

2
σ2
i,J

)
− 1

]
, for k = 1, 2, ..., N, and i = 1, 2,

ds1,ks2,k =
ln
(
V c

V c∗k

)
+
(
δs2,k − δs1,k − 1

2σ
2
s1,ks2,k

)
Tk

σs1,ks2,k
√
Tk

,

cs1,ks2,k = ds1,ks2,k + σs1,ks2,k
√
Tk.

Proof. See appendix.

(8) can be seen as the weighted sum of the multicompound exchange option values where each

weight equals the joint probability that two Poisson random variables with rates λ1 and λ2 will take

on exactly the value ni and mi, respectively, in each time interval [Ti+1, Ti] , for i = 1, 2, ..., N . The

15The logarithmic return xct evolves as: dx
c
t =

(
λ2K2 − λ1K1 − 0.5σ2

c

)
dt+ σcdzct + ln (Y1) dq1,t − ln (Y2) dq2,t, under

the new risk-neutral measure Q̃. See Appendix for further details.

11



�rst component in (8) can be seen as the present value, computed using risk adjusted probabilities, of

receiving the future cash �ows at expiration of the option. The second component can be seen as the

present value of the investment costs.

5 Simulation results

In this section we provide some numerical results on multicompound options. In the �rst part of

this section we describe how the model developed in Section 3 can be implemented numerically16 and

afterwards we provide some numerical results. Following Amin (1993) we approximate the continuous

time model by a jump-di�usion process in discrete time (see also Martzoukos and Trigeorgis, 2002

and Xu et al., 2003) and we calculate option prices evaluating the expected discounted pay-o� of the

option using dynamic programming. In particular, we �rst construct the state space and calculate the

corresponding project values, and then value (compound-) options in a recursive way using Markov-

transition rates.

Consider �rst the option on the project value V with expiry date T1. Given the trading period

[0, T1], the time interval is divided into M subintervals of length hM = T1

M , where we de�ne M1 = T1

hM

and thus M1 = M . At each time period m, the state space is a grid, where each consecutive point

is spaced σ
√
hM apart. Between two consecutive time periods, the grid is shifted upwards by γM =(

r − .5σ2
)
hM . The project's value at time mhM if in state i is then given by:

Vi (m) = V (0) emγM+iσ
√
hM

The project value can undergo local changes i = ±1, representing the di�usion part, or jumps

for i 6= ±1, where the project value can jump possibly to any state in the state space. In order to

value options we use Markov transition probabilities within a �nite di�erence scheme. Local changes,

i = ±1, have probabilities approximately equal to 1
2 (see Amin, 1993), i.e.

p±1 = Pr
{

ln [V (t+ dt)]− ln [V (t)] = γM ± σ
√
hM

}
' 0.5

The probability of observing a jump is λM = λhMe
−λhM , and, given that a jump occurs, the probability

16Once the change of numeraire has been made, the model described in Section 4 can be implemented in a very similar
way.
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of observing a jump of size l > 1, or l < −1 is:

pl = Pr
{

ln [V (t+ dt)]− ln [V (t)] = γM + lσ
√
hM
}

=

ℵ
[
(l + 0.5σ)

√
hM
]
− ℵ

[
(l − 0.5σ)

√
hM
]

where ℵ (•) is the cumulative normal distribution function with mean µJ and variance σ2
J and where,

for simplicity's sake, we set µJ = − 1
2σ

2
J .

The option value (European style) F1 (i,m) is calculated in a recursive way, using dynamic pro-

gramming:

F1 (i,m) = e−rhM
{(

1− λM
)

1
2 [F1 (i+ 1,m+ 1) + F1 (i− 1,m+ 1)] +

λM [
∑∞
l=2 plF1 (i+ l,m+ 1) +

∑∞
l=2 p−lF1 (i− l,m+ 1)]

} (9)

with F1 (i,M1) = f1 [Vi (M1)] = max {Vi (M1)− I1, 0} being the pay-o� at the expiry date (i.e. bound-

ary condition). Given the properties of the normal distribution, the sums in (9) can be suitably

truncated. In the simulations below option values are computed using a 75-nomial scheme.

Compound options can be evaluated in a similar vein. Given T2 < T1 the expiration of the

compound option, let the pay-o� at the expiry date be a function of the underlying option at that

date, i.e. F2 (i,M2) = f2 [F1 (i,M2)]= max {F1 (i,M2)− I2, 0}, where M2 = T2

hM
. Following (9),

the option value can be calculated recursively. This method extends straightforwardly to the case of

N−fold compound options.

In Table 1 we test the accuracy of the procedure by evaluating a 2-fold compound option (call on

call option) where a closed form solution is available. Table 1 shows that the algorithm approximates

well the closed form solution.

[Insert Table 1]

In Table 2 we provide simulations for a 3-fold compound option (call on call on call option) with

strike prices I3 = 5, I2 = 10 and I1 = 100 for values of λ = {0.4, 0.6, 0.8, 1}. Exercise dates are

T3 = 0.2, T2 = 0.35, and T1 = 0.5. Since by increasing λ we also increase the underlying's total

volatility, option prices increase; hence, increasing the average number of jumps (per year) increases

the option's value.

[Insert Table 2]
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6 Conclusion

Phased investments have the property that much of the value of the investment is associated with

future cash �ows that are contingent on intermediate decisions. Because of this property the analysis

of sequential investment projects is one of the most di�cult problems. Starting from the di�culty of

traditional DCF methods to capture the value of early-stage investments, the real options literature

provides advanced models, each focusing on di�erent R&D characteristics. In the present paper we

value R&D projects with the following characteristics: 1) two types of uncertainty, i.e., continuous and

discontinuous variations in the underlying values, 2) project value and investment cost uncertainties,

and 3) compoundness of R&D projects.

7 Appendix

7.1 Proof of Proposition 1

Under the martingale approach, the value at time 0 of the European N−fold compound option is given

by the following expectation under the risk-neutral measure:

FN (V, 0) = e−rTNEQ
0 {max [FN−1 (V, TN )− IN , 0]} , (10)

where FN−1 indicates the value of an (N − 1)−fold compound option and V is the project value at the

maturity date TN . The expectation in (10) is in general di�cult to solve due to jumps in the project

value. We address this problem by conditioning on the random event occurrence, and work with the

conditional variable thereafter. Thus:

FN (V, 0) = e−rTN
∞∑

nN=0

e−λTN (λTN )nN

nN ! EQ
0 {max [FN−1 (V, TN )− IN , 0] | nN} . (11)

We know that FN−1 (V, TN ) is given by:

N−1∏
j=1

[
∞∑

nj=0

e−λτj (λτj)
nj

nj !
VTN e

−(δs1T1−δsN TN)ℵN−1
(
asN−1

(V, TN ) , ..., as1 (V, TN ) ; Ξ̂N−1

)]
+

−
N−1∑
j=1

{
N−1∏
k=j

[ ∞∑
nk=0

e−λτk (λτk)
nk

nk!
Ije
−r(Tj−TN )ℵN−j

(
bsN−1

(V, TN ) , ..., bsj (V, TN ) ; Ξ̂N−j

)]}
,
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where:

bsk (V, TN ) =
ln
(
VTN
V ∗
k

)
+
(
r − δsk − 1

2σ
2
sk

)
Tk −

(
r − δsN − 1

2σ
2
sN

)
TN√

σ2
sk
Tk − σ2

sNTN
,

ask (V, TN ) = bsk (V, TN ) +
√
σ2
sk
Tk − σ2

sNTN ,

and Ξ̂k is a a k−dimensional symmetric correlation matrix with typical element:

ρ̂sisj =

√
σ2
sjTj − σ2

sNTN

σ2
siTi − σ2

sNTN
.

Moreover, the project value at time TN under the risk-neutral probability Q and conditioned on nN

jumps in the interval [0, TN ], is:

VTN = V0e
(r−δsN−

1
2σ

2
sN

)TN+σsN
√
TN ·ξ,

where ξ has a standard Gaussian probability law under Q. Therefore, the value at time 0 of the

European N−fold compound option is:

FN (V, 0) = e−rTN×{
N∏
j=1

{
∞∑

nj=0

e−λτj (λτj)
nj

nj !

+∞́

uN

n (u)
[
φsN (u) e−(δs1T1−δsN TN)ℵN−1

(
âsN−1

, ..., âs1 ; Ξ̂N−1

)
du
]}

+

−
N−1∑
j=1

{
N−1∏
k=j

{
∞∑

nk=0

e−λτk (λτk)
nk

nk!

+∞́

uN

n (u)
[
Ije
−r(Tj−TN )ℵN−j

(
b̂sN−1

, ..., b̂sj ; Ξ̂N−j

)]
du

}}
+

−
∞∑

nN=0

e−λTN (λTN )nN

nN !

+∞́

uN

n (u) INdu

}
,

(12)

where n (.) is the normal density function, âsk = ask
(
φsN (u) , TN

)
, b̂sk = bsk

(
φsN (u) , TN

)
for k =

1, 2.., N − 1, the function φ : R −→ R is given by:

φsN (u) = V0e
(r−δsN−

1
2σ

2
sN

)TN+σsN
√
TN ·u,

and, �nally, the constant uN is de�ned implicitly by the equation:

uN = inf
{
u ∈ R | FN−1

[
φsN (u) , TN

]
≥ IN

}
.
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Straightforward calculations yield:

âsk =
ln
(
V0

V ∗
k

)
+
(
r − δsk + 1

2σ
2
sk

)
Tk − σ2

sNTN + σsN
√
TN · u√

σ2
sk
Tk − σ2

sNTN
,

b̂sk =
ln
(
V0

V ∗
k

)
+
(
r − δsk − 1

2σ
2
sk

)
Tk + σsN

√
TN · u√

σ2
sk
Tk − σ2

sNTN
,

for k = 1, ..., N − 1. The last term in (12) can be written in the form:

e−rTN
∞∑

nN=0

e−λTN (λTN )
nN

nN !
INℵ1 (bsN ) .

Using (4) and rearranging terms, it follows that:

ρ̂sisj =

(
ρsisj − ρsisNρsjsN

)
√(

1− ρ2sisN
) (

1− ρ2sjsN
) ,

for 1 ≤ i < j ≤ N. Therefore, we substitute each term ρ̂sisj in the matrix Ξ̂N−j with
ρsisj−ρsisN ρsjsN√

(1−ρ2sisN )
(
1−ρ2sjsN

) .
The second term in (12) can be written in terms of the N−dimensional multinormal cumulative dis-

tribution function by applying the following Lemma.

Lemma 1 Let 1 ≤ k < N , and let Ξ̃k be the matrix obtained from Ξ̂k by replacing any element ρ̂sisj

with
(
ρsisj − ρsisNρsjsN

)
/

√(
1− ρ2sisN

) (
1− ρ2sjsN

)
, by setting:

αsk =
ln
(
V0

V ∗
k

)
+
(
r − δsk − 1

2σ
2
sk

)
Tk√

σ2
sk
Tk − σ2

sNTN
and βsk =

σsN
√
TN√

σ2
sk
Tk − σ2

sNTN
,

for k = 1, ..., N − 1, where αsk and βsk are real numbers, the following identity holds:

bsNˆ

−∞

n (u)ℵk
(
αsN−1

+ uβsN−1
, ..., αsN−k + uβsN−k

; Ξ̃k

)
du = ℵk+1(bsN , ..., bsN−k ; Ξk+1). (13)

Proof. It follows by setting
bsk√

1−ρ2sksN
= αsk and

−ρsksN√
1−ρ2sksN

= βsk , k = 1, 2, ..., N − 1, and

substituting into (13). Then, the second expression of (13) is obtained by using the de�nition of the

standard multivariate normal distribution.
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Finally, we can write the �rst term in (12) in terms of the cumulative multivariate normal distri-

bution using Lemma 1, after making the following substitution x = u− σsN
√
TN .

7.2 Proof of Proposition 2

In the proof we apply a change of numeraire17. To establish the proposition we need to calculate

the dynamics of the process V c = V
I under the new risk-neutral measure Q̃. First, we determine

dV = d
(
V
I

)
by applying Itô 's Lemma. Computing the derivatives:

∂V c

∂t = 0; ∂V c

∂V = 1
I ; ∂V c

∂I = − V
I2 ;

∂2V c

∂V 2 = 0; ∂2V c

∂I2 = 2V
I3 ; ∂2V c

∂V ∂I = − 1
I2 ;

and by substituting into Itô 's formula:

dV c =
∂V c

∂t
dt+

∂V c

∂V
dV +

∂V c

∂I
dI +

1

2

[
∂2V c

∂V 2
(dV )

2
+ 2

∂2V c

∂V ∂I
dV dI +

∂2V c

∂I2
(dI)

2

]

=
1

I
[(r − λ1K1)V dt+ σ1V dz

∗
1 + (Y1 − 1)V dq1]− V

I2
[(r − λ2K2) Idt+ σ2Idz

∗
2 + (Y2 − 1) Idq2] +

1

2

{
− 2

I2
[(r − λ1K1)V dt+ σ1V dz

∗
1 + (Y1 − 1)V dq1] [(r − λ2K2) Idt+ σ2Idz

∗
2 + (Y2 − 1) Idq2] +

2V

I3
[(r − λ2K2) Idt+ σ2Idz

∗
2 + (Y2 − 1) Idq2]

2

}
.

Neglecting all terms of order (dt)
3/2

, (dt)
2
and above, leads to:

dV c =
(
r − δ̂

)
V cdt+ σ1V

cdz∗1 − σ2V
cdz∗2 + (Y1 − 1)V cdq1 − (Y2 − 1)V cdq2, (14)

where δ̂ = r + λ1K1 − λ2K2 + σ2
2 − σ1σ2ϕ12.

Applying the log-transformation for It, under the risk-neutral measure Q, it results that:

It = I0 exp

{(
r − λ2K2 − σ2

2

2

)
t+ σ2z

∗
2,t +

q2,t∑
i=1

ln (Y2,i)

}
= I0 exp {rt} · exp

{
−σ

2
2

2 t+ σ2z
∗
2,t − λ2K2t+

q2,t∑
i=1

ln (Y2,i)

}
.

(15)

17See, for example, Geman, El Karoui and Rochet (1995).
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In (15), we can interpret the expression:

exp

{
−σ

2
2

2
t+ σ2z

∗
2,t − λ2K2t+

q2,t∑
i=1

ln (Y2,i)

}
,

as the Radon-Nikodym derivative of some equivalent measure Q̃ with respect to Q, since it satis�es

the condition:

EQ exp

{
−σ

2
2

2
t+ σ2z

∗
2,t − λ2K2t+

q2,t∑
i=1

ln (Y2,i)

}
= 1,

for all t ≥ 0. Set:

dQ̃
dQ

= exp

{
−σ

2
2

2
t+ σ2z

∗
2,t − λ2K2t+

q2,t∑
i=1

ln (Y2,i)

}
,

hence, by simple substitution in (15) we can write:

It = I0 exp {rt} · dQ̃
dQ

.

By using the Girsanov's theorem, the process:

dz̃2 = dz∗2 − σ2dt, (16)

is a Brownian motion under the new risk-neutral measure Q̃. We, therefore, can write dz∗1 as:

dz∗1 = ϕ12dz
∗
2 +

√
1− ϕ2

12dz
∗
3 , (17)

where dz∗3 is a Brownian motion independent of dz∗2 under the measure Q. By using equations (16)

and (17), we can now rewrite the evolution of the asset V c under the new risk-neutral measure Q̃:

dV c = (λ2K2 − λ1K1)V cdt+ σcV
cdzc + (Y1 − 1)V cdq1 − (Y2 − 1)V cdq2,

with the de�nitions σc =
√
σ2
1 + 2σ2σ1ϕ12 + σ2

2 and σcdz
c = (ϕ12σ1 − σ2) dz̃2 + σ1

√
1− ϕ2

12dz
∗
3 and

where dzc is a Brownian motion under the risk-neutral measure Q̃.

Given that the jump sizes Y1 and Y2 are lognormally distributed with parameters
(
µ1,J , σ

2
1,J

)
and(

µ2,J , σ
2
2,J

)
, respectively, by applying the log-transformation for process V c allows us to obtain the
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explicit value of V c under the risk-neutral measure Q̃:

V ct = V c0 exp

{(
λ2K2 − λ1K1 − 1

2σ
2
c

)
t+ σcz

c
t +

q1,t∑
i=1

ln (Y1,i)−
q2,t∑
i=1

ln (Y2,i)

}
.

Therefore, the terminal price at time t under the risk-neutral pricing measure Q̃ and conditioned on

the number of jumps n and m for the project value and investment cost in the time interval [0, t],

respectively, is:

V ct = V c0 exp

{(
λ2K2 − λ1K1 −

1

2
σ2
c

)
t+ σcz

c
t +

n∑
i=1

ln (Y1,i)−
m∑
i=1

ln (Y2,i)

}

= V c0 e
(δm,2−δn,1− 1

2σ
2
n,m)t+σn,mzct ,

where:

δi,j = −
i
(
µj,J + 1

2σ
2
j,J

)
t

+ λj

[
exp

(
µj,J +

1

2
σ2
j,J

)
− 1

]

and where σ2
n,m = σ2

c +
nσ2

1,J+mσ
2
2,J

t .

Let ITN = I0e
rTN · dQ̃dQ be the numeraire. Under the martingale approach, the value at time 0

of the European N−fold compound exchange option is given by the following expectation under the

risk-neutral measure:

W c
N (V c, 0) = e−rTNEQ

0

{
ITN ·max

[
W c
N−1 (V c, TN )− pN , 0

]}
,

By conditioning on the number of jumps in the interval [0, TN ], we obtain:

W c
N (V c, 0) =

∞∑
nN=0

∞∑
mN=0

e−(λ1+λ2)TN (λ1TN )nN (λ2TN )mN

nN !mN ! I0e
−δs2,N TN×

EQ̃
0

{
max

[
W c
N−1 (V c, TN )− pN , 0

]
| nN , mN

}
,

(18)
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where we know that W c
N−1 (V c, TN ) is given by:

N−1∏
j=1

[
∞∑

nj=0

∞∑
mj=0

e−(λ1+λ2)τj (λ1τj)
nj (λ2τj)

mj

nj !mj !
×

V cTN e
−(δs1,1T1−δs1,N TN)ℵN−1

(
cs

1,N−1
s
2,N−1

(V c, TN ) , ..., cs
1,1
s
2,1

(V c, TN ) ; Φ̂N−1

)]
+

−
N−1∑
j=1

{
N−1∏
k=j

[ ∞∑
nk=0

∞∑
mk=0

e−(λ1+λ2)τk (λ1τk)
nk (λ2τk)

mk

nk!mk!
×

pje
−(δs2,jTj−δs2,N TN)ℵN−j

(
ds1,N−1s2,N−1

(V c, TN ) , ..., ds1,js2,j (V c, TN ) ; Φ̂N−j

)]}
,

and:

ds1,ks2,k (V c, TN ) =
ln
(
V cTN
V c∗k

)
+
(
δs2,k − δs1,k − 1

2σ
2
s1,ks2,k

)
Tk −

(
δs2,N − δs1,N − 1

2σ
2
s1,Ns2,N

)
TN√

σ2
s1,ks2,k

Tk − σ2
s1,Ns2,NTN

,

cs1,ks2,k (V c, TN ) = ds1,ks2,k (V c, TN ) +
√
σ2
s1,ks2,k

Tk − σ2
s1,Ns2,NTN .

Finally, equation (18) can be written in integral form as in (12) and solved in a very similar way. The

result in Proposition 2 follows.
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