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1 Introduction

The radical shift in recent years towards a new economy dominated by networks has chal-

lenged the modus operandi of many economic models both in academic and business world

(see, e.g., Shapiro & Varian 1999, Shy 2001, amongst many books on the subject). One

of the important traits of the networks is the complementarity of products that imposes

functional dependency such that a product may not be worth much without complemen-

tors, or may not be worth anything without a platform. The functional dependence is

not just unique to information technology and communication hardware and applications

but is also prevalent in industrialisation (Murphy et al. 1989), in decisions to investment

in human capital (Redding 1996), and is deeply rooted in economic development and

growth (Aghion & Howitt 1996). Given the far-reaching consequences of network effects,

it is surprising that complementarity has not yet been formally considered by the existing

literature on investment under uncertainty. The objective of this paper is to provide a real

options charaterisation of complementarity in investment and to analyse its implications

for the pace of investment activity. Our formulation of complementarity in investment

decisions provides a basis for understanding the low level equilibrium trap, which is found

in many economic models, and develops tractable efficient sharing (inter-firm transfer)

arrangements that help to resolve the impasse.

Underlying complementarity in products is complimentarity in investment decisions.

Although complimentarity is often considered to be a desirable characteristic of products,

it can be described as such only if the specific platform can be used by complementors to

successfully develop their products. For producers of complementary products (unless,

of course, they themselves constitute a platform for another layer of complementarity),

complimentarity is essentially an additional impediment in investment uncertainty that

must be overcome. This impediment is time-dependent; it may or may not affect the

value of an investment opportunity.
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A high degree of complementarity of products normally requires a new generation of

technology to be introduced along the entire chain of linkages between complementary

products otherwise the innovation may not be economically viable, it may even diminish

the value of new technology. If complementary product owner invests independently of

the state of platform technology, either the end users of the product will not be able

to use it, or the producer will not be able to realise the full economic potential of the

innovation. The fates of Napster and iTunes are obvious examples of impediment in

complementarity in investment. Likewise, if platform owner invests independently of

the state of complementary products it not only risks losing the network effect of its

innovation but may even diminish its economic value.

The importance of complimentarity in investment is recognised by many high-tech

companies that hold pre-release conferences, which “open up” the forthcoming products

to the (trusted) potential producers of complementary products. This is best described

in the words of Lars Rasmussen during the “Google Wave” demonstration at Google I/O

well in advance of the actual product launch:

“It is a little unusual for us to be showing [the product] this early. [. . . ] We

are doing this because [. . . ] we are hoping we can persuade you [. . . ] to start

building cool things with [. . . ] APIs while we are getting the product ready

for launch [. . . ] Because that way, when we do launch, our users and your

users can enjoy both Google Wave and all the cool things that we hope you

will build at the same time.” (Google 2009)

Similar awareness of functional dependence in investment in platform and comple-

mentary was emphasized in the announcement Windows Phone 7 Series:

“Of course, Microsoft’s team still has plenty of time to either screw this up

or have it screwed up for them. [. . . ] Since Microsoft doesn’t build phones,
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it’s up to manufacturers such as HTC to develop phones which are also ahead

of the curve. And then there’s the application ecosystem [. . . ] Microsoft

needs to ensure the desktop software that partners with Windows Phone is

as usable as Windows Phone itself (something Nokia and Sony Ericsson have

never been able to do), and it needs to make sure developers want to build

for its new platform. Even Google has struggled to do this for its Android

phones.” (Lanxon 2010)

The complimentarity in investment we consider in this paper draws on the literature

on intertemporal optimisation and on real options. It commenced with a basic setup

that treats an investment problem in isolation of future investment decisions or strategic

interactions with other firms (Titman 1985, McDonald & Siegel 1986, Paddock et al. 1988,

Ingersoll & Ross 1992). Subsequent literature considers investment as having sequential

and/or compound nature (Myers 1977, Pindyck 1988, Dixit 1989, Smit 1996, Paxson

2007). Identification of various options implicit in investment projects (for example,

options to abandon, to expand, to contract, to switch) entails the problem of aggregation

in interactions of real options. A portfolio approach has been developed in an attempt

to aggregate real options within and across available investment projects, and to single

out strategies for sequential holding and extinguishment of options that would maximise

shareholder value (see Brosch 2008, for a review).

