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Abstract

One of the stated objective of the EU ETS policy is to incentivize investment in low-carbon or
carbon-free power generation technologies. Still, so far, the uncertainty about future carbon prices
and the existence of technology-dedicated incentives like subsidies for CCS and feed-in tariffs or
green certificates, might indicate that the carbon price has hardly played that role.
The aim of this paper is twofold. First, the method developed should help utilities decision-makers
integrate their views on carbon prices in an investment decision framework. Second, the method
employed should ultimately help identify sensitivity points to guide policymakers when designing
amendments to the rules governing the EU ETS.
In order to understand how corporate decisions under carbon price uncertainty are taken, we model a
utility’s investment decision in a multivariate real options framework. We consider a European util-
ity that has a 10-year window to invest in a combination of various generation technologies (nuclear,
IGCC, CCGT, pulverized coal and offshore wind). The model specifically account for uncertainty
in carbon and power prices. The model is solved using the least-squares Monte Carlo approach
(Longstaff and Schwartz, 2001 and Gamba, 2003) in order to account for various sources of un-
certainty. Compared to the existing literature, we adapt the method to explicitly allow for capital
rationing and choose among various technologies rather than just determining an optimal option ex-
ercise time.
Policy-wise, early results of the model indicate that attempts to limit market price volatility and / or
ensure a quick reversion to long-term equilibrium are of little help when compared to giving indica-
tions regarding significant cap level at various points in time (indicative of the deterministic trend).
Furthermore, the price of carbon only contributes little to shifting investment decisions towards
carbon-neutral or lower carbon investments. Rather, the price of carbon is critical to short-term ad-
justments (fuel-switching / trading / operation planning). Finally, technology-dedicated incentives
seems to better incentivize the investment in carbon-neutral or lower carbon power plants.
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1 Introduction

Carbon price uncertainty has been often invoked as one of the reasons why delay investments in power
generation capacity in the EU. More specifically, the lack of long-term visibility and volatility of the
European carbon price have been strongly criticized by European utilities. This paper tackles the issue
of carbon price uncertainty for European utilities and tries to evaluate the claims of the power sector and
find reasons why utilities corporate financiers would delay their investments in generation capacity or
would favor specific investment alternatives over others.

1.1 Literature survey

1.1.1 Power plant investment and the EU ETS

Investments in power plants are unique for financial and technical reasons (Olsina et al., 2006 [1]; He,
2007 [2]). They entail large capital outflows, a large percentage of which having to be committed be-
fore the power plant is even commissioned. This often translates into long payback period and calls for
reliable valuation and decision-making tools. In addition, power plant investments expose investors to
several long run uncertainties: on the demand side, regarding costs (fuel and O&M), long-term electric-
ity prices, price spikes frequency (for peakload plant valuation), technology innovation risk, regulatory
risk and changes in capacity by competition. Also, these investment are characterized by a certain form
of irreversibility and the option to postpone investment.

The European Union Emission Trading Scheme (EU ETS) was launched in 2005 to facilitate European
member states compliance with the Kyoto protocol. The EU ETS shifts a large share of the environmen-
tal burden of EU member states to EUs stationary sources of greenhouse gases emissions (carbon dioxide
most essentially). The EU ETS functions as a cap-and-trade market. Stationary sources of carbon diox-
ide (CO2) emissions within the scope of the pertaining Directive (called installations) are identified and
an emissions cap, corresponding to the maximum quantity of CO2 they can emit during a given period,
is imposed on them by the regulator. At the time of writing, there was three compliance periods in the
EU ETS: the trial phase (phase I) between 2005 and 2007, the Kyoto phase (phase II) between 2008 and
2012 and the post-Kyoto phase (phase III) between 2013 and 2020. Stationary sources falling within
the scope of the Directive are combustion installations with a capacity superior to 20 MW. Some 70%
of those installations are either producing power or heat and it was estimated that 49% of them where
solely producing power (Trotignon and Delbosc, 2008 [3]). The remaining installations are industrial
installations from the steel, cement, refining sectors among others. Installations within the scope of the
Directive have been entitled European Union Allowances (EUAs) that corresponds to the right to emit
one ton of CO2 during a specific time period. The quantity of EUAs they have been entitled corresponds
to the emissions cap imposed on them. While, on average, the industrial installations have been allocated
more allowances than required over the compliance periods, the power and heat portion of the EU ETS
was entitled less EUAs than was expected to be needed. The prevailing allocation method during phase
I and II was grandfathering: EU ETS installations emissions cap was fixed based on historical emis-
sions. During the first two compliance periods, allowances were mostly allocated for free. In order not
to disadvantage new entrants (genuine new entrants in the European power sector or extra combustion
units from incumbents that would fall within the scope of the Directive), a new entrant reserve (NER)
was negotiated and set aside. This NER is comprised of free allowances provided to new installations
so that incumbents would not be favored as regards the EU ETS. It is expected that phase III will most
probably see a move towards more auctioning for the power sector since 2013 and a gradual shift for
industrial sectors with the aim of 100% auctioning by 2020. These EUAs are assets that can be traded
among installations of the EU ETS. Financial intermediaries can also participate in the scheme. A cap-
and-trade scheme gives the incentive to reduce emissions beyond the cap since compliance-buyers are
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allowed to sell emissions rights in excess of their emissions needs to those for whom it is more expensive
to reduce their emissions on their own. To claim compliance, EU ETS installations must surrender as
much EUAs as tons of CO2 they have emitted over a given year. They can do so by either acquiring
more EUAs (or similar assets) or by reducing their emissions. Emissions reductions in the power sector
can be achieved by means of short-term operational adjustments (like fuel switching to a lower carbon
content combustion fuel), investments in less carbon-emitting technologies (retrofitting power plants
with carbon capture and storage or investing in a plant that emit less based on its initial characteristics)
or by halting or decreasing the power plant output (and the emissions consequently).

Therefore, the theoretical impact on the power sector takes place at two level. First, the carbon price
has been introduced in operational decisions. Anytime a ton of carbon is emitted in the course of the
production process, the operator compares the corresponding profit margin for the production (includ-
ing carbon procurement costs) with the opportunity cost of selling the allowance on the market. Some
studies even talk of some emissions reduction during the first trading phase (2005-2007) in the form
of fuel switching even though the cap was not that stringent (Ellerman and Buchner, 2006 [4]). Sec-
ond, the carbon price can be factored in longer term decision making - namely the decision to invest in
several abatement solutions. Should the carbon price be high enough, decision-makers might consider
it more advantageous to invest in carbon-free or less carbon-intensive production apparel. Hoffmann
(2007) [5] note that this has not been the case so far in the German power industry. He finds that while
short-term operating decisions clearly have been impacted the EU ETS, this was not the case for green-
field/brownfield investment decision and R&D as well. Reasons invoked for that lack of incentives are
numerous.
Most policy observers argues that the cap for phase I and II of the EU ETS has been set too low to
provide an effective incentive. Others note that the effectiveness of the policy was corrupted by not
following the policy tool ”by the book” despite it was the condition for acceptance by the regulated: the
allocation of most grandfathered allowances for free in phase I and II (instead of an auctioning process)
and the new entrants and closure provisions (Ellerman, 2006 [6]). Finally, the existence of authorized
flexibility mechanisms (banking, borrowing of EUAs and ability to surrender credits from Kyoto offset
projects) and derogatory measures in some member states are sometimes invoked as not giving the in-
centive to invest in carbon-free technologies within the EU boundaries.

Contemporary to the introduction of the EU ETS, three major changes radically modified the invest-
ment decision-making for European utilities.
First, the market liberalization process has progressed in Europe (Joskow, 2008 [7]; Chevalier and Perce-
bois, 2008 [8]). The process introduced uncertain customer demand as well as uncertain power prices
which have not simplified the investment decision-making. The decision to invest is no longer a state
or a monopolistic utility centralized procedure but rather a decentralized decision of generation firms
aiming at maximizing profits.
Second, in parallel to the effort on curbing greenhouse gases by means of a cap-and-trade approach, the
European utilities have been subject to various regulatory reforms (at the EU level and member state
level) with renewable energy targets, energy efficiency measures and carbon capture and storage (CCS)
objectives. These new regulations are most associated with policy instruments to provide the regulated
utilities with the incentive to act in accordance with the spirit of the policies: feed-in tariffs or tradable
green certificates to achieve renewable targets or tenders and subventions for the funding of demonstra-
tion CCS projects for instance. It is unclear whether their co-existence support or create distortions with
the EU ETS.
Third, the second phase of the EU ETS also saw the effect of the economic and financial crisis that
begun in late 2008. Between July 1st, 2008 and February 12th, 2009, the phase II carbon price was
divided by 3.6 to reach EUR 8/ton given the revised expectations on future production and emissions
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levels. This might to some extent have impacted the required rate of return on power plant investments
upward, modified the financing decision, the prospects for valuation drivers and more fundamentally the
need to undertake new investments.

1.1.2 Real option investment decision modeling

The shift towards more liberalized markets with several policy instruments triggered regained interest in
electricity market modeling. Such interest revolved around three major trends (Ventosa et al., 2005 [9]):
optimization models, equilibrium models and simulations models. To some extent, this paper belongs
to the first trend given our focus on a single firm trying to optimize its investment plan under exogenous
price developments.

In an effort to overcome the limitations of the net present value (NPV) rule under deterministic dis-
counted cash flows (DCF)1, the real options methodology suggests an approach that can be used to
complete the traditional NPV rule. First, the real options approach (ROA) allows the decision maker
to postpone the initial investment undertaken - this gives him flexibility in the investment timing (op-
tion to defer) instead of the traditional now-or-never investment decision. Second, the ROA permits the
decision maker to value the operating flexibility in the underlying asset (Trigeorgis, 1996 [10]): option
to alter operation scale (expand or contract), option to abandon (temporarily or definitively), option to
switch (from one operating process to another) and growth options. Third, the ROA typically incorpo-
rates some way of accounting for uncertainty from simple binomial tree to stochastic price modeling for
instance. Finally, initial investments are considered irreversible - a limitation of the traditional NPV rule
under deterministic DCF being to assume the perfect marketability of assets being valued. This makes
valuation rather irrealistic when large scale or proprietary investment are performed. Instead, the ROA
takes this characteristic into account.

The ROA essentially builds on the financial options theory - and most predominantly the seminal works
on option pricing by Black and Scholes and Merton, the binomial approach by Cox, Ross and Rubin-
stein as well on stochastic price modeling2. Risk-neutral valuation is also a major building block of
the ROA with contingent claim analysis (replicating portfolio and use of spanning assets) and certainty-
equivalent approach. Finally, most recent works especially in the face of ever more complex problem
involve numerical methods to avoid solving analytically real options problems. In this respect, the land-
mark works on dynamic programming (Bellman, 1957 [13]) have been completed by backward-looking
Monte Carlo simulations [14] and control-variate methods with numerical approximations. Reference
works on the ROA include textbooks by Dixit and Pindyck (1994) [15] and Trigeorgis (1996) [10] and
papers by Brennan and Schwartz (1985) [16] on multiple option framework for mine management and
Pindyck (1988) [17] on the options to choose capacity under product price uncertainty.
Common applications for the ROA in the academic literature are high capital cost investments (oil fields,
mines, power plants, etc.) characterized by large uncertainties in demand, supply and/or price (natural
resources and R&D projects especially), long lifetime and some leeway or strategic behavior either in
the initial investment decision or subsequent operating decisions3.

1Conceptually, the traditional DCF approach has the following limitations: it entails accepting all the outcomes of the
projects once decided upon, it is a now-or-never decision and it systematically underestimate the asset value with real options
embedded. More technically, other limitations includes the difficulty to estimate future cash flows because of their stochastic
nature, the risk of making errors in choosing an appropriate discount rate, etc. (He, 2007) [2].

