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Abstract

Deregulation of electricity industries has created wholesale markets with uncertain prices and
offered greater flexibility to investors to make decisions. In this paper, we consider the problem
of a typical investor who has discretion over not only the timing, but also the sizing of a new
power plant. The interaction between these two types of managerial flexibility may be addressed
analytically using the real options approach. Since an investor may also have discretion over
technology choice, we allow for an investment opportunity in two mutually exclusive projects
with embedded timing and sizing options. Via numerical examples, we illustrate how an in-
vestor may make decisions about timing, sizing, and technology choice. Sensitivity analyses to
key parameters also highlight the intuition for how decisions are made.
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1 Introduction

Reform of electricity industries worldwide has been based on the premise that greater economic
efficiency may be achieved if participants were allowed to make investment and operational deci-
sions based on price signals. In particular, while the transmission sector still requires regulatory
oversight due to its natural monopoly characteristics, there is no reason for the potentially com-
petitive generation and retail sectors to be subject to state regulation (see Wilson [1]). Hence,
even though the outcome of these reforms is subject to debate (see Hyman [2]), there is a greater
role for markets now.

In tandem with these reforms, a variety of spot and forward markets for electricity have
been set up in order to reflect its relative scarcity. Unlike in the vertically integrated paradigm,
generators and retailers must account for wholesale prices when making their investment and
operational decisions. These prices may be subject to great uncertainty, which makes the tim-
ing of investment and operational decisions and the role of managerial flexibility more crucial.
Consequently, traditional methods, such as now-or-never net present value (NPV) and internal
rate of return (IRR), may be inadequate to cope with dynamic aspects of existing electricity
markets, and decision support based on real options (see Dixit and Pindyck [3] and McDonald
and Siegel [4]) is one of the alternatives that has been proposed.

The amenability of the real options approach to the energy sector has been widely demon-
strated at least as far back as Ekern [5]. Recent work has explored the valuation of generation and
transmission assets (Deng et al. [6]), optimal operation of power plants (Tseng and Barz [7] and
Deng and Oren [8]), and incentives for construction of nuclear power plants (Rothwell [9]). Mod-
eling decision-making for investment opportunities with embedded options to abandon, expand,
or switch projects after adoption is particularly relevant in the electricity industry. Towards this
end, real options has been applied to problems of modularity (Gollier et al. [10], Näsäkkälä and
Fleten [11], and Siddiqui and Maribu [12]), capacity sizing (Bøckman et al. [13]), and equipment
replacement (Takashima et al. [14]). Furthermore, recent advances in real options theory, which
address the selection of mutually exclusive projects (Décamps et al. [15]) and the game-theoretic
implications of duopolistic competition (Huisman and Kort [16]), have been applied to problems
of technology choice (Fleten et al. [17] and Wickart and Madlener [18]) and strategic investment
(Takashima et al. [19]).

Here, we take the perspective of a firm that has the perpetual right, but not the obligation,
to invest in a power plant. After the plant is constructed, it will operate continuously for a
fixed number of years before being decommissioned. During its operating lifetime, the plant will
provide the firm with a profit flow related to the stochastic electricity price. We assume that the
plant’s operating cost is constant, and its construction cost depends on its size. Thus, the firm’s
problem is to determine not only when to invest, but also its plant’s capacity. Furthermore,
it may choose between two types of technologies, e.g., nuclear or natural gas. We illustrate
how the real options method is able to provide decision support to handle the three types of
managerial flexibility (timing, sizing, and technology choice) given a stochastic electricity price,
which would not have been possible via traditional valuation tools.