Another of literature on real options focuses on strategic interactions of agents con-

templating investment decisions in the same sector or geographical locale resulting in

aggregate industrial organisation models (Smit & Ankum 1993, Dixit & Pindyck 1994,

Grenadier 1996, Kulatilaka & Perotti 1998, Grenadier 2001, Weeds 2002). Further re-

search has produced models of investment when the assumption of perfect information is

relaxed (Grenadier 1999, Lambrecht & Perraudin 2003). The relationships between firms,

however, do not necessarily have to bear only competitive flavour. Options embedded
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in joint ventures and partnerships have been considered by Kogut (1991) and Savva &

Scholtes (2006), while Zavodov (2009b) has looked at the necessary conditions for the

existence of the core in explicit and implicit cooperative arrangements that influence

investment decisions.

Recently, Patel & Zavodov (2010) have considered the co-evolutionary nature of in-

novation and suggested that functional dependencies may explain the pace of innovative

activity. In this paper, we build on the latter insight and devise a formal model that

helps to understand the impact of functional dependence in vertical industrial structure

on investment decisions. This model can then be applied not only to capital budgeting

but also to modelling of aggregate dynamics of the innovation process. The solution is

scalable in the sense that the analytic formulation of the model allows for its integra-

tion into non-cooperative and cooperative games models, as well as for more complex

problems in network theory, and analysis of credit default contagion.

The rest of the paper is organised as follows. In section 2, the basic model for the n-

layer vertical industrial structure without spillover effects is developed. In section 3, the

model is extended for the industrial structure with spillover effects. Section 4 provides

a way of influencing investment in functional dependence structure with efficient (in the

cooperative game theory sense) inter-firm transfers. Section 5 concludes.

2 Model of functional dependence curse

Consider a vertical industrial structure with functional dependencies. It can either be a

supply chain or a hierarchy of complementary products similar to the one described by Pa-

tel & Zavodov (2010).1 There is a platform product and (n− 1) layers of complementary

products such that the platform product can be consumed without any complementary

1In endogenous growth theory, such relationship is often referred to as fundamental and secondary
innovation (Aghion & Howitt 1996).
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products, whereas the benefit from the use of complementary products is derived only

if they are consumed together with the platform and the intermediate layers of comple-

mentary products (connectors). Our objective is to value an investment opportunity held

by the owner of a complementary product pertaining to any layer in the above-described

structure. This investment opportunity may come in a form of upgrade, or a completely

new product development.2

The layers that connect (and include) platform and complementors are indexed by

i = 1, . . . , n, where 1 denotes the platform or upstream production. We assume that once

project i is operational its value is given by {Si (t) : t > 0}. This operating phase value

process varies stochastically with time, and follows a geometric Brownian motion of the

form:

dSi (t) /Si (t) = αidt+ σidzi (t) , Si (0) ≡ Si > 0, for all i, (1)

where αi is the expected growth rate per unit time set at the level below the risk free

rate, r > 0, σi > 0 denotes a measure of volatility per unit time such that α > 0.5σ2
i , and

dzi is an increment of a Gauss-Wiener process.

Application of Itô’s lemma allows us to move from a geommetric Brownian motion to

an arithmetic counterpart:

d lnSi (t) =
(
αi − 0.5σ2

i

)
dt+ σidzi (t) , for all i. (2)

The individual value processes at the operating stage are correlated such that the

correlation pairs are given by ρi,jdt = E [dzi (t) dzj (t)]. The entire correlation structure

2 Alternatively, the model can be viewed as a supply chain, whereby the n-th layer product pertains
to the downstream of the production process, while the platform is viewed as an upstream activity. For
example, a subcontracting chain in the production of an automobile or an aircraft, or a construction of
a building can pertain to such an upstream-downstream characterisation.
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is given by an n× n variance-covariance matrix of the form:

Ω =



σ2
1 σ1σ2ρ1,2 . . . σ1σnρ1,n

σ1σ2ρ1,2 σ2
2 . . . σ2σnρ2,n

...
...

. . .
...

σ1σnρ1,n σ2σnρ2,n . . . σ2
n


(3)

To obtain the value of the project at the operating stage, investor i has to incur irre-

versible investment costs in the amount Ki. Under the assumption of complete arbitrage-

free markets, the use of risk-neutral valuation framework (Cox & Ross 1976, Harrison &

Kreps 1979, Harrison & Pliska 1981) results in the following optimal stopping problem:

Vi = sup
τ∈T

EQ [e−rτ (Si (τ)−Ki)+
]
, (4)

where τ is an stopping time from the set of stopping times T , and EQ [·] denotes the

expectation operator under the unique risk-neutral measure.

For every firm i there is an optimal stopping time τ ∗i such that the problem in equation

(4) is given by

Vi =
(
S∗i,ND −Ki

)
EQ [e−rτ∗i ]

=
(
S∗i,ND −Ki

) ∫ ∞
0

e−rτ
∗
i φ (τ ∗i ) dτ ∗i , (5)

where S∗i,ND is the optimal exercise trigger of firm i given the vertical structure under

consideration, and φ (τ ∗i ) denotes the probability density function of the first passage

time τ ∗i out of the continuation region.

Since for complementary product investment i to start generating revenue all plat-

forms 0 6 k < i have to complete their respective investment programmes, optimal

exercise time can be formally defined as τ ∗i ≡ inf {t = 0 : Sk (t) > S∗k for all 1 6 k 6 i}.
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In words, the optimal stopping time for the i-th layer investment occurs when the oper-

ating stage value process hits a certain exercise trigger for all layers 1 6 k < i, as well as

the layer i itself.

Solution of the optimal stopping problem in equation (5) can be approached in two

different ways. One approach is to transform the correlated one-dimensional processes in

equation (2) into a single multi-dimensional process. The first passage time probability

density function of mutlti-dimensional process out of the continuation region defined by

the exercise thresholds of all layers 1 6 k 6 i is then found using the standard techniques.3

Maximisation over the exercise threshold yields the value of the option to wait to invest

in the i-th layer. Unfortunately, this approach is computationally challenging since even

for two-dimensional problems numerical procedure is required for calculating the option

value once the probability density function is approximated.4

We propose an alternative approach that results in a closed-form solution (or simple

numerical solution in the case with spillover effects). Our solution proceeds in two stages:

first, we transform the stochastic differential equation (2) with correlated Gauss-Wiener

increments into a stochastic equation with uncorrelated Gauss-Wiener increments, and,

second, we solve the optimal stopping problem in equation (5).

The transformation requires the assumption that assets under consideration are dis-

tinct such that return on any asset i cannot be replicated by combining any assets that are

not i (Merton 1973). Under this assumption Ω can be Cholesky factorised as: Ω = AAT,

where A is a lower triangular matrix. Following Ekvall (1996) we can multiply the n-

dimensional process in equation (2) by the inverse of A (i.e., A−1) to obtain a system of

3For a review of the derivation procedure of the first-passage time probability density function for a
simpler case of one-dimensional problems see, for example, Appendix B in Wilmott et al. (1993).

4The attempts at deriving a similar class of two-dimensional first-passage time probability density
functions can be traced through the works of Buckholtz & Wasan (1979), Iyengar (1985), He et al. (1998),
Zhou (2001).
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uncorrelated processes such that

d lnSi (t) =
(
αi − 0.5σ2

i

)
dt+ vidwi (t) , (6)

where vi ≡ 1/
(∑n

j=1Ai,j

)
, Ai,j denotes the i-th row and j-th column of matrix A−1,

and E [dwi (t) dwj (t)] = 0 for all i 6= j.

The key ingredient to the solution of valuation problem in equation (5) is finding,

which of the firms k 6 i will be the last to invest as if there were no functional depen-

dencies, since its investment time will determine the optimal investment time for firm

i:

h = arg min
06k6i

∫ ∞
0

e−rτ
∗
k

ln (S∗k/Sk)

vk

√
2π (τ ∗k )3

e
−

[ln(S∗k/Sk)−(αk−0.5σ2k)τ∗k ]
2

2v2
k
τ∗
k dτ ∗k

= arg min
06k6i

(
Sk
S∗k

)βk
, (7)

where:

βk =
− (αk − 0.5σ2

k) +
√

(αk − 0.5σ2
k)

2
+ 2rv2k

v2k
> 1,

S∗k =
βkKk

βk − 1
.

The solution of the optimal stopping problem in equation (4) in the continuation

region (i.e., where τ ∗i > 0) can thus be obtained.

Proposition 1. Under the above assumptions, the value of the option to wait to invest

for firm i in the continuation region is given by

Vi =
(
Sie

(αi−0.5σ2
i ) ln[S∗

h/Sh]/(αh−0.5σ2
h) −Ki

)(Sh
S∗h

)βh
, (8)
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where h is given in equation (7),

βh =
− (αh − 0.5σ2

h) +
√

(αh − 0.5σ2
h)

2
+ 2rv2h

v2h
> 1, (9)

S∗h =
βhKh

(βh − 1)
. (10)

Proof. From the above calculations we have:

Vi =
(
S∗i,ND −Ki

)(Sh
S∗h

)βh
=

(
Sie

(αi−0.5σ2
i )E[τ∗i ] −Ki

)(Sh
S∗h

)βh
. (11)

Since τ ∗i is the time when all layers 1 6 k 6 i have embarked upon investment, then it is

simply:

E [τ ∗i ] = max
06k6i

∫ ∞
0

τ ∗k
ln (S∗k/Sk)

vk

√
2π (τ ∗k )3

e
−

[ln(S∗k/Sk)−(αk−0.5σ2k)τ∗k ]
2

2v2
k
τ∗
k dτ ∗k

= max
06k6i

ln [S∗k/Sk] /
(
αk − 0.5σ2

k

)
= ln [S∗h/Sh] /

(
αh − 0.5σ2

h

)
. (12)

Substituting equation (12) into equation (11) we obtain in Proposition 1. Q.E.D.

It is worth noting the requirement that βh > 1, since otherwise the solution will

not have economic sense. One of the limits of Cholesky factorisation employed is that

this condition may not necessarily hold, which somewhat limits the applicability of the

solution methodology.

Example 1. Consider a vertical industrial structure comprised of two firms (or, depend-

ing on the context, agents). Suppose platform owner holds an investment opportunity that

costs 100 to set up, the current value of the operating project is 100, expected annualised
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growth rate of current value is 4%, and volatility of 20%. The second firm holds an op-

portunity to produce a complementary product that costs 50 to set up, the expected growth

rate of current value is 4%, and volatility of 20%. Risk-free rate of interest is given at

5%, and correlation between changes in the two revenue processes is 0.

Figure 1 demonstrates the sensitivity of the complementary project value to changes

in the current value of the operating project. The dashed line pertains to the value of

complementary product owner’s option to wait to invest without functional dependan-

cies, whereas the solid line indicates the value of the option to wait to invest given the

requirement that platform owner has to invest first. The difference between the two lines

shows the loss to the complementary product owner as a result of functional dependence

on the platform. The value of this loss represents the accumulated loss of revenue from

the point of optimal exercise by the complementary product to the time, when the market

is ready to acquire it, i.e., when platform owner has invested. Given the cost structure

of the complementary product owner, at certain values of current value of the operating

project its expected time to investment will be less than that of the platform owner, and

the above-mentioned loss will result.

