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Abstract

This paper studies capacity expansion for a competitive electricity industry
when agents consider investment as an option exercise on a real asset.

The originality of this work is that the electricity price process is endoge-
nously given in an unconventional manner : it solves a multi-technology opti-
mization problem. The direct consequence of this sophistication is that one can
not separate the option to invest between technologies. One is forced to eval-
uate directly the entire expansion plan as a whole. A necessary mathematical
tool to work in this direction is singular stochastic control / optimal stopping
equivalence often used in real options.

We’ll show as one proceeds that the drawback of price internalization is
dramatic for interdependent technologies as it prevent for an optimal stopping
- stochastic control to hold and, at the same time, makes our ability to prove
optimality of myopia less likely.

The addition of a myopia assumption as a remedy to reach an investment
criterium is discussed. We motivate the fact that myopia, well known to have
been proved optimal in symmetric cases, is likely to be the observed behavior
under asymmetries.

A numerical and practical solution grounded on myopia arguments is worked
out by combination of analytic treatment and forward Monte Carlo simulations.
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Symbol Glossary

Sets

Ω : Set of random events
L : Set of demand segments
K : Set of technologies

d(L) : dimension of L
d(K) : dimension of K

Operation variables

c(k) : Marginal cost (€/MWh) of technology k, k ∈ K
I(k) : Investment cost (€/MW) of technology k, k ∈ K

q(k, l) : Production flow (MW) for technology k ∈ K, demand segment l ∈ L
K(k) : Capacity (MW) for technology k ∈ K

OMC(k) : Operation and Maintenance cost for technology k ∈ K

Q : Consumption flow (MW) (Q =
∑
k

qk)

Economic variables

Y (t, ω) : Diffusion process for ω ∈ Ω, {Ω, Ft,P} probability space for t ∈ [0, T ].
µ : Drift rate of Y as a GBM
σ : Volatility rate of Y as a GBM

P (Y,Q, l) : Inverse demand function (€/MWh) in section l ∈ L
ρ : annual discount rate

Economic functions

F (Y (t)) : Bellman function (€t) of the expansion plan
Ψ(Y (t),K) : Welfare flow (€t/y)
Ψ̄(Y (t),K) : Regression of the welfare flow (€t/y)



1 Introduction
With restructuring of electricity market came competition and higher risks. The
generators position, relax and stable once upon a time, became — if not harsh —
at least complex : market is no longer protected and there is no more insurance
of cost recovery as in the cost plus system1. The difficulty of exercising in this
context is widely increased by uncertainties affecting power market : uncertainty
over the demand, over the costs, "subjectives"2 uncertainties. Having in mind
these uncertainties surrounding cash flows of capital in place in the energy sector
and regarding irreversibility of those investment, the real options point of view is
of considerable interest to determine the construction timing or the technology
choice for new power plants.

Various applied real options model treat the problem of a single asset invest-
ment opportunity, using closed form solutions, binomial lattices or backward
Monte Carlo.3 In all cases is provided the value of an hypothetical additional
plant and the optimal policy. They however usually make two critical simplifi-
cations :

1. the price process is exogenous : it thus implicitly excludes strategic inter-
action among firms and impact of new capacities on the price design;

2. assets in place are independent.

While the first assumption may be true for infinitesimal energy maker in a
perfectly liquid market — besides the fact that the energy market is nowadays
neither competitive nor liquid —, a good price process has at least to take into
account the market saturation in capacity at the aggregate level. It has been
done in what we will call stylized real option literature in capacity expansion
models for elastic goods.4 Concerning the second assumption, it is simply not

1 The cost plus system was the power pricing regime under regulated monopoly. Pro-
ducers were protected from external competition, and price regulated to avoid abuses. Price
were computed on the basis of incurred costs, and regulators checked that these costs were
reasonable.

2 Uncertainties on environmental policy, impact of dramatic changes of governance, impact
of juridical changes, ethical uncertainty and public opinion fluctuations. Though subjective
uncertainty may have the worst impact on the value of capital in place in the power sector, it
is by definition hardly quantifiable and for that reason always neglected. We will conform to
that statement and focus on demand uncertainty.

3Closed form solutions are used e.g. by Siddiqui and Fleten[33] and Näsäkkalä and
Fleten[13],[14] via calculus on spark spread options.

Binomial lattices are used in Abadie and Chamorro[1],[2]. Tseng and Barz[36] and Gard-
ner and Zhuang[16] showed programming skills in this direction by implementing technical
constraints.

Monte Carlo using Longstaff and Schwartz[26] procedure includes Abadie and Chamorro[3].
All these applications consider the option to invest in a precise asset, independently of the

pre-existing park. The aim is project valuation, and not a capacity expansion planification,
as in stylized real options models like Pindyck[30], He and Pindyck[18], Bertola[7], Leahy[24],
Baldursson and Karatzas[5], Grenadier[17] and Aguerrevere[4].

4This stream of theoretic real options developed after works of Pindyck[30] and Bertola[7],
and connected to game theory and equilibrium under uncertainties with Leahy[24] and
Grenadier[17].
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true that operating units are independent in value. Operation research in energy
networks adhere strongly to — and emerge from — this point of view.

An example will clearly highlight this point. Consider a market composed
of 3 units : 1 coal fired power plant, 1 combined cycle gas turbine(CCGT) and
1 open cycle gas turbine(OCGT). Traditionally, the marginal cost(MC) of the
coal plant is lower than the marginal cost of the CCGT, itself lower than the
MC of the OCGT. If one is considering the option to increase capacity in one
of these 3 units, what is the effect of an increase of the MC of the coal plant on
the investment policy?

An approximation — widely used in applied R.O. literature — is to say
that the values of the three plants are independent, and that an increase of the
cost of the coal will decrease the value of the coal plant but let the value of
the two other plants constant. First, it is dangerous : the conjunction of any
policy emerging of such a belief with both construction lags and indivisibilities
— two features of real life investment that are sure to play role — will lead
to disastrous overbuildings.5 Second, it precisely does not seem adequate for
power : the conjugacy of non storability and inelasticity really make that slight
variations of capacity can profoundly affect tightness of a system, along with
the probability of price spikes. Adding construction lags and indivisibilities to
that approximation will dangerously lead to boom and bust behaviors.

Operation research in energy economics pretends that the values of the three
plants are not independent, that an increase in the MC of the coal plant will
reduce its value but increase the value of the two other plants. This is a purely
intuitive appreciation of the value of the plant based on load factor variation
for each technologies. The general advantage of an optimization formulation is
that it can handle a global view of the system.6

Capacity expansion models in stylized R.O. literature are grounded on the
argument that there is no individual values for plants but just one single value :
the value of the project. This value has two components : the capital in place —
the three existing assets — and the growth options in these three technologies.
The value of the capital in place, the optimal expansion plan and the option
value are determined simultaneously as the solution of a — rather complex —
optimal control problem. The advantage of this dry mathematic formulation is
— however — to allow an endogenous treatment of the price process (see e.g.
Leahy[24], Baldursson and Karatzas[5] and Grenadier[17]).

This paper try to bound the classic real option theory, initiated by
Myers[29], Bernanke[6], and Kester[23] and mathematically stylized by Bren-
nan and Schwartz[8] and McDonald and Siegel[28] to the more practical case of
electricity. It would be very interesting to apply general — rather theoretic —
results as the optimality of myopia introduced by Leahy[24] and extended by
Grenadier[17] to investment in electric physical assets.

This work will be structured as follows. Section 1 introduces the long run
capacity expansion problem faced by the social planner. Section 2 gives the

5 System dynamic literature on Energy investment pointed out the importance of forward-
looking. See Ford[15], Bunn and Larsen[9],[10] and the literature therein.

6We will always refer to Stoft[35] when referring to O.R. energy economics arguments.
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immediate profit of the social planner as a solution of a linear program. Section
3 establishes the investment trigger and comment the results. Section 4 treats
a two technologies example and Section 5 concludes.

2 An industry expansion formulation
The conception of this model followed certain objectives. Precisely, an ambitious
capacity expansion model for power would have the three following characteris-
tics :

1. an endogenous price process;

2. demand uncertainty;

3. a direct evaluation of the expansion plan as a whole.

The nature of competitive industry allows us to achieve these three goals si-
multaneously : the competitive equilibrium in a market submitted to a random
Markovian shocks is given by the solution of a unique optimal control prob-
lem : the maximization of the cumulated welfare. This result due to Lucas
and Prescott[27] is a convenient link between a hardly handleable equilibrium
problem and a more convenient dynamic optimization problem.7

The main purpose of this section is the formulation of the planner dynamic
optimization problem. The benchmark case in this situation is an elastic demand
and an homogenous good (see Dixit and Pindyck[11], chapter 9, sections 1.A
and 1.B for a complete treatment of this case). Unfortunately, this benchmark
is dangerous as power has a subtile nature : it is neither homogeneous nor really
elastic.

2.1 Power
Power is a differentiated product. Power at different times is not desired by the
same type of customers, and especially not for the same use. Two extremes in
this distinction on power is the peak load during certain working hours for the
heavy industry, and base load at night for private consumption. In this paper,
we indeed choose to differentiate power by load states. The main input of the
following analysis is the load duration curve of the power industry.

Power is quasi-inelastic. The inverse demand curve associated to each load
state is almost vertical.

This point is critical as we are forced — in order to conduct a long term
investment analysis — to use a welfare optimization problem i.e. to assume that

7Note that to increase the realism of our model, one should improve the technologic de-
scription with fixed size investments, uncertain operation costs and other technical constraints.
Discrete investment are not amenable to simple investment rule, operation costs uncertainty
enter in the course of dimensionality for optimal stopping.
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there is a well defined elasticity for power.8
Our point of view is that power is nowadays still inelastic : private consumers

do not have access to real time prices, and professionals are usually tight in
delivery schedule.

Power can be produced via several technologies. Nuclear and coal plants are
historically the two main base load generators. Gas showed recent attentions as
a middle base generator (CCGT plants) and peak load generator (OCGT plants)
due to relative low gas prices at the end of the eighties, an important decrease
of the construction and installation costs for theses plants and the practical
comfort of their relatively modest sizes. Greenhouse gas emissions constraints
reinforced this trend and paved the way to green technologies. Among them,
wind turbine is surely nowadays the most popular.

Real options models applied to power generation usually focus on the invest-
ment in a fixed size asset of a given technology, assuming an exogenous power
price process. In doing so, they assume that the value of this future asset is
independent of the value of already existing ones.

These models have the advantage that they provide the financial value of the
plant in addition to the optimal strategy. The drawback is that synergies and
incompatibilities between different technologies are never taken into account.
For instance, it is well known that coupling wind farm and hydro with pump
storage increases the value of the wind farm— or any other plant —, as potential
wind overproduction can be stored in hydro installations.

As well, the choice of an exogenous price process deforms the fundamental
structure of power systems : price spikes do not arise purely randomly. Their
frequency reflect the tightness of the system. This tightness depends on capital
already in place and can be profoundly affected by the addition of a single new
asset.

2.2 The model
The ground of our model follows Leahy[24], namely, we consider perpetual op-
tions exercise in perfect competition. Investment is irreversible. There is at
least three differences with Leahy[24] or Baldursson and Karatzas[5] :

1. Technologies may also differ by their investment costs.

2. We treat power as a differentiated good.9

3. The profit flow is not given in closed form but as the solution of a linear
program.

8 There is no accepted consensus on what should be the power demand elasticity. In
Lijesen[25], elasticities varies from -0.04 to -0.00001, which makes a huge difference in the
conclusion of the long term analyses. This difficulty in calibrating demand for power will
highlight in the result sections.

9The trick to achieve this goal is a piecewise constant approximation of the load duration
curve. It’s usage is widespread O.R. energy economics literature. It is linked to the unit
commitment problem. See for instance Ehrenmann and Smeers[12] for an application, and
Smeers[34] (appendix A.1) for an overview of optimal dispatch and unit commitment models.
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Observe that 1 is really an important improvement : assuming a single and
same investment cost for all technologies greatly simplifies the problem, even in
conjunction with 2 and 3 : one falls back on capacity expansion in competitive
industry with technologies differing only by operation costs, a problem treated
in Dixit and Pindyck[11] (chapter 9, section 1.B) : one invest in the various
technologies in quantities such that marginal cost is equalized across firms. This
problem set up is the only multi-technology capacity expansion problem with
non additively separable profit that allows an analytical solution. Baldursson
and Karatzas[5] treat in full mathematical rigor — in a one technology setting
— the optimality of myopia result stated by Leahy[24], and note that the myopia
result is easily extended to technology having different operation costs, if they
share the same investment cost.

The point 2 is suggested by the nature of power and was discussed earlier.
The point 3 is not an innovation as such : small program were used at least

since Brennan and Schwartz[8], Pindyck[30] and He and Pindyck[18]. However,
it is the first time that the program complexity10 does not allow an explicit
calculation of the profit flow. Note on that point that the authors were not
looking for a mathematical challenge, but a more realistic description of power
market.

We first define the complete structure of the model. Then we give more
informations on parts that may need enlightenment.

Model Assumptions 1. We propose the following increasing capacity model.

1. Fundamental structure.

(a) power market is competitive;

(b) investment options have infinite lifetime;

(c) there is one single risk factor;

(d) investment is irreversible.

2. Demand. Let L be the set of sub-periods for which the load level is supposed
constant.

(a) τ(l), l ∈ L is the duration of these sub-periods in hour s.t.∑
l∈L τ(l) = 8760.

(b) P (Y,Q, l), l ∈ L is the power price in these sub-periods in €/MWh,
with Y a stochastic process and

P (Y,Q, l) = Y (t, ω)A(l)− b(l)Q(l). (1)

3. Supply. Let K be the set of available technologies.11

10Complexity is however a relative point of view : in convex optimization, the optimal
dispatch we use in Problem 1 is a quadratic program, solved relatively easily by interior
points methods.

11E.g. K = {nuclear, coal, ccgt, ocgt, wind farm} for a model with these five technologies.
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(a) Kt(k) , k ∈ K is the capacity level in MW for plant of type k during
the year t.

(b) qt(k, l), k ∈ K, l ∈ L is the production in MW for plant of type k
during period l of the year t s.t. the dispatch constraints

qt(k, l) ≤ Kt(k) k ∈ K, l ∈ L (2)∑
k∈K

q(k, l) = Q(l) l ∈ L. (3)

(c) c(k), k ∈ K is the operation cost for technology k in €/MWh.

(d) I(k), k ∈ K is the investment cost for technology k in €/MW.

(e) OMC(k), k ∈ K is the operation and maintenance cost for technology
k in €/MWy.

The only point that needs explanations at that stage is the demand specifi-
cation.

Within a year, the system is entirely characterized by installed capacities,
costs and the load duration curve. We work on a piecewise constant approxi-
mation of the load duration curve to find a set of demand function : call L the
set of sub-periods for which the load level is supposed constant and τ(l), l ∈ L
the duration of these sub-periods in hour (Fig. 1). The idea is then to use a
different inverse demand curve for each demand segment : it is a simple way to
distinguish power by degree of desirability (Fig. 2).

Fig. 1: Load Duration Curve for Card(L) = 6.

We choose a linear inverse demand curve where uncertainty is introduced
via a geometric Brownian motion Yt(ω) starting in 1.

P (ω,Q, l) = Yt(ω)A(l)− b(l)Q(l) (4)

with Y0 = 1.
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Fig. 2: Supply and demand curves.

For each l, the initial calibration of the demand function needs one observed
point (P̄ (l), Q̄(l)) and the measured elasticity Ē(l). One solves for A(l) and b(l)
the simultaneous equations :{

P̄ (l) = A(l)− b(l)Q̄(l), Ē(l) =
P̄ (l)

P̄ (l)−A(l)

}
.

After time 0, there is two observed processes : P̄t(l) and Q̄t(l) respectively
annual average values of prices and loads. The shift parameter Ȳt(l) for demand
segment l is estimated by

Yt(l) =
P̄t(l) + b(l)Q̄t(l)

A(l)
(5)

then averaged over l using weights τ(l).
We are now ready to compute the profit flow of the social planner. Note that

since the time unit is the year, the profit flow is the annual welfare, or welfare
flow in €/y.

2.3 The profit flow of the social planner
The originality of this paper is the use of a program to compute the profit
flow of the social planner. The program we use in the remaining is a welfare
optimization version of the unit commitment problem.

Problem 1 (The profit flow of the social planner). In the following, we call
Ψ
(
Y,K

)
the social planner profit flow. We choose it to be the solution of the
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program

Ψ
(
Y,K

)
≡ max

q

∑
l∈L

τ(l)
{∫ Q(l)

0

P (Y, q, l)dq −
∑
k

c(k)q(k, l)
}

−
∑
k∈K

OMC(k)K(k) (6)

s.t. 0 ≤ q(k, l) ≤ K(k) ∀k, ∀l (7)

s.t.
∑
k∈K

q(k, l) = Q(l) ∀l. (8)

We check easily that Ψ(Y,K) is a welfare flow in €/y.12 As there is no
explicit time dependence, we will avoid any subscript t from this point.13

Note that Y appears in P (Y, q, l) and that K impacts the objective function
also through the capacity constraints. When Y and K are given, the program is
numerically solved to obtain the value function and the annual strategy. As the
demand function is linear, the used software has to handle quadratic programs.14

Moreover, note that the Problem 1 is convex. This point is of considerable
importance in the choice of the method to solve the long term problem. Pre-
cisely, in this case, one can show that the value function Ψ(Y,K) is concave in
K.

Proposition 1. The immediate profit Ψ(Y,K) is a concave function of K.

Proof. See Appendix B.

It is important : the function Ψ(Y,K) may be non-differentiable at some
points, but it is at least concave in K. Therefore, any regular approximation Ψ̄
of Ψ should have the property of being concave inK which is an important prop-
erty regarding real option theory. In particular, certain conditions on the profit
flow function are necessary (but not sufficient) to a singular stochastic control
- optimal stopping equivalence. These necessary conditions are summarized in
Proposition 2.

Proposition 2. It is necessary for any regression function Ψ̄(Y,K) to be C2 in
Y and C1 and concave in K for a singular stochastic control - optimal stopping
equivalence to hold.

Proof. See appendix C.
12The time sub periods τ(l) are in h; P (Y, q, l) and c(k) are in €/MWh; OMC is in €/MWy;

q, dq and K are in MW thus Ψ(Y,K) is thus an annual welfare in €, or the welfare flow in
€/y.

13 In general, one may have a profit flow given by Ψ
`
Y (s),K(s), s

´
i.e. explicitly time

dependent. Here, as the horizon is infinite, the problem is time homogeneous. There is
just an implicit time dependence through processes Y and K; we can therefore simply note
Ψ(Y,K).

14We use Matlab 7.4 and the function quadprog.
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Once we have found this “fine enough” fit Ψ̄, one can formulate the social
planner optimal control problem.

2.4 The social planner’s objective
The aim of this section is to determine the optimal behavior of the social planner,
based on a fit Ψ̄ of the profit flow Ψ.

The unit time of the expansion plan is the year; ρ is the annual discount rate.
We call F (Y ) the value function (or Bellman function) of the energy expansion
plan. F (Y ) is the solution of the following optimal control problem.

Problem 2 (The social planner’s problem). Find the value function F (Y,K)
and a non-decreasing and left-continuous process K(v), v ≥ s such that

F (Y,K) = max
K(v),v≥s

E
[ ∫ +∞

t

Ψ
(
Y (s),K(s)

)
e−ρsds−

∑
k

∫ +∞

t

I(k)e−ρsdK(k, s)
∣∣∣Yt = Y,Kt = K

]
with Ψ

(
Y (s),K(s)

)
the solution of the optimal dispatch problem given by Prob-

lem (1).

This formulation is general, that is, one may assume Ψ in closed form or
numeric. We are in the latter case in our model : we only have a collection of
points of the welfare.

The reader should moreover note that the stochastic control problem we
face is non-trivial. The control process Ks is constrained to be increasing. The
mathematical field related to such problems is singular stochastic control where
the term singular comes from the fact that optimal control of such problems is
usually of a bang bang type. Direct determination of the solution is difficult, but
the bang bang nature of the control suggests a link to optimal stopping. Usually,
mathematicians begin by working on a related optimal stopping problem, then
prove that the solution of this optimal stopping problem can be integrated
to find the value function and the optimal control of the singular stochastic
control problem. This link is of considerable interest as related optimal stopping
problems are usually easier to solve.15 It is however important to realize that
this equivalence has been proved only for particular cases, each involving one
control variable and one uncertainty.16 There is therefore in this field a curse of
dimensionality that makes the problem hard to deal with.

We do not elaborate on the number of uncertainties as our model includes
a single shock process. We rather discuss on the number of control variables.

With a single technology, we can find a solution in closed form : the equiv-
alent optimal stopping problem we face is integrated to find the value of the

15Moreover, optimal stopping theory is more topologized than stochastic control theory,
and then more amenable to existence proofs.

16See Karatzas and Shreve[20],[21] and El Karoui and Karatzas[22].
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project (see Bertola[7], Pindyck[30],[31] and the Karatzas and Shreve[20] mono-
tone follower problem in related stochastic control literature).

With two technologies, there is no mathematical results defining a certain
singular stochastic control - optimal stopping equivalence. The only way out is
the distinction of two types of problems :

1. Problems with additively separable17 profits : they are easily handled
as one can separate the project in option exercise in each technology.
Mathematically, one use an optimal stopping - singular stochastic control
equivalence for each control variable.

2. Problems with non additively separable profit : we have no theory to rely
on.

The distinction separable vs. non separable profit has to be made when com-
puting a regression Ψ̄ of the welfare Ψ. If we allow the fit to be non additively
separable, one can not find a trigger unless a myopia additional assumption.

3 Elaboration of a solution
He and Pindyck[18] note that if the profit flow is separable one can write the
investment opportunity as a sum of investment opportunities on each technology.
We thus have two options :

1. Either we find the better fit Ψ̄ for the function Ψ. A better fit implies
cross terms and is not additively separable. Then we can not solve the
investment problem except with an additional myopia assumption.

2. Or we find an additively separable fit Ψ̄. Then we can solve analytically
the investment problem for each technology.

In this part, we discuss these two options. We assume that the Ito diffusion
Y driven the demand is a geometric Brownian motion

dY (t, ω) = µY dt+ σY dBt(ω) (9)

to achieve analytical results. A perpetual american call option on an underlying
described by this dynamic will have the form AY β1 with β1 the only positive
root of the quadratic18 :

Q(β) =
1
2
σ2β(β − 1) + µβ − ρ. (10)

It is however not a restriction : the same procedure applies to other diffusions
or to jumps.

17One can formally identify the profit of each technology in the expression of the profit flow.
18The positive root is moreover greater than 1 and tends to 1 as σ increases. See Mc Donald

and Siegel[28].
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3.1 A separable welfare flow
In this part, we assume an additively separable fit Ψ̄ of the welfare function. As-
suming a geometric Brownian shock affecting the demand, the singular stochas-
tic control - optimal stopping equivalence takes the following form.

Definition 1 (The social planner’s optimal stopping problem). Assume Y (t, ω)
a geometric Brownian motion described by the stochastic differential equation
(9). Given the current capacities K(k) (k = 1 . . . d(K)), find the value of the
project F (Y,K) and the d(K) triggers Y ?k (K) (k = 1 . . . d(K)) such that

µY
∂F

∂Y
(Y,K) +

1
2
σ2Y 2 ∂

2F

∂Y 2
(Y,K) + Ψ̄(Y,K)− ρF (Y,K) = 0

for Y ≤ Y ?k (K), ∀k ∈ K

and

∂F

∂Kk

(
Y ?k (K),K

)
= Ik ∀k ∈ K (11)

∂2F

∂Kk∂Y

(
Y ?k (K),K)

)
= 0 ∀k ∈ K. (12)

Proof. See He and Pindyck[18] page 584, equation (14) with the assumptions
that there is a single uncertainty and that the profit flow is additively separable.

On the base of this separable formulation, we propose the following regression
model.

Definition 2 (An additively separable regression model). We propose an in-
terpolation of the profit flow Ψ by the additively separable function Ψ̄ given by

Ψ̄(Y,K) =
d(K)∑
k=1

d(γ), d(α)∑
i,j=1

bk,ijY
γiK

αj

k −
d(K)∑
k=1

OMC(k)K(k) (13)

with γ and α respectively positive base vectors of dimension d(γ) and d(α) such
that ∀i, 0 < γi < β1; ∀j, 0 < αj ≤ 1; b ≥ 0 and β1 the positive root of the
fundamental quadratic Q(β) defined in (10).

The motivation of this formulation is straightforward : one can find the
particular integral of each term of this interpolation. The homogeneous so-
lution of the differential equation (18) is well known : Fh(Y,K) = A(K)Y β1

with β1 the positive root of Q(β). It is also well known in the literature
that if γi ≥ 0 satisfies the condition ρ − µγi − 1

2σ
2γi(γi − 1) > 0 — which

turns out to say that Q(γi) < 0 i.e. that 0 ≤ γi ≤ β1 for all i — , then if
Ψ(Y,K) = bt,ijY

γiK
αj

t (resp. cut,ijkY
γiK

αj

t Kαk
u ), the particular integral of
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(18) is Fp(Y,K) = bt,ij(γi)Y γiK
αj

t (resp. cut,ijkY γiK
αj

t Kαk
u ) with

bt,ij(γi) =
bt,ij

ρ− µγi − 1
2σ

2γi(γi − 1)
(14)(

resp. cut,ijk(γi) =
cut,ijk

ρ− µγi − 1
2σ

2γi(γi − 1)

)
. (15)

Note that it is compulsory that every power of Y is lower than β1.
The solution of the Bellman partial differential equation of the generation

plan is :

F (Y,K) = A(K)Y β1 +
d(K)∑
k=1

d(γ), d(α)∑
i,j=1

bk,ij(γi)Y γiK
αj

k −
d(K)∑
k=1

OMC(k)K(k)
ρ

and as the welfare flow is now additively separable, one can write :

F (Y,K) =
d(K)∑
k=1

Fk(Y,Kk)

with

Fk(Y,Kk) = Ak(Kk)Y β1 +
d(γ), d(α)∑
i,j=1

bk,ij(γi)Y γiK
αj

k −
OMC(k)K(k)

ρ

where Fk(Y,Kk) is interpreted as the value of the project to invest in technology
k. The first term Ak(Kk)Y β1 is the option value of capacity expansion in tech-
nology k and the second term

∑d(γ), d(α)
i,j=1 bk,ij(γi)Y γiK

αj

k −OMC(k)K(k)/ρ is
the value of installed capital for the same technology. One can solve the problem
independently for each technology (for each k ∈ K) : it is just the simplest case
treated by Bertola[7] and Pindyck[30].

Proposition 3 (Investment trigger for the separable case). The investment
trigger for technology k is given by :

d(γ), d(α)∑
i,j=1

{
αjbk,ij(γi)Y γiK

αj−1
k

(
β1 − γi
β1

)}
= Ik +

OMC(k)
ρ

(16)

Proof. See Appendix D.

Appendix D shows that Y ?k (Kk) defined by (16) is uniquely defined as an
increasing function of Kk. It is sufficient to our purpose : one is not able to find
a closed form solution for Y ?k (Kk), but in real time one can observe Y (t) and
check if (16) holds or not. The same Appendix provides additional conditions
under which A(Kk) is well defined.
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One should remark for sake of completeness that though solution procedure
offered in Appendix D seems the more direct, it is not the quickest way to
achieve the result. A quite sophisticate result due to Baldursson and Karatzas[5]
ensures myopia in competitive equilibrium. This result applied to investment
opportunity in each technology would have lead directly to this solution.19

3.2 A non separable welfare flow
As a solution of a mathematical program, the profit flow is not separable :
the growth option of the entire expansion plan is not the sum of individual
growth option on each technology. The exercise of an investment option in a
given technology actually depreciate investment options on other technologies.
There is therefore a high likelihood that a precise fit of the profit flow requires
a regression model with cross(interactions) terms.

Here arises a theoretical complication. If the profit flow of the singular
stochastic control problem faced by the social planner is not additively separable,
one has no theory to rely on. It is likely — this intuition is based on the work
of Baldursson and Karatzas[5] — that a singular stochastic control/optimal
stopping equivalence can not emerge from this twisted case. And since myopia
rely on this equivalence, it is a fortiori improbable to find out a myopia result
in this context.

However, we think that practitioners use myopia as a proxy for the true
optimal behavior under uncertainty, first because it can be solved in any situa-
tion, and second because it is unquestionably true in benchmark — symmetric
— cases i.e. perfect competition (Leahy[24] and Baldursson and Karatzas[5])
and symmetric oligopolies (Grenadier[17]). For these two reasons, equilibrium
under myopic behavior worth’s to be interested in.20

Having in mind the use of myopia as an assumption and using known par-
ticular solution of the Bellman equation, we propose the following regression
model.

Definition 3 (A non additively separable regression model). We propose an
interpolation of the profit flow Ψ by the non additively separable function Ψ̄

19The reader can check that by using Appendix E with bkt,ijl = 0 for all k, t, i, j, l.
20 Myopic actions as proved to be the solution in competitive industry in symmetric settings.

Leahy[24] proved in a single technology model that myopic behavior is optimal in perfect
competition under uncertainty. In Dixit and Pindyck[11] and Baldursson and Karatzas[5],
this result is extended to several technologies with the condition that they share a same
investment cost. To our knowledge, such a result does not exist in a multi-technology setting
with different investment cost.
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given by

Ψ̄(Y,K) =
d(K)∑
t=1

d(γ),d(α)∑
i,j=1

bt,ijY
γiK

αj

t

+
d(K)∑
t,u=1
u 6=t

d(γ),d(λ),d(λ)∑
i,j,k=1

cut,ijkY
γiK

λj

t Kλk
u −

d(K)∑
t=1

OMC(t)K(t) (17)

with γ, α and λ respectively positive base vectors of dimension d(γ), d(α) and
d(λ) such that ∀i, 0 < γi < β1; ∀j, 0 < αj ≤ 1; ∀k, 0 < λk < 1; with the
restriction that any interaction terms should pick 2 powers λ1 and λ2 such that
λ1 + λ2 ≤ 1 ; b ≥ 0; and β1 the positive root of the fundamental quadratic Q(β)
defined in (10).

The motivation of this formulation is given in motivation of Definition 2. At
this stage, we make the assumption that competitive agents are myopic i.e. that
they assume no future entry after their own investment. They therefore solve an
optimal stopping problem on the only Y variable, assuming the industry output
is fixed forever at the current level. This assumption simplifies the problem : as
the future capacity is assumed static, one can find the value of the next unit as
a function of the shock price process only, and find a so called myopic strategy.
Each agent solves an American perpetual call on a next marginal unit, assuming
that the termination value of this unit is computable — since it is assumed that
no further control will be exercised in any direction — as the expectation of its
future cash flows.

Definition 4 (Myopic behavior of each agent). The optimal stopping problem
solved by the myopic agent is : given the current capacities in place K(k) (k =
1 . . . d(K)), find for each k ∈ K the values of marginal unit sized next units
fk(Y ) and triggers Y ?k such that

µY
∂fk
∂Y

(Y ) +
1
2
σ2Y 2 ∂

2fk
∂Y 2

(Y )− ρfk(Y ) = 0 ∀Y ≤ Y ?k , (18)

and

f(Y ?k ) = mk(Y ?k )− Ik (19)
∂f

∂Y
(Y ?k ) =

∂mk

∂Y
(Y ?k ) (20)

mk(Y ) = E
[ ∫ +∞

0

∂Ψ̄
∂Kk

(Ys,K)e−ρsds
∣∣∣∣Y0 = Y

]
. (21)

The myopia assumption is mathematically expressed by the very definition of
the functionmk(Y ) in (21) : it is stated as a function of the sole shock Y because
K is assumed forever constant in the computation of the right hand integral.
In this expression K is indeed considered as a parameter, not as a variable.
Proposition 4 gives optimal investment triggers under myopia assumptions.

14



Proposition 4. The myopic investment trigger Y ?k (K) for technology k ∈ K
when capacities in places are K(k) is given by

d(γ)∑
i=1

Y γi

(
β1 − γi
β1

){ d(α)∑
j=1

αjbk,ij(γi)K
αj−1
k

+
d(K)∑
t=1
t6=k

d(λ), d(λ)∑
j,l=1

λkbkt,ijl(γi)K
λj

t Kλl−1
k

}
= Ik +

OMC(k)
ρ

. (22)

Proof. See Appendix E.

One needs to discuss whether the choice of an additively separable welfare
flow is adequate. The welfare flow solves an optimization problem. As we said
earlier, a fine approximation of this welfare surely demands interaction terms,
as technologies having different characteristics are not just substitutable : they
may interact positively or negatively. Seen this way, it does not appear judicious
to occult interaction of the formulation.

However, the separable approximation is a projection of the welfare on the
space of additively separable functions. The relative error of this projection
indicates how bad this approximation can be.

It is thus important to compare relative errors of both separable and non
separable fits of the welfare flow : pronounced differences will show that tech-
nologies strongly interact in values, while slight differences will indicate that
technologies are approximatively independent.

To give a summary of what is done so far : one can choose either to operate
an additively separable regression of the welfare flow, with the disadvantage
that the investment trigger one obtains for a particular technology does not
depend on level of capital stock in other technologies. Or, one can look for a
non additively separable regression of the welfare and assume myopia to solve
the problem.

The latter supposes computation of interaction coefficients in the regression
model. By increasing the number of technologies, we increase strongly the size
of the constrained mean square program one needs to solve to accomplish the
regression procedure. As we precisely want a model able to handle several
technologies, this method will rapidly lead to a dead end.

We now propose a method to tackle this problem. Recall that myopia is op-
timal if the regression model is separable; and used as an assumption (motivated
by the absence of decision rule, and optimality in benchmark cases) otherwise.
This leads to an heuristic based on myopia and forward Monte Carlo.

4 Myopia and Monte Carlo : an effective algo-
rithm

This section presents an alternative determination of the trigger by forward
Monte-Carlo simulations. We first use the myopia simplification of fixing forever
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capacity variables. Second, we use the fact that a natural proxy of the marginal
profit ∂Ψ(Y,K)

∂Kk
is the sum λk(Y,K) of Lagrange multipliers λk,l(Y,K), l ∈ L of

capacity constraints (7) on Kk : this is noted

λk(Y,K) ≡
∑
l∈L

λk,l(Y,K) =
∂̂Ψ
∂Kk

(Y,K). (23)

("λk is used as an estimator of ∂Ψ
∂Kk

(Y,K)"). Note that λk(Y,K) is in €/MWy.
We explain the procedure in a few words (and without mathematical em-

barrassment).

1. Starting from initial capacity K and shock level Y , we generate a large
number of scenarios.

For each scenario ω, one computes the value of the marginal next unit of
technology k as a numerical integral of λk(Y,K). One obtains the marginal
value M̂k(Y, ω).

Averaging on Ω brings us the value of the marginal unit m̂k(Y ).

2. One then regress m̂k(Y ) by power functions of Y , m̂k(Y ) =
∑d(γ)
i=1 ciY

γi

and solve by analytical treatment the resulting optimal stopping problem
on Y .

This intuition is formalized in the following.

Method 1. 1. Let {Ys}0≤s≤T (ε,ω) : Ω × R+ → R, Y0 = Y , the stochastic
process affecting demand. Define the random variable Mk(Y ) : Ω→ R by
:

∀ω ∈ Ω, Mk(Y )(ω) ≡
T (ε,ω)∑
s=0

λk(Ys(ω),K)e−ρs (24)(
≈

∫ ∞
0

∂Ψ
∂Kk

(Ys,K)e−ρsds
)

with T (ε, ω) choosen so that
∑T (ε,ω)+1
t=T (ε,ω) |λk(Ys(ω),K)|e−ρs ≤ ε.

2. Generate N paths ω1, ω2, . . . , ωN and note the corresponding random vec-
tor (Ys(ω1), . . . , Ys(ωN ))0≤s≤T (ε) with T (ε) = max(T (ε, ω1), . . . , T (ε, ωN )).
The Mk(Y )(ωi) form an i.i.d. sequence. The law of large numbers ensures
that :

m̂k(Y ) ≡ E
[
Mk(Y )(ω)

]
= lim

N→∞
1
N

N∑
j=1

Mk(Y )(ωj) (25)(
≈ E

[ ∫ +∞

0

∂Ψ
∂Kk

(Ys,K)e−ρsds
∣∣∣∣Y0

])
.
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3. Computes m̂k(Y ) for different Y and regress by

m̂k(Y ) =
d(γ)∑
i=1

ciY
γi (26)

with γ positive base vectors of dimension d(γ) such that ∀i, 0 < γi < β1

and β1 the positive root of Q(β) defined in (10). The investment trigger
is the value of Y such that :

d(γ)∑
i=1

ciY
γi

(
β1 − γi
β1

)
= Ik +

OMC(k)
ρ

. (27)

The finding of the last trigger only consist in using Appendix E from equation
(55) to the end, having replaced (55) by mk(Y ) =

∑d(γ)
i=1 ciY

γi .
Again, myopia is emphasized by our notations : Mk(Y ), m̂k(Y ) and m̂k(Y )

are noted as sole functions of Y while (obviously) λk is a function of both Y
and K. Industry capacity expansion is driven by a sequence of myopic optimal
stopping problem : capital addition takes place precisely when myopic trigger
for the current capacity is reached; then follows an (upward) update of capacity
level, and it’s a new optimal stopping problem, to be solved again under myopia.

Before we move on to an example and compare the two methods, we discuss
some advantages of our new procedure.

First, instead of performing a regression on the uncertainty ⊗ technology
space, one just needs to regress on the uncertainty space : it is of course both
mathematically and computationally slighter. We expect a sharp decrease of
the regression error.

Second, note that Monte Carlo is here used to evaluate the bequest function
(or terminal payoff) of the optimal stopping problem in order to apply analytic
method to solve the latter. This method thus mix forward21 Monte Carlo to
analytics. Besides the fact that their work only applies to option valuation in
finite horizon (and not capacity expansion), this method is completely discon-
nected to Longstaff and Schwartz[26]’s (backward) Monte Carlo method which
uses entire paths matrices and compute backward directly the option value using
polynomial regression as a way to estimate conditional expectation.

Third (and lastly), the procedure is very efficient by using directly Lagrange
multipliers of the capacity constraints (Lagrange multipliers are provided in
quasi any solver).

5 An example : 2 technologies
To fix ideas, we consider a capacity expansion problem with two technologies
i.e. K ∈ R2. We choose to compare nuclear and coal; and call K1 the nu-
clear capacity and K2 the coal capacity. Details on technologies in electricity
generations are given in Appendix A.

21Forward Monte Carlo allows more effective parallel computations. Elaborate on this point.
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The demand is splitted in 6 segments (d(L) = 6) for which we give the load
level (see Table 1). Calibration is done for each load state : for state l, we
use the load Q̄(l), corresponding price P (l, Q̄(l)) and elasticity γ(l) to find the
coefficient A(l) and the slope b(l) of the demand function.

The elasticity is allowed to depend on the load state. However, for inter-
pretation simplicity, we’ll assume the same elasticity value for each load state,
that is, γ(l) = γ for all l. Our base case scenario assumes γ = −0.5. We will
observe how investment trigger reacts to elasticity variations by comparing this
base case to γ = −0.35 (low elasticity) and γ = −0.75 (high elasticity).

Demand Segment l 1 2 3 4 5 6
τ(l)(kh) 0.01 0.04 0.31 4.4 3 1

Q̄(l)(MW ) 86000 83000 80000 60000 40000 20000
P (l, Q̄(l)) (€/MWh) 300 60 55 40 30 20

γ(l) -0.5 -0.5 -0.5 -0.5 -0.5 -0.5
A(l) for Y = 1 900 180 165 120 90 60

b(l) 0.0070 0.0014 0.0014 0.0013 0.0015 0.0020

Table 1: Demand calibration data (base case).

5.1 Solution by interpolation on the Y ⊗K space
5.1.1 The welfare flow

The defined optimal dispatch problem is solved22 for different values of the
capacities K1 and K2 and different values of the demand shift Y . Values of the
welfare for each value of K1, K2 and Y constitute a surface in the 3 dimensional
euclidian space : the welfare flow Ψ(Y,K1,K2) in €/y.

The Figure 3 represent the welfare Ψ for γ = −0.5 as a set of 2D surfaces
parametrized by the Y value. It shows the welfare as a strictly increasing
function of Y , as successive surfaces do not meet and are higher for higher
demand indices. It also shows that Ψ is concave in K1 and K2. Note however
that Ψ is decreasing for large values of the capacities. This last observation is
a consequence of presence of Operation and Maintenance Costs (OMC) in the
optimal dispatch. Each held capacity incur at least OMCs to keep the capacity
alive. For that reason, even with a zero investment cost, it would not be optimal
to hold an infinite capital stock.

22We use Matlab 7.4.0 and the function quadprog.
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Figure 3: The welfare function Ψ(Y,K1,K2) for (Y1, Y2, . . . , Y8) = (0.25, 0.5, . . . 2),
K1 ∈ [0; 150000] (MW) and K2 ∈ [0; 60000] (MW).

5.1.2 Regression of the welfare flow and triggers

We now turn to the regression problem and look for an approximation of
Ψ(Y,K1,K2) by a function Ψ̄(Y,K1,K2) which is C2 in Y , and C1 and con-
cave in K.

Before choosing regression bases, one need to specify the demand growth
rate. Y (t, ω) is assumed to be a geometric Brownian motion i.e. to solve a
stochastic differential equation dY = µY Y dt+σY Y dBt having parameters µY =
0.2 and σY = 0.03. We fix the discount rate to ρ = 0.1. With this set up, the
positive root of the fundamental quadratic (10) is easily computed : one finds
β1 = 4.62.

We use the additive regression model given by equation (13) and set γ =
(1, 2, 3, 4, 4.5) ∈ R5 (the only constraint on γ being that it’s maximum is under
β1), α = (0.25, 0.5, 0.75, 1) ∈ R4 and λ = (0.1, 0.2, 0.3, 0.4, 0.5) ∈ R5. The
regression is achieved using a least square constrained program : regression
coefficients are restricted to be positive to ensure that the fit Ψ̄ is a concave
function.23

After the regression, it remains to solve numerically the nonlinear one di-
mensional trigger equation.24

The two steps of generating the welfare Ψ and performing the regression have
been done for γ = 0.5 (base case) and γ = 0.35, 0.75. Results are presented in
the next subsection.

23We use Matlab 7.4.0 and the function lsqnonneg.
24On Matlab 7.4.0, one uses fzero.
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γ = 0.5 γ = 0.35 γ = 0.75
Rel. Error (separable) 11.61% 12.23% 10.98%

Table 2: Relative Errors for separable and non separable cases.

5.1.3 Results

Note that the relative error obtained for the separable regression model —
available in Table 2, giving all output data for this part on interpolation on the
Y ⊗ K space — is at best 10%. This passable result suggests either to affine
the base, or to move from a non separable to a separable regression model.

Figure 4 displays investment triggers for additively separable regression
model. Separable regression assumes that technologies are independent. For
that reason, one can plot investment trigger for nuclear (resp. coal) as a only
function of level of installed nuclear (resp. coal) units. It is visible on this graph
that, for the three elasticities scenarios, nuclear will be the preferred technology
(investment triggers for nuclear are lower). One also verifies that the trigger is
an increasing function of the elasticity level : for a fixed demand level, the more
consumption is sensitive to price increases, the less will the marginal value of
the next unit be important; it implies later investment.

1 2 3 4 5 6 7 8 9 10

x 10
4

0.5

1

1.5

2

2.5

3

Capacities : K1, K2 (MW)

In
ve

st
m

en
t

tr
ig

ge
rs

:
Y
∗ 1
,Y

∗ 2

Investment triggers Y ∗
1 and Y ∗

2 in separable case

 

 

Y
*

1
 for γ = 0.5

Y
*

2
 for γ = 0.5

Y
*

1
 for γ = 0.35

Y
*

2
 for γ = 0.35

Y
*

1
 for γ = 0.75

Y
*

2
 for γ = 0.75

Fig. 4: Investment triggers for the separable regression. Nuclear is the preferred
technology, and higher elasticities implies a higher value of the option to wait.

20



K2(MW)
10000 20000 30000

K1

(MW)

10000 0.0211 0.0170 0.0164
20000 0.0335 0.0279 0.0220
30000 0.0395 0.0255 0.0295
40000 0.0413 0.0377 0.0334
50000 0.0462 0.0507 0.0390
60000 0.0477 0.0474 0.0354

Table 3: Relative errors in the regression m̂1(Y ) of m̂1(Y ).

K2(MW)
10000 20000 30000

K1

(MW)

10000 0.0678 0.0662 0.0649
20000 0.0681 0.0693 0.0628
30000 0.0656 0.0550 0.0634
40000 0.0659 0.0757 0.0699
50000 0.0643 0.0616 0.0526
60000 0.0479 0.0545 0.0625

Table 4: Relative errors in the regression m̂2(Y ) of m̂2(Y ).

5.2 Regression on the Y space only. Analytics - Monte
Carlo.

We now treat the capacity expansion problem using the alternative numerical
method described in Section 4.

For given initial capacities and initial demand shock Y0 = Y = 1, we con-
ducted N = 30 (See (25)) forward simulations, using ε = 0.01 as stopping
condition in the valuation of M̂k (See (24) ). We then regressed the marginal
unit m̂k using the base γ = (0.25, 0.5, . . . 3) in (26).

Table 3 and Table 4 show respectively relative errors in regressions of m̂1(Y )
and m̂2(Y ). A comparison with Table 2 show that — compare to global regres-
sion —, our method allow a better precision at the regression level. It is normal
: the latter only needs to regress on the Y variable.25

Figure 5 and Figure 6 give investment triggers Y ∗1 (K1,K2) and Y ∗2 (K1,K2)
for respectively nuclear and coal investment. For each technology, the invest-
ment trigger is increasing in all type of installed capacity : not only it is in-

25 One may think that a proper analyze should compare the relative error of global regression
with the combined error of forward Monte Carlo with regression on the single uncertainty axis.
It would not be true, as — in theory, by letting N goes to infinity — Monte Carlo gives us
the expectancy with an arbitrary big precision (the sample average converges almost surely
to the expected value). In practice, Monte Carlo gives the mean value with a good precision
relatively fast (N = 100), so our method will remain the most accurate.
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creasing in capital stock of his own type, but also in capital stock for other
technologies. Note that this simple — and intuitive — characteristic of invest-
ment does not appear with additively separable regression and cannot appear
in a model considering the price process as exogenous.
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Fig. 5: Investment triggers for nuclear combining analytics and forward Monte Carlo.
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6 Conclusion
This paper proposes a capacity expansion model for competitive power market.
Considering uncertainties and important capital intensiveness in this sector, real
options theory is a necessary tool in the determination of appropriate investment
behavior. We use a stylized model to make the price process endogenous : such
capacity expansion models are scarce regarding investment in power assets. This
paper tries to fill this gap while recent restructuring brought serious fear of boom
and bust cycles in construction of power capacities.

Besides being original for the reason we just mentioned, our model differ at
least in two ways of the closest work it is related with (Leahy[24]) : first, one
uses optimal dispatch to compute the welfare flow of the social planner; second,
our model uses several technologies that may also differ by their investment
cost.

This next point forces us to fit our welfare flow by convenient analytical
forms. At this stage, a solution can be obtained by assuming a separable re-
gression model or by resorting on an assumption of myopia. This second option
is discussed and motivated : myopia is in general the observed behavior.

We moreover provide a faster and more accurate method to apply myopia
numerically : we combine forward Monte Carlo simulations and free boundary
problems to get investment criteria more efficiently. This method is promising
: it can be used anytime we use myopia on a capacity generation plan; or
for pricing perpetual American options on any complex physical asset, with
underlyings given by any stochastic process one can think of for which standard
real options theory provides a trigger.
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Appendices
A The 4 main technologies
We use 4 technologies in our model. Main features on these technologies are given in
Table 5.26

Technology Nuclear Coal CCGT OCGT
Indice 1 2 3 4

O. & M. Cost (€/MWh) 10 8 5 5
Fuel Cost (€/MWh) 5 25.714 37.241 55.385

Emission Cost (€/MWh) 0 18.729 7.994 14.012
Marginal Cost (€/MWh) 15 52.443 50.236 74.397

Fix Cost (€/MWh) 18.62 10.65 5.74 3.28

Table 5: Generation technologies

O.&M. is for Operation and Maintenance cost. These prices are based on input
costs of respectively 3 and 6 €/GJ for the coal and the gas; 1.85 €/MWh for the
nuclear input; and finally 23 €/t of CO2. The real discount rate we use is 5 %.

B Proof of Proposition 1
Indeed, rewriting Problem 1 as a minimization, one can write

Ψ
`
Y,K

´
+
X
k∈K

OMC(k)K(k) ≡ −min
q

X
l∈L

τ(l)

X
k∈K

c(k)q(k, l)−
Z Q(l)

0

P (Y, q, l)dq

ff
(28)

s.t. 0 ≤ q(k, l) ≤ K(k) ∀k, ∀l (29)

s.t.
X
k∈K

q(k, l) = Q(l) ∀l. (30)

We note that (28) is the minimization of a convex function subject to two convex
constraints (29) and (30). Standard optimization theory guarantees that the objective
cost function at the optimum is convex with respect to the constraint vector K i.e.
that Ψ(Y,K) is concave in K.

26Costs are given in Risto and Aija[32]. One may also consult Joskow[19] and Stoft[35] for
the computation of the fix costs.

26



C Proof of Proposition 2
That Ψ̄(Y,K) is C2 in Y is a necessary condition for the function F (Y,K)) to be C2
in Y in order to apply the Ito formula.

That Ψ̄(Y,K) is C1 in K is a necessary condition for the function F (Y,K) to be
C1 in K in order to solve the value matching (11).

For this expansion planning problem to make sense, the Bellman function F (Y,K)
has to be concave in K for all Y ∈ R+. It is the case (see e.g. Bertola[7]) if the
immediate welfare flow Ψ̄(Y,K) is a concave function of K.

We now turn to the conditions under which the problem of maximizing the total
surplus is equivalent to the research of the competitive equilibrium. These conditions
are stated in Leahy[24].

1. The investment projects are infinitely divisible.

2. The cost function do not offer increasing return to scale.

3. The welfare flow Ψ(Y,K) is continuous with respect to the output K.

We assume that Condition 1 holds. Condition 2 clearly holds, as shown in Fig. 2.
Condition 3 will hold if Ψ̄(Y,K) is C1.

D Proof of proposition 3
One has to solve

Fk(Y,Kk) = Ak(Kk)Y β1 +
X
i,j

bk,ij(γi)Y
γiK

αj

k −
OMC(k)Kk

ρ
(31)

∂Fk
∂Kk

(Y ∗k (Kk),Kk) = Ik (32)

∂2Fk
∂KkY

(Y ∗k (Kk),Kk) = 0. (33)

The following decomposition is insightful.

Fk(Y,Kk) = Ak(Kk)Y β1| {z }
Ok(Y,Kk)

+
X
i,j

bk,ij(γi)Y
γiK

αj

k −
OMC(k).Kk

ρ| {z }
Vk(Y,Kk)

(34)

The term Ok(Y,Kk) is the expansion option in technology k for a given Y . It is de-
creasing in Kk. Vk(Y,Kk) is value of installed capital Kk for drift Y . A necessary(but
not sufficient) condition to increase capacity is ∂Vk

∂Kk
(Y,Kk) > 0.

Preliminary study : the function Vk(Y,Kk).

Vk(Y,Kk) ≡
X
i,j

bk,ij(γi)Y
γiK

αj

k −
OMC(k)Kk

ρ
; (35)

Vk(Y, 0) = 0; (36)
Vk(0,Kk) = −OMC(k)Kk; (37)

lim
Kk→+∞

Vk(Y,Kk) = −∞. (38)
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We compute the partial derivatives of the function Vk.

∂Vk
∂Kk

(Y,Kk) =
X
i,j

αjbk,ij(γi)Y
γiK

αj−1

k − OMC(k

ρ
(39)

∂2Vk
∂K2

k

(Y,Kk) =
X
i,j

αj|{z}
>0

(αj − 1)| {z }
<0

bk,ij(γi)| {z }
>0

Y γiK
αj−2

k| {z }
>0

< 0 (40)

→ Vk(Y,Kk) is a concave function of Kk.
∂2Vk
∂Kk∂Y

(Y,Kk) =
X
i,j

αjγi|{z}
>0

bk,ij(γi)| {z }
>0

Y γi−1| {z }
>0

K
αj−1

k| {z }
>0,↘Kk

> 0 (41)

→ ∂2Vk
∂Kk∂Y

is positive and decreasing in Kk.

(42)

One also compute

∂Fk
∂Kk

(Y,Kk) = A′k(Kk)Y β1 +
∂Vk
∂Kk

(Y,Kk) (43)

∂2Fk
∂KkY

(Yk,Kk) = β1A
′
k(Kk)Y β1−1 +

∂2Vk
∂Kk∂Y

(Y,Kk) (44)

Resolution of the free boundary problem and the trigger.
The smooth pasting (33) gives (using (41) and (44) )

A′k(Kk) =
−
P
i,j αjγibk,ij(γi)Y

γi−1K
αj−1

k

β1Y ∗(β1−1)
< 0 (45)

As said earlier , the option value decreases along with Kk.
The value matching (32) gives (introducing (45) and (39) in (43))

−
P
i,j αjγibk,ij(γi)Y

γi−1K
αj−1

k

β1Y ∗(β1−1)
Y ∗β1 +

X
i,j

αjbk,ij(γi)Y
∗γiK

αj−1

k − OMC(k

ρ
= Ik

we finally obtain the trigger :X
i,j

αjbk,ij(γi)Y
∗γiK

αj−1

k

„
β1 − γi
β1

«
= Ik +

OMC(k)

ρ
. (46)

The trigger is uniquely defined for each Kk and is increasing in Kk.
One can define

T (Y,Kk) ≡
X
i,j

αjbk,ij(γi)| {z }
>0

Y ∗γi| {z }
>0

K
αj−1

k| {z }
>0,↘Kk

„
β1 − γi
β1

«
| {z }

>0

(47)

so that the optimal investment level Y ∗(K) is given by the zero of the function

G(Y,Kk) ≡ Ik +
OMC(k)

ρ
− T (Y,Kk) ∀Kk. (48)
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We note that

G(0,K) = Ik +
OMC(k)

ρ
; (49)

G(+∞,K) ≡ lim
Y→−∞

G(Y,K) = −∞; (50)

moreover G is strictly continue and decreasing in Y for all K. The Bolzano’s theorem
therefore ensures that G(.,K) as only one zero for all K, noted Y ?(K).

Moreover, as the function G(Y,K) is strictly increasing in K, so will be the trigger
Y ∗(K).

E Proof of Proposition 4
One has to solve

Lfk(Y )− ρfk(Y ) = 0 ∀Y ≤ Y ?k , (51)

and

f(Y ?k ) = mk(Y ?k )− Ik (52)
∂f

∂Y
(Y ?k ) =

∂mk

∂Y
(Y ?k ) (53)

mk(Y ) = E
» Z +∞

0

∂Ψ̄

∂Kk
(Ys,K)e−ρsds

˛̨̨̨
Y0 = Y

–
. (54)

Our first step will be to compute mk(Y ). Using Ψ(Y,K) given by equation (3),
one computes

∂Ψ̄

∂Kk
(Ys,K) =

d(γ),d(α)X
i,j=1

αjbk,ijY
γi
s K

αj−1

k

+

d(K)X
t=1
t6=k

d(γ),d(λ),d(λ)X
i,j,l=1

λlckt,ijlY
γi
s K

λj
t K

λl−1
k −OMC(k)

but

E
h Z +∞

0

∂Ψ̄

∂Kk
(Ys,K)e−ρsds

˛̨̨
Y0 = Y

i
=

Z +∞

0

E
h ∂Ψ̄

∂Kk
(Ys,K)

˛̨̨
Y0 = Y

i
e−ρsds

so we just need to evaluate

E
h
Y γi
s |Y0 = Y

i
= E

h
Y eγi(µ− 1

2σ
2)s+γiσBs(ω)

i
= Y E

h
e(µγi− 1

2 γ
2
i σ

2)s+( 1
2 γ

2
i σ

2− 1
2 γiσ

2)s+γiσBs(ω)
i

= Y e
1
2 γiσ

2(γi−1)seγiµs.

So Z +∞

0

E[Y γi
s

˛̨
Y0 = Y ]e−ρsds = Y γi

Z +∞

0

e−(ρ−γiµ− 1
2 γiσ

2(γi−1))sds
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and this integral converges if ρ− γiµ− 1
2
γiσ

2(γi− 1) > 0, taking value Y γi/(ρ− γiµ−
1
2
σ2γi(γi − 1).
Remembering of notations (14) and (15), one then can note :

mk(Y ) =

d(γ),d(α)X
i,j=1

αjbk,ij(γi)Y
γiK

αj−1

k

+

d(K)X
t=1
t6=k

d(γ),d(λ),d(λ)X
i,j,l=1

λlckt,ijl(γi)Y
γiK

λj
t K

λl−1
k − OMC(k)

ρ

The general solution of (51) is fk(Y ) = AY β1 . The value matching and smooth
pasting conditions take the form :

fk(Y ∗k ) = AY ∗β1
k = mk(Y ∗k )− Ik

∂fk
∂Y

(Y ∗k ) = β1AY
∗β1−1
k =

∂mk

∂Y
(Y ∗k ). (55)

As usual, we start by exploiting the smooth pasting conditions; one obtains

A =
∂mk
∂Y

(Y ∗k (Kk))

β1Y
∗β1−1
k (Kk)

(56)

with

∂mk

∂Y
(Y ) =

d(γ),d(α)X
i,j=1

γi αj bk,ij(γi)Y
γi−1K

αj−1

k

+

d(K)X
t=1
t6=k

d(γ),d(λ),d(λ)X
i,j,l=1

γi λl ckt,ijl(γi)Y
γi−1K

λj
t K

λl−1
k .

Using (56) into the value matching (52), one gets

∂mk
∂Y

(Y ∗k (Kk))

β1
Y ∗k (Kk) = mk(Y ?k (Kk))− Ik

Introducing the expressions of mk(Y ) and ∂mk
∂Y

(Y ) lead directly to the expression :

d(γ)X
i=1

Y γi|{z}
>0,↗Y

„
β1 − γi
β1

«
| {z }

>0

(
d(α)X
j=1

αj bk,ij(γi)| {z }
>0

K
αj−1

k| {z }
>0,↘Kk

+

d(K)X
t=1
t 6=k

d(λ), d(λ)X
j,l=1

λk bkt,ijl(γi)| {z }
>0

K
λj
t|{z}
>0

K
λl−1
k| {z }

>0,↘Kk

)
= Ik +

OMC(k)

ρ
.

The left hand expression is positive, increasing in Y and decreasing in Kk for any
values Kt, t 6= k. The Bolzano’s theorem ensures that this equation has a unique zero
Y ∗k (Kk) for any given Kk. And because this left hand expression is decreasing in Kk,
the trigger is increasing in Kk.
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