2For a recent treatment on this, refer to Shreve (2004) [11] and Shreve (2006) [12].
3It should be reminded that the ROA is by no means a one-size-fits-all method. The method is nonetheless fraught with

conceptual and implementation difficulties and has more often gained acceptance among academics rather than by decision-
makers for fear of resorting to a “black box” (He, 2007 [2]).
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In this respect, the very characteristics of power plant investment decisions makes it particularly rel-
evant to use the ROA. The ROA has been applied to peak-load power plant valuation, hydro power plant
valuation (taking into account the flexibility in managing the water level in its reservoir), fuel switching
in IGCC plants or CHP plant optimal output scheme.
Recent applications to carbon mitigation in the power sector include focus on CCS investment in Spain
(Abadie and Chamorro, 2008 [18]), in the US (Bohm et al., 2007 [19]; Sekar et al., 2007 [20] and Sekar,
2005 [21]), capacity investment decision in the EU (Laurikka, 2005 [22]; Laurikka and Koljonen, 2006
[23]; Fuss et al., 2008 [24]; Fuss et al., 2009 [25]) and investment risk quantification (Blyth et al., 2007
[26]; Yang and Blyth, 2007 [27]).

1.2 Research questions

Based on an analysis of expected generation capacity addition by European utilities, we make the fol-
lowing assumptions which remain to be verified by the model proposed here. First, the price of carbon
might not be enough to incentivize investment in low-carbon / carbon-free generation units and could
even delay such investments due to regulatory uncertainty. Second, low investments in CCS is subject
to bargaining direct subventions from EC or Member States and the price of carbon might not play the
incentivizing role it is supposed to. Third, investments in renewables is a direct response to renewable
policies and it is unclear to what extent carbon markets are helping or distorting the incentive (and con-
versely, to what extent technology-dedicated incentives support or distort the EU ETS policy).
So we will discuss to what extent carbon prices direct investments towards specific low-carbon tech-
nologies. Based on the model results, we will further discuss how best to incentivize investment in
low-carbon or carbon-free technologies by means of a price for price.

1.3 Assumptions

We assume a European utility operating over the French-German area. The utility has been approved
to build and operate power plants on a given number of sites. Until expiration of the licenses to build
for the sites (10 years from now), the utility has flexibility in (1) when to build power plants (timing
option) and (2) what power plant technologies to invest in. The sites are located in France so that the
utility is exposed to French power prices. This allows us to consider nuclear technology as a generating
technology (while in the case of Germany that would not have been possible because of a scheduled
phase-out that is still debated).
The utility investor is assumed to be either a genuine new entrant in the EU ETS or an incumbent
investing in a new installation. Accordingly, he should be granted access to the new entrant reserve
(NER) which puts aside EUAs for new participants in the scheme. Still, it was assumed that there were
not any allowances left in the NER so that EUAs have to be purchased to initiate plant’s operations in
order to reflect the forthcoming situation of investors facing more generalized forms of auctioning for
EUAs4.

2 Model structure

The objective of the model is to solve an investment decision problem under uncertainty. Various meth-
ods are envisaged in the real options literature to solve such problems.
First, the analytical approximation methods attempt to solve such problems by finding a closed-form

4Note that since we mainly focus on the carbon price uncertainty, we are not taking into account power demand uncertainty,
the impact of competition moves on market prices (by addition or removal of capacity), technical progress, transmission and
network constraints (which to some extent, we acknowledge, might be critical for the valuation of intermittent sources of
electricity).
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solution to the partial differential equations (PDEs) at the core of the model. Two equivalent approaches
are detailed in the literature. The dynamic programming approach involves breaking down the entire
sequence of decisions into two components: the immediate decision and a value function that encom-
passes the consequences of all subsequent decisions. The contingent claims approach makes an analogy
between the investment considered and a stream of costs and benefits varying through time and depend-
ing on the unfolding of uncertain events. Hence, valuation is based on underlying tradable assets. This
implies some combination of traded assets that will mimic the pattern of returns from the investment
project at every future date and in every future uncertain eventuality. Dixit and Pindyck (1994) [15]
explain that both approaches should result in the same solutions (the only differences being the discount
rate used and the way cash flows components account for uncertainty).
Given that closed-form solutions rarely exist (especially when several sources of uncertainty are con-
sidered), numerical methods have been used either to approximate solutions or to discretize continuous
underlying processes. Lattice and tree methods belong to numerical methods but are plagued by the
curse of dimensionality when more than one process is involved. Alternatively, Monte Carlo simula-
tions are a numerical integration method that can be used to find a risk-neutral value of an option by
sampling the range of integration. Lastly, the least-squares Monte Carlo (LSM) method (a subset of
Monte Carlo methods) allows to match Monte Carlo simulations and dynamic programming which can
be used to price Bermudan options (in which case the option can only be exercised at specific dates over
its life) featuring several sources of uncertainty.

A typical approaches to ROA power plant valuation involves directly modeling the spark spread (the
power generator profit margin per MWh) as the sole underlying process (and often as a mean-reverting
process or inhomogeneous geometric Brownian motion). Given that our focus is on carbon price uncer-
tainty, we will not model clean spark spreads or clean dark spreads5 but rather model power and carbon
price processes as distinct processes. That way, we can use the same price processes to value nuclear
and wind investment alternatives and we can better observe the economic relationship between carbon
and power prices.

2.1 General depiction

We use a discrete time mixed state real options decision model. In our problem, the state space is mixed
(i.e. some states are continuous while others are discrete) while the action space is discrete. See figure
1 for a representation of the model.

In every period t ∈ ‖0; 10‖, the investor:

• observes the state of various economic processes: (1) the remaining budget (bt), (2) stochastic
forward prices for carbon (pct ) and electricity (pbt for baseload and ppt for peakload) and (3) spot
deterministic prices for the the feed-in tariff of the offshore wind farm (pft ) and for fossil fuels
delivery, namely coal (pkt ), and natural gas (pgt ). We use St as the set of price state variables
(excluding the budget level).

• decides to (1) invest in a combination of power plant technologies (a CCGT power plant costing
IG, a pulverized coal plant for IK , an IGCC plant for II , a nuclear power plant for IN and an
offshore wind power plant for IW ) or (2) wait to invest later as long as the site license has not
expired and the budget permits. The decision is indicated by the control variable xt (the scope of
actions depending on remaining budget).

5Cost of producing a MWh with natural gas (coal respectively) and accounting for carbon procurement costs.
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Figure 1: Model structure
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• earns a reward ft(bt, xt, St) in the form of the NPV of the investment undertaken that depends
both on the states of the economic processes and the action taken at a given time t.

The investor seeks a policy of state-contingent actions (x∗0, x
∗
1, ..., x

∗
10) that will maximize the present

value of current and expected future rewards, discounted at a per period factor e−r:

max
xt(.)

[EQ0
10∑
t=0

e−r.tf(bt, xt, St)]

Note that EQt [S̃t+1], indicating the risk-neutral expectation about the future set of stochastic state vari-
ables (St+1) conditional on knowing St (also known as the Equivalent Martingale Measure or EMM),
is equivalent to EQ[S̃t+1 | St]. Also note that S̃t indicates that the set of stochastic state variables is
actually random in time t as opposed to St which indicates it is known.
The use of a risk-neutral pricing framework allows us to use a the risk-free rate for discounting purpose
instead of having to determine a risk-adjusted discount rate that would be bluntly applied to all cash
flows whatever the risk embedded (feed-in tariffs implicitly assumed as risky as the carbon price).

2.2 Model input

2.2.1 The state variables

We now consider the various state variables.

(1) The budget constraint
The first state variable corresponds to the budget constraint. The budget is a discrete state (i.e. finite
number of value taken) variable. It basically acts as a way to ensure respect of the budget constraint. Let
bt denotes the budget available to invest in period t. We begin the problem with an initial endowment of
b̄. As we progress through investment nodes, bt can take any possible combination of investment costs
between b̄ (untapped budget) and the combination that exhaust entirely the budget granted.
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The next period budget corresponds to this period’s budget minus investments undertaken during this
period:

bt+1 = bt − xt

Looking at recent investment programs announced by European utilities and given power plant invest-
ment costs assumptions further detailed, we set the initial endowment b̄ at EUR 5.9 billion over the
investment window. With the investment alternatives investment costs and initial budget specified, we
identify 121 possible investment combinations.

(2) The price of carbon
Recent empirical papers help explain the evolution of past prices on the European carbon market. In
particular, Alberola et al. (2008) [28] and Mansanet-Bataller et al. (2006) [29] have shown that carbon
prices reacted to energy markets price developments (power, oil, natural gas and coal), extreme tempera-
tures and industrial activity. Alberola and Chevallier (2009) [30] have identified that market participants
would engage in intertemporal adjustments allowed by the market design of the EU ETS. Mansanet-
Bataller and Pardo (2007) [31] demonstrate European carbon prices’ high sensitivity to institutional
announcements resulting in price shifts upon or prior announcements. Benz and Trück (2008) [32] iden-
tify stylized facts of European carbon prices: mean-reversion, jumps and spikes, and heteroskedastic
volatility.

Though definitely a place to look at for guidance, the little carbon price history makes it difficult to
solely rely on this literature for prospective investment decision-making. The choice of the relevant ap-
proach for modeling the carbon underlying asset must help in the long-term irreversible decision making.
Still, those price drivers and stylized facts help the decision maker choose the proper carbon price mod-
eling and parameter fitting.
Therefore, we resort to a stochastic price model to account for uncertainty in European carbon prices.
We model the carbon price as a continuous state stochastic variable. This means that the investor does
not know what the future prices will be (that would be a deterministic variable) but does know the price
process and fitting parameters used and hence the statistical distribution associated. This approach in-
volves using a mathematical depiction of the price dynamic for carbon, that is further calibrated and
then used to simulate price paths ultimately used in generation technology valuation and investment
decision-making.

The mathematical depiction typically takes the form of a general stochastic differential equation (SDE)
used to model processes under uncertainty, like equity or commodity prices:

dXt = F (Xt)dt︸ ︷︷ ︸
drift component

+ G(Xt)dWt︸ ︷︷ ︸
diffusion component

where:

• Xt = the process variable to simulate (in our case, the price of carbon allowances, pct or its natural
logarithm, ln(pct));

• F (Xt) = the drift rate function which is the trend component of the SDE. Two typical drift rate
functions are commonly used in the economic and financial time series literature:

– A ”linear drift rate” taking the following shape:

F (Xt) = At +BtXt

10



where At is the intercept term of F (Xt) and Bt is the first-order term of F (Xt) (slope or
linear growth component).

– A ”mean-reverting drift rate” specification taking the following shape:

F (Xt) = θt(X∗
t −Xt)

where θt is the mean reversion speed, i.e. the time it takes for the price process to go back
to its long-term average level, X∗

t , to which the process eventually reverts to.

• G(Xt) = the diffusion rate function expressing the behavior of the process around its trend (vari-
ability);

• Wt = a Brownian motion vector, which increments are used to model shocks to the processes;

The two main processes for carbon price found in the literature on investment decision under carbon
price uncertainty so far are (1) the Geometric Brownian Motion (GBM) which is the price process ba-
sically used for stocks and (2) a typical mean-reverting (MR) process, the Ornstein-Uhlenbeck model.
Those price processes are sometimes completed by adding jumps to the processes to reflect abrupt
changes in climate policy6. Table 1 surveys price processes used for carbon prices found in the literature
as well as fitting methods and data used.

Most authors have resorted to the GBM form to model the price of carbon. This is the typical form
chosen for equity prices in option pricing model and implicitly makes an assumption of exponential
price growth. In a policy-oriented study of investments under climate policy uncertainty, Blyth et al.
(2007) [26] and Yang et al. (2008) [34] model the price of carbon as a GBM. Yang and Blyth (2007)
[27] further improve their modeling of carbon price by simulating possible carbon price shocks that
would represent policy-related events by adding a jump feature to the stochastic modeling (only once
ten years from when the initial investment decision can be first taken). The GBM is fitted using a mix of
IEA projections and judgmental input.
In an application to optimal rotation period for forest valuation, Chladná (2007) [35] resorts to a GBM
fitted with the IIASA MESSAGE model. Szolgayova et al. (2008) [36] and Fuss et al. (2008) [24]
assume that, while the electricity price is suggested to follow a mean-reverting process, the carbon price
follows a GBM process. Again, the data used to parameterize the GBM comes from IIASA’s GGI Sce-
nario database and originally refers to the shadow price of emissions. Fuss et al. (2009) [25] use the
same GBM to model the price of carbon but also add a jump process to reflect policy changes over a
very long-term horizon (150 years). The size of jumps are drawn from an underlying GBM.
Abadie and Chamorro (2008) [18] resort to a stochastic model of carbon prices to evaluate the prospects
of carbon capture investments in Spain. While all the other papers surveyed have been fitted using either
model projections or judgmental input, they model carbon prices using a a typical GBM fitted with EU
ETS Futures contracts data. Hence, they provide a risk-neutral version of GBM functional form explic-
itly taking into account a Futures market risk premium. They estimate the parameters using a Kalman
filter procedure with EUA Futures prices between January 2006 and October 2007.