The structure of this paper is as follows:

• Sect. 2 provides the assumptions for the model
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• Sect. 3 introduces the basic real options model for investment under uncertainty with fixed
capacity for a single technology

• Sect. 4 formulates and solves the problem with endogenous capacity sizing

• Sect. 5 extends the model to enable mutually exclusive investment in two types of tech-
nologies with discretion over timing and sizing

• Sect. 6 provides numerical examples to illustrate the concepts

• Sect. 7 summarizes the results of this paper

2 Model Setup

Consider a firm that starts operating a power plant of production output Q (in MWh/annum)
by incurring investment cost I(Q) (in $) that is a non-linear function of Q, i.e., I(Q) = δQε,
where δ > 0 and ε > 1. We assume that the investment cost function is convex in output due
to diminishing marginal returns. After the investment decision and the construction lead time,
T (in years), instantaneous cash flow, πt, is generated from the power plant over its lifetime, L
(in years).

Suppose that the investment decision and the output capacity are dependent on the dynamics
of the electricity price. If we assume that the firm is a price taker, i.e., its actions have no
influence on the dynamics of the electricity price, then the electricity price, Pt (in $/MWh), may
be considered as exogenous. Here, we model it as evolving according to a geometric Brownian
motion (GBM) process,

dPt = µPtdt+ σPtdWt, P0 = p, (1)

where µ and σ are the risk-adjusted expected growth rate and the volatility of Pt, respectively,
and Wt is a standard Brownian motion.

Consequently, the profit flow can be represented by the following equation,

πt ≡ π(Pt, Q) = (Pt − c)Q, (2)

where c is the operating cost (in $/MWh) that is composed of the fuel cost as well as operating
and maintenance costs. If the plant has operating flexibility, then the profit flow π(Pt, Q)
becomes zero when Pt < c. For simplicity, however, we assume that the power plant does not
have operating flexibiltiy.

3 Basic Model

We begin by describing the model of Gollier et al. [10] that extends the McDonald and Siegel
model [4] deriving the investment timing and its option value by introducing fixed construction
time and project lifetime. Suppose that the firm can determine the investment timing of a power
plant with a fixed output, Q. The value of the investment opportunity is:

F (p) ≡ sup
τ∈S

Ep
[∫ τ+T+L

τ+T
e−rtπ(Pt, Q)dt− e−rτI(Q)

]
, (3)
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where τ is the investment time, S is the set of stopping times of the filtration generated by the
electricity price process, and r > 0 is the risk-free rate. We must have r > µ in order to ensure
that the firm’s value is finite for L→∞.

Given the investment threshold, P ∗, the optimal investment time, τ∗, has the following form:

τ∗ = inf {t ≥ 0 | Pt ≥ P ∗} . (4)

Prior to determining P ∗ and F (p), we calculate the now-or-never expected NPV, V (p,Q), of a
power plant with fixed output, Q:

V (p,Q) = Ep
[∫ T+L

T
e−rtπ(Pt, Q)dt− I(Q)

]

= K1
Qp

r − µ −K2
cQ

r
− δQε, (5)

where K1 = e−(r−µ)T (1− e−(r−µ)L) and K2 = e−rT (1− e−rL). Note that as T → 0 and L→∞,
both K1 and K2 tend to one, i.e., we have the case of an infinitely lived power plant that is
constructed with no lead time.

The value of the investment opportunity is then determined using the standard methodology
as in Dixit and Pindyck [3]. In particular, this is an optimal stopping time problem, which is
cast as a non-linear maximization problem using the conditional expectation of the stochastic
discount factor, Ep [e−rτ ], and applying the strong Markov property of the GBM process along
with the law of iterated expectations:

F (p) = sup
τ∈S

Ep
[
e−rτV (Pτ , Q)

]

= max
P ∗≥p

( p

P ∗
)β1

V (P ∗, Q), (6)

where β1 > 1 is the positive root of the characteristic equation 1
2σ

2β(β − 1) + µβ − r = 0. The
optimal investment threshold after taking the first-order necessary condition is:

P ∗ =
β1

β1 − 1
r − µ
K1

(
cK2

r
+ δQε−1

)
(7)

By contrast, the now-or-never investment threshold price is PNN = r−µ
K1

(
cK2
r + δQε−1

)
< P ∗,

i.e., having the deferral option provides a value to waiting, which then increases the opportunity
cost of investing.

4 Investment Timing and Sizing

In this section, following Dangl [20] 1 , we develop a model for analyzing not only the investment
timing, but also the plant sizing. The value of the investment opportunity is now:

F (p) ≡ sup
τ∈S,Q≥0

Ep
[∫ τ+T+L

τ+T
e−rtπ(Pt, Q)dt− e−rτI(Q)

]

= sup
τ∈S

Ep
[
e−rτV (Pτ , Q∗(Pτ ))

]

= max
P ∗≥p

( p

P ∗
)β1

V (P ∗, Q∗(P ∗)) (8)

1Although Dangl [20] considers the investment timing and the plant sizing with operational flexibility, as

described previously, in this paper we assume that the power plant does not have such discretion.
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Here, the firm first optimizes the plant’s productive capacity, Q∗(p), before deciding on invest-
ment timing. Thus, the optimal size of the plant for any p is:

Q∗(p) = arg max
Q≥0

K1
Qp

r − µ −K2
cQ

r
− δQε

=
[

1
δε

max
(
K1p

r − µ −
K2c

r
, 0
)] 1

ε−1

(9)

When we substitute the optimal size of the plant for any p, Eq. (9), back into the now-or-never
expected NPV, Eq. 5, we obtain the maximized now-or-never expected NPV:

V ∗(p) ≡ V (p,Q∗(p))

=
(

1
δε

) 1
ε−1
(
ε− 1
ε

)[
max

(
K1p

r − µ −
K2c

r
, 0
)] ε

ε−1

(10)

Inserting Eq. (10) into Eq. (8), we are now able to solve the investment timing problem with
endogenous capacity sizing:

F (p) = max
P ∗≥p

( p

P ∗
)β1

V ∗(P ∗) (11)

Taking the first-order necessary condition as before and solving for P ∗ and Q∗ ≡ Q(P ∗), we
obtain the following:

P ∗ =
β1(ε− 1)

β1(ε− 1)− ε(r − µ)
K2c

K1r
(12)

Q∗ =
(

1
δε

) 1
ε−1
[

K2cε

r(β1(ε− 1)− ε)
] 1
ε−1

(13)

We must have β1(ε − 1) − ε > 0 to ensure that that P ∗ and Q∗ are non-negative. However, if
p > P ∗, then it is optimal to invest immediately and to construct a plant of size greater than
Q∗. In particular, Eq. (9) would be used to determine the optimal capacity.

5 Technology Choice

We now consider the full investment problem in which the firm also has a choice of two technolo-
gies for power plants: the first type is capital intensive, but with low operating costs, while the
second one has low capital, but high operating, costs. Thus, the first technology may be thought
of as nuclear power, while the second one may be based on natural gas combined-cycle com-
bustion. In order to make the tradeoff relevant, we have cN < cG and δN > δG. Other aspects
of both projects remain identical, i.e., both types of power plants face the same price shocks,
construction lead times, and operating lifetimes. We follow the framework of [15] in order to
analyze this problem of mutually exclusive investment in two projects. Unlike [15], we also have
the issue of endogenous capacity sizing in addition to investment timing and technology choice.

Formally, the value of investment opportunity here is:

F (p) ≡ sup
τ∈S,Q≥0

Ep
[
1{τN≤τG}e

−rτNVN (PτN , Q
∗
N (PτN )) + 1{τN>τG}e

−rτGVG(PτG , Q
∗
G(PτG))

]
,

(14)
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where 1{·} is the indicator function, τi, i = N,G, is the investment time of technology i in the
case where the firm has two alternative plants, and τ is the investment time of a plant for either
technology, i.e.,

τ = min {τN , τG} . (15)

In order to solve this problem, we first let P̃ be the indifference price between the two
projects, i.e., V ∗N (P̃ ) = V ∗G(P̃ ). Next, we note that if the nuclear power plant has a higher
maximized expected NPV than the one for the natural gas plant for some p < P̃ , then the
option value for the entire investment opportunity, F (p), may be dichotomous. The procedure
for checking it is as follows:

1. If FG(p) > FN (p), then F (p) = FG(p);

2. Else F (p) = FN (p) for 0 ≤ p < P ∗N and F (p) = D1p
β1 +D2p

β2 for P ∗L < p < P ∗R

In the first case, it is optimal to skip the nuclear power plant and focus on the gas one. Con-
sequently, the option value is simply the value of the opportunity to invest in the gas power
plant. By contrast, in the second case, it may be optimal to invest in the nuclear power plant
for P ∗N ≤ p ≤ P ∗L. Thus, the option value is dichotomous: there is a lower waiting region for
the opportunity to invest only in the nuclear power plant should the price increase sufficiently
as well as an upper waiting region around the indifference price in which it may be optimal to
invest in either technology. This latter waiting region for P ∗L < p < P ∗R has an option value that
reflects the opportunity to invest in either gas or nuclear power plants via D1p

β1 and D2p
β2 ,

respectively, where β2 is the negative root of 1
2σ

2β(β−1) +µβ− r = 0, and D1 and D2 are both
positive endogenous constants.

The investment threshold prices, P ∗L and P ∗R, along with endogenous constants, D1 and D2,
are determined via the following value-matching and smooth-pasting conditions:

F (P ∗L) = V ∗N (P ∗L) (16)

F ′(P ∗L) = V ′∗N (P ∗L) (17)

F (P ∗R) = V ∗G(P ∗R) (18)

F ′(P ∗R) = V ′∗G (P ∗R) (19)

Since these four equations are highly non-linear, it is not possible to find an analytical solution
to the system. However, numerical solutions may be obtained for specific parameters as we
illustrate in the next section. Upon solving for the optimal investment and waiting regions, the
capacity size is then scaled accordingly.

6 Numerical Examples

We use the following parameter values for our numerical examples:

• r = 0.10

• µ = 0.01
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• P0 = 25 ($/MWh)

• cN = 20 ($/MWh)

• cG = 40 ($/MWh)

• T = 2 (years)

• L = 40 (years)

• ε = 2

• δN = 4.17× 10−5 ($/MWh2)

• δG = 2.09× 10−5 ($/MWh2)

• Q = 8760× 500 = 4380000 (MWh)

The δN and δG parameters are calibrated so that a nuclear plant of 500 MW capacity has an
investment cost of $800 million based on a reported cost of $1500/kW in [9]. A gas-fired power
plant of the same capacity is assumed to be half as expensive to build. In addition, we assume
a base value of σ = 0.20, but allow it to vary in order to perform sensitivity analyses.

When a mutually exclusive investment opportunity in the two projects is considered, the
value of the option to invest is dichotomous around the indifference price, P̃ = 78.60, at a
relatively low level of uncertainty. In this example, it is the case that FN (P0) > FG(P0) for
σ < 0.152, which leads to the situation in Fig. 1. For an initial electricity price of $25/MWh,
this implies that it is optimal to wait until the electricity price hits a level of P ∗N = 52.13 before
investing in a nuclear power plant of capacity 424 MW (as determined via Eq. (13)). In fact, for
electricity prices between $52.13/MWh and $56.80/MWh, it is optimal to invest immediately
in a nuclear power plant with capacity that is scaled to maximize the NPV (as determined
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Figure 1: Maximized expected NPV and option value of a mutually exclusive investment oppor-
tunity in nuclear and gas power plants with optimal capacities (σ = 0.15)
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Figure 2: Maximized expected NPV and option value of a mutually exclusive investment oppor-
tunity in nuclear and gas power plants with optimal capacities (σ = 0.20)

via Eq. (9)), i.e., it is optimal to construct an even larger plant. However, for an initial price
in the range P ∗L =$56.80/MWh to P ∗R =$104.49, it is optimal to wait: if the electricity price
drops (rises) to the lower (upper) threshold, then it is optimal to invest immediately in a nu-
clear (gas) power plant. In the latter case, a gas-fired power plant of capacity 1702 MW is
constructed, where the optimal size is determined via Eq. (9). Finally, it should be noted that
P ∗R > P ∗G =$104.27, i.e., it is optimal to delay investment in the gas-fired power plant longer
when the mutually exclusive option to proceed with nuclear is also considered. Intuitively, the
inclusion of a second possible project increases the value of the entire investment opportunity,
but it also makes investment in any specific technology less likely. For example, F (P̃ ) =$1.957
billion, which is greater than FG(P̃ ) =$1.952 billion by $4.88 million, i.e., a difference of 0.25%.

As uncertainty increases, however, the immediate investment region in the nuclear technology
shrinks until for σ > 0.152 it disappears completely. In fact, for volatility estimates greater than
0.152, the value of the option to invest in the gas technology dominates the one for the nuclear
technology. Thus, it is preferable to skip the nuclear technology and consider only the option to
invest in the gas one. Fig. 2 illustrates the maximized expected NPV and option value curves
for σ = 0.20. Since FN (P0)=$104 million and FG(P0)=$146 million, the value of the mutually
exclusive option to invest is simply the value of the option to invest in the gas technology, i.e.,
F (p) = FG(p). As in the model for analyzing the investment timing and the plant sizing, we
wait until the electricity price is $178.07/MWh before investing in a gas-fired power plant of
capacity 3520 MW. Of course, if the initial price were higher than this threshold, P ∗G, then we
would invest immediately in a larger power plant, which would be scaled using Eq. (9). Finally,
Fig. 3 traces the effect of varying the volatility parameter on investment threshold prices and
technology choices. The dichotomous waiting region appears only for low levels of uncertainty.
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7 Conclusions

Due to the ongoing deregulation of the electricity industry, investors in generation and trans-
mission assets have more flexibility over their decisions. Such flexibility can encompass timing,
sizing, and technology choice, to name a few. Under the regulated paradigm, relatively stable
energy prices made such flexibility nearly obsolete as most investment opportunities could be
appraised via the standard NPV approach. Uncertain prices, however, provide an incentive to
defer decisions in order to receive more information especially when there is additional flexibility
in the form of capacity sizing and technology choice.

In this paper, we have developed an analytical model to value to option to invest in mutually
exclusive generation technologies when there exists flexibility over timing and sizing. We note
first that due to the value of waiting, investment using the real options approach occurs later than
via the now-or-never NPV one. Second, uncertainty affects not only the timing of investment,
but also its scale, i.e., investors try to maximize their expected profit by waiting longer and
building larger plants. Finally, consideration of mutually exclusive projects increases the option
value of the entire investment opportunity while deferring adoption of any particular technology.
Indeed, in a situation with a relatively low level of uncertainty, the investor may not be able to
rule out the technology that performs better under relatively low long-term electricity prices,
e.g., nuclear in our case, and, thus, has the additional incentive to wait longer.

References

[1] Wilson RB (1998) Architecture of power markets. Econometrica 70:1299–1340

[2] Hyman LS (2009) Restructuring electricity policy and financial models. Energy Economics,
forthcoming

9



[3] Dixit AK, Pindyck RS (1994) Investment under uncertainty. Princeton University Press,
Princeton, NJ, USA

[4] McDonald R, Siegel D (1986) The value of waiting to invest. Quarterly Journal of Eco-
nomics 101:707–727

[5] Ekern S (1988) An option pricing approach to evaluating petroleum projects. Energy Eco-
nomics 10:91–99

[6] Deng S-J, Johnson B, Sogomonian A (2001) Exotic electricity options and the valuation
of electricity and generation assets. Decision Support Systems 30:383–392

[7] Tseng C-L, Barz G (2002) Short-term generation asset valuation: a real options approach.
Operations Research 50:297–310

[8] Deng S-J, Oren SS (2003) Incorporating operational characteristics and startup costs in
option-based valuation of power generation capacity. Probability in the Engineering and
Informational Sciences 17:155–181

[9] Rothwell G (2006) A real options approach to evaluating new nuclear power plants. The
Energy Journal 27:37–53

[10] Gollier C, Proult D, Thais F, Walgenwitz G (2005) Choice of nuclear power investments
under price uncertainty: Valuing modularity. Energy Economics 27:667–685
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