Proposition 2. Vertical functional dependence without spillover effects does not increase

the value of investment opportunities. Furthermore, the probability of investment by i-th

complementary product owner is non-increasing in the number of layers that separate it

from platform 1.

Proof. The first part of proposition follows from the observation that V C
i = V 0

i , where

V 0
i denotes the value of the project as if there were no functional dependencies, only if

h = i. The second part of proposition follows from Patel & Zavodov (2010). Q.E.D.

The main implication of Proposition 2 is that as vertical industrial structure becomes

more complex, at some point investment may vanish and, as a result, the number of
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Figure 1: Effects of functional dependence on complementor’s value

complementary products may be bounded from above by the costs of technological ad-

vancement of platform products. In fact, in such an industrial structure it may be better

to have a single firm that internalises functional dependencies rather than an array of

specialised producers of complementary products. Innovation process in complementary

products may still be led by independent firms but as soon as other complementary

products develop on top of them, it may in the interest of the society for the platform to

acquire the next-in-the-order complementary product. Such a situation may be referred

to as functional dependence curse.
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3 Model of a functional dependence opportunity

Suppose now that there are spillover effects from functional dependence such that when-

ever a complementary product becomes available platform receive an additional revenue

from sales that increases its value. This increase in value, λi, is proportional to the no-

dependence value: λiSi (t). As a result, depending where in the industrial structure the

product is, its value at the exercise will be:

S∗i,D +
∑
i<j6n

λje
−(r−αi)(τ∗j,D−τ∗i,D)S∗i,D = S∗i,D

(
1 +

∑
i<j6n

λje
−(r−αi)(τ∗j,D−τ∗i,D)

)
, for all i,

(13)

where the discount factor is applied to the time until the next complementary product

becomes available.

We can thus adjust the exercise trigger obtained in the previous section for the spillover

effect:

S∗i,D =
βiKi

(βi − 1)
(

1 +
∑

i<j6n λje
−(r−αi)(τ∗j,D−τ∗i,D)

) , for all i, (14)

where τ ∗i,D and τ ∗j,D are optimal investment dates of platform product and its complemen-

tors, respectively, given backward dependencies (spillover effects).

Following the approach developed in the previous section, these are defined as τ ∗i,D ≡

inf
{
t = 0 : Sk (t) > S∗k,D for all 0 6 k 6 i

}
. Following a similar line of logic used to es-

tablish Proposition 1, we can find the value of the option to wait to invest given vertical

functional dependencies and spillover effects from complementors.

Proposition 3. Under the above assumptions, the value of the option to wait to invest

for firm i with spillover effects in the continuation region is given by

V C
i,D =

[
Sie

(αi−0.5v2i )E[τ∗i,D]

(
1 +

∑
i<j6n

λje
−(r−αi)(E[τ∗j,D]−E[τ∗i,D])

)
−Ki

](
ShD,D
S∗hD,D

)βh

, for all i,

(15)

13



where:

hD = arg min
06k6i

(
Sk
S∗k,D

)βk

. (16)

Proof. The result follow from application of equation (14) to Proposition 1. Q.E.D.

It is worth pointing out that Proposition 3 does not provide an explicit solution

but can be used for rapid numerical evaluation. An example below is indicative of the

implications that spillover effects have on the value of investment opportunity.

Example 2. Maintaining the assumptions of Example 1, consider a vertical industrial

structure with (demand) spillovers from complementary product investment to platform.

The magnitude of this spillover effect is λ = 0.5.

As with the previous example, checking the sensitivity of project value to changes

in the current value of operating project is instructive. We observe that spillover from

complementor’s investment to platform increases the value of the latter (Figure 2). The

intuition for this observation is straightforward: probability of gaining additional (non-

zero) value increase the expected present value of a project. A more interesting relation is

observed in Figure 3, whereby the spillover above-described spillover effect also increases

the value of complementor relative to the no-spillover-effect scenario. This happens be-

cause spillover effect increases the probability of investment by platform, which may

reduce the time-to-investment for complementor. If this happens, discount due to func-

tional dependence that we observed in Figure 1 is reduced. Thus, although spillover

effect (in our two-firm model) will not increase the value of complementor beyond the

no-functional-dependence value, it may bring it relatively closer to this benchmark. For-

mally, this results in the following proposition.

Proposition 4. Probability of investment of i-th firm increases in the magnitude of

spillover effects such that it may exceed the probability of investment in no functional
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Figure 2: Effect of demand spillovers on platform’s value

dependence scenario for all 1 6 i < n, whenever optimal exercise time is finite for all

1 6 j 6 n. While probability of investment of n-th firm increases in the magnitude of

spillover effects to the point where it equals the probability of investment in no functional

dependence scenario, whenever optimal exercise time is finite for all 1 6 j 6 n.

Proof. Note that probability of investment increases as exercise trigger falls. Since

∂S∗i,D/∂λj < 0, for all 1 6 i < j 6 n, the first part of Proposition 4 follows. The second

part of the proposition is easy to arrive at by noticing that there are no complementors

to layer n. Q.E.D.

The above discourse suggests that rather than being a curse, functional dependence

may become a virtue (at least for firms 1 6 i < n). But what if spillover effects are not

sufficient to induce a platform or connector to extinguishing its option to wait to invest?

This would require efficient sharing arrangements that enable a conversion of functional
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Figure 3: Effect of demand spillovers on complementor’s value

dependence curse into an opportunity, and is the subject of the next section.

4 Using transfers to turn a curse into an opportunity

It is often the case in functional dependence structures that development of platform

product is very costly, while complementary products can be introduced relatively quickly

and inexpensively. Would this stifle innovative activity, or, in the parlance of strategic

complementarity literature, would the industry be locked in the low-level equilibrium

trap? Not necessarily, because an efficient licensing fee, or another form of inter-firm

transfer from upper layers of complementarity to the platform level can be developed.

Suppose the platform holds an out of exercise region investment project, while com-

plementors hold projects that would all be in the exercise region, if they were not bounded
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by functional dependence structure. In fact, platform’s revenue may be S1 (t) = 0 for

all t, if it is a fundamental research institute. Then complementors (or following our

example commercialisation firms) can induce the platform to investment by means of a

monetary transfer. Although this transfer can take various forms following the literature

commenced by Aghion & Tirole (1994), we will consider two types of claims: licensing fee

with present value F , and a royalty, φ with present value φSj (t) for all 1 < j 6 n. Clearly,

the former is time-invariant, whereas the latter varies with the underlying complemen-

tor’s process. The conditions that determine an efficient transfer that would induce the

platform to an immediate investment pertain to the core of a cooperative option game

as outlined by (Zavodov 2009a).

We start with a set of conditions that come from the deterministic game theory and

include: collective rationality, whereby the value of the integrated functional dependence

structure has to be maximised; individual rationality, whereby each players’ payoff under

cooperative scenario (i.e., with a transfer) has to be at least as large as under a non-

cooperative scenario (i.e., without a transfer); and Pareto efficiency, whereby there should

be no industrial structure payoff that is left undistributed. Since our game is set up in

the stochastic environment, the subgame consistency condition in the sense of Yeung &

Petrosyan (2004), which is a stochastic equivalent of the time consistency condition in

dynamic games, has to hold. Finally, the real options setting imposes the last condition

of immediate exercise that requires the payoff to be located outside continuation region.

Fulfilling the above conditions results in the following two proposition describing ef-

ficient transfers.

Proposition 5. Under the above assumptions, efficient licencing, F , is given by the
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following set of inequalities:

F >

K1 −
S1 (β1 − 1)

(
1 +

∑
1<j6n λj

)
β1

 / (n− 1) > 0, (17)

0 < F 6
Si (βi − 1)

(
1 +

∑
i<j6n λj

)
βi

−Ki, for all 1 < i 6 n. (18)

Proof. Since all of complementors’ options are in the exercise region there exists a licensing

fee, F > 0, that, if charged, would keep these options outside continuation region at

current revenue process levels (i.e., Si = S∗i,D for all 1 < i 6 n). Equation (18) follows.

Since platform’s option to wait to invest is in the continuation region, there exists a

licensing fee, F > 0, that, if charged, would move this option into the exercise region at

current revenue process level (i.e., S1 = S∗1,D). Equation (17) follows. Q.E.D.

Efficient royalty can be found in a similar fashion.

Proposition 6. Under the above assumptions, efficient royalty, φ, is given by the fol-

lowing set of inequalities:

1 > φ >

[
K1 −

S1(1+
∑

1<j6n λj)(β1−1)
β1

]
[∑

1<i6n

Si(1+
∑
i<j6n λj)(βi−1)
βi

] > 0, (19)

0 < φ 6 1− βiKi

Si

(
1 +

∑
i<j6n λj

)
(βi − 1)

< 1, for all 1 < i 6 n. (20)

Proof. Given the nature of royalty, the optimal stopping problem will involve additive

revenue components with distinct log-normal diffusions. Applying separation argument

of Olsen & Stensland (1992), this problem can be solved for the exercise region. Then,

setting Si = S∗i,D for all 1 6 i 6 n, equation (19) results.

Royalty reduces the revenue for complementor by φSi (t) for all 1 < i 6 n. Solving

for the maximum φ that maintains complementor’s option in the exercise region yields
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equation (20). Q.E.D.

The above described situation, where a non-zero monetary transfer is required to en-

able investment along the functional dependence structure, can be described as a low-level

equilibrium trap. In this situation, although each party holds a valuable opportunity to

invest neither of them does. The problem is resolved by a simple revenue sharing arrange-

ment across the functional dependence structure that is orchestrated privately. However,

it need not be so. If the structure is complex, it may be difficult to bring all parties

together and reach a mutually acceptable agreement (especially, if they are operating in

a competitive environment). Instead, the pivotal role may be played by the government

in designing taxes and subsidies (that are effectively royalties) in a localised way pro-

posed by Pennings (2000). Alternatively, a dominant player, who is not the platform,

may lead the way. Given the excerpt from Lanxon (2010) quoted in the introductory

section, Microsoft could solve its problem by designing monetary transfers for platforms

and developers of applications.

5 Conclusion

In this paper, the valuation formula for an option to wait to invest given functional de-

pendencies in n-layer industrial structure has been derived. We show that functional

dependencies may constitute a curse as well as a virtue depending on presence and mag-

nitude of spillover effects between complementors and platforms. When spillover effects

are insufficient firms (or government) may design efficient transfers between layers of

complementarity to move a given industry from low-level equilibrium trap, and stimulate

economic growth.

The analytic characterisation of the problems allows for its extensions to a strategic

(non-cooperative) interaction without any major difficulty. This may yield a more de-
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tailed analysis of results but given the simplicity of such an extension we intentionally

leave it out from the present discourse. Further application of our results can be envisaged

in the area of modelling credit default contagion, and joint probability of default in the

first passage time framework. Again, it can be done in a straightforward way, and we do

not address this issue specifically. Finally, our cooperative option game with functional

dependence provides a simpler intuition and a richer analytical environment for strategic

complementarity models with multiple (low- and high-level) equilibria.
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