In the literature, the choice of a mean-reverting price model is an alternative to the GBM which has
the drawback to allow wider price developments over time (the variance of which grows infinitely) than

6Other authors have suggested other functional forms for carbon price modeling taking into account more detailed price
movements like price spikes or regime switching. But those stochastic modeling are not initially done for investment decision
where the big picture matters the most but rather for derivatives pricing or short-term valuation purpose. See for example,
Benz and Trück (2006) [32] for an application of regime-switching models and Daskalakis et al. (2007) [33] for applications
of jump-diffusion models.
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ná

(2
00

7)
G

B
M

U
SD

5/
t

in
20

10
3.

63
%

-
-

-
16

.6
0%

-
II

A
SA

M
E

SS
A

G
E

m
od

el
Fu

ss
et

al
.(

20
08

)a
nd

Sz
ol

-
ga

yo
va

et
al

.(
20

08
)

G
B

M
E

U
R

5/
t

5.
68

%
-

-
-

2.
87

%
-

G
H

G
sh

ad
ow

pr
ic

es
fr

om
II

A
SA

G
G

I
sc

en
ar

io
da

ta
ba

se

Fu
ss

et
al

.(
20

09
)

G
B

M
w

ith
an

d
w

ith
ou

t
G

B
M

ju
m

p

U
SD

5/
t

5.
00

%
-

-
-

0
to

30
%

fr
eq

ue
nc

y
is

fr
om

0
to

20
ye

ar
s

G
H

G
sh

ad
ow

pr
ic

es
fr

om
II

A
SA

G
G

I
sc

en
ar

io
da

ta
ba

se
Y

an
g

&
B

ly
th

(2
00

7)
;B

ly
th

et
al

.(
20

07
)a

nd
Y

an
g

et
al

.
(2

00
8)

G
B

M
w

ith
Po

is
so

n
ju

m
p

un
di

sc
lo

se
d

un
di

sc
lo

se
d

-
-

-
7.

75
%

+/
-

10
0%

si
ze

an
d

on
ce

10
ye

ar
s

fr
om

no
w

In
or

de
r

to
fo

llo
w

IE
A

sc
en

ar
io

pr
oj

ec
tio

ns
15

ye
ar

s
fr

om
no

w

Y
an

g
&

B
ly

th
(2

00
8)

M
R

U
SD

15
/t

in
20

05
-

-
0.

14
E

U
R

15
/t

an
d

15
%

p.
a.

50
.0

0%
-

In
or

de
r

to
fo

llo
w

IE
A

sc
en

ar
io

pr
oj

ec
tio

ns
15

ye
ar

s
fr

om
no

w
L

au
ri

kk
a

&
K

ol
jo

ne
n

(2
00

6)
M

R
E

U
R

7/
t

in
20

05
-

-
0.

20
E

U
R

20
/t

or
E

U
R

1/
t

in
20

13

10
or

40
%

-
ju

dg
em

en
ta

li
np

ut

12



mean reverting models. While models based on GBM have been used for tractability and ability to
obtain closed-form expressions readily analyzable, mean reversion reflects the long-term equilibrium of
production and demand. Laurikka and Koljonen (2006) [23] model the natural logarithm of the price
of carbon allowances as a simple mean-reverting Ito process, namely an Ornstein-Uhlenbeck process
(continuous state and discrete time). The authors assign two different values to the long-term price level
(by 2013) depending on the scenario taken: EUR 20/ton in a high scenario and EUR 1/ton in a low price
scenario. Similarly, the variance parameter can take the value of 10% (low volatility scenario) or 40%
(high volatility scenario). For fitting the model they use a starting price of EUR 7/ton based on early
forward transaction prices reported by Point Carbon in 2004. Laurikka (2005) [22] suggests a simulation
model which can simultaneously deal with multiple stochastic variables (emission allowances, electric-
ity and fuels) to estimate the value of flexibility. Again, the stochastic processes used in the simulation
mimic the simplest mean-reverting process (the Ornstein-Uhlenbeck process). It is important to remark
that both studies were designed prior to the entry into force of the EU ETS.

When it comes to modeling the price of carbon, we contend it is more judicious to model the price
of carbon as a mean-reverting process along a linear trend for three main reasons7.
First, we argue that carbon price long-term price drivers (the supposedly declining cap feature of the
cap-and-trade policy, economic cycles oscillating around a long-term economic growth trend and tech-
nological abatement options availability) are such that a mean-reverting around a trend makes sense.
Second, even though there is no mean-reverting level as such, stakeholders actions should ensure not
much price deviation (as would be implied by modeling the price of carbon as a GBM for instance) from
long-term equilibrium. On the one hand, there are forces that would strive to prevent the price of carbon
from reaching extremely high level. Too high a price is the sign of a cap level hardly compatible with
a healthy economic activity8. On the other hand, there are forces eager to see the price of carbon reach
a minimum threshold9. As such, market phases negotiations are the occasion to reset the rules in order
to adjust any fundamental flaw in the market design (like the implied ban on banking between phase
I and II during the trial phase). This is achieved on the regulator side by modifying the cap and other
elements of policy design (flexibility, derogations, etc.). On the regulated side, lobbying, pressuring and
legal challenges are the tools of the trade.
Third, commodities have often been modeled as MR processes (Pindyck, 1999 [37] and Schwartz, 1997
[38]) allowing to reflect some long-term cost of production, extraction or abatement. Even though it
was argued that the GBM was as good as a MR process when applied to a ROA framework, the current
carbon spot prices are so remote from what a long-term equilibrium should be that a GBM would not
be appropriate. A quick look at other mandatory emissions markets (SO2 and NOx markets in the US)
long term price evolution confirms our intuition of mean-reverting prices. The strong link with other
energy commodity markets known for being mean-reverting goes in the same direction. Regarding the
SO2 and NOx markets, it appears that price mean-reverted around a downward trend which can be
interpreted as technological breakthroughs to allow for emissions reduction and their penetration among

7Of course, it is ultimately each decision maker’s task to resort to the price process he deems the most appropriate. The
same comment applies to the fitting of the process retained.

8The effect on the economy and society could be disruptive (insufficient power generation capacity, loss of international
competitiveness for industries subject to carbon leakage, etc.). There exist a non-observable upper bound for the price of
carbon reflecting the acceptability of compliance buyers above which their survival would be at stake (exit threshold).

9In this respect: the regulators (the EC and EU Member States) are urged to implement successfully the policy to justify
their legitimacy to act as such. So are the politics who mandated the regulators and the international community pressuring the
EU Member States to respect the engagement to reduce carbon emissions. NGOs and carbon market observers would monitor
the evolution of carbon price and would publicly advocate for environmental consciousness in case things go wrong. Carbon-
reducing and carbon-neutral technology developers are concerned with keeping the incentive to maintain the development
of such technologies and ensuring commercial prospects thereafter or own compliance prospects. Finally, regulated entities
themselves would push for meaningful carbon prices as a way to establish barriers to entry or at least increase the cost to enter
the market.
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compliance buyers.

We now turn to the carbon price modeling retained. Let pct denote the spot price of a carbon emission
allowance (in EUR/tCO2) at time t. We assume that the pct is a continuous state stochastic variable
following an exogenous mean-reverting continuously-valued process with a linear trend and constant
volatility (one-factor model based on the log spot price from Lucia and Schwartz, 2000 [39]):


ln(pct) = hct

∗ +Xc
t

hct
∗ = αc + βc.t (linear deterministic trend)

dXc
t = −θc.Xc

t .dt+ σcdW c
t

In which, the log of the spot carbon price is expressed as the sum of (1) a totally predictable deterministic
function of time (hct

∗) and (2) a diffusion stochastic process (Xc
t ) and where:

• θc is the constant mean reversion speed for the log of the carbon price;

• hct∗ = αc + βct is the linear trend for the log of the price of carbon (not a constant as in the
Ornstein-Uhlenbeck model);

• σc represents the constant volatility of the instantaneous log-price variation;

• W c
t is a standard Brownian motion for the log of the carbon price (providing unexpected price

shocks).

The linear trend for the price of carbon can be interpreted as the long run price depending on time. In our
model, this reflects future demand for abatement and future abatement options available in the marginal
abatement cost curve.

Given our risk-neutral framework, we express the price of carbon according to:
ln(p̂ct) = hct

∗ + X̂c
t

hct
∗ = αc + βc.t (linear deterministic trend)

dX̂c
t = θc.(−λc.σc

θc − X̂c
t ).dt+ σcdŴ c

t

Where the market price of risk for carbon, λc, is assumed to be a constant and the hat superscript used
here denotes the move from the real world to the risk-neutral world.

Finally, we note that compliance with the EU ETS is most likely to be achieved by means of forward
transactions thereby reflecting expectations and adjustments regarding emissions levels and availability
of compliance assets. We assume that emissions allowances are purchased with annual forward or Fu-
tures contracts10. We decide now of the transaction terms and exchange cash versus allowances at the
convened price at the maturity date.

Therefore, following Lucia and Schwartz (2000 [39]), we determine the forward price of carbon (now
for a maturity T ):

F c0,T = EQ0 (P cT )

= exp[hcT
∗︸︷︷︸

1

+ (ln(pc0)− hc0
∗).e−θ

c.T︸ ︷︷ ︸
2

−λc.σ
c

θc
.(1− e−θc.T )︸ ︷︷ ︸

3

+
(σc)2

4.θc
.(1− e−2.θc.T )︸ ︷︷ ︸

4

]

10Note that since we use a constant discount rate, there is no difference between both types of contracts [39].
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In which, the log of the forward price is comprised of11:

1. a deterministic trend component at time T ;

2. the spot price deviation from trend at t=0 multiplied by an adjustment/discount factor;

3. the mean-reverting level of the detrended process multiplied by one minus the adjustment factor;

4. the ratio of carbon price variance to its mean-reverting level multiplied by one minus twice the
adjustment factor.

(3) The prices of electricity
The literature on the stochastic modeling of electricity prices (Geman, 2006 [40]; He, 2007 [2]) identifies
that power prices have the following characteristics:

• High spot price volatility and volatility clustering effect (periods of high volatility tend to be
followed by similar periods);

• Mean reversion to the marginal cost of production (like most commodities);

• Seasonality (intraday, weekly and annual);

• Price jumps reflecting supply shocks (power plant outage) or unexpected demand;

• Market specific prices (reflecting the existing generation mix, demand profile and incentive poli-
cies).

These characteristics pertain most to spot prices. There are two major way to model power spot prices
using reduced-form models (i.e. directly modeling the time series, thereby avoiding to build an equilib-
rium model). First, single factor models are the simplest type of reduced-form models12. They basically
feature the drift and diffusion components aforementioned. Second, two-factor models build on the
previous category and intend to complete the analysis by giving a stochastic behavior to one of the com-
ponent of the single factor models (drift or diffusion)13.

Given that the spot market in Europe is almost exclusively an adjustment market (the real options liter-
ature involving power prices reflects largely a focus on derivatives pricing), we assume that the power
plants that would be built would sell their production using exclusively forward transactions. This is
quite realistic in the light of current European utilities practice. This basically means that we reduce the
volatility, drop the seasonality and price jump features compared to spot price modeling and resort to a
single factor model taking into account mean-reversion.

While the price of a ton of carbon is de facto EU-wide, it is not that simple for the price of a MWh
generated and sold. The price of a MWh fundamentally depends on the power plant status in the gen-
eration merit order related to a given demand source (country-wide most often) and for a given time.
Given the power plant investment options suggested in the next section and more exactly the capacity,
availability and competing power plants, the plant should either operate as a peakload or as a baseload

11Note that too high a mean-reversion speed makes forward/Futures prices identical across several process generation - the
trend component having an overwhelming influence over the rest.

12They are composed of Arithmetic Brownian Motion, Geometric Brownian Motion, the Ornstein-Uhlenbeck model, the
Geometric Ornstein-Unhlenbeck model (in which the logarithm of the price follows the Ornstein-Uhlenbeck model) and the
Inhomogeneous Geometric Brownian Motion (which captures both the mean reversion and the price proportional characteris-
tics of electricity prices).

13Stochastic volatility, stochastic long-term equilibrium price, etc. This category also features attempts to split short-term
behavior from long-term behavior, jump-diffusion models and regime-switching models.
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plant. In our modeling environment, we assume that the CCGT, pulverized coal and IGCC plants would
operate as peakload plants and sell their power at peakload forward prices (ppt ). Conversely, the nu-
clear plant would operate as a baseload plant and sell its power at baseload forward prices (pbt). We
suggest modeling baseload and peakload power prices as mean-reverting processes with a linear trend
(just like we did for carbon). The modeling should remain the same - only the fitting of parameters
should change. Additionally, sale of power generated by renewable energy sources often benefits from
an incentive regime, be it tradable green certificates as in the UK or feed-in tariffs as in France. For
the wind offshore investment alternative considered, we assume that the power generated can be sold at
feed-in tariffs (pft ) over the applicable period: EUR 130/MWh for the first ten years and EUR 64/MWh
for the remaining 10 years reflecting the current French feed-in tariffs14.

Further, it should be acknowledged that the introduction of the EU ETS has hardly been neutral on
the electricity prices15. We thus need to account for the linkages among the price processes. In the
literature, two approaches have been suggested.
On the one hand, carbon and power stochastic prices can be positively correlated to account for the rela-
tionship between those prices. Szolgayva et al. (2008) [36] and Fuss et al. (2008) [24] explicitly allow
for some passthrough via a positive correlation between the noises of the electricity and the carbon price
processes. The increments of the Wiener processes of electricity and carbon are assumed correlated at
0.7. They assert that the positive value is implying that disturbances in the carbon price are positively
reflected in those of electricity. In Laurikka and Koljonen (2006) [23], the price of carbon allowance
is modeled jointly with the price of baseload electricity using a quadrinomial tree. The relationship be-
tween the two prices is summarized in a correlation factor which can take the value of either 0 or 0.5. A
causality study of carbon, electricity, coal, gas and stock prices (Keppler and Mansanet-Bataller, 2009
[41]) identifies that the Granger causality relationship between carbon and electricity prices evolves from
phase I to phase II. This could support the idea that simulation of power and carbon prices need to be
more refined than a constant correlation factor16.
On the other hand, some authors explicitly modeled the level of passthrough (see Laurikka and Koljonen,
2006 [23]). Consequently, the estimated price of baseload electricity is the simulated baseload price in
the absence of an emissions trading scheme (a counterfactual or business-as-usual - BAU - price in other
words) to which is added the price of carbon times an estimated transformation factor. That approach
has the advantage to account for the potentially directional relationship from carbon prices to electricity
prices while having the disadvantage to require the modeling of a forward-looking BAU electricity price.
Laurikka and Koljonen (2006) [23] estimate that transformation factor between 0.22 and 0.77 depending
upon the prevailing BAU electricity price.

We now turn to the modeling retained for peakload and baseload prices. The approach retained is
similar to that of the price of carbon. Moving directly to the risk-neutral world:

ln(p̂pt ) = hpt
∗ + X̂p

t (for peakload power spot price)
hpt

∗ = αp + βp.t (linear deterministic trend)
dX̂p

t = θp.(−λp.σp

θp − X̂p
t ).dt+ σpdŴ p

t
ln(p̂bt) = hbt

∗ + X̂b
t (for baseload power spot price)

hbt
∗∗ = αb + βb.t (linear deterministic trend)

dX̂b
t = θb.(−λb.σb

θb − X̂b
t ).dt+ σbdŴ b

t

14For investment renewal 20 years from initial investment, we assume that the support scheme has ended and that baseload
power prices apply for valuation purpose.

15For instance, refer to the BundesKartellamt decisions in Germany on RWE & E.ON alleged passthrough as early as 2005.
16We leave this point to further research.
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where:

• θp and θb are the constant mean-reversion speeds for the log of peakload and baseload electricity
price;

• hpt
∗ = αp + βp.t is the linear trend for the log of the price of peakload power;

• hbt
∗ = αb + βb.t is the linear trend for the log of the price of baseload power;

• σp and σb representing the constant volatility of the instantaneous log-price variation for peakload
and baseload electricity prices;

• λp and λb are the market prices of risk for the log of the peakload and baseload power prices;

• W p
t andW b

t are standard Brownian motions for the log of the peakload and baseload power prices.

We now express forward prices for the stochastic processes of power price:

F p0,T = EQ0 (P pT ) (for peakload power forward price)

= exp[hpT
∗ + (ln(pp0)− hp0

∗).e−θ
p.T − λp.σ

p

θp
.(1− e−θp.T )

+
(σp)2

4.θp
.(1− e−2.θp.T )]

F b0,T = EQ0 (P bT ) (for baseload power forward price)

= exp[hbT
∗

+ (ln(pb0)− hp0
∗).e−θ

b.T − λb.σ
b

θb
.(1− e−θb.T )

+
(σb)2

4.θb
.(1− e−2.θb.T )]

(4) Correlation among stochastic state variables
We also ensured that single price process generation would not deviate from the basic relationship among
them. We therefore used constant correlation factors among the increments of the three Brownian mo-
tions involved (ρp,c, ρb,c and ρp,b).

(5) The price of fossil fuels
In order to simplify the model used and strictly focus on carbon price uncertainty, we assume that fuel
prices follow deterministic paths (that is, we know for sure the future prices of fuels).

Coal and natural gas are modeled as deterministic state variables consistent with the IEA 2008 price sce-
nario assumptions (IEA, 2008 [42]). The IEA price scenario assumptions are the results of a top-down
assessment of prior needs to encourage sufficient investment in supply and meet projected demand by
2030. In particular, it is assumed that the price of coal remains at USD 120/ton17 of coal between 2010
and 2015 and linearly goes down to USD 110/ton of coal as new mining and transportation capacity
becomes available. We further assume that coal prices remains at that level for the rest of our study
horizon.
Similarly, the price of natural gas is expected to follow the following path in USD/MMBTU: 11.15 in
2010, 11.50 in 2015, 12.71 in 2020, 13.45 in 2025 and 14.19 in 2030. A linear interpolation between
target prices and current prices is generated for the missing dates. Beyond 2030, we apply an annual

17We assume that 1.3705 EUR/USD consistent with the average FX rate in 2007 (WEO assumptions are expressed in 2007
USD) according to the ECB.

17



Figure 2: Price trajectories for fossil fuels (IEA, 2008)
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growth rate of 1.077% reflecting the average growth rate between the last two target dates. Figure 2
illustrate both price trends.

Regarding uranium, we used a per MWh cost assumption instead of a dedicated price modeling given
that (1) nuclear power plants either are supplemented with long-term uranium procurement contracts
or the turnkey agreements incorporate such long-term contracts to begin with and (2) the volatility of
nuclear ore prices and power plant valuation sensitivity to them is quite low. In particular, we assumed
a nuclear fuel cost of EUR 15/MWh.

(6) Time and discount rate
We assume an investment window of 10 years starting from now (t=0). The frequency of decision points
in time is annual (t ∈ ‖0; 10‖). Given that power plant lifetime goes up to 40 years and building time
can go up to 5 years, the horizon for simulations reaches 56 years.
The investment window retained makes our model a string of Bermudan call options with lookback fea-
tures given that exercise is limited to certain dates within the life of the option and that the exercise does
not necessarily kill the ability to subsequently invest in other power plants (budget permitting).
The risk-free discount rate used, r, is set at 4%.

2.2.2 The choice variable

There is a single discrete choice variable, namely the decision to invest in power plants. At any decision
node in time, we may invest or wait one more period (for instance to see how the carbon price evolves).
Should we wish to invest, we can invest in one power plant or a ”basket” of power plants. The invest-
ment alternatives are building a CCGT power plant (incur IG), a supercritical pulverized coal power
plant (incur IK), an IGCC power plant (incur II ), a nuclear power plant (incur IN ), an offshore wind
power plant (incur IW ) or a combination of those. Once the initial investment cost has been incurred,
we are entitled cash flows over the lifetime of the power plant.

Power plant characteristics including capital cost estimates are taken from the NEA, IEA and OECD
projections (2005) [43] for European countries and from IEA (2008 [42]) when more up-to-date figures
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make more sense18.
For the purpose of the study, we considered five generation technologies:

• CCGT plants basically characterized by a moderate capital cost, high and volatile fuel procure-
ment cost and an average carbon compliance cost;

• Supercritical pulverized coal plants characterized by a higher capital cost than CCGT plants, lower
fuel procurement cost but higher carbon compliance cost than CCGT’s. These power plants can
be further retrofitted with CCS modules;

• IGCC power plants which gasification process makes it possible to switch burning fuel depending
on relative costs, especially in the light of carbon emissions factors;

• Nuclear power plants characterized by a very high capital cost but a low fuel procurement cost
and no carbon compliance cost;

• An offshore19 wind park characterized by a high capital cost (relative to capacity) but no fuel
procurement cost and no carbon compliance cost. Additionally, we assume that investment in
these technologies is favored since they benefit from feed-in tariffs;

For each of those power plants, we report the value range for investment, emissions and technical data.

The CCGT plant total investment cost (initial investment cost and operation and maintenance cost over
the life of the plant discounted at 8.5%) amounts to some EUR 914 million (see table 14 in annex for
older cost estimates and value range in NEA, IEA and OECD, 2005 [43]). The plant takes 3 years to be
built and will operate during 40 years. The thermal capacity of the power plant is set at 900 MW and
its thermal efficiency is set at 59%. It is assumed that the plant will deliver power 42.5% of the year
(3,723 hours). Based on this availability factor, the expected daily output for the power plant is 9,180
MWh (3.35 GWh per annum). Regarding carbon emissions, the emissions factor of the CCGT plant is
assumed at 0.353 tCO2/MWh (which amounts to 1.168 MtCO2 on annual basis).
The pulverized coal plant represents a typical investment in a supercritical coal-fired plant (see table 15
in annex for value range). The pulverized coal unit total investment cost amounts to circa EUR 1,632
million. Again, the lifetime of the plant is set at 40 years and it only takes 3 years to build the plant. The
thermal capacity of the plant is set at 800 MW and its thermal efficiency at 46%. With an availability
factor of 42.5%, this represents 8.160 MWh on a daily basis (2.98 GWh p.a.). The emissions factor is
higher than for the CCGT plant and reaches 0.728 tCO2/MWh generated (equivalent to 2.168MtCO2

each year).
We also consider an integrated gasification combined cycle (IGCC) as an alternative to the pulverized
coal plant (see table 16 in annex for value range). The IGCC plant total investment cost amounts to
circa EUR 1,298 million. Lifetime of the plant is set at 40 years and 3 years are required to commission
the plant. The thermal capacity of the plant is set at only 450 MW and its thermal efficiency is at 46%.
With an availability factor of 42.5%, this represents 4.589 MWh on a daily basis (1.67 GWh p.a.). The
emissions factor is lower than the pulverized coal plant’s but still higher than the CCGT’s and reaches
0.656 tCO2/MWh generated (equivalent to 1.099 MtCO2 each year).
The nuclear power plant is the first of the two carbon-free investment alternatives (see table 17 in an-
nex for value range). The total investment cost (including discounted nuclear waste decommissioning)
amounts to EUR 5,896 million. The plant takes 5 years to be built and will operate over 40 years. The

18Please note that recently power plant investment costs have been strongly rising (cost of materials, components, labor
and lack of skilled engineers). We estimate that investment costs have more than doubled among the generation technologies
considered in our study.

19For the sake of comparison among generation technologies in terms of generation capacity.
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thermal capacity of the plant is 1,590 MW. With an availability factor of 85%, this represents 32.438
MWh on a daily basis (11.84 GWh p.a.).
The offshore wind plant is the other carbon-free investment alternative (see table 18 in annex for value
range). The total investment cost reaches EUR 792 million. The wind farm takes 1 year to be built and
will operate over 20 years. The average load factor of the wind farm is 42% and the capacity is 300 MW.
This amounts to a potential 3.287 MWh on a daily basis (1.20 GWh p.a.).

Table 2 summarizes our assumptions for the power plant investment alternatives.

Table 2: Power plant assumption data
CCGT Plant PC IGCC Nuclear Wind

Construction length - in years 3 3 3 5 1
Lifetime - in years 40 40 40 40 20

Thermal capacity - in MWe 900 800 450 1590 300
Thermal efficiency - in % 59 40 46 36 -
Average load factor - in % - - - - 42

Expected annual output - in GWh 3.35 2.98 1.67 11.84 1.20
CO2 emissions factor - in tCO2/MWh 0.353 0.728 0.656 0.000 0.000
Annual carbon emissions - in MtCO2 1.168 2.168 1.099 0.000 0.000
Total investment costs - in EUR million 914 1632 1298 5896 792

Given an initial budget of EUR 5.9 billion, this implies that the budget variable can take any of the
following values:

bt ∈ { 4︸︷︷︸
After nuclear x1

; ...; 5900︸︷︷︸
Untapped

} , ∀t

and the control variable:

xt ∈ { 0︸︷︷︸
Wait

; 792︸︷︷︸
Wind x1

; 914︸︷︷︸
CCGT x1

; ...; 5896︸︷︷︸
Nuclear x1

} , ∀t

2.2.3 The functions

The reward function
The reward function ft identifies immediate reward from undertaking a specific choice at time t. This
reward corresponds to the net present value (NPV) of given investment combination alternatives. Note
that the value taken by this function depends on market prices conditions, the timing of investment, the
budget level and the investment combinations decided upon. We identified 121 unique combinations of
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generation technologies20.

ft(bt, xt, St) =



0 for xt = 0,
NPV G

t for xt = IG,

NPV W
t for xt = IW ,

NPV I
t for xt = II ,

NPV K
t for xt = IK ,

2.NPV G
t for xt = 2.IG,

...,

NPV N
t for xt = IN .

s.t. xt ≤ bt ,∀t

Where the NPV for a given technology at time t is the sum of discounted annual cash flow minus
investment cost:

NPV tech
t =

t+buildtech+lifetech∑
j=t+buildtech

[Πtech
j .e−r.j ]− Itech

In which:

• ΠG
t = qG.[(

P24
j=1 F

p
t−j/12, t

24 )−pgt /TEG−(
P24

j=1 F
c
t−j/12, t

24 .EFG)] annual cash flow for the CCGT
plant;

• ΠW
t = qW .pft annual cash flow for the wind power plant benefiting from feed-in tariffs (first 20

years);

• ΠW
t = qW .[

P24
j=1 F

b
t−j/12, t

24 ] annual cash flow for the wind power plant after having benefited
from feed-in tariffs (next 20 years);

• ΠI
t = qI .[(

P24
j=1 F

p
t−j/12, t

24 ) − pkt /TEI − (
P24

j=1 F
c
t−j/12, t

24 .EF I)] annual cash flow for the IGCC
plant;

• ΠK
t = qK .[(

P24
j=1 F

p
t−j/12, t

24 ) − pkt /TE
K − (

P24
j=1 F

c
t−j/12, t

24 .EFK)] annual cash flow for the
pulverized coal plant;

• ΠN
t = qN .[(

P24
j=1 F

b
t−j/12, t

24 )− 15] annual cash flow for the nuclear plant;

And:

• qG, qW , qI , qK , and qN are the annual quantities of electricity (inMWh) produced by the CCGT,
wind, IGCC, pulverized coal and nuclear plant respectively;

• F ct−j/12, t, F
p
t−j/12, t, and F bt−j/12, t are the forward prices (agreed upon at t − j/12 and settling

in t) for carbon and electricity (peakload and baseload) respectively;

• pgj , pkj and pfj are the average annual spot prices for natural gas and coal and the feed-in tariff for
offshore wind;

20In case the condition xt ≤ bt is not respected, we will assume, for valuation purpose, that ft(bt, xt, St) takes the value of
−∞.
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• TEI , TEK and TEG are the thermal efficiencies of the IGCC, pulverized coal and CCGT plants
respectively;

• EF I ,EFK andEFG are the carbon emissions factors (in tCO2/MWh) of the IGCC, pulverized
coal and CCGT plant respectively;

• r corresponds to the zero-coupon rate (the risk-free rate);

• lifeG, lifeW , lifeI , lifeK and lifeN are the life times of the CCGT, wind, IGCC, pulverized
coal and nuclear plant respectively;

• buildG, buildW , buildI , buildK and buildN are the construction times of CCGT, wind, IGCC,
pulverized coal and nuclear plant respectively;

We acknowledge that the utility, unwilling to remain exposed to price risk, would engage in forward
transaction to secure future cash flows. We assume a monthly risk management meeting in which the
utility hedge 1/24 of the next two years’ expected production for both power and carbon prices. This
seems a reasonable assumption in light of calendar contracts liquidity on market places and market prac-
tice as indicated by European utilities annual reports21. This implies that the price at which the power
production is sold at time t is not the contemporary spot price but rather an average of the last two years
calendar forward prices (on the basis of a monthly transaction for 1/24 of the annual production in year
t) resulting in a smoother prices less exposed to high spot price volatility.

The value function
The principle of optimality applied to our discrete time mixed states decision models yield Bellman’s
recursive functional equation. Here, Vt denotes the maximum attainable sum of current and expected
future rewards given that the processes are in states bt and St in period t:

Vt(bt, St) = max
xt

 ft(bt, xt, St)︸ ︷︷ ︸
immediate reward component

+ e−r.EQt [Vt+1(bt − xt, S̃t+1)︸ ︷︷ ︸
discounted expected reward component

]

 ,∀ bt and ∀ St (1)

The first element of the Bellman equation corresponds to the immediate benefits (f ) while the second
element corresponds to the discounted expected future benefits (knowing St).
This latter component is also known, in the financial option terminology, as the continuation value and
is estimated by OLS following the method suggested by Longstaff ans Schwartz (2001, [14]).

The post-terminal value function
Since we are in a finite horizon problem, the investor cannot invest after T periods but may earn a fi-
nal reward VT+1 which corresponds to the remaining immediate investment opportunity of the possible
investment ”baskets”. We assume no continuation value after T , so that at expiration:

VT (bT , ST ) = max
xT

 fT (bT , xT , ST )︸ ︷︷ ︸
immediate reward component

 ,∀ bT and ∀ ST (2)

In our backward recursion setting, this will be our starting point. With VT , we can find recursively VT−1

for all states (bT , ST ). With VT−1, we can find recursively VT−2 for all states (bT−1, ST−1) and so on
until V0(b̄, S0) is derived and the optimal policy established since there is no uncertainty at t=0 so that
we can work our way forward into the recursion.

21RWE financial statements for 2008 indicates that, in fiscal year 2008, the utility actually hedged nearly 100% of its
expected power production for 2009 and approximately 70% for 2010 (by selling power using forward transaction).
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2.3 Calibrating the stochastic processes

It should be reminded that once the price process has been chosen, a critical step is the calibration thereof.
In addition to that, it should be stressed that usually at least 30 years of historical data is required in order
to properly calibrate a model (Dixit and Pindyck, 1994 [15]; Keppler et al., 2006 [44]). In our case, this
is obviously impossible (in the carbon and power prices cases). Hence, the initial parameters estimated
should suffice and would constitute our base case. Later, we will look at the sensitivity of the investments
decided upon given the parameters.

2.3.1 Fitting the stochastic price of carbon

The literature shows that the calibration of the carbon price processes is a mix of inputs from economet-
ric analysis of historical data, model output (like the IIASAs GGI Scenario database) and judgmental
input be it a shadow price (valeur tutélaire du carbone in France for instance) or academic and profes-
sional expert price elicitation survey (like in Sekar, 2005 [21] and Bohm et al., 2007 [19]).

We first fit the process with historical data using econometric techniques. We will discuss the eco-
nomic meaning around those parameters in the later section on parameter sensitivity study.

2.3.2 Fitting the stochastic prices of power

2.3.3 Estimating correlations among stochastic processes

We estimated correlations between the spot price of baseload electricity, peakload electricity and carbon
(ρp,c, ρb,c and ρp,b) using time series employed for fitting the price processes (see table 3 for the estimated
correlations).

Table 3: Correlation among stochastic price processes
ρx,y dW p dW b dW c

dW p 1.00 0.95 0.49
dW b - 1.0 0.55
dW c - - 1.0

3 Illustrative cases

In this section, we present simpler case studies to grasp how (1) the capital rationing constraint and (2)
the price uncertainty can be handled.

3.1 3-period 2-technology deterministic case

In order to illustrate how to solve the capital rationing issue, we detail calculations for a 3-period deter-
ministic case. We consider two technologies, A and B, with investment costs of IA and IB irrespective
of time. We are constrained by a budget of b̄. We may invest in a combination of technologies now, next
year or two years from now. To do so, we incur investment costs and benefit from resulting NPVs.
We assume the following: e−r = 0.909; b̄ = 1,000; IA = 400; IB = 700; NPV A

t = 200 , ∀t; NPV B
t =

300 for t = {0; 1} and NPV B
t = 500 for t=2.

Finding the allowed investment combinations
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The first step entails determining what are the allowed investment combinations. We are constrained by
the capital rationing so that xt ≤ bt , ∀t.
Denoting QA and QB , the quantity of technologies we invest in, we must satisfy:

xt = IA.QA + IB.QB ≤ bt

Here, we easily see that the control variable can take the following values:

xt ∈ { 0; IA; IB; 2.IA}
∈ { 0; 400; 700; 800}

And the budget can therefore take the following values:

bt ∈ { b̄− 2.IA; b̄− IB; b̄− IA; b̄}
∈ { 200; 300; 600; 1000}

At t=2
We start from the last decision node at t=2. The value function takes the following form:

V2(b2) = max
x2

{f2(b2, x2)}

At the last decision node, we have no continuation value since unused budget is assumed to have no
value. We consider all the possible budget levels and determine the value function accordingly22:

V2(b̄− 2.IA) = max
x2

{
f2(b̄− 2.IA, 0)

}
= 0 with x∗2=0.

V2(b̄− IB) = max
x2

{
f2(b̄− IB, 0)

}
= 0 with x∗2=0.

V2(b̄− IA) = max
x2

{
f2(b̄− IA, 0); f2(b̄− IA, IA)

}
= max

x2

{
0;NPV A

2

}
= max

x2

{0; 200}

= 200 with x∗2=IA.

V2(b̄) = max
x2

{
f2(b̄, 0); f2(b̄, IA); f2(b̄, IB); f2(b̄, 2.IA)

}
= max

x2

{
0;NPV A

2 ;NPV B
2 ; 2.NPV A

2

}
= max

x2

{0; 200; 500; 400}

= 500 with x∗2=IB .

At t=1
We move one step back in time to t=1. The value function now takes the following form since there is a
continuation value component involved:

V1(b1) = max
x1

{
f1(b1, x1) + e−r.V2(b1 − x1)

}
22For the first two budget levels, only one possibility remains, that is to do nothing/wait. The three other possible choices

make us exhaust the budget limit.
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We consider all the possible budget levels and determine the value function accordingly:

V1(b̄− 2.IA) = max
x1

{
f1(b̄− 2.IA, 0) + e−r.V2(b̄− 2.IA)

}
= 0 with x∗1=0.

V1(b̄− IB) = max
x1

{
f1(b̄− IB, 0) + e−r.V2(b̄− IB)

}
= 0 with x∗1=0.

V1(b̄− IA) = max
x1

{
f1(b̄− IA, 0) + e−r.V2(b̄− IA); f1(b̄− IA, IA) + e−r.V2(b̄− 2.IA)

}
= max

x1

{
0 + e−r.NPV A

2 ;NPV A
1 + 0

}
= max

x1

{182; 200}

= 200 with x∗1=IA.

V1(b̄) = max
x1

{
f1(b̄, 0) + e−r.V2(b̄); f1(b̄, IA) + e−r.V2(b̄− IA);

f1(b̄, IB) + e−r.V2(b̄− IB); f1(b̄, 2.IA) + e−r.V2(b̄− 2.IA)
}

= max
x1

{
0 + e−r.NPV B

2 ;NPV A
1 + e−r.NPV A

2 ;NPV B
1 + 0; 2.NPV A

1 + 0
}

= max
x1

{455; 381; 300; 400}

= 455 with x∗1=0.

At t=0
We move one step back in time to t=0 (now). The value function again takes the following form:

V0(b0) = max
x0

{
f0(b0, x0) + e−r.V1(b0 − x0)

}
Compared to t=1 and t=2, we only have one possible budget level, b̄, the initial endowment.

V0(b̄) = max
x0

{
f0(b̄, 0) + e−r.V1(b̄); f0(b̄, IA) + e−r.V1(b̄− IA);

f0(b̄, IB) + e−r.V1(b̄− IB); f0(b̄, 2.IA) + e−r.V1(b̄− 2.IA)
}

= max
x0

{
0 + e−2r.NPV B

2 ;NPV A
0 + e−r.NPV A

1 ;NPV B
0 + 0; 2.NPV A

0 + 0
}

= max
x0

{413; 381; 300; 400}

= 413 with x∗0=0.

The optimal path
V0(b̄) represents the maximum value that can be attained in the investment framework considered. The
optimal path represents the decisions that must be taken sequentially in order to realize that maximum
value. At t=0, the optimal decision is to wait (x∗0=0), the budget remains intact. Moving forward in the
tree, we look for V1(b̄) and again the optimal decision is to wait (x∗1=0). Moving to the last decision node,
we look for V2(b̄) and find that the optimal decision is to invest in one unit of technology B (x∗2=IB).
The maximum attainable gain is realized by purchasing one unit of technology B two years from now.
A now-or-never DCF framework would have yield a myopic investment in two units of technology A
now, EUR 13 million less than accounting for the timing option.

3.2 3-period 2-technology stochastic case

We now add uncertainty to the NPV of one of the technologies. In particular, we generate eight price
paths for one source of uncertainty (the price of baseload power). This source of uncertainty only per-
tains to technology B. Technology A has the same NPV whenever we decide to invest: NPV A

t = 250
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,∀t. Table 4 compiles the eight price paths generated for the source of uncertainty assumed here. Note
that the price of baseload power at t=0 is known for sure23. The set of stochastic state variables, Sit ,
denotes here solely the price of baseload power at time t on price path i.

Table 4: Illustrative case - Price paths for baseload power
Si

t t=0 t=1 t=2 t=3 ... t=43
1 50.52 53.29 54.80 57.51 ... 150.89
2 50.52 54.05 55.92 58.43 ... 159.45
3 50.52 54.24 55.87 58.72 ... 154.30
4 50.52 53.20 56.18 59.57 ... 167.61
5 50.52 53.81 56.04 57.90 ... 151.14
6 50.52 54.69 57.89 59.35 ... 154.80
7 50.52 53.04 54.84 57.08 ... 153.14
8 50.52 53.88 57.08 59.80 ... 152.36

Based on those price paths, we obtain eight NPV paths for technology B. We denote NPV B,i
t , the NPV

of technology B at time t on path i. Table 5 presents the hypothesized eight NPV paths for technology B.

Table 5: Illustrative case - Implied NPV paths for technology B
NPV B,i

t t=0 t=1 t=2
1 278 372 461
2 495 598 699
3 321 417 508
4 751 865 976
5 261 354 444
6 573 674 767
7 241 337 430
8 502 597 686

The value function now takes the following form:

Vt(bt, Sit) = max
xt

{
ft(bt, xt, Sit) + e−r.EQt [Vt+1(bt − xt, S̃it+1)]

}
, ∀i and ∀t.

And at expiration

VT (bT , SiT ) = max
xT

{
fT (bT , xT , SiT )

}
,∀i.

At t=2
We start from the last decision node at t=2. The value function takes the following form:

V2(b2, Si2) = max
x2

{
f2(b2, x2, S

i
2)
}
,∀i.

23A high growth rate has been retained for illustrative purpose.
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At the last decision node, we have no continuation value since unused budget is assumed to have no
value. We consider all the possible budget levels and determine the value function accordingly:

V2(b̄− 2.IA, Si2) = max
x2

{
f2(b̄− 2.IA, 0, Si2)

}
= 0 with x∗2=0 and ∀i.

V2(b̄− IB, Si2) = max
x2

{
f2(b̄− IB, 0, Si2)

}
= 0 with x∗2=0 and ∀i.

V2(b̄− IA, Si2) = max
x2

{
f2(b̄− IA, 0, Si2); f2(b̄− IA, IA, Si2)

}
= max

x2

{
0;NPV A

2

}
= max

x2

{0; 250}

= 250 with x∗2=IA and ∀i.

The untapped budget level case (b2=b̄) is the only one allowing investment in technology B and hence
featuring uncertainty.

V2(b̄, Si2) = max
x2

{
f2(b̄, 0, Si2); f2(b̄, IA, Si2); f2(b̄, IB, Si2); f2(b̄, 2.IA, Si2)

}
= max

x2

{
0; NPV A

2 ; NPV B,i
2 ; 2.NPV A

2

}

In table 6, we detail the investment alternatives at t=2 when the budget is full and highlight in bold the
maximum value and associated decision taken.

Table 6: Illustrative case - Decision nodes at t=2 and optimal decision for untapped budget
Path 0 NPV A

2 NPV B,i
2 2.NPV A

2 x∗2
1 0 250 461 500 2.IA

2 0 250 699 500 IB

3 0 250 508 500 IB

4 0 250 976 500 IB

5 0 250 444 500 2.IA

6 0 250 767 500 IB

7 0 250 430 500 2.IA

8 0 250 689 500 IB

average 0 250 622 500 IB

In tables 7 and 8, we summarize the value functions and optimal decisions for each budget level and
each path at t=2.

Table 7: Illustrative case - Value function vs. budget level at t=2
Path b2 = b̄− 2.IA b2 = b̄− IB b2 = b̄− IA b2 = b̄

1 0 0 250 500
2 0 0 250 699
3 0 0 250 508
4 0 0 250 976
5 0 0 250 500
6 0 0 250 767
7 0 0 250 500
8 0 0 250 689
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Table 8: Illustrative case - Optimal decision vs. budget level at t=2
Path b2 = b̄− 2.IA b2 = b̄− IB b2 = b̄− IA b2 = b̄

1 0 0 IA 2.IA

2 0 0 IA IB

3 0 0 IA IB

4 0 0 IA IB

5 0 0 IA 2.IA

6 0 0 IA IB

7 0 0 IA 2.IA

8 0 0 IA IB

At t=1
The value function now takes the following form:

V1(b1, Si1) = max
x1

{
f1(b1, x1, S

i
1) + e−r.EQ1 [V2(b1 − x1, S̃

i
2)]
}
, ∀i.

Note that the exercise decision at t=1 cannot exploit knowledge of the future (i.e. the value taken at t=2)
on a given path. We are not replacing a stochastic problem by 8 deterministic problems. Rather, we
are regressing value functions discounted back at t=1 against the value of Sit . We are using our set of
scenarios to build an approximation of the conditional expectation continuation value component. That
is the key idea of the Longstaff and Schwartz method. Note that we only do so when stochasticity is
involved, i.e. when we may invest in technology B24.

We proceed like in the deterministic case by detailing the value function in t=1 for all the budget com-
binations.

V1(b̄− 2.IA, Si1) = max
x1

{
f1(b̄− 2.IA, 0, Si1) + e−r.EQ1 [V2(b̄− 2.IA, S̃i2)]

}
= max

x1

{
f1(b̄− 2.IA, 0, Si1) + e−r.V2(b̄− 2.IA, Si2)

}
= 0 with x∗1=0 and ∀i.

V1(b̄− IB, Si1) = max
x1

{
f1(b̄− IB, 0, Si1) + e−r.EQ1 [V2(b̄− IB, S̃i2)]

}
= max

x1

{
f1(b̄− IB, 0, Si1) + e−r.V2(b̄− IB, Si2)

}
= 0 with x∗1=0 and ∀i.

V1(b̄− IA, Si1) = max
x1

{
f1(b̄− IA, 0, Si1) + e−r.EQ1 [V2(b̄− IA, S̃i2)];

f1(b̄− IA, IA, Si1) + e−r.EQ1 [V2(b̄− 2.IA, S̃i2)]
}

= max
x1

{
f1(b̄− IA, 0, Si1) + e−r.V2(b̄− IA, Si2);

f1(b̄− IA, IA, Si1) + e−r.V2(b̄− 2.IA, Si2)
}

= max
x1

{
0 + e−r.NPV A

2 ;NPV A
1 + 0

}
= max

x1

{227; 250}

= 250 with x∗1=IA and ∀i.
24In our general case, this will be almost always the case.
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We move to the b1 = b̄ case.

V1(b̄, Si1) = max
x1

{
f1(b̄, 0, Si1) + e−r.EQ1 [V2(b̄, S̃i2)];

f1(b̄, IA, Si1) + e−r.EQ1 [V2(b̄− IA, S̃i2)];

f1(b̄, IB, Si1) + e−r.EQ1 [V2(b̄− IB, S̃i2)];

f1(b̄, 2.IA, Si1) + e−r.EQ1 [V2(b̄− 2.IA, S̃i2)]
}

= max
x1

{
f1(b̄, 0, Si1) + e−r.EQ1 [V2(b̄, S̃i2)];

f1(b̄, IA, Si1) + e−r.[V2(b̄− IA, Si2)];
f1(b̄, IB, Si1) + e−r.[V2(b̄− IB, Si2)];
f1(b̄, 2.IA, Si1) + e−r.[V2(b̄− 2.IA, Si2)]

}
In our illustrative case, only one investment decision is problematic (do not invest/wait at t=1 in blue) and
we will approximate the expected continuation value by performing a linear regression of e−r.V2,i(b̄)
against a set of basis functions for this decision. The basis functions retained in this example are the first
and second powers of the power price paths.
We consider the following regression model:

e−r.EQ1 [V2(b̄, S̃i2)] ≈ φ2(b̄, Si2) = c0,1 + c1,1.S
i
1 + c2,1.(Si1)2 + ei

Table 9 compiles data for the regression (dependent and independent variables). The linear regression

Table 9: Illustrative case - Sample OLS regression data
Path e−r.V2,i(b̄) Si

1 (Si
1)2

1 455 53.29 2,840
2 635 54.05 2,922
3 462 54.24 2,942
4 887 53.20 2,831
5 455 53.81 2,896
6 697 54.69 2,991
7 455 53.04 2,813
8 624 53.88 2,903

yields the following25:

e−r.EQ1 [V2(b̄, S̃i2)] ≈ φ2(b̄, Si2) = 357, 959− 13, 302(Si1) + 123.77(Si1)2

Coming back to the value function, we replace the conditional expectation component by its approx-
imation (in blue):

V1(b̄, Si1) ≈ max
x1

{
f1(b̄, 0, Si1) + φ2(b̄, Si2); f1(b̄, IA, Si1) + e−r.[V2(b̄− IA, Si2)];

f1(b̄, IB, Si1) + e−r.[V2(b̄− IB, Si2)]; f1(b̄, 2.IA, Si1) + e−r.[V2(b̄− 2.IA, Si2)]
}

≈ max
x1

{
0 + φ2(b̄, Si2); NPV A

1 + e−r.NPV A
2 ; NPV B

1 + 0; 2.NPV A
1 + 0

}
In table 10, we detail the investment alternatives at t=1 and highlight in bold the maximum value.

25To improve the quality of the linear regression and the computation speed in more complex cases, we may exclude paths
favoring investments in technology A or waiting over investment in technology B for the linear regression estimation. We
would therefore build on the moneyness criteria idea used for American option pricing in the Longstaff and Schwartz paper.
We do not detail that here but will consider doing so in later sections / versions of this paper.
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Table 10: Illustrative case - Decision nodes at t=1 and optimal decision for untapped budget
Path φ2(b̄, Si

2) NPV A
1 + e−r.NPV A

2 NPV B,i
1 2.NPV A

1 x∗1
1 573 477 372 500 0
2 561 477 598 500 IB

3 580 477 417 500 0
4 584 477 865 500 IB

5 549 477 354 500 0
6 662 477 674 500 IB

7 608 477 337 500 0
8 551 477 597 500 IB

average 584 477 527 500 0

In tables 11 and 12, we summarize the value functions and optimal decisions for each budget level
and each path at t=1.

Table 11: Illustrative case - Value function vs. budget level at t=1
Path b1 = b̄− 2.IA b1 = b̄− IB b1 = b̄− IA b1 = b̄

1 0 0 250 573
2 0 0 250 598
3 0 0 250 580
4 0 0 250 865
5 0 0 250 549
6 0 0 250 674
7 0 0 250 608
8 0 0 250 597

Table 12: Illustrative case - Optimal decision vs. budget level at t=1
Path b1 = b̄− 2.IA b1 = b̄− IB b1 = b̄− IA b1 = b̄

1 0 0 IA 0
2 0 0 IA IB

3 0 0 IA 0
4 0 0 IA IB

5 0 0 IA 0
6 0 0 IA IB

7 0 0 IA 0
8 0 0 IA IB

At t=0
Moving step back in time to t=0, the value function again takes the following form:

V0(b0, Si0) = max
x0

{
f0(b0, x0, S

i
0) + e−r.EQ0 [V1(b0 − x0, S̃

i
1)]
}
, ∀i.
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At t=0, we only have one possible budget level, b̄, the initial endowment.

V0(b̄, Si0) = max
x0

{
f0(b̄, 0, Si0) + e−r.EQ0 [V1(b̄, S̃i1)];

f0(b̄, IA, Si0) + e−r.EQ0 [V1(b̄− IA, S̃i1)];

f0(b̄, IB, Si0) + e−r.EQ0 [V1(b̄− IB, S̃i1)];

f0(b̄, 2.IA, Si0) + e−r.EQ0 [V1(b̄− 2.IA, S̃i1)]
}

= max
x0

{
f0(b̄, 0, Si0) + e−r.EQ0 [V1(b̄, Si1)];

f0(b̄, IA, Si0) + e−r.V1(b̄− IA, Si1);
f0(b̄, IB, Si0) + e−r.V1(b̄− IB, Si1);
f0(b̄, 2.IA, Si0) + e−r.V1(b̄− 2.IA, Si1)

}
= max

x0

{
0 + e−r.EQ0 [V1(b̄, S̃i1)]; NPV A

0 + e−r.NPV A
1 ;

NPV B,i
0 + 0; 2.NPV A

0 + 0
}

= max
x0

{
e−r.EQ0 [V1(b̄, S̃i1)]; 477; NPV B,i

0 ; 500
}

Now simply discounting all cash flows back to time t=0 and averaging over the eight sample paths,
we get an estimate of e−r.EQ0 [V1(b̄, S̃i1)] 26. We obtain in table 13 the maximum value and associated
optimal decisions:

Table 13: Illustrative case - Decision nodes at t=0 and optimal decision for initial budget
Path e−r.EQ

0 [V1(b̄, S̃i
1)] NPV A

0 + e−r.NPV A
1 NPV B,i

0 2.NPV A
0 x∗0

1 521 477 278 500 0
2 544 477 495 500 0
3 527 477 321 500 0
4 786 477 751 500 0
5 500 477 261 500 2.IA

6 613 477 573 500 0
7 553 477 241 500 0
8 543 477 502 500 0

average 573 477 436 500 0

The optimal path
The optimal path represents the decisions that must be taken sequentially in order to realize that maxi-
mum average value. At t=0, we find that the optimal decision is to wait (x̂∗0=0) by looking at the column
average in table 13. Based on this optimal decision to wait, we move forward in the tree and look for
the permissible decision that maximize V1(b̄) on average in table 10. Again the approximated optimal
decision is to wait (x̂∗1=0). Knowing that, we look for the permissible decision that maximize V2(b̄) on
average in table 6 and find that the approximated optimal decision is to invest in one unit of technology
B (x̂∗2=IB).

The approximated optimal path (x̂∗0=0; x̂∗1=0; x̂∗2=IB) is to wait two periods and then invest in one
unit of technology B. It is important to note that is not the optimal decision for all the paths generated

26The results are identical with a linear regression in which the dependent variable is e−r.EQ
0 [V1(b̄, S̃i

1)] and the independent
variables are the first and second power of the known price of power at t=0. Unsurprisingly, only the intercept, equal to the
average of discounted V1(b̄), is non null.
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but an approximation of the optimal decision based on a sample of i paths. In particular, looking back in
tables 13, 10 and 6, we find that the optimal decisions coincides in only one of the eight paths we gen-
erated - the others paths favor investment in technology B as early as in t=1 or investment in two units
of technology A now or in t=2 27. But since we have no knowledge of the price paths, the approximated
optimal path is the best proxy we have for decision-making.

4 General case

In this section, we jump to the general case presented in section 1 and 2. We begin by describing the
general procedure employed and then present the results of the initial calibration. Finally, we perform
sensitivity tests to the carbon price parameters.

4.1 Procedure

Figure 3: General procedure

Model 

parameters

Deterministic trend 

components x3

Mean-reverting stochastic 

components x3

Forward prices (1Y & 2Y) x3

Annual cash flows x5 

technologies

Discount rate vector

NPVs for technologies x5

Allowable investment 

combinations

Immediate reward component 

(NPVs for all combinations)

Spot prices x3

Bellman value function

Estimated discounted expected 

reward component (OLS 

regression)

Optimal decisions

Locked-in CO2 emissions

Figure 3 describe our general procedure to determine optimal decisions in our real options frame-
work. We now look in details at each of the steps involved.

Step 1 - Simultaneously generate Γ risk-neutral paths for the stochastic state variables
We are generating jointly (since the price processes are correlated) Γ sample paths for the three price
processes considered (carbon P c,it , baseload power P b,it and peakload power P p,it , with i ∈ ‖1; Γ‖)
according to the calibration retained over the necessary horizon (longest investment decision node +
longest construction time + longest lifetime), i.e. over 672 months (56 years). We obtain an ”Γ x 672 x
3” matrix with the price paths depicted in figure 4. Note that Γ is typically a large number (10,000).

As a general check, we generate plots of a sub-sample of price paths for the three stochastic state vari-
ables and report descriptive statistics on them.
Based on the Γ price paths generated and the formula for forward prices aforementioned, we compute
one-year and two-year forward prices that will be subsequently used in valuation and OLS regression.

27Note that this is not exactly a deterministic decision framework since we resort to the OLS estimation of continuation
values but this should give the general idea.
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Figure 4: Sample risk-neutral spot price paths
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These paths are stored in the set F it :

F it = (F c,it,t+1;F c,it,t+2;F p,it,t+1;F p,it,t+2;F b,it,t+1;F b,it,t+2) ,∀i and ∀t

Step 2 - Calculate Γ NPV paths for the five technologies
Based on the Γ forward sample price paths generated, we compute the NPVs for the five different
technologies (nuclear NPV N,i

t , pulverized coal NPV K,i
t , IGCC NPV I,i

t , wind offshore NPV W,i
t and

CCGT, NPV G,i
t ) every year from now to ten years from now (11 investment decision nodes). With

those NPVs, we are able to value any of the 104 investment combinations that can be undertaken at any
time t ∈ ‖0; 10‖ (budget permitting). We obtain an ”Γ x 11 x 5” matrix (depicted in figure 5) with the
NPVs for the five technologies considered.

Figure 5: Sample NPV paths

Price 

paths 

from 1 

to Γto Γ

Year – from now to year 10 (11 decision nodes)

Nuclear power plant NPV

Pulverized coal plant NPV

IGCC NPV

Wind offshore farm NPV

CCGT NPV

Again as a general check, we generate a distribution plot of the NPVs of different technology at t=0, t=5
and t=10. We report descriptive statistics on the distribution of NPVs which are important to indicate
potential candidates for investment28.

Step 3 - Determining the allowed investment combinations
Given the initial budget constraint b̄ and investment costs IN , IK , II , IW and IG and denoting Qtech

28This step might even be used as a screening procedure to eliminate consistently negative NPVs technologies to facilitate
calculations.
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the quantity of a given technology we invest in (Qtech being an integer), we recognize that at any time,
the following relation must be satisfied:

xt = IN .QN + IK .QK + II .QI + IW .QW + IG.QG ≤ bt , ∀t.

We identify that the control variable can take one of the following 121 values:

xt ∈ { 0; IW ; IG; ...; IN}
∈ { 0; 792; 914; ...; 5896}

And the budget can therefore take one of the following 121 values:

bt ∈ { b̄− IN ; ...; b̄− IG; b̄− IW ; b̄}
∈ { 4; ...; 4996; 5108; 5900}

Step 4 - Start from the last decision node at t=10
We start from t=10, the last time we are able to invest during the investment window. At this last decision
node, the continuation value is assumed to be zero. That is to say - once the investment opportunity is
missed, there is no ability to generate cash flows from it. The value function takes the following form in
which Si10 is a set of stochastic state variables at t=10 and on path i:

V10(b10, S
i
10) = max

x10

{
f10(b10, x10, S

i
10)
}
,∀i.

For all the possible budget levels at b10 (121) and on all the Γ paths, we compute V10(b10, S
i
10). We

obtain 121 “Γ paths x 121 possible decisions” tables in which we identify the immediate reward compo-
nents f10(b10, x10, S

i
10). These are stored in the matrixMR10 (the matrix storing the reward functions).

Based on those tables, we determine the maximum value among f10(b10, x10, S
i
10) and associated in-

vestment decision for a given remaining budget level and on a given paths. These are consigned in two
“Γ paths x 121 budget levels” matrices, one for the maximum value (MV10) and one for the correspond-
ing optimal decision (Mx∗10).
Note that the condition, x10 ≤ b10, must be satisfied. Therefore, the calculations are eased when the
remaining budget actually limits the possible investment combinations (for instance when the budget
does not allow any additional investment, the only suitable course of action is to wait).
We end up this step with the matricesMR10,MV10 andMx∗10 (check matricesMRt,MVt andMx∗t
in appendix for more details) in hands.

Step 5 - Moving backward in the decision-making process (from t=9 to t=1)
The value function now incorporates a continuation value and takes the following form:

V9(b9, Si9) = max
x9

{
f9(b9, x9, S

i
9) + e−r.EQ9 [V10(b9 − x9, S̃

i
10)]
}
, ∀i and ∀ti.

In order to determine the value maximizing choice for all the remaining budget level (b9) and each
sample paths, we have to:

• compute f9(b9, x9, S
i
9) ∀i and ∀b9 like we did in step 4 and store the resulting 121 “Γ paths x 121

possible decisions” reward functions in matrixMR9;

• estimate e−r.EQ9 [V10(b9 − x9, S̃
i
10)] ∀i and ∀b9 using OLS regressions like we did in the prelimi-

nary stochastic case study (else that would be clairvoyance and we would be replacing a stochastic
problem by a deterministic one) and store the resulting 121 “Γ paths x 121 possible decisions”
estimated continuation value functions in matrixMC9;
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Following Cortazar et al. (2008) [45], we stress that the optimal exercise of options rather depends
on expected spot prices and volatilities than on regressors being powers of all state variables (as was
suggested in the reference papers by Longstaff and Schwartz, 2001 [14] and Gamba, 2003 [46]). They
suggest using functions on Futures, European options or bond prices that have economic meaning. Do-
ing so, they find that the root mean square deviation computed is lower using this reduced form function
(with various number of regressors) than using Chebyshev cross products as proposed in [14]. This also
partially solves the OLS regression instability and performance problems present in high-dimensional
problems as is the case here.

In particular, we consider the following OLS regression model:

e−r.EQt [Vt+1(bt − xt, S̃it+1)] ≈ φt+1(bt − xt, Sit+1)

= cbt−xt
0,t + cbt−xt

1,t .F c,it,t+1 + cbt−xt
2,t .F p,it,t+1

+cbt−xt
3,t .F b,it,t+1 + cbt−xt

4,t .F c,it,t+2

+cbt−xt
5,t .F p,it,t+2 + cbt−xt

6,t .F b,it,t+2 + ebt−xt
i

We regress discounted continuation value (contingent on the decision taken at t) to be found inMV10

against a set of one-year and two-year forward prices for carbon, baseload power and peakload power.
It should be stressed that, contrary to the preliminary stochastic case study, we do not have to estimate
a single continuation value but rather up to 121. Once estimated, we store φ10(b9 − x9, S

i
10) in matrix

MC9 (checkMCt in appendix for more details).

Finally, we have to:

• combine matricesMR9 andMC9 to determine V9(b9, Si9) ,∀i and ∀b9. This entails adding the
MR9 andMC9 matrices and keep the maximum combined value ,∀i and ∀b9;

• store the resulting maximum combined value, i.e. V9(b9, Si9), inMV9 and related optimal deci-
sions inMx∗9;

• repeat the process for t = 8 until t = 1.

Step 6 - The first decision (t=0)
At t = 0, the budget variable uncertainty is resolved, we know for sure that b0=b̄. The value function
hence takes the following form:

V0(b̄, Si0) = max
x0

{
f0(b̄, x0, S

i
0) + e−r.EQ0 [V1(b̄− x0, S̃

i
1)]
}
,∀i.

In order to determine the value maximizing choice for each sample paths, we do the followings:

• We compute f0(b̄, x0, S
i
0) ∀i and store the resulting “Γ paths x 121 possible decisions” reward

functions in matrixMR0. Note that this matrix is smaller to the otherMRt matrices since only
one budget level is possible at t=0;

• At t=0, the one-year and two-year forward prices for carbon, baseload and peakload power are
known as well since they are estimated based on current prices. This means that we cannot esti-
mate e−r.EQ0 [V1(b̄ − x0, S̃

i
1)] using OLS regressions like we did in step 5 (as that would imply

regressing NPV combinations varying upon i against static one-year forward prices independent
of i). Instead, following Longstaff and Schwartz (2001 [14]) and like we did in the illustrative
case study, we simply discount one year back V1(b̄ − x0) ∀i to be found inMV1. The resulting
approximated continuation value is stored inMC0;
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• We combine matricesMR0 andMC0 to determine V0(b̄, Si0) , ∀i. This entail adding theMR0

andMC0 matrices;

• We store the resulting value for V0(b̄, Si0) inMV0 and related optimal decisions inMx∗0.

Step 7 - The optimal path and implied emissions
At this point, we have a set of eleven matricesMVt andMx∗t indicating maximum value and optimal
decisions , ∀t and ∀i.
We start from t=0 and compute averages over all paths in matrixMV0 (Γ x x0 value function matrix at
t=0, i.e. when budget is full). Here, we look for:

V0(b̄) = max
x0

{
1
Γ

Γ∑
i=1

[f0(b̄, x0, S
i
0) + φ1(b̄− x0, S

i
1)]

}
The result suggests a peculiar optimal decision (x̂∗0) that is expected to maximize V0 (which needs not
be identical to what is to be found inMx∗0).

We move forward in time, and solve recursively the following equation ∀t ∈ ‖1; 9‖:

Vt(b̄−
t−1∑
k=0

x̂∗k) = max
xt

{
1
Γ

Γ∑
i=1

[ft(b̄−
t−1∑
k=0

x̂∗k, xt, S
i
t) + φt+1(b̄−

t−1∑
k=0

x̂∗k − xt, Sit+1)]

}
,∀t

When at t=10, we solve the following equation (no estimated discounted continuation value):

V10(b̄−
9∑

k=0

x̂∗k) = max
x10

{
1
Γ

Γ∑
i=1

[f10(b̄−
9∑

k=0

x̂∗k, x10, S
i
10)]

}
We find a set comprised of optimal decisions (x̂∗0, x̂∗1, ..., x̂∗10).

Given the optimal path, we expect a given amount of locked-in CO2 emissions. That amount can
be estimated based on (1) the carbon emission factor of the technology we invest in, (2) the expected
annual production and (3) the life length of the plants.

4.2 Model results

Price path generation
Recalling that the logarithm of the stochastic price processes are expressed as the sum of (1) a determin-
istic linear trend and (2) a mean-reverting stochastic component, we generate deterministic log-linear
trends for the three stochastic processes based on:

hct
∗ = αc + βc.t = 2.5992 + 0.0250.t (Carbon)

hpt
∗ = αp + βp.t = 3.9821 + 0.0075.t (Peakload)

hbt
∗ = αb + βb.t = 3.8061 + 0.0075.t (Baseload)

Figure 6 depicts the long-term trends suggested for the three processes:

We now move to the stochastic component of the sources of uncertainty:
dX̂c

t = θc.(−λc.σc

θc − X̂c
t ).dt+ σcdŴ c

t (Carbon)
dX̂p

t = θp.(−λp.σp

θp − X̂p
t ).dt+ σpdŴ p

t (Peakload)
dX̂b

t = θb.(−λb.σb

θb − X̂b
t ).dt+ σbdŴ b

t (Baseload)

The following parameters have been estimated jointly based on a common historical sample:
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Figure 6: Assumed price trends over the investment lifetime
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• Mean-reverting speed parameter matrix:

θc 0 0
0 θp 0
0 0 θb

 =

2.4519 0 0
0 72.8955 0
0 0 53.6616

;

• Mean-reverting level parameter matrix:

−λc.σc

θc

−λp.σp

θp

−λb.σb

θb

 =

0.0814
0.0022
0.0030

 Note that the mean-reverting

levels are quite low since we are dealing with a detrended variable;

• Volatility parameter matrix:

σc 0 0
0 σp 0
0 0 σb

 =

0.4396 0 0
0 3.4488 0
0 0 2.7786

;

• Correlation matrix:

ρc,c ρc,p ρc,b
ρp,c ρp,p ρp,b
ρb,c ρb,p ρb,b

 =

1.0000 0.3599 0.2933
0.3599 1.0000 0.9781
0.2933 0.9781 1.0000

.

We generate 10,000 paths based on the stochastic processes retained and the calibration parameters.
One such set of sample paths is depicted in figure 729. We compute spot, one-year and two-year forward
contracts (see figure 8). We then compute NPV distribution (see figure 9) We run the model which
indicates that the optimal decision is to invest in six CCGT plants now which locks in 284 million tons
of carbon over their lifetime.

29We simultaneously generated paths for carbon, peakload power and baseload power mean-reverting stochastic processes.
We then added the generated paths to the linear trend and took the sum to the exponential to derive three sample price paths.
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Figure 7: Sample spot price paths over the investment lifetime
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Figure 8: Sample spot and forward prices

4.3 Sensitivity study to carbon price parameters

SECTION TO BE WRITTEN.

4.3.1 Ceteris paribus

SECTION TO BE WRITTEN.

• (1) α - the intercept of the linear time trend for the carbon price (suggested range for sensitivity
study: 2; 3; 4 and even higher). That would correspond to cap level or carbon reduction engage-
ments (from G8 or from the EU for instance).

• (2) β - the slope of the linear time trend for the carbon price (suggested range for sensitivity study:
-0.10;-0.05; 0.00; 0.05; 0.10). That would correspond to the annual incremental effort required by
the policy.
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Figure 9: NPVs for technolgies at t=0, t=5 and t=10

• (3) θ - the mean-reversion speed to the linear time trend for the carbon price (suggested range for
sensitivity study: 0; 2; 4; 6)

• (4) σ2 - the instantaneous volatility for the price of carbon (suggested range for sensitivity study :
0.00 for the deterministic case; 0.10; 0.20; 0.30; 0.40)

Versus to following results from the dynamic programming part & emissions calculation:

• Parameter (x-axis) vs. overall profit (left y-axis) and implied emissions (right y-axis).

• Composition of the investment portfolio

• Option value for waiting

• Range (+/- 1 standard deviation around mean value) of expected prices for the expected NPV of
power plant alternatives for the 11 decision periods.

Expectations:

• The higher α, the higher the cost of carbon, the less likely the investor will choose to invest in CF
& CCGT, the lower the profit, the lower the emissions

• The higher β, the higher the cost of carbon, the less likely the investor will choose to invest in CF
& CCGT, the lower the profit, the lower the emissions

• The higher θ, the less sensitive to price shocks and the further we move to the deterministic case
(?) and the higher the profit, the higher the emissions

• The higher σ2, the higher the NPV range for the CCGT and the coal-fired plant, (the less likely
we will invest in them) and thus the lower the profit and the lower the emissions

4.3.2 Stylized scenarios

SECTION TO BE WRITTEN.
Parameterize at best to match the trading regime

• phase I
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• phase II

• phase III

• termination of the ETS policy

• replacement by a tax

5 Discussion

SECTION TO BE WRITTEN.
Of course, in no way would price be “administrated” still, prices can be supported by means of support
policies to make sure that the climate policy objective remains intact. In particular, we consider:

• Cap-setting (Declining-cap within & between trading phases)

• NER & allowances fate in case of installation closure

• More flexibility mechanisms (Offset Projects & intertemporal adjustments)

• Horizon

• free-allocation vs. the impact of auctioning

• Price cap (with mean reversion speed)

• Price floor (with mean reversion speed)

• Other polices like renewables and energy efficiency (with volatility parameter)

• Help correct capital market inefficiencies (better market liquidity better informational efficiency)

• Evolution of coverage or linking to a “superior” cap-and-trade market (more constrained) (see
paper by Ellis et al.).

6 Conclusion

SECTION TO BE WRITTEN.
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Appendices

Table 14: Appendix - CCGT plant data - 85% availability assumed
Min Max Estimates Comments

Construction length - in years 2 5 3 French CCGT
Lifetime - in years 40 40 40 Common assumption

Thermal capacity - in MWe 250 1200 900 French CCGT
Thermal efficiency - in % 52 60 59 French CCGT
Availability factor - in % 85 85 85 Common assumption

Expected annual output - in GWh 1.86 8.94 6.70
ON construction costs - in EUR/kWe 318 900 524 French CCGT

O&M costs - per kWe 4 41 32 Average of French & German
CO2 emissions factor - in tCO2/MWh 0.333 0.412 0.353 French CCGT
Annual carbon emissions - in MtCO2 0.670 3.246 2.366
Total investment costs - in EUR million 173 630 500

Table 15: Appendix - Pulverized coal plant data - 85% availability assumed
Min Max Estimates Comments

Construction length - in years 3 4 3 German PC
Lifetime - in years 40 40 40 Common assumption

Thermal capacity - in MWe 296 1050 800 German PC
Thermal efficiency - in % 29 47 46 German PC
Availability factor - in % 85 85 85 Common assumption

Expected annual output - in GWh 2.20 7.82 5.96
ON construction costs - in EUR/kWe 820 1300 820 German PC

O&M costs - per kWe 9 57 50 Average of French & German
CO2 emissions factor - in tCO2/MWh 0.728 1.133 0.728 German PC
Annual carbon emissions - in MtCO2 2.211 6.223 4.367
Total investment costs - in EUR million 277 1253 696
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Table 16: Appendix - IGCC plant data - 85% availability assumed
Min Max Estimates Comments

Construction length - in years 3 4 3 German IGCC
Lifetime - in years 40 40 40 Common assumption

Thermal capacity - in MWe 300 450 450 German IGCC
Thermal efficiency - in % 43 51 46 German IGCC
Availability factor - in % 85 85 85 Common assumption

Expected annual output - in GWh 2.23 3.35 3.35
ON construction costs - in EUR/kWe 1200 1692 1200 German IGCC

O&M costs - per kWe 28 81 81 German costs
C02 emissions factor - in tCO2/MWh 0.656 0.780 0.656 German IGCC
Annual carbon emissions - in MtCO2 1.742 2.198 2.198
Total investment costs - in EUR million 516 576 576

Table 17: Appendix - Nuclear plant data - 85% availability assumed
Min Max Estimates Comments

Construction length - in years 5 9 5 ≥ 5 years include studies
Lifetime - in years 40 40 40 Common assumption

Thermal capacity - in MWe 665 1600 1590 French PWR
Thermal efficiency - in % 30 37 36 French PWR
Availability factor - in % 85 85 85 Common assumption

Expected annual output - in GWh 4.95 11.91 11.84
ON construction costs - in EUR/kWe 952 1875 1455 Average of German and French

O&M costs - per kWe 40 72 49 Average of German and French
Total investment costs - in EUR million 1006 3094 2391

Table 18: Appendix - Offshore wind plant data
Min Max Estimates Comments

Construction length - in years 1 2 1
Lifetime - in years 20 25 20 Most common case

Thermal capacity - in MWe 120 300 300 German offshore
Equipment availability - in % 95 95 95 Common assumption

Average load factor - in % 35 43 42 Most common case
Expected annual output - in GWh 0.36 1.13 1.20

ON construction costs - in EUR/kWe 1431 2292 1650 German offshore
O&M costs - per kWe 38 115 58 German offshore

Total investment costs - in EUR million 238 512 512
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