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Abstract

We assess the applicability of (Longstaff and Schwartz, 2001) Least Squares Monte Carlo method
(LSMC) to the General Real Options Pricing Model of (Kulatilaka and Trigeorgis, 1994) (KT). We pro-
pose some moment matching methods to get comparable results from KT model under different underlying
stochastic processes for both LSMC and multivariate lattice methods.

We study LSMC under different stochastic processes, namely: GBM, up to three dimensions, and
models 1, 2 and 3 in (Schwartz, 1997). Each LSMC application has been appropriately benchmarked by
lattice methods.

We explore empirically a generalization of proposition 1 page 124 in (Longstaff and Schwartz, 2001)
with respect to the number of discretization points K, of basis functions M , and of the number of simulated
paths N for an individual estimate. Then, we study the speed precision tradeoff of LSMC when applied
to the KT model with respect to the last two parameters just mentioned. Finally, we show the small
and large sample statistical properties of LSMC estimates when these are replicated R times. We show
how to make statistical inference on them, providing a practical application of proposition 2 page 125
in (Longstaff and Schwartz, 2001).

We conclude that LSMC can be conveniently used to estimate KT models in both univariate and
multivariate frameworks, providing quick and unbiased estimates when some moment matching methods
are adopted, an adequate number of replications is performed and the right least squares parameters are
honed to choose consciously the appropriate trade off between precision and speed.

JEL classification code: G13, G31.
Keywords: Least Squares Monte Carlo (LSMC), Real Options,

multi dimensional binomial lattices, moment match-
ing, GBM, Geometric Ornstein Uhlenbeck, Two Fac-
tor Model, Three Factor Model, stochastic interest
rates.

∗Corresponding Author, ADDRESS: Universitá di L’Aquila, Faculty of Mathematics, Physics and Natural Sciences, De-
partment of Pure and Applied Mathematics, Via Vetoio (Coppito 1), Coppito di L’Aquila 67010 AQ, Italy, Phone: (intl-code-for
Italy) + 0862+433156; Fax idem+0862+433180; e-mail: galesii@luiss.it.

1



Assessing Least Squares Monte Carlo

for the Kulatilaka Trigeorgis

General Real Options Pricing Model
Abstract

We assess the applicability of (Longstaff and Schwartz, 2001) Least Squares Monte Carlo method
(LSMC) to the General Real Options Pricing Model of (Kulatilaka and Trigeorgis, 1994) (KT). We pro-
pose some moment matching methods to get comparable results from KT model under different underlying
stochastic processes for both LSMC and multivariate lattice methods.

We study LSMC under different stochastic processes, namely: GBM, up to three dimensions, and
models 1, 2 and 3 in (Schwartz, 1997). Each LSMC application has been appropriately benchmarked by
lattice methods.

We explore empirically a generalization of proposition 1 page 124 in (Longstaff and Schwartz, 2001)
with respect to the number of discretization points K, of basis functions M , and of the number of simulated
paths N for an individual estimate. Then, we study the speed precision tradeoff of LSMC when applied
to the KT model with respect to the last two parameters just mentioned. Finally, we show the small
and large sample statistical properties of LSMC estimates when these are replicated R times. We show
how to make statistical inference on them, providing a practical application of proposition 2 page 125
in (Longstaff and Schwartz, 2001).

We conclude that LSMC can be conveniently used to estimate KT models in both univariate and
multivariate frameworks, providing quick and unbiased estimates when some moment matching methods
are adopted, an adequate number of replications is performed and the right least squares parameters are
honed to choose consciously the appropriate trade off between precision and speed.

JEL classification code: G13, G31.
Keywords: Least Squares Monte Carlo (LSMC), Real Options,

multi dimensional binomial lattices, moment match-
ing, GBM, Geometric Ornstein Uhlenbeck, Two Fac-
tor Model, Three Factor Model, stochastic interest
rates.



Assessing LSMC for the KT GROPM i

Contents

Introduction 1

1 The Kulatilaka Trigeorgis General Model of Real Options 3

2 Applying LSMC to the KT model 9

2.1 LSMC and other Monte Carlo Methods for Pricing American Options . . . . . . . . . . . . . 9

2.2 Lattice and Least Squares Monte Carlo Methods for KT Model in Discrete Time . . . . . . . 11

3 Numerical example 28

4 Assessing Applicability of LSMC to the KT model 32

4.1 The Asymptotic Behavior of LSMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 The Choice of LSMC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Trade off between precision and computational time 55

6 Inference about LSMC 59

7 Conclusions 80

List of Figures

1 Accessibility of operating modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Graphical Representation of a KT model according to (Vollert, 2002). . . . . . . . . . . . . . 7

3 Directed Graph Representation of the 6 modes specification KT model. . . . . . . . . . . . . 31

4 Asymptotic Behavior of GBM 01 estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Asymptotic Behavior of GBM 02 estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Asymptotic Behavior of GBM 03 estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Asymptotic Behavior of Geometric Ornstein Uhlenbeck, model 1 in (Schwartz, 1997). . . . . . 39

8 Asymptotic Behavior of Two Factor Model, model 2 in (Schwartz, 1997). . . . . . . . . . . . 40

9 Asymptotic Behavior of Three Factor Model, model 3 in (Schwartz, 1997). . . . . . . . . . . . 41

10 RMSE surface plots: Univariate GBM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

11 RMSE surface plots: Bivariate GBM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

12 RMSE surface plots: Trivariate GBM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

13 RMSE surface plots: Univariate GOU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

14 RMSE surface plots: Two Factor Model, Model 2 in (Schwartz, 1997). . . . . . . . . . . . . . 50

15 RMSE surface plots: Three Factor Model, Model 3 in (Schwartz, 1997). . . . . . . . . . . . . 51

16 Trade off CPU-RMSE: GBM 1 - 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

17 Trade off CPU-RMSE: Models 1,2 and 3 in (Schwartz, 1997). . . . . . . . . . . . . . . . . . . 58

18 Distributions of Value Functions LSMC Estimates: All DGPs, Wait mode. . . . . . . . . . . . 69

19 Distributions of Value Functions LSMC Estimates: All DGPs, Plant 1 mode. . . . . . . . . . 70

20 Distributions of Value Functions LSMC Estimates: All DGPs, Plant 2 mode. . . . . . . . . . 71

21 Distributions of Value Functions LSMC Estimates: All DGPs, Mothballed Plant 1 mode. . . 72

22 Distributions of Value Functions LSMC Estimates: All DGPs, Mothballed Plant 2 mode. . . 73



ii Assessing LSMC for the KT GROPM, January 2007

List of Tables

1 Synopsis of the stochastic processes covered and their respective discretization . . . . . . . . 12
2 Moment Estimation on Multivariate Lattices: Bivariate Cases . . . . . . . . . . . . . . . . . . 16
3 Moment Estimation on Multivariate Lattices: Trivariate Cases . . . . . . . . . . . . . . . . . 17
4 Moment Estimation on Multivariate Lattices: Tetra-variate Cases . . . . . . . . . . . . . . . . 18
5 Moment Estimation on Monte Carlo Simulations: Bivariate Cases . . . . . . . . . . . . . . . . 22
6 Moment Estimation on Monte Carlo Simulations: Trivariate Cases . . . . . . . . . . . . . . . 23
7 Moment Estimation for Monte Carlo Simulations: Tetra-variate Cases . . . . . . . . . . . . . 23
8 Data Generating Process Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9 LSMC Configurations used to test the Asymptotic Behavior for KT model. . . . . . . . . . . 34
10 Lattice Benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
11 LSMC Configurations used to Study the influence on RMSE of N and M. . . . . . . . . . . . 43
12 Regressing RMSE on Polynomial Orders and Number of paths: Univariate GBM. . . . . . . . 52
13 Regressing RMSE on Polynomial Orders and Number of paths: Bi variate GBM. . . . . . . . 52
14 Regressing RMSE on Polynomial Orders and Number of paths: Tri-variate GBM. . . . . . . . 53
15 Regressing RMSE on Polynomial Orders and Number of paths: GOU 01. . . . . . . . . . . . 53
16 Regressing RMSE on Polynomial Orders and Number of paths: Two Factor Model, Model 2

in (Schwartz, 1997). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
17 Regressing RMSE on Polynomial Orders and Number of paths: Three Factor Model, Model

3 in (Schwartz, 1997). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
18 Small and Large Sample examples of LSMC estimates: Wait Mode . . . . . . . . . . . . . . . 64
19 Empirical Quantiles and Sizes and Power of the tests: Wait Mode . . . . . . . . . . . . . . . . 64
20 Small and Large Sample examples of LSMC estimates: Plant 1 Mode . . . . . . . . . . . . . . 65
21 Empirical Quantiles and Sizes and Power of the tests: Plant 1 Mode . . . . . . . . . . . . . . 65
22 Small and Large Sample examples of LSMC estimates: Plant 2 Mode . . . . . . . . . . . . . . 66
23 Empirical Quantiles and Sizes and Power of the tests: Plant 2 Mode . . . . . . . . . . . . . . 66
24 Small and Large Sample examples of LSMC estimates: Mothballed 1 Mode . . . . . . . . . . 67
25 Empirical Quantiles and Sizes and Power of the tests: Mothballed 1 Mode . . . . . . . . . . . 67
26 Small and Large Sample examples of LSMC estimates: Mothballed 2 Mode . . . . . . . . . . 68
27 Empirical Quantiles and Sizes and Power of the tests: Mothballed 2 Mode . . . . . . . . . . . 68
28 Bootstrapped Confidence Intervals: Univariate GBM . . . . . . . . . . . . . . . . . . . . . . . 74
29 Bootstrapped Confidence Intervals: Bivariate GBM . . . . . . . . . . . . . . . . . . . . . . . . 75
30 Bootstrapped Confidence Intervals: Trivariate GBM . . . . . . . . . . . . . . . . . . . . . . . 76
31 Bootstrapped Confidence Intervals: Geometric Ornstein Uhlenbeck . . . . . . . . . . . . . . . 77
32 Bootstrapped Confidence Intervals: Two Factor Model . . . . . . . . . . . . . . . . . . . . . . 78
33 Bootstrapped Confidence Intervals: Three Factor Model . . . . . . . . . . . . . . . . . . . . . 79



Assessing LSMC for the KT GROPM 1

Introduction

Early approaches to real option valuation were derived on a close parallelism with financial options models.

These are simply inadequate to describe the complexities of intertwined decisions concerning an industrial

project flexibilities. (Kulatilaka and Trigeorgis, 1994) provide, instead, a framework for pricing real options

which is general enough to entail a wide variety of decisions and to evaluate them all in one model without

ad hoc solutions which strive to find the financial option which best resembles to the real one under exam.

Hence, in section 1 we motivate the choice of the Kulatilaka Trigeorgis (henceforth, KT) model, providing

a brief review and stressing its advantages over other switching options valuation frameworks as applied to

real options.

In extant literature, the KT model has been often implemented in univariate frameworks. Instead, we

aim to extend the applicability of the KT model to multi variate frameworks.1 This is necessary to get

realistic results since industrial projects are planned over long horizons over which all cost and revenue

drivers become stochastic. Pursuing this aim, numerical methods previously used in the literature, such as

binomial lattices or grids, are not the most promising approaches, being affected by the well known curse of

dimensionality. Therefore, we chose to apply the most suitable Monte Carlo method for pricing American

options among those available in current literature, namely (Longstaff and Schwartz, 2001) Least Squares

Monte Carlo (henceforth, LSMC). Hence, in section 2, we motivate the choice of LSMC. Moreover, we

derive discrete time methods necessary to implement correctly the KT model in both a LSMC framework

and multivariate lattices to be used as benchmarks. In section 3 a numerical example is reported in which

we progressively increase the complexity of the underlying data generating process (DGP) in the same risk

mapping equation.

Assessing the applicability of LSMC to the KT model means to test whether and how the method

of (Longstaff and Schwartz, 2001) provides accurate results with respect to lattice valuations used as

benchmarks. For this purpose, we have set up a series of real options non coordinated numerical examples

which verifies the applicability when the underlying DGP is specified as a univariate GBM, a bivariate and a

trivariate GBM with correlated Wiener processes, a Geometric Ornstein Uhlenbeck with spring effect on the

log of normal values, model 1 in (Schwartz, 1997), a GBM with convenience yield generated by an Arithmetic

Ornstein Uhlenbeck, model 2 in (Schwartz, 1997), a GBM with both convenience yield and risk free rates

1 Among mayor analytic approaches to real options analysis reviewed by (Borison, 2005), the methods proposed in this
paper can be classified in the integrated approach. As a matter of fact, every source of risk is singled out and the investment
project is valued in a “deconstructed state”. The alternative approach – MAD, marketed asset disclaimer – followed among the
others by (Copeland and Antikarov, 2005) and (Mun, 2002) derives the volalitily – including techical uncertainties and other
private risks – of the investment project as a whole, a sort of notional pseudo asset value, and then implements a martingale
pricing model on it. In this paper we follow the former approach but unlike (Borison, 2005) only for market risks.
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generated by Arithmetic Ornstein Uhlenbeck with correlated Wiener processes, model 3 in (Schwartz, 1997).

We have pursued the following approach in assessing accuracy of LSMC valuations. To begin with, we

have checked whether LSMC is actually a convergent algorithm in this application, see section 4.1. To

be specific, after choosing, with hindsight with respect to the ensuing steps in this research, the number

of Monte Carlo simulations and the order of the polynomial equation estimated in the regression, we let

∆ t → 0. We find that LSMC is not a convergent algorithm with respect to models with underlying,

univariate or multivariate, GBM. Instead it converges asymptotically when the underlying DGP presents

a mean reverting feature, both directly, model 1 (Schwartz, 1997), or indirectly, model 2 or 3 (Schwartz,

1997).

Secondly, following a standard approach in extant literature, we have studied the trade off between

accuracy, represented by RMSE, and the number of paths simulated together with the order of the polynomial

estimated, see section 4.2. Our results do not confirm in all the cases (Longstaff and Schwartz, 2001)

propositions about convergence of LSMC. Instead, for the case of GBMs, (Glasserman and Yu, 2004)

“divergence after a threshold” effect is observed with respect to both the number of paths and the order of

the polynomial. Finally, for model 1 (Schwartz, 1997) accuracy depends very much on the number of paths

simulated but not much on the order of the polynomial estimated. Instead, for models 2 and 3 (Schwartz,

1997), (Longstaff and Schwartz, 2001) proposition about convergence of LSMC is confirmed with respect

to both the number of paths simulated and the order of the polynomial in the equation used to estimate

continuation values.

Thirdly, we have studied the trade off between accuracy and computational time. Results for underlying

GBM DGPs confirm findings provided by extant literature for different applications: even for very high

orders of the regression polynomial after some threshold there is no gain in accuracy due to the increase

in the number of paths simulated. Results for model 1 (Schwartz, 1997) shows that the trade off between

accuracy and speed is very much the same for different orders of the polynomial. Instead, for models 2

and 3 (Schwartz, 1997), better trade off properties are shown for a high order of the regression polynomial.

To sum up, in all three DGPs of (Schwartz, 1997), accuracy can be improved for very high orders of the

polynomial increasing the number of paths simulated, confirming the convergence properties.

Fourtly, we have tackled the issue of making statistical inference on LSMC results. Using bootstrapping

methods, we show that it is actually appropriate to apply statistical inference methods to verify that LSMC

estimates are unbiased with respect to their respective lattice benchmarks. Consequently, we find that LSMC

produces estimates that are significantly different from lattice benchmarks, mostly biased low. Although
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that is true, LSMC estimates distributions are entailed in a strict neighborhood of their respective lattice

benchmarks. Hence, we conclude that, although statistically different from their lattice benchmarks, LSMC

estimates are economically useful in valuing investmen projects.

In section 7 we derived the main conclusions of this paper and stress the limits of LSMC applicability to

the KT model. Moreover, we set up the blueprint for several side applications of LSMC to the Kulatilaka

Trigeorgis general model of real options.

1 The Kulatilaka Trigeorgis General Model of Real Options

In this section we introduce the reader to the Kulatilaka Trigeorgis General Model of Real Options. We

start with the familiar risk adjusted discount rate approach in traditional capital budgeting to be used as

benchmark of comparison in order to stress the differences and analogies with the KT model. We position

the KT model in the class of the Bellman Dynamic Programming applications describing the solution offered

by this strand of literature. We sketch the previous versions of the model and show how applying LSMC to

the KT model is simply the natural evolution of the general model of real options.

For just to start basic, traditional NPV implies that forecasted cash flows are discounted according to

an asset pricing model, e.g. a CAPM, which derives the risk adjusted discount rate (henceforth, RADR)

from the expected return of a corresponding twin security traded in financial markets, see expression (1).

Without any loss of generality, NPV can be expressed simply discounting period by period cash flows, the

running present value, (henceforth, RPVt) see expression (2).2

NPV =
T∑

t=0

E (CFt)

(1 + E (Rj))
t (1)

RPVt = E (CFt) +
RPVt+1

1 + E (Rj)
∀t = T − 1, . . . , 0 (2)

being for t = T RPVt = E (CFT ) and for t = 0, RPV0 ≡ NPV .

Apart from the implied passive behaviour in managing the investment project – which is the usual main

motivation of a real option valuation, traditional NPV presents several other shortcomings. To begin with,

cash flows forecasting is completely decoupled from the asset pricing model used to compute the RADR.

Their relation is allegorical at best. As a matter of fact, RADR is determined based on the more or less

subjective choice of a twin security or pure play from which risk return features of the industrial project
2Previous applications of running present value in both traditional NPV and real options frameworks can be found in (Lu-

enberger, 1998).
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can be gleaned. This makes very cumbersome to specify analytically the various risk drivers which affect

cash flows. As a matter of fact, in most of the cases, both the cash flow figure E (CFt) and the interest

rate E (Rj) are considered respectively as sufficient statistics to describe expected profitability and the risk

return features of the project as a whole.3

Instead, the advantage of real options is not only to accomodate an optimal dynamic management of

the industrial project but also to specify a pricing framework in which both cash flows and interest rates

used to discount them are derived consistently. As a matter of fact, most real options models are derived

in a martingale pricing framework in which expected cash flows are computed on an equivalent martingale

measure –E∗(/) – and discounted at the risk free rate.4 Moreover, in multivariate real options models, it is

easy to specify analytically the stochastic properties of the various risk drivers of cash flows. For instance,

cost, volume and price drivers in equation (3), which yield cash flows from operations, can each be specified

as generated by the most appropriate stochastic process.

CFt (θt,m, t) = Q · (P − Uvc) − F (3)

where:
CFt (/) ≡ EBIT : cash flow from operations or earnings before interest and taxes, under the assumption

that working capital does not change;
Q : volume produced and sold, in units used to specify prices and variable costs;
P : unit price;

Uvc : unit variable cost;
F : fixed – with respect to volume produced and sold – costs.

In the KT model cash flows are specified not only as a function of at least one risk driver but also

according to the operating mode m in which the investment project is managed, i.e. waiting to invest,

producing, being idle, expanded, contracted, etc. In a more general form, RPVt reported in expression (2)

can be rewritten as

RPVt (θt,m, t) = CFt (θt,m, t) +
E∗ (RPVt+1 (θt+1,m, t + 1))

erf ·∆t
∀t = T − 1, . . . , 0 (4)

where:
θt := vector of stochastic state variable, e.g. price of goods sold, cost of raw materials;
m := operating modes, waiting to invest, producing, being idle, producing in an expanded scale plant,

producing in a contracted scale plant;
E∗ (/) := expectation operator on an equivalent martingale measure, hence starred;

rf := risk free rate.

Traditional NPV is then a particular case of the general specification given in (4) being simply the

RPVt=0 obtained managing the project in the same operating mode over the whole planning horizon.
3See (McDonald, 2006) for a review of traditional NPV and a comparison with martingale pricing adopted by real options

analysis. For simplicity in this paper we do not report all the particular cases in which discounted cash flows can be articulated.
4See (Hodder et al., 2001) for real options modelling in a RADR framework.
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Instead, both technological flexibilities and organizational capabilities can be conveniently exploited changing

the operating mode depending on the stochastic state variable θt. This takes place at a cost. For instance,

the cost of passing from the wait to invest mode to the production mode is given by the sum necessary to

purchase the industrial plant. Suspending production and keeping the plant idle implies mothballing costs

for the plant and severance payments for the workforce. By the same token, restarting production implies

costs for re hiring workforce and refurbish plant and machinery. Finally, in most of the cases, abandoning

the project implies cashing in the salvage value of the industrial plant. In conclusion, in addition to the

cash flows produced by operating modes at every epoch, an investment project can yield non recurrent cash

flows due to asset play, purchase or sale of the plant, and to changing modes of operation. These transition

costs are usually summarized in a transition cost matrix, see expression (5).

cm,ℓ (θt, ℓ, t) =




0 c1,2 c1,3 c1,3 ∞

∞ 0 c2,3 c2,4 ∞

∞ c3,2 0 c3,4 ∞

∞ c4,2 ∞ 0 c4,5

∞ ∞ ∞ ∞ 0




(5)

where, being m the initial mode, rows, and ℓ the final mode, columns:

m = 1 := wait to invest mode;
m = 2 := production mode;
m = 3 := being idle mode, production suspended;
m = 4 := expanded production mode;
m = 5 := abandoned mode;

Mode

1

WAIT

Mode

2

OPERATE A

Mode

4

MOTHBALLED

Mode

5

ABANDON

Mode

3

OPERATE B

Figure 1: Accessibility of operating modes.
Legend: Recurrent modes are linked by arrows with pointed heads on both sides. Reflecting modes are linked by a one side pointed

head arrow originating from them. Absorbing modes are linked by a one side pointed head arrow originating from a recurrent mode.

Adopting a terminology used in the description of Markov chains, it is worth noting that according to

their accessibility, operating modes can be classified in three categories, see figure 1. Reflecting modes,
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like the waiting to invest mode; Recurrent modes, like the production or being idle mode; and Absorbing

modes, like the abandonment one. The first and the last can be easily recognized simply observing that their

respective column or row has infinite transition costs in expression (5). Moreover, transition costs too can

depend on some stochastic state variable in θt. For instance, the salvage value of a plant can be specified

as dependent on the price of the land on which it has been built and its alternative uses, e.g. residential or

commercial building.

Directed graph representation of the KT model, like the one proposed in figure 1, neglects the fact that

operating modes can have different time horizons and switching opportunity frequencies. In other words, a

project can be kept in the wait to invest mode over a time horizon different from the life of the industrial

plant.5 On the other hand, the options to mothball and to restart production can be taken with a different

frequency depending on both technological and institutional constraints over the technical life of the project.

Considering all real options in an investment project as if they have the same time to maturity and the

same exercise frequency leads to an overvaluation of the investment opportunity.

(Vollert, 2002), pages 104-116, provides a time scaled graphical decomposition method originally con-

cieved for describing the interacting options approach of (Trigeorgis, 1991) but easily adapted to the KT

model, see for instance figure 2 for a representation of the specification of the model considered in this

section. Hence, directed graph and time scaled representations for the KT model are complementary in

representing thoroughly the optionalities offered by an investment project.

Assuming as objective function the net present value (or equivalently, the running present value at time

zero) for the plant kept in the wait to invest mode, management faces the problem of determining the

optimal policy or control law according to which optimal switches between operating modes are chosen in

every epoch and for every level of the state variable. Had transition costs been nil, switching decisions could

have been taken according to a myopic criterion just comparing each mode payoff at each epoch, switching

opportunity, a Marshallian thresholds approach as defined by (Dixit and Pindyck, 1994).

Since switching cost are important in describing asset play and actual management of an industrial plant,

any switching decision in each epoch should take into due account the previous and the following, in other

words it has to be optimal with respect to the whole sequence of switching decisions. Bellman Optimum

principle provides a criterion for determining the optimal policy or control law, see page 16 in (Bertsekas,

1995).6

5The latter is dependent on obsolescence and other technical considerations, the former tipically depends on institutional
and legal contraints such as building permits, patent rights or exploration leases.

6An alternative approach to dynamic optimization is pursued by (Brennan and Schwartz, 1985), (Dixit, 1989), chapter
7 in (Dixit and Pindyck, 1994), (Brekke and Oksendal, 1994), (Duckworth and Zervos, 2001). There a partial differential
equation (pde) is derived and it is solved numerically or analytically. Certainly, their approach cannot be easily generalized
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   3

1

1

T0 T2 T3 T4T1

Figure 2: Graphical Representation of a KT model according to (Vollert, 2002).
Legend: horizontal axis represents time. The lower left hand side segment represents the time horizon over which the investment project

can be kept in a wait to invest mode. Dashed lines represent inactive operating modes after an irreversible switch has occurred. Segments

with an arrow and a solid circle represent American type switching over the number of modes reported in the circle. When the option

to invest is exercised, the project in switched over the 3 recurrent modes grouped in a box. If at time T3 salvage value is greater than

continuation value, the project is abandoned. In any case, the project is terminated if it happens to be in the wait to invest mode at time

T2 or in one of the three recurrent production / mothballed plant at time T4.

As a matter of fact, the optimal sequence of switching decisions is determined thanks to Bellman Dynamic

Programming over a finite horizon solved using a value iteration algorithm applied in a backward induction

process. More specifically, as noted by (Vollert, 2002), an optimal switching problem is a particular kind of

impulse control problem.7

In continuos time modeling the proof of the existence of an optimal solution for a general optimal

switching problem is not available yet in extant literature (Gamba, 2002). In discrete time modelling,

instead, a solution always exists. Hence, the methods proposed in the following sections should not be

interpreted as continuous time approximations but as solutions for discrete time real options problems.

In general, – leaving aside any consideration about discretization methods – the value iteration algorithm

on a finite horizon works as described in equations (6)-(9). Starting from the end and going backward,

equation (6) represents the boundary condition of the dynamic programming algorithm. It is independent

from the entering mode m. The function S (/) picks up from the state variables vector the salvage value of

the plant.

in a multivariate framework. For instance, (Geltner et al., 1996), (Brekke and Schieldrop, 2000) in (Brennan and Trigeorgis,
2000), (Cortazar et al., 1998), (Cortazar et al., 2001) do not deal with more than bivariate cases. Moreover, the analytical
solution pde approach does not accomodate a wide variety of stochastic processes. Finally, it requires a good familiarity with
Ito’s calculus which is far beyond most of practictioners capability and intuition.

7For an introduction to continuos time modelling of impulse control problems see page 347-369 in (Miranda and Fackler,
2002). For a review of the applications of impulse control to management, economics and finance problems see page 55 in (Vollert,
2002).
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In equation (7) the ending mode ℓ is chosen in the set of available modes ℓǫL = {1, 2, 3, 4, 5}, as previously

listed, in order to maximize the sum of the last but one cash flow net of transition costs and the present

value of the last value function. At time t = T −2, see equation (8), for any entering mode m it is necessary

to chose the maximizing mode ℓ in order to maximize the sum of the current cash flow net of transition

costs and the present value of a value function which is dependent on the mode too. The general expression

– Bellman Equation – for the backward induction procedure is represented by expression (9).

t = T

F (θT , m, t) = F (θT , T ) = S (θT ) (6)

t = T − 1

F (θT−1, m, T − 1) =
max
ℓ ǫ L

{
π (θT−1, ℓ, T − 1) − cm,ℓ (θT−1, ℓ, T − 1) +

E∗
T−1 [S (θT )]

erf ·∆t

}
(7)

t = T − 2

F (θT−2, m, T − 2) =
max
ℓ ǫ L

{
π (θT−2, ℓ, T − 2) − cm,ℓ (θT−2, ℓ, T − 2) +

E∗
T−2 [F (θT−1, ℓ, T − 1)]

erf ·∆t

}
(8)

∀t < T − 2

F (θt, m, t) =
max
ℓ ǫ L

{
π (θt, ℓ, t) − cm,ℓ (θt, ℓ, t) +

E∗
t [F (θt+1, ℓ, t + 1)]

erf ·∆t

}
(9)

where:
θt = state variables vector;

S (/) = salvage value;
L = set of available modes of the dynamic system: m = 1, waiting; m = 2, mothballed; m = 3,

operate A; m = 4, operate B; m = 5, abandoned;
F (θt, m, t) = value function at epoch t, for operating mode m and for a state variable level θt;
π (θt, ℓ, t) = profit for a level of the state variable θt, for an operating mode ℓ, at epoch t;

E∗
t [F (θt+1, ℓ, t + 1)] = expected value on the equivalent martingale measure of the value function in the following epoch

for the operating mode ℓ;
cm,ℓ (θt, ℓ, t) = transition costs from mode m to mode ℓ, dependent on the state variable θt, e.g. SHS price of

the more than five years old ship and wreckage value of the vessel.

In the first version of the KT model, (Kulatilaka and Marcus, 1988) strived to derive analytical solutions

for the problem described in equations (6)-(9) in the spirit of (Black and Scholes, 1973), hence in a univariate

framework with a Geometric Brownian Motion specified as data generating process. That solution was

limited to a two mode, three period problem and is was not so easy to generalize. Instead, a grid, Markov

chain approach is used by (Kulatilaka, 1988) and (Kulatilaka, 1993) to discretize a univariate Arithmetic

Ornstein Uhlenbeck. In these versions, the procedure is easy to generalize to more than two modes but not

to more than one source of risk being grid discretization approach very similar to pde numerical solution, i.e.

unsuitable for multivariate problems. Another numerical approach is adopted by (Kulatilaka and Trigeorgis,

1994).8 A (Cox et al., 1979) binomial lattice is used to discretize a univariate GBM while the model is

proposed in a two modes version. A grid approach to discretize a GBM is proposed by (Kulatilaka, 1995)
8The same approach is pursued in (Trigeorgis, 1996) pages 171-196.
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in (Trigeorgis, 1995) to price a multiple mode version although numerical examples are not provided. In

the same framework (Alesii, 2000) proposes, instead, numerical examples deriving numerically thresholds

for optimal switching over the whole planning horizon. Finally, (Gamba, 2002) proposes a bivariate version

of the KT model implemented in both a (Boyle et al., 1989) bivariate binomial lattice and a LSMC

discretization framework, the former being the benchmark to the latter.

The common feature of the previous versions of the KT model is the implementation of Bellman Dynamic

Programming (DP) in the contingent claim (CC) discretization approach which was most fashionable at that

time. In other words, the most important flaw of Dynamic Programming – the determination in a subjective

way of the expected value function and of the interest rate to be used to discount it – is corrected borrowing

from option pricing literature the principles of martingale pricing.9 Following this line of reasoning, LSMC

application to the KT model appears as a “Back to the Future” operation. As a matter of fact, a method

very similar to (Longstaff and Schwartz, 2001) was proposed back in the ’50s by (Bellman and Dreyfus,

1959) and was well known in operation research as approximate value iteration. Although that is true,

the detour into contingent claims literature of the ’70s and the ’80s now allows us to apply the method

of (Bellman and Dreyfus, 1959) in a no arbitrage framework, i.e. martingale pricing or in an equivalent risk

neutral valuation, general equilibrium economy à la (Cox et al., 1985).

2 Applying LSMC to the KT model

In this section we motivate the choice of LSMC in the wide variety of Monte Carlo methods that extant

literature offers for pricing American options. We provide a short review of previous methodological exten-

sions and applications of LSMC in the field of real options. We then highlight some problems in applying

LSMC in a discrete time KT model and provide some new methods to solve them. These same methods are

then tested in the ensuing sections.

2.1 LSMC and other Monte Carlo Methods for Pricing American Options

LSMC is the least problem dependent modelling method among those using Monte Carlo to price American

options. As a matter of fact, competing methods present some peculiarities and rigidities which prevent a

flexible and thorough application to approximate value iteration in KT model.10 For instance, the version of

9According to (Knudsen et al., 1999) page 435: “Dynamic Programming and contingent claim pricing are essentially equiv-
alent and can be considered just two faces of the same coin”. To quote (Dixit and Pindyck, 1994) page 121: “the two methods
have offsetting advantages and disadvantages and together they can handle a wide variety of applications. In specific appli-
cations one may be more convenient that the other, but there is no difference in principle between the two on their common

ground”.
10For a review of Monte Carlo methods applied to American Option pricing see chapter 6 in (Tavella, 2002) and chapter 8

in (Glasserman, 2004).
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LSMC by (Tsitsiklis and Van Roy, 2001) implies a generalization of both state space and time of approximate

value iteration which is untenable for the KT model. The version proposed by (Andersen, 2000) implies an

early exercise parametrization which is not applicable in the general real options model setting.

Alternative Monte Carlo methods are unapplicable either: (Barraquand and Martineau, 1995) state

stratification along the payoff is not suitable for RPVt based models like the KT one, in which streams of

cash flows are compared at every epoch;11 (Broadie and Glasserman, 1997) simulated bushy tree cannot

be implemented for more than five epochs, see page 431 in (Glasserman, 2004); dual approach, pursued

by (Rogers, 2002) through the optimal choice of a Lagrangian martingale and by (Haugh and Kogan, 2004)

through neural nets, is too much problem dependent to accomodate the generality of KT model specifications.

Although that is true, stochastic mesh method by (Broadie and Glasserman, 2004) and quantization method

by (Bally et al., 2002) can be considered competitive methods with respect to LSMC, even better for KT

model implementations in which current state variables depend on earlier states if not on the whole path.12

In extant literature, LSMC has been applied to real options problems in general and to switching real op-

tions (KT model) in particular. Although that is true, to the best of our knowledge, there is not a thorough

analysis of LSMC applied to KT model in discrete time. For instance, in the pioneering work by (Gamba,

2002) LSMC is applied only to a bivariate case in switching options being the main contribution of the paper

the decomposition approach of complex optionalities in an investment project. (Rodrigues and Rocha Ar-

mada, 2005) applied low discrepancy methods for LSMC to the same decomposition approach suggested

by (Gamba, 2002). (Cortazar et al., 2005) and (Tsekrekos et al., 2006) applied LSMC in the context

of three and two factor models to the well known (Brennan and Schwartz, 1985) copper mine valuation.

Finally, (Imai, 2006) applies LSMC to the valuation of switching options although in a destructured model

which does not resemble to the KT approach.

None of the references just mentioned tackles the problem of applying in discrete time methods which were

originally concieved as continuous time approximations. Moreover, none tackles the problem of valuations

comparability accross different discretization granularities and different stochastic specifications. In addition,

only a few, namely (Tsekrekos et al., 2006) and (Rodrigues and Rocha Armada, 2005) propose convergence

experiments of LSMC applied to switching options. Finally, LSMC applicability to the KT model in a

11The same line of reasoning applies to variants of state stratification method in which other dimensions in state space
partitioning are added (Raymar and Zwecher, 1997). An application of this Monte Carlo method to real options by (Cortazar
and Schwartz, 1998) deals only with timing options on a MAD like approach, see footnote 1.

12A Dynamic Optimization problem is path dependent in the sense that the decision taken in one epoch should be consistent
with an optimal policy, hence with the previous and the following decision. In addition to that, some dynamic systems have
state variables which depend on the earlier if not the whole history of the dynamic model. In a state augmentation approach,
see page 30 in (Bertsekas, 1995), this would imply computing expected value functions for all the possible levels that the path
dependent variable could possibly have reached in each epoch. Obviously this is not the task for LSMC but for other methods
such as those mentioned in the text.
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multivariate framework is often dismissed as being computationally unfeasible, page 3 (Gamba, 2002), page

1 in (Rodrigues and Rocha Armada, 2005).

Parallel to the methodological extensions, several applications of LSMC to real options valuations case

studies have been published. A copper mine has been valued in a more realistic setting by (Abdel Sabour

and Poulin, 2006) having as benchmark of comparison (Brennan and Schwartz, 1985). Another case study

in mining is provided by (Lemelin et al., 2006) in which a multi mineral mine is valued. Other applications

can be found in natural gas (Abadie and Chamorro, 2006), nuclear reactors (Oduntan and Fuller, 2005), real

estate (Kalligeros, 2005), infrastructure valuation (Chiara, 2006), oil refining (Imai and Nakajima, 2000).

Finally, the same method is applied to fundamental security analysis (Schwartz and Moon, 2000), (Schwartz

and Moon, 2001) and (Baule and Tallau, 2006).

In the remaining part of this section we describe some problems in applying the KT model in discrete

time and suggest some solutions.

2.2 Lattice and Least Squares Monte Carlo Methods for KT Model in Discrete Time

Management decisions modelled as real options do occur in discrete time for both technological and institu-

tional reasons. Hence, it is worth studying discrete time models by themselves and not as approximations

of continuous ones, page 670 (Sick, 1995) in (Jarrow et al., 1995).

The choice of the optimal resetting period –∆t– of the dynamic system representing the optionalities

embedded in an investment project implies the comparison of results derived for different discretizations

of the data generating processes underlying the project. While for stock variables these comparisons are

trivial and do not require any further comment, for flow variables – whether deterministic or stochastic –

some adjustment is necessary in order to obtain comparable results for different ∆t. As a matter of fact,

the question is how the flow variable for finer discretizations –∆t → 0 – should be rescaled in order to get

results which are comparable to those derived from coarser ones.13 In addition to the normative use of the

methods proposed below, these results are also important to test convergence of our numerical methods for

the Kulatilaka Trigeorgis model as ∆ t → 0. We will show that the straightforward solution of dividing the

annual figure for the number of intervals in the year is correct only for the univariate geometric brownian

motion (GBM) discretized in a (Cox et al., 1979) binomial lattice but not for deterministic variables in the

same model. Instead, for multivariate GBMs or univariate geometric Ornstein Uhlenbeck (GOU) processes,

13This question would arise also in the case in which a monthly discretization is used while the initial data are annual. This
in turn means that even resetting the dynamic system with a frequency lower than the actual discretization of the stochastic
process would not solve the problem of getting the right figure to be placed at the initial node of the lattice or at time t = 0 of
the Monte Carlo simulation.
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sub annual equivalent figures should be derived taking into account how the expected value of the stochastic

variable behaves within different discretizations.

Discretization and Pricing Models

Stochastic Process LSMC (Longstaff and
Schwartz, 2001)

Lattice

univariate GBM analytic solution of GBM eq. in
univariate LSMC

univariate lattice (Cox et al., 1979)

bivariate and trivariate
GBMs with correlated
Wiener processes

analytic solution of GBM eq. with
Cholesky transformation of inde-
pendent Wiener processes in mul-
tivariate LSMC

multivariate lattices (Boyle et al.,
1989),(Kamrad and Ritchken,
1991),(Ekvall, 1996),(Gamba and
Trigeorgis, 2005)

univariate Geomet-
ric Ornstein Uhlen-
beck (GOU), model 1
in (Schwartz, 1997)

analytic solution of GOU eq., model
1 (Schwartz, 1997), in univariate
LSMC

univariate censored lattice (Sick,
1995)

two factor model: uni-
variate GBM with mean
reverting convenience
yield

analytic solution of GBM eq.
in univariate LSMC with conve-
nience yield DGP as an arith-
metic Ornstein Uhlenbeck, model
2 (Schwartz, 1997) or (Gibson and
Schwartz, 1990)

our two variable extension of page
177 (Schulmerich, 2005) univariate
lattice with Monte Carlo simulated
underlying factors

three factor model: uni-
variate GBM with mean
reverting convenience
yield and risk free rate

analytic solution of GBM eq. in
univariate LSMC with convenience
yield and risk free DGPs as cor-
related arithmetic Ornstein Uhlen-
beck, model 3 (Schwartz, 1997),
stochastic discounting

our three variable extension of page
177 (Schulmerich, 2005) univariate
lattice with Monte Carlo simulated
underlying factors

Table 1: Synopsis of the stochastic processes covered and their respective discretization

We have dealt with the problem of comparability of results for different ∆t for both lattice and Monte

Carlo discretizations for most of the DGPs dealt with in this paper, see synopsis in table 1. This is necessary

being results obtained from one approach benchmarked with those obtained from the other. For multivariate

GBMs we have used binomial lattices provided by extant literature choosing those with best convergence

properties, namely (Gamba and Trigeorgis, 2005). For GOUs, instead, we have used censored binomial

lattices provided by extant literature only for the univariate case by (Sick, 1995).14 For two and three factors

models in (Schwartz, 1997), we have derived benchmarks for the uncorrelated factors cases modifying the

binomial lattice with Monte Carlo simulated convenience yield and risk free rate by (Schulmerich, 2005),

page 177. For the last three models, we do not provide PV matching solutions for the problem of figures

comparability for results derived for different ∆t.

To begin with, it is worth remembering that real options are simply the capabilities to switch between

different streams of cash flows, (Vollert, 2002) page 17. The present value of these streams – i.e. the cash

flows yielded by an investment project in each individual operating mode in a KT model, see expression (4)

14We have discarded the bivariate censored lattice proposed by (Hahn and Dyer, 2008) since, to the best of our efforts, we
did not manage to get accurate benchmarks.
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– should not depend on ∆t adopted in uni or multi variate lattices or Monte Carlo simulations used to

discretize the underlying stochastic process.

In principle, in order to get comparable results from lattices or simulations with different ∆t we need to

have that present values of flow variables stay constant when ∆t → 0, see expression (10) in which the left

hand side represents the present value computed on # n annual figures Cash Flows, while the right hand

side represents the present value computed on # n · m sub annual (1/m) figures Cash flows, being ∆t = 1

for the LHS and ∆t = 1/m for the RHS.

PVn = R0 + R1 · v + R2 · v2 + . . . + Rn · vn−1 = PVm·n = R0,1/m + R1,1/m · v′ + R2,1/m · v′2 + . . . + Rn·m,1/m · v′n·m−1 (10)

where:
PVn := the present value of a variable discretized on an annual basis, ∆t = 1;

Rt := expected annual figure at epoch t;
v = e−rf := present value factor on an annual basis;

PVn·m := the present value of a variable discretized on a sub annual basis, ∆t = 1/m;

Rt,1/m := expected 1/m subperiod figure at epoch t;
v′ = e−rf ·∆t := present value factor on a sub annual ∆t = 1/m basis.

Expression (10) is assumed to hold for both deterministic and stochastic flow variables specified in a KT

real option model, whatever the underlying stochastic process. The methods we propose below strive to find

R0,1/m to be used at the initial node of the lattice or as starting observation of a Monte Carlo simulation

which satisfy equation (10).

For stochastic cash flows, in a martingale pricing framework, the expected value of Rt,1/m for the next

epoch is the compound value of the present one – submartingale with drift µ = rf in the expected values,

see expression (11).15

Rt+∆ t,1/m = erf ·∆t · Rt,1/m (11)

In the actual implementation of a martingale pricing model, the submartingale property in expected

values, equation (11), does not hold exactly. As a matter of fact, both lattice and Monte Carlo discretizations

do not show completely accurate moment matching properties. In general, in any multivariate lattice, the

expected value of the variable grows at a rate µ̂ ≪ rf , see expression (12). Moreover, for finer discretizations

∆t → 0 or number of intervals m → ∞, the drift on the lattice µ̂ approximates better the risk free rate

rf . Hence, a finer discretization would yield higher valuations, blurring the contribution of a more frequent

resetting period – real options exercise frequency – with the mere numerical effect.

15Without any loss of generality, in order to simplify notations, dealing with GBMs and GOUs, we do not consider constant
convenience yields to be subtracted from the risk free rate.
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µ̂ 1
m

= ln

(
E (Vt+∆t)

Vt

)
· 1

∆t
(12)

where:

Vt := scaleless variable, V0 = 1;
E (Vt+∆t) := expected value computed on adjacent nodes;

∆t := = life/(n · m) = 1/m, life of the project in years divided by the number of intervals;

Being this bias so crucial for the implementation of the KT model in discrete time, we examine how

the submartingale property is approximated for bivariate, trivariate and tetravariate cases of four different

multivariate binomial and trinomial lattices, namely (Boyle et al., 1989) (Kamrad and Ritchken, 1991), (Ek-

vall, 1996), (Gamba and Trigeorgis, 2005) adjusted generalized log transformed (AGLT). To the best of our

knowledge, moment matching properties of multivariate lattices have never been explored before in extant

literature.

In tables 2-4, it should be noticed that (Boyle et al., 1989) (Kamrad and Ritchken, 1991) volatilities

and correlations are just the same being the latter a variant of the former with an horizontal movement.16

Instead, volatilities and correlations obtained from (Ekvall, 1996), (Gamba and Trigeorgis, 2005) are both

exactly equal to the moments of the correlated GBMs. Therefore, they are reported in two groups.

Blatantly enough, the last two models have better moment matching and faster convergence properties

than the first ones. Moreover, they can be applied even in cases in which the first two give negative

probabilities, because discretization is too coarse with respect to low volatilities and high correlations, see

for instance table 4 for ∆t = 2/1. Therefore, in the ensuing assessment of LSMC applicability to the KT

model, we will benchmark Monte Carlo results with (Gamba and Trigeorgis, 2005) adjusted generalized log

transformed (AGLT) modified as shown below.

For any of the four multivariate lattice methods cited above, remembering expression (11), i.e. being

the submartingale property verified locally,17 period by period for each node in the lattice, each side of

expression (10) can be rewritten as an increasing annuity, see expression (13).

PVn = R0 + R0 · (q · v) + R0 · (q · v)2 + . . . + R0 · (q · v)n−1 =

PVm·n = R0,1/m + R0,1/m ·
(
q′ · v′

)
+ R0,1/m ·

(
q′ · v′

)2
+ . . . + R0,1/m ·

(
q′ · v′

)n·m−1
(13)

where, in addition to previous notation:

q = eµ̂ := drift of the expected values on the annual discretization;

q′ = eµ̂1/m·∆t := drift of the expected values on the sub-annual discretization.
16see footnote 19.
17Together with variances and correlations of the multivariate GBMs, see page 670 (Sick, 1995).
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In the cases in which µ̂ 6= rf , expression (13) can be rewritten as in (14).

PVn = R0 ·
1 − (q · v)n

1 − q · v = PVm·n = R0,1/m · 1 − (q′ · v′)n·m
1 − q′ · v′ (14)

Hence, R0,1/m is simply derived as follows:

R0,1/m = R0 ·
1−(q·v)n

1−q·v
1−(q′·v′)n·m

1−q′·v′

(15)

Expression (15) is applicable for stochastic flow variables discretized in a multivariate lattice in which

the risk free rate is approximated from below, µ̂ ≪ rf and for deterministic flow variables which have a

grow rate exogenously determined greater or smaller than rf . In the case of annual figures of non growing

deterministic variables, i.e. µ̂ = µ̂1/m = 0, expression (15) becomes simply (16). In other words, annual

figures should be rescaled in a way that resembles uniform annuity series used in traditional capital budgeting

to compare investments with different lives, see page 260 (Rao, 1992).

R0,1/m = R0 ·
1−vn

1−v
1−v′ n·m

1−v′
(16)

Instead, for cases in which µ̂ = µ̂1/m = rf , as in the (Cox et al., 1979) univariate binomial lattice,

expression (14) simplifies to

PVn = R0 · n = PVm·n = R0,1/m · (m · n) (17)

Hence, in this case, and only in this case, it is possible to get the equivalent figure for the sub period ∆t

as in expression (18), simply dividing the annual figure for the number of subperiods in a year.

R0,1/m = R0 ·
n

(m · n)
= R0 ·

1

m
= R0 · ∆t (18)
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A. drifts:

µ̂ ∆t = 2/1 ∆t = 1/1 ∆t = 1/2 ∆t = 1/3 ∆t = 1/4

BEG
4.8141%

4.8409%

4.9045%

4.9184%

4.9515%

4.9587%

4.9675%

4.9723%

4.9756%

4.9792%

KR
4.8171%

4.8456%

4.9060%

4.9208%

4.9523%

4.9599%

4.9681%

4.9732%

4.9760%

4.9798%

NEK
4.9739%

4.8736%

4.9868%

4.9354%

4.9934%

4.9673%

4.9956%

4.9781%

4.9967%

4.9836%

GT
4.9755%

4.8727%

4.9876%

4.9349%

4.9938%

4.9670%

4.9958%

4.9779%

4.9969%

4.9834%

B. volatilities and correlations:

σ1 ρ1,2

σ2

∆t = 2/1 ∆t = 1/1 ∆t = 1/2 ∆t = 1/3 ∆t = 1/4

BEG / KR
.19545 −.10748

.29992

.19887 −.10369

.29996

.19774 −.10183

.29998

.19925 −.10122

.29999

.19944 −.10091

.29999

NEK / GT
.20000 −.10000

.30000

.20000 −.10000

.30000

.20000 −.10000

.30000

.20000 −.10000

.30000

.20000 −.10000

.30000

Table 2: Moment Estimation on Multivariate Lattices: Bivariate Cases
Legend: multivariate lattice models are: BEG: (Boyle et al., 1989); KR: (Kamrad and Ritchken, 1991); NEK: (Ekvall, 1996); GT: (Gamba and Trigeorgis, 2005).
drifts, volatilities and correlations have been computed according to the following expressions on adjacent nodes:

µ̂ = ln

(
E(Pt+∆t)

Pt

)
· 1

∆t

σ̂ =

√{
E (ln(Pt+∆t)2) − [E (ln(Pt+∆t))]

2
}

∆t

ρ̂1,2 =
E (ln(P1,t+∆t · ln(P2,t+∆t)) − E (ln(P1,t+∆t)) · E (ln(P2,t+∆t))

∆t
· 1

σ̂1 · σ̂2



A
ssessin

g
L
S
M

C
fo

r
th

e
K

T
G

R
O

P
M

17
A. drifts:

µ̂ ∆t = 2/1 ∆t = 1/1 ∆t = 1/2 ∆t = 1/3 ∆t = 1/4

BEG
4.8141%
4.8409%
4.8137%

4.9045%
4.9184%
4.9043%

4.9515%
4.9587%
4.9515%

4.9675%
4.9723%
4.9675%

4.9756%
4.9792%
4.9756%

KR
4.8171%
4.8456%
4.8166%

4.9060%
4.9208%
4.9059%

4.9523%
4.9599%
4.9523%

4.9681%
4.9732%
4.9681%

4.9760%
4.9798%
4.9760%

NEK
4.9739%
4.8736%
4.6231%

4.9868%
4.9354%
4.8041%

4.9934%
4.9673%
4.9001%

4.9956%
4.9781%
4.9329%

4.9967%
4.9836%
4.9495%

GT
4.9768%
4.8839%
4.6169%

4.9883%
4.9407%
4.8008%

4.9941%
4.9700%
4.8984%

4.9961%
4.9799%
4.9318%

4.9970%
4.9849%
4.9487%

B. volatilities and correlations:

σ1 ρ1,2 ρ1,3

σ2 ρ2,3

σ3

∆t = 2/1 ∆t = 1/1 ∆t = 1/2 ∆t = 1/3 ∆t = 1/4

BEG/KR
.1954 −.1075 .1261

.2999 .1031
.3977

.1977 −.1037 .1128
.3000 .1016

.3989

.1989 −.1018 .1064
.3000 .1008

.3994

.1992 −.1012 .1042
.3000 .1005

.3996

.1994 −.1009 .1032
.3000 .1004

.3997

NEK / GT
.2000 −.1000 .1000

.3000 .1000
.4000

.2000 −.1000 .1000
.3000 .1000

.4000

.2000 −.1000 .1000
.3000 .1000

.4000

.2000 −.1000 .1000
.3000 .1000

.4000

.2000 −.1000 .1000
.3000 .1000

.4000

Table 3: Moment Estimation on Multivariate Lattices: Trivariate Cases
Legend: see table 2.
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A. drifts:

µ̂ ∆t = 2/1 ∆t = 1/1 ∆t = 1/2 ∆t = 1/3

BEG

0.0000%
0.0000%
0.0000%
0.0000%

4.9045%
4.9184%
4.9043%
4.8866%

4.9515%
4.9587%
4.9515%
4.9424%

4.9675%
4.9723%
4.9675%
4.9614%

KR

0.0000%
0.0000%
0.0000%
0.0000%

4.9060%
4.9208%
4.9059%
4.8870%

4.9523%
4.9599%
4.9523%
4.9426%

4.9681%
4.9732%
4.9681%
4.9615%

NEK

4.9739%
4.8736%
4.6231%
4.9984%

4.9868%
4.9354%
4.8041%
4.9992%

4.9934%
4.9673%
4.9001%
4.9996%

4.9956%
4.9781%
4.9329%
4.9997%

GT

4.9769%
4.8839%
4.6167%
4.9985%

4.9883%
4.9407%
4.8007%
4.9992%

4.9941%
4.9700%
4.8983%
4.9996%

4.9961%
4.9799%
4.9318%
4.9997%

B. volatilities and correlations:

σ1 ρ1,2 ρ1,3 ρ1,4

σ2 ρ2,3 ρ2,4

σ3 ρ3,4

σ4

∆t = 2/1 ∆t = 1/1 ∆t = 1/2 ∆t = 1/3

BEG / KR

.0000 .0000 .0000 .0000
.0000 .0000 .0000

.0000 .0000
.0000

.0000 −.1037 .1128 −.1897
.3000 .1016 .1036

.3989 −.0744
.0893

.0000 −.1018 .1064 −.1419
.3000 .1008 .1015

.3994 −.0878
.0948

.0000 −.1012 .1042 −.1273
.3000 .1005 .1010

.3996 −.0920
.0966

NEK / GT

.2000 −.1000 .1000 −.1000
.3000 .1000 .1000

.4000 −.1000
.1000

.2000 −.1000 .1000 −.1000
.3000 .1000 .1000

.4000 −.1000
.1000

.2000 −.1000 .1000 −.1000
.3000 .1000 .1000

.4000 −.1000
.1000

.2000 −.1000 .1000 −.1000
.3000 .1000 .1000

.4000 −.1000
.1000

Table 4: Moment Estimation on Multivariate Lattices: Tetra-variate Cases
Legend: see table 2.
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To analyze the same moment matching properties for Monte Carlo discretizations of GBM processes,

we have devised the following experiment design which to the best of our knowledge is novel in extant

literature, see for instance page 288 in (Gourieroux and Jasiak, 2001). Over a 20 years horizon, being this

the likely life of an industrial investment project, we have simulated the analytic solution of GBMs with

correlated Wiener processes in the same bivariate, trivariate and tetra variate cases previously discretized in

multivariate lattices. Monte Carlo observations at each epoch are obtained from the analytic solution (20)

of the GBM equation (19).

dS = µ S d t + σ S d z (19)

St = St−1 · eν∆t+σǫt

√
∆t

St = St−1 · e(µ−1/2σ2)∆t+σǫt

√
∆t

(20)

where, in addition to previous notation:

ǫt ∼ N(0, 1) := shocks drawn from a standardized normal distribution, in the case of correlated Wiener processes
they have been transformed using a Cholesky decomposition of the correlation matrix;

This has been performed for different ∆ t and for different batches of simulated paths. While for lattices

estimated figures were reported directly, in this case we have chosen to report relative RMSEr, see expres-

sion (21), rescaled for the results obtained from the most coarse discretization ∆ t = 2 and the smallest

batch L = #paths=5.000.

RMSEr =

√√√√√ 1

L
·

L∑

j=1

[
θ̂j − θ

]2

θ
(21)

where:
L : number of paths simulated in the individual batch;

θ̂j : estimates of µ̂ = ν̂ + 1
2
σ̂2, σ̂2, ρ̂;

θ : parameters used in the Monte Carlo simulation, µ, σ2 and ρ;

Moreover, we have repeated the same experiment 10 times to get less noisy relationships between

RMSEr, ∆ t and L = #paths. Therefore, tables 5-7 report average values of RMSEr rescaled for the

least computationally intensive discretization, upper left hand corner. Although intuitively immediate,

these table can be better interpreted with a simple OLS regression of the RMSEr on respective ∆ t and

L = #paths. Hence, we have estimated equation (22) on 350 observations, obtained from repeating 10 times

the same experiment.

ln(RMSEr) = α + βL · ln(L) + β∆t · ln
(

T

∆t

)
+ ǫ (22)
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where, in addition to previous notation:

T : life of the investment project, 20 years;
n = T

∆t
: number of observations for each simulated time series;

From tables 5-7 moment matching properties of simulated GBMs can be summarized as follows. For

drifts, see panels A in the tables just cited, the increase in the number of paths per batch is definetly effective

in reducing RMSEr. Instead, as (Jiang and Knight, 1999) page 12 notice, there are not efficiency gains in

approximating drifts on simulated series if we increase the sample size by reducing the sampling interval

∆t over a fixed horizon. This is confirmed by regression estimates of equation (22), see expression (23),

t-stats are reported in parentheses. As a matter of fact, the number of paths coefficients are always highly

significant, while the number of observations in a path ones are not. Moreover, it is worth noting that

number of path coefficients stay the same for the three multivariate cases. The level of βL indicates a
√

L

consistency as it is well known for Monte Carlo estimates of European Options.18 Finally, another pattern

emerges. Results for tetra variate cases are much more stable than for the other two. This is due to the fact

that RMSEr are the average of the individual parameters figures which are noisier.

bivariate: ln(RMSEr) = 0.08
(0.23)

+ −0.49
(−14.11)

· ln(L) + −0.05
(−1.35)

· ln
(

T
∆t

)
R2 = .37

trivariate: ln(RMSEr) = 0.46
(1.35)

+ −.50
(−15.52)

· ln(L) + 0.02
(0.48)

· ln
(

T
∆t

)
R2 = .41

tetravariate: ln(RMSEr) = 0.65
(1.91)

+ −0.51
(−16.01)

· ln(L) + −0.07
(−2.17)

· ln
(

T
∆t

)
R2 = .43

(23)

For volatilities, instead, the increase in the number of paths is almost irrelevant, see panels B in tables 5-7

while increased sampling is very effective in reducing RMSEr. This is confirmed by regression estimates

of equation (22), see expression (24). Differently from drift and correlations estimates, this pattern stays

the same in all three cases, bivariate, trivariate and tetravariate as can be observed from R2 and coefficient

estimates too.

bivariate: ln(RMSEr) = −1.29
(−9.33)

+ 0.013
(0.995)

· ln(L) + −1.049
(−82.136)

· ln
(

T
∆t

)
R2 = .95

trivariate: ln(RMSEr) = −1.286
(−12.071)

+ 0.00324
(0.324)

· ln(L) + −1.02652
(−104.567)

· ln
(

T
∆t

)
R2 = .97

tetravariate: ln(RMSEr) = −1.32325
(−14.6703)

+ 0.004836
(0.573085)

· ln(L) + −1.01991
(−122.795)

· ln
(

T
∆t

)
R2 = .98

(24)

18As a matter of fact, lnRMSE = − 1
2
· ln L ⇒ ln RMSE = ln L−1/2 ⇒ RMSE = 1√

L
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For correlations both increased number of paths and finer sampling are effective in reducing RMSEr, see

panel C in tables 5-7. Although that is true, the former is less effective than the latter, see equations (25).

As can be observed from panel C, increased size batch is much more effective for finer sampling discretization

schemes. Moreover, in this case RMSEr is the average of the whole correlation matrix. Hence, comparison

accross the three multivariate specifications help us to single out how much noisy is the estimate of individual

correlation coefficients, as in the bivariate case, when compared to the estimates of three and six for the

trivariate and tetravariate cases respectively.

bivariate: ln(RMSEr) = −0.547
(−1.06141)

+ 0.0986
(2.043)

· ln(L) + −1.050
(−22.107)

· ln
(

T
∆t

)
R2 = .58

trivariate: ln(RMSEr) = 0.668
(3.590)

+ −0.045
(−2.590)

· ln(L) + −0.949
(−55.382)

· ln
(

T
∆t

)
R2 = .89

tetravariate: ln(RMSEr) = 0.669
(5.051)

+ −0.047
(−3.853)

· ln(L) + −0.943
(−77.317)

· ln
(

T
∆t

)
R2 = .94

(25)

Obviously, this reduction in RMSEr takes place at a cost. CPUs time between upper right hand corner

and lower righ hand corner experiments in tables 5-7 increases respectively 13, 15 and 18 times. In any

case, even after reduction in RMSEr for drifts due to increased number of path or finer sampling, the

submartingale property, equation (11) does never hold exactly.
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A. drifts:

2/1 1/1 1/2 1/3 1/4 1/6 1/12

5,000 100.00 113.06 111.04 160.41 86.73 101.59 109.79
10,000 78.39 74.02 68.30 76.23 88.45 67.30 83.24
20,000 62.36 47.62 41.00 48.24 51.75 66.12 59.82
40,000 53.90 49.69 47.79 40.89 28.84 36.39 41.07
80,000 34.07 36.05 21.15 23.67 38.31 22.63 21.27

B. volatilities:

2/1 1/1 1/2 1/3 1/4 1/6 1/12

5,000 100.00 50.29 21.69 14.84 11.70 10.11 3.17
10,000 96.68 45.79 23.34 14.74 9.02 7.90 3.46
20,000 95.59 45.78 23.08 16.18 10.58 7.63 3.62
40,000 96.38 46.90 22.15 14.48 11.52 8.17 3.78
80,000 95.48 46.56 22.56 14.86 11.44 7.59 3.59

C. correlations:

2/1 1/1 1/2 1/3 1/4 1/6 1/12

5,000 100.00 56.12 24.91 20.28 15.90 12.87 10.79
10,000 108.74 63.03 29.96 15.37 15.34 9.17 7.42
20,000 107.50 52.27 24.93 20.26 16.37 8.49 6.87
40,000 111.03 56.63 27.74 17.60 14.48 9.53 4.44
80,000 116.99 55.72 27.01 20.45 15.75 10.52 4.28

Table 5: Moment Estimation on Monte Carlo Simulations: Bivariate Cases
Legend: Analytic solutions of correlated GBMs have been simulated spanning a T = 20 years horizon, with different samples
as reported in the first column and different ∆t as reported in the first row. Drifts, volatilities and correlations have been
computed according to the following expressions on simulated time series:

ν̂i =

{
1

obs

obs−1∑

k=0

ln

[
Si,tk+1

Si,tk

]}
· 1

∆t

σ̂i =

√√√√ 1

obs − 1

obs−1∑

k=0

(
ln

[
Si,tk+1

Si,tk

]
− ν̂i · ∆t

)2

· 1√
∆t

µ̂i = ν̂i +
1

2
· σ̂2

i

ρ̂i,j =

1
obs−1

∑obs−1

k=0

[(
ln

[
Si,tk+1

Si,tk

]
− ν̂i · ∆t

)
·
(
ln

[
Sj,tk+1

Sj,tk

]
− ν̂j · ∆t

)]

σ̂i · σ̂j · ∆t

Relative RMSE has been computed according to expression:

RMSEr =

√√√√√ 1

L
·

L∑

j=1

[
θ̂j − θ

]2

θ

This experiment has been repeated 10 times. Average values have been computed and they have been rescaled for the upper

left hand side corner RMSEr.
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A. drifts:

2/1 1/1 1/2 1/3 1/4 1/6 1/12

5,000 100.00 83.54 83.89 102.39 113.29 134.57 119.58
10,000 68.81 51.00 66.86 75.69 58.97 60.10 77.69
20,000 48.97 65.34 39.73 55.86 55.34 49.25 64.80
40,000 37.60 29.50 43.19 38.20 33.21 29.79 31.65
80,000 24.16 23.73 25.58 22.96 21.36 26.38 20.77

B. volatilities:

2/1 1/1 1/2 1/3 1/4 1/6 1/12

5,000 100.00 52.16 23.46 13.90 11.51 8.66 4.30
10,000 98.71 46.22 24.47 15.11 12.52 7.01 4.06
20,000 101.99 47.11 23.52 15.99 11.29 7.99 3.82
40,000 99.09 47.94 24.65 15.18 11.37 7.67 3.84
80,000 99.62 46.81 23.06 15.98 11.86 7.65 3.89

C. correlations:

2/1 1/1 1/2 1/3 1/4 1/6 1/12

5,000 100.00 52.34 24.69 16.63 12.41 10.77 8.03
10,000 95.04 48.23 20.10 17.61 14.31 7.99 5.22
20,000 96.01 45.12 23.38 14.02 11.14 7.11 4.99
40,000 91.69 45.09 22.75 15.77 10.18 8.76 4.10
80,000 93.20 45.49 23.30 15.85 11.64 7.58 4.40

Table 6: Moment Estimation on Monte Carlo Simulations: Trivariate Cases
Legend: see table 5.

A. drifts:

2/1 1/1 1/2 1/3 1/4 1/6 1/12

5,000 100.00 77.62 70.24 78.15 90.35 71.33 83.63
10,000 61.42 50.37 58.85 49.45 53.43 45.15 60.15
20,000 55.17 36.75 38.26 55.32 43.74 31.20 30.21
40,000 32.24 26.55 40.66 27.64 21.22 24.61 23.40
80,000 19.47 14.66 21.46 17.79 23.52 18.83 19.33

B. volatilities:

2/1 1/1 1/2 1/3 1/4 1/6 1/12

5,000 100.00 45.85 24.69 15.88 11.54 8.53 3.65
10,000 100.74 46.15 23.15 15.13 12.08 8.03 4.52
20,000 100.47 47.04 23.30 15.50 11.18 7.72 3.88
40,000 99.60 48.77 24.02 15.50 12.08 7.63 4.08
80,000 100.42 48.42 23.48 15.63 11.47 7.67 3.90

C. correlations:

2/1 1/1 1/2 1/3 1/4 1/6 1/12
5,000 100.00 47.16 24.97 20.15 13.75 10.44 7.70

10,000 97.09 44.49 24.14 14.36 12.80 10.25 5.67
20,000 94.80 47.54 22.29 16.15 12.34 9.80 4.15
40,000 99.39 51.25 24.17 16.49 12.39 7.45 4.34
80,000 97.56 47.80 24.57 17.57 12.91 7.89 3.92

Table 7: Moment Estimation for Monte Carlo Simulations: Tetra-variate Cases
Legend: see table 5.
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Therefore, for Monte Carlo simulations of GBMs, both univariate and multivariate with correlated

Wiener processes, the method we propose in order to get comparable present values for cash flow streams

discretized with different granularities hinges on the same principle, equation (10), but cannot rely on the

nice properties of growing annuities present values which we have used for lattice discretizations. Simulating

St recursively with equation (20), setting µ = rf , we get the following expected value for each epoch t.

E (St) = S0 · eµ̂t·∆t·t (26)

From equation (26), drifts µ̂t computed for state variable St in each epoch are different from rf , see

expression (27). As shown above, the drift µ̂t approximates rf as the number of simulated time series

increases and, with a smaller extent, as ∆t → 0.

µ̂t = ln

(
E (St)

S0

)
· 1

∆t · t (27)

where:
St := actual variable, being S0 the initial figure of each simulated time series;

E (St+∆t) := expected value computed cross sectionally on observations taken from simulated time series at epoch
t;

∆t := = life/(n · m) = 1/m, life of the project in years divided by the number of intervals, increment of
the Monte Carlo simulation;

We have noticed previously that rescaling can take place simply multiplying annual figures for ∆t or

the fraction of the year, see expression (18), only when the drift of the expected values computed on

discretization – whether lattice or Monte Carlo – is exactly µ̂ = rf . We observe that, according to the Doob

Meyer decomposition, a stochastic process which is not a martingale can be transformed into one simply

subtracting its predictable part, see page 133 (Neftci, 2000). Moreover, we remark that random variable

distributions at any epoch t resulting from Monte Carlo simulations just approximate the martingale in the

present values property, being the drift µ̂ ≪ rf . Consequently, in a sort of moment matching method, see

page 153 (Tavella, 2002), in order to rescale simulated time series resulting from Monte Carlo experiments

to be used in (Longstaff and Schwartz, 2001), we proceed as follows:

1. deflate, hence the superscript d for St, each observation at epoch t ∀t = 0, . . . , T for the estimated

drift µ̂t from equation (27),

Sd
t =

St

eµ̂·∆t·t (28)

2. reinflate, hence the superscript r for St, each observation at epoch t ∀t = 0, . . . , T for the risk neutral

drift µ = rf .

Sr
t = Sd

t · eµ·∆t·t (29)
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If simulated figures for any ∆t are rescaled as in the previous two steps, then initial values S0 for a

subperiod ∆t can be computed simply multiplying the annual figure as in expression (18). This assures that

present value computation would not be sensitive to discretization granularity. After the deflating reinflating

process, both univariate and multivariate GBM keep the same stochastic properties in terms of volatilities

and correlations, the only difference being that drifts µ = rf are exactly equal to the risk free rate.19

The same procedure can be applied also to the multivariate lattices previously described. For brevity,

we do not report these results which differ from those reported in tables 2-4 only for the fact that after

rescaling computed drifts are exactly equal to the risk free rate. From a comparison of these rescaled

lattice discretizations the (Gamba and Trigeorgis, 2005) or the (Ekvall, 1996) can be considered a sort of

“perfect lattice” since they replicate exactly in any interval all the statistics of the multivariate GBM –

drifts, volatilities and correlations.

In the remaining part of this section, we report a PV matching method to apply KT model when the

underlying DGP is a Geometric Ornstein Uhlenbeck. Moreover, we show that PV matching methods are

not suitable for the last two models reported in table 1. We have specified mean reverting processes using

model 1 page 926 in (Schwartz, 1997) which is the same as expression (65) page 665 in (Sick, 1995), see

expression (30).20

dPt = η
(
L − ln Pt

)
· Pt · d t + σ · Pt · d z (30)

where, in addition to previous notation, we have:

L := ln P +
σ2

P
2·η , normal value of the log transform to which the process tends to revert;

ln Pt := logarithm of the price;

The reasons for this choice are that (Sick, 1995) provides for this process a nice censored binomial lattice

approximation, see expression (35) and, together with (Schwartz, 1997), some analytical expressions for

expected values of spot prices, see expression (34).21

19 This result is easy to explain remembering that V ar(a + bX̃) = b2 · V ar(X̃) and Cov(a + bX̃, c + dỸ ) = b · d · Cov(X̃, Ỹ ).
20We have discarded the geometric Ornstein Uhlenbeck with the spring effects on normal levels and not on their log transforms,

see page 78 (Øksendal, 2001) eq. (5.3.9) for its analytical solution suitable for Monte Carlo simulations, because an analytical
expression for the expected value of the spot price following that process is not available in the literature. Moreover, differently
for the process used in the text, parameters of GOUP with spring effects on normal levels are difficult to estimate. Finally, a
binomial lattice discretization is not available in extant literature.

21It should be noticed that ln(P ) is the expected value of a normally distributed variable. As such, the expected value of the
corresponding lognormal distribution – the figure that we actually estimate empirically – can be expressed as a function of it

as in expression (31). Substituting the arithmetic Ornstein Uhlenbeck variance for T → ∞ σ2(pt) = σ2

2·η , we get the value P to
be substituted in the (Sick, 1995) binomial discretization, see (32).

P̂ = eln(P )+ 1
2
·σ2

(31)
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Et (P (T )) = P ·
(

Pt

P

)e−η (T−t)

· exp

[
σ2

4 · η ·
(
1 − e−2·η·(T−t)

)]
(34)

In (Sick, 1995) lattice for the natural probability measure, hence excluding the risk premium correction,

binomial movements are the same as in a (Cox et al., 1979) model while the probability of an up movement

is given by expression (35) in which probabilities greater than one or lower than zero are censored. This

Binomial lattice provides a benchmark to LSMC.

p∗t = max


0,min


1,

(
Pt

P

)e−η ∆t−1
· exp

[
σ2

4·η ·
(
1 − e−2·η·∆t

)]
− e−σ·∆t

eσ·∆t − e−σ·∆t





 (35)

The arithmetic Ornstein Uhlenbeck process of the log tranform of model 1 (Schwartz, 1997), expres-

sion (36), has an analytical solution, see expression (37), which can be conveniently used for Monte Carlo

simulations of the log of prices, pt = ln Pt. These results are then exponentiated in order to estimate real

options values in the (Longstaff and Schwartz, 2001) framework. This framework prevents us getting mired

into approximate discretization schemes, e.g. Euler.

d pt = η (p − pt) · d t + σ · d z (36)

where:

ln(P ) = ln(P̂ ) − 1

2
· σ2

P = exp
(
ln(P̂ ) − 1

2
· σ2

)

P = exp

(
ln(P̂ ) − σ2

4 · η

)

P = P̂ · exp

(
− σ2

4 · η

)
(32)

As a matter of fact, substituting the value P just derived in the expected value expression (34) we get P̂ as expected value over
the long run on the binomial lattice and on the Monte Carlo simulations, see (33).

lim
T→∞

Et (P (T )) = P · exp

[
σ2

4 · η

]

= P̂ · exp

(
− σ2

4 · η

)
· exp

[
σ2

4 · η

]

= P̂ (33)
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pt := ln Pt, logarithm of the price;
η := the speed of reversion, e.g. for η = 0 the process becomes a driftless geometric

Brownian motion while for 0 < η < 1 the process tends to be mean reverting,
negative levels are excluded to avoid mean aversion, one is excluded to avoid over-
shooting;

p := normal level of the logarithm transform;

pt = p ·
(
1 − e−η·∆t

)
+ e−η·∆t · pt−1 + ǫt (37)

where,

ǫt ∼ N
(
0, σ2

ǫ =
σ2
0

2·η ·
(
1 − e−2·η∆t

))
;

pt := ln Pt, logarithm of the price;

Mean values computed at each epoch on both binomial lattices and exponentiated Monte Carlo simula-

tions of equation (37) approximate expected value closed form (34). This is the expectation of the process

under the natural probability measure. We can derive the certainty equivalent just subtracting the risk

premium. In the numerical examples which follow this section we have assumed an underlying with zero

sistematic risk hence no need to subtract a risk premium.

The problem of finding the value of R1/m,t which verifies equation (10) for variables generated by a GOU

can be solved only numerically. Equation (10) is rewritted as (38) and expected values are computed with

the closed form reported in expression (34). To set up a numerical solution, it is important to express the

normal value P 1/m as a multiple of the initial value R1/m,t=0. In this way the zero of the function is found

only with respect to the latter.

PVn =
n∑

t=0

Rt · vt = PVm·n =
n·m∑

t=0

R1/m,t · v′t (38)

We conclude this section showing how to construct a lattice benchmark for LSMC valuations of KT

model when the underlying follows a two or a three factor model, model 2 and model 3 in (Schwartz, 1997)

respectively. As a matter of fact, while LSMC application is plain, requiring just the simulation of a GBM

with nested stochastic convenience yield, model 2, see equations (39) and (40), and risk free rate, model

3, see equations (41)-(43), a lattice counterpart is not frequently used in the literature being the model

proposed by (Schulmerich, 2005) page 177 a notable exception.

dSt = (µ − δt) St dt + σ1 St dz1 (39)

d δt = η2 (α − δt) dt + σ2 dz2 (40)
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being cov (dz1 · dz2) = ρ1,2 · dt

dSt = (rt − δt) S dt + σ1 S dz1 (41)

d δt = η2 (α − δt) dt + σ2 dz2 (42)

d rt = η3 (m − rt) dt + σ3 dz3 (43)

being the variance covariance matrix:

cov (dzi · dzj) =




1 ρ1,2 ρ1,3

1 ρ2,3

1




· dt

Following a solution originally proposed by (Hull, 2000) page 401, (Schulmerich, 2005) substitutes a

deterministic term structure of interest rates for a path of spot rates simulated according to a wide variety

of interest rate models, to name a few (Vasicek, 1977) or (Hull and White, 1990). A (Cox et al., 1979) is

then constructed with up state probabilities varying with time. This lattice is recombinant in any case since

binomial movements are not affected by the change in each epoch of the risk free rate. A valuation of the

real option model is obtained for each simulated path/lattice. The average of all the valuations obtained

as just shown is proposed by (Schulmerich, 2005) as the expected value of a real option model with time

varying interest rates.

We extend the framework just depicted and we consider as time varying not only the risk free rate but

also the convenience yield. Pursuing the same procedure just described, we obtain a lattice benchmark for

both model 2 and model 3 of (Schwartz, 1997). It is worth noting that in this way we are able to benchmark

only cases in which the state variable is uncorrelated with the underlying factor, being it either a convenience

yield and/or a risk free rate, while these two factors can be correlated in the Monte Carlo simulations to

benchmark model 3.

3 Numerical example

In this section we describe a numerical example which will be analized thoroughly in the following sections.

The specification of the KT model we propose aims to show LSMC estimates properties and not to

provide a realistic application. For instance, in order to estimate value functions in a state of hysteresis of

the dynamic system22, transition costs have been set unrealistically high. This is necessary because only in

22The investment project when managed according to a dynamic programming algorithm is a dynamic system.
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hysteresis regions value functions differ for less than transition costs and their valuations would be actually

distinct for each mode. Instead, in one mode regions23 value functions differ exactly for the transition costs

and this case would be of no interest for studying LSMC estimates properties. Moreover, in order to observe

how LSMC behaves with optionalities deep out of money and in the money, the cash flow equation variables

have been set up to get two different plants, one very profitable and another completely unprofitable. Finally,

we have considered both reversible optionalities – switching real options – and irreversible optionalities, i.e.

real options to wait and to abandon, in order to observe LSMC in both cases.

Hence, the reader should not expect individual real options valuations within the ensuing model. We

save their computation for another paper being the focus of the present one just to show the properties of

the value functions LSMC valuations.

As sketched above, in a KT model the production technology is described by two expressions, one for

the recurrent cash flows, i.e. those generated by every day activity, and one for the non recurrent ones, i.e.

those generated by asset play. Usually, decisions concerning the first one are reversible and correspond to

switching options while decisions concerning the latter are irreversible and they correspond to plain vanilla

options akin to calls or puts.

The investment project we consider in this numerical example has two different production technologies,

see expressions (44)-(45). The latter is conceived as a sort of expanded plant with respect to the former,

showing economies of scale. As a matter of fact, while production volume doubles, fixed costs increase only

150%. The former, instead, is a sort of pilot production plant which produces at a loss. In case it becomes

convenient, the pilot plant can be doubled, exercising an option to expand. In both plants, production

can be suspended, exercising the real option to mothball, or resumed, exercising the option to restart. In

mothballed state, maintenance costs are given by expression (46). Both plants can be sold for their initial

value, depreciated to yield wreckage value at the end of the life of the project, being either in mothballed

or in production state, see directed graph in figure 3 which summarizes the modes accessibility.

CFt (θt,m, t) = Q · (P − V c) − F

CFt (θt,m = Plant 1, t) = 80% · (95 − 78) − 16 (44)

CFt (θt,m = Plant 2, t) = 200% · 80% · (95 − 78) − 150% · 16 (45)

CFt (θt,m = Mothballed, t) = −3 (46)

where:
23We define one mode regions those levels of the state variable for which only one mode of the dynamic system is optimal.
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Q : expected capacity utilization;
P : revenue per year for 100% capacity utilization;

V c : Variable costs per year for 100% capacity utilization;
F : fixed costs per year corresponding to the plant structure;

The actual construction of both plants can be postponed over a period of 20 years, exercising the option

to wait. After a period of 20 years both plants are decommitted. Hence, postponing the construction of

the production plant in this setting means curtailing its useful life. In conclusion, for simplicity we have set

up a specification in which every option is exercised with the same frequency over the same span of time.

Transition costs for exercising options are reported in expression (47)

cm,l =




0 500 · erf ·t 1000 · erf ·t +∞ +∞ +∞
+∞ 0 20 2 +∞ −Ab. Val.
+∞ +∞ 0 +∞ 5 −Ab. Val.
+∞ 7 +∞ 0 +∞ −Ab. Val.
+∞ +∞ 14 +∞ 0 −Ab. Val.
+∞ +∞ +∞ +∞ +∞ 0




(47)

where,

1. modes are ordered in the following sequence: W: wait to invest mode; A: Plant 1 mode; B: Plant 2

mode; C: Plant 1 mothballed mode; D: Plant 2 mothballed mode; E: abandoned mode.

2. the abandonment value is computed depreciating the initial investment sum taking into due account

the wreckage value.

Cum. Depr. =
Ini.Invest.0 · erf ·∆ t·t − Wreck.Value0 · erf ·∆ t·t

intervals

Ab. Val. =
(
Ini.Invest. · erf ·∆ t·t − Cum. Depr.

)
· 10%

It is important to notice that both the initial investment sum and the wreckage value, Wreck.Value0 = 2,

are increased for the risk free rate to consider the opportunity cost of postponing actual investment. Risk

free rate is held fixed in all specifications at the level of rf = 5% or at a time varying interest rate generated

by a (Vasicek, 1977) model with a normal value of rf = 4%, an initial value of rf,t=0 = 6%, a mean reversion

speed of η3 = .44 and a volatility term of σ3 = .0025. In the latter case, a risk premium RP = 0.0025 is

included in the computation of the up state probability and in the drift term of the equation simulated in

Monte Carlo experiments.

The model depicted above has been estimated for different underlying data generating processes. They

are summarized in table 8.

The multivariate GBMs with correlated Wiener processes, models # 1 through # 4 in table 8 are

described in expression (48), where figures refer to variables ordered in the following sequence, P, Vc, F.
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Figure 3: Directed Graph Representation of the 6 modes specification KT model.

Data Generating Process Specification

variable # 1 # 2 # 3 # 4 # 5 # 6

Q
P GBM GBM GBM GOU GBM GBM
Vc GBM GBM
F GBM

Mtn
δP AOU AOU
rf AOU

Table 8: Data Generating Process Specifications
Legend: processes # 1 through # 3 are univariate or multivariate Geometric Brownian Motions with correlated Wiener

processes; # 4 specifies Price as a Geometric Ornstein Uhlenbeck; # 5: a two factor model (Schwartz, 1997); # 6: a three

factor model (Schwartz, 1997).

Convenience yields have been set to zero for all three variables. Instead, in models #5 and #6 a time varying

convenience yield is generated by an Arithmetic Ornstein Uhlenbeck with a normal value of rf = −2%, an

initial value of rf,t=0 = 2%, a mean reversion speed of η2 = .2 and a volatility term of σ2 = .2.

∑
=




0.15
0.25
0.20


 ρ =




1.00 0.20 0.30
1.00 0.30

1.00


 (48)
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4 Assessing Applicability of LSMC to the KT model

The research question we address in applying LSMC to the KT model is how to “fine tune” the least squares

Monte Carlo method in order to get more accurate results, i.e. to minimize RMSEr – and not the expected

bias as explained below – in the most efficient way. There are many ways to address this problem and we

had to chose some and discard some others.

To begin with, one way would be to test which family of polynomials is best in our application. In

most of the previous literature the choice of different families of polynomials has been shown to be not so

crucial in getting more accurate results, see for instance (Moreno and Navas, 2001), (Stentoft, 2004) pag.

142, or lately (Areal et al., 2007) pag.16 Table 6. Hence, we have followed (Stentoft, 2004) in focusing on

the complete set of polynomials as a specification of the equation adopted to estimate continuation value in

LSMC.

Moreover, another setting which has been explored in the literature is the way random numbers are

generated applying, see for instance (Areal et al., 2007), quasi random numbers instead of pseudo random

numbers generated by a congruential random number generator in any programming language. Because of

the novelty of our application, we decided not to mingle together several issues. Hence, we have adopted

plain pseudo random numbers as generated in Gausstm programming language in performing our Monte

Carlo simulations.

Finally, another issue which has been addressed in fine tuning LSMC is the choice of the actual least

squares method. We have to dismiss the simple x/y command and substitute it for the olsqr2(y,x)

instruction which uses the QR decomposition, slower than the previous but yielding better results for near

singular matrices which may occur expecially near time t = 0. Moreover, the command adopted handles

matrices which do not have full rank returning zeros for the coefficients that cannot be estimated. This

means that in our application the order of the polynomial fitted is variable being set only its maximum.

In the setting just described, LSMC method is applied to the numerical example DGPs listed in table 8,

choosing properly some parameters in order to get accurate results, namely: for an individual estimate, the

number of discretization points K, of basis functions M , and the number of simulated paths N . Moreover,

an estimate can be replicated several times, taking as final result the average of a number R of replications.

To begin with, we verify whether LSMC is actually a convergent valuation method for ∆t → 0 or

K → ∞, as in (Broadie and Detemple, 1996) page 1222. Then, we test what is the accuracy of LSMC

method for different combinations of basis functions M , and the number of simulated paths N . Hence, the

original contribution of this section is a generalized, although empirical, exploration of proposition 1 page
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124 (Longstaff and Schwartz, 2001) as another small step towards a general convergence result which is not

available to date in extant literature. As a matter of fact, (Tsitsiklis and Van Roy, 2001), (Longstaff and

Schwartz, 2001), (Clément et al., 2002) provide convergence results with respect to the number of simulated

paths holding the number of basis functions fixed. (Glasserman and Yu, 2004), instead, provide convergence

results with respect to polynomial regression coefficients in a setting in which the number of paths and the

number of basis functions increase together. Moreover, it should be noticed that the previous convergence

results are derived in a univariate setting assuming that they could be “relevant for higher dimensional

problems” page 3 (Glasserman and Yu, 2004). Instead, we verify empirically what (Longstaff and Schwartz,

2001) page 125 define “only conjectures about higher dimensional problems”.

In the next two sections, then, we analyze the trade off between accuracy and computational time, see

section 5 and we explore the statistical properties of LSMC estimates, see section 6.

4.1 The Asymptotic Behavior of LSMC

In this section we try to answer the following question: what is the asymptotic behavior of the LSMC

algorithm ? In other words, what happens when ∆t → 0. As a matter of fact, a convergent asymptotic

behavior of LSMC valuations may help in getting less biased estimates, together with the choice of the two

most important parameters of the model, namely order of the polynomial and number of paths simulated.

We would not have been able to tackle this problem without the rescaling methods proposed above in order

to compare results for different ∆t. We find that LSMC is not a convergent algorithm in this application

when the underlying is a GBM, both univariate or correlated multivariate. Instead, when the underlying

DGP is a model 1, 2 or 3 in (Schwartz, 1997) LSMC valuations converge asymptotically.

In order to observe the asymptotic behavior of LSMC we have pursued the following experiment design.

To begin with we have estimated KT model value functions with lattice methods letting ∆t → 0, see

figures 4-9. In the univariate case, GBM discretization has been performed using (Cox et al., 1979). In

multivariate cases, correlated GBMs discretization has been performed using (Boyle et al., 1989) and (Gamba

and Trigeorgis, 2005) where one cross-checks the other. In the univariate GOU case, (Sick, 1995) censored

lattice has been applied. For model 2 and 3 in (Schwartz, 1997) a generalization of the (Schulmerich, 2005)

page 177 approach has been deviced.

At first glance, observing the graphs just mentioned, lattice methods produce asymptotically convergent

valuations. This happens even though drift adjustment methods proposed in the previous sections have been

implemented24 and even though the optionalities in the model are bermudan, i.e. the number of epochs in

24For all but the last two DGPs for which flows were rescaled simply multiplying annual figures for ∆t.
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which the industrial plant can be managed –dates in which it is possible to exercise real options – remain

fixed while the number of epochs which discretize the underlying stochastic process grows to infinity.

The previous lattice benchmarks have been compared with LSMC valuations. For univariate GBM,

these have been obtained through two different discretization methods, namely a Brownian Bridge and a

pde solution simulation. Instead, for all the remainind DGPs, only the latter discretization method has

been adopted. From a computational point of view, it is worth mentioning that while the former does not

require much RAM and much HD space, the latter requires much of both, needing to simulate forward the

underlying stochastic process and storing it in view of its use in the backward induction process. For path

dependent stochastic processes, like the last three DGPs, the latter is the only simulation method available

to date.

For choosing the order of the polynomial and the number of simulated paths we referred to the combina-

tion which gives the lowest RMSE among the combinations examined in section 4.2. There, the number of

discretization points has been chosen taking into account the results of this section. In short, one choice is

consistent with the other since, after some trial and error, we converged on the LSMC configuration reported

in table 9

data generating process N M

GBM 1 640.000 5
GBM 2 80.000 6
GBM 3 320.000 5
model 1 in (Schwartz, 1997) 320.000 2
model 2 in (Schwartz, 1997) 320.000 9
model 3 in (Schwartz, 1997) 320.000 6

Table 9: LSMC Configurations used to test the Asymptotic Behavior for KT model.
Legend: N=number of paths; M=order of the polynomial.

Results are reported in figures 4-9. In the univariate case, LSMC results obtained through Brownian

bridge and through direct simulation of the pde solution are remarkably similar. Although that is true,

Brownian Bridge estimates show a positive bias for a low number of discretization epochs, while pde estimates

are much more stable for different ∆t. For this reason, we do not use Brownian Bridge in the multivariate

GBM applications of LSMC. In any case, none of them shows a clear asymptotic convergence as, instead,

lattice benchmarks. A more rigorous proof of the non significant difference between the valuations for

different ∆t could be achieved using a simple bootstrapping design, see page 221 chapter 16 (Efron and

Tibshirani, 1993). Since this would require much more CPU time, we save this proof for the following draft.

In conclusion, it is not necessary to discretize univariate GBMs letting the number of intervals go to
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infinity. As a matter of fact results are not much different. In other words, like Sherlock Holmes, what we

propose as a proof of the non convergent behavior of LSMC in our application is a sort of “the dog that

didn’t bark”.25

About multivariate correlated GBMs, between the two multivariate lattice methods adopted, we observe

that (Gamba and Trigeorgis, 2005) converges much faster than (Boyle et al., 1989). Moreover, convergence

is remarkably smooth and monotonic allowing the use of Richardson extrapolation in both its simple and

repeated versions. This would have been required for the tetravariate GBM case. For both to contain the

size of the paper and to propose examples in which we rely only on lattice methods to obtain benchmarks,

we decided to drop tetravariate GBM case also because convergence pattern of LSMC as dimensionality

increases can be gleaned from a comparison of univariate with bivariate and trivariate GBM cases.

About models 1, 2 and 3 (Schwartz, 1997), figures 7-9 show a clear asymptotic convergence of LSMC

estimates as ∆ t → 0. We conjecture that this happens because the mean reverting properties of the three

processes are better approximated by a finer discretization.

In conclusion, LSMC asymptotic convergence property depends on the underlying data generating

process. When this is a GBM in both its univariate and multivariate versions, LSMC is not a conver-

gent valuation method. Therefore, it is not necessary a fine discretization and the mere exercise frequency

would be enough to get accurate results.

Instead, when the underlying data generating process has direct or indirect mean reverting properties,

like respectively, model 1 in (Schwartz, 1997), a mean reverting process with spring effect on the log of the

normal value, and models 2 or 3 in (Schwartz, 1997), a two and three factor model with mean reverting

drift, then LSMC should be used with a fine discretization in order to obtain accurate results.

25Arthur Conan Doyle, Silver Blaze, published in The Memoirs of Sherlock Holmes, 1892.
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Figure 4: Asymptotic Behavior of GBM 01 estimates.
Legend: graphs report different valuations for an increasing number of epochs in which the life of the
investment project, life = 20 years, is discretized, for a corresponding interval of 1/2 ≤ ∆t ≤ 1/60. Lattice
results are reported in a bold line. LSMC with pde simulation results are represented by a line with triangles.
LSM with BB simulation results are represented by a lighter line. Lattice method adopted is (Cox et al.,
1979). LSMC simulating pde has been implemented for a polynomial order ord = 5 and a number of paths
nms = 640 · 103. LSMC simulating Brownian Bridge has been implemented for a polynomial order ord = 5
and a number of paths nms = 800 ·103. Correction methods reported in section 2.2 above have been applied
to both methods to obtain comparable results.
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Figure 5: Asymptotic Behavior of GBM 02 estimates.
Legend: graphs report different valuations for an increasing number of epochs in which the life of the
investment project, life = 20 years, is discretized, for a corresponding interval of 1/2 ≤ ∆t ≤ 1/40.
Lattice method adopted are (Gamba and Trigeorgis, 2005) upper curves, (Boyle et al., 1989), lower curves.
LSMC has been implemented for the order of the polynomial to be ord = 6 and the number of paths to
be nms = 80 · 103 over the same discretization intervals. Correction methods reported in section 2.2 above
have been applied to both methods to obtain comparable results.
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Figure 6: Asymptotic Behavior of GBM 03 estimates.
Legend: graphs report different valuations for an increasing number of epochs in which the life of the
investment project, life = 20 years, is discretized, for a corresponding interval of 1/2 ≤ ∆t ≤ 1/14.
Lattice method adopted are (Gamba and Trigeorgis, 2005) upper curves, (Boyle et al., 1989), lower curves.
LSMC has been implemented for the order of the polynomial to be ord = 5 and the number of paths to be
nms = 320 · 103 over the same discretization intervals. Correction methods reported in section 2.2 above
have been applied to both methods to obtain comparable results.
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Figure 7: Asymptotic Behavior of Geometric Ornstein Uhlenbeck, model 1 in (Schwartz, 1997).
Legend: graphs report different valuations for an increasing number of epochs in which the life of the
investment project, life = 20 years, is discretized, for a corresponding interval of 1/2 ≤ ∆t ≤ 1/100.
Lattice method adopted are (Sick, 1995), represented in squares. LSMC has been implemented for the order
of the polynomial to be ord = 2 and the number of paths to be nms = 320 · 103 over the same discretization
intervals. Correction methods reported in section 2.2 above have been applied to both methods to obtain
comparable results.
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Figure 8: Asymptotic Behavior of Two Factor Model, model 2 in (Schwartz, 1997).
Legend: graphs report different valuations for an increasing number of epochs in which the life of the
investment project, life = 20 years, is discretized, for a corresponding interval of 1/2 ≤ ∆t ≤ 1/76. Lattice
method adopted is (Schulmerich, 2005), represented in light line. LSMC has been implemented for the order
of the polynomial to be ord = 9 and the number of paths to be nms = 320 · 103 over the same discretization
intervals. Correction methods reported in section 2.2 above have been applied to both methods to obtain
comparable results.
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Figure 9: Asymptotic Behavior of Three Factor Model, model 3 in (Schwartz, 1997).
Legend: graphs report different valuations for an increasing number of epochs in which the life of the
investment project, life = 20 years, is discretized, for a corresponding interval of 1/2 ≤ ∆t ≤ 1/80. Lattice
method adopted is (Schulmerich, 2005), represented in light line. LSMC has been implemented for the order
of the polynomial to be ord = 6 and the number of paths to be nms = 320 · 103 over the same discretization
intervals. Correction methods reported in section 2.2 above have been applied to both methods to obtain
comparable results.
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4.2 The Choice of LSMC Parameters

In this section we explore the sensitivity of LSMC to the choice of its two most important parameters,

namely the order of the polynomial used in the regression and the number of simulated paths. The different

combinations of the two mentioned parameters have been tested with respect to the most used criterion:

Root Mean Squared Error (RMSE), relative to the benchmark, see expression (49).26

RMSE =

√√√√√
(
F̃m,lsmc − Fm,b

)2
+ V ar

(
F̃m,lsmc

)

Fm,b
(49)

where:

F̃m,lsmc := LSMC estimate of mode m value function;
Fm,b := Lattice benchmark.

Dimension Intervals Wait Produce A Produce B Mothballed A Mothballed B

GBM 1 4999 129.819800 306.675950 530.438210 304.022380 520.979250

GBM 2 839 211.744380 472.505540 792.199920 469.429730 782.600810

GBM 3 239 212.80664 483.98359 808.67086 480.8921 799.10293

GOU 1 4999 4.0606302 180.03288 463.27087 165.39738 172.83802

TwoFm 1599 283.00908 517.40216 807.48896 515.25179 799.04503

ThreeFm 2279 246.83917 467.64133 743.01833 465.60727 734.84563

Table 10: Lattice Benchmarks.
Legend: univariate GBM uses a (Cox et al., 1979) lattice, multivariate GBMs (Gamba and Trigeorgis, 2005),
GOU 1 (Sick, 1995). Two and Three Factor models estimates are provided by extensions of (Schulmerich,
2005) page 177.

RMSE is used in extant literature, see for instance (Stentoft, 2004) and (Areal et al., 2007), as a loss

function, instead of the average error, see page 97 (Greene, 1994), because, as shown in section 6, LSMC

provides a random biased estimate of the option price. Hence, focussing on the unbiasedness may preclude

the choice of a LSMC specification providing a tolerably biased estimator with a much smaller variance.

Therefore, the mean squared error is chosen as a criterion that recognizes this possible tradeoff between

unbiasedness and variance of the estimator. As a matter of fact, it may be more convenient to have a

26Expression (49) and expression (21) are exactly equivalent, see page 293 (Mood et al., 1974).
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biased but less variable estimator than an unbiased but very volatile estimator. In the case of the various

parameter combinations of LSMC, among the biased low estimators we would prefer to get those with the

lowest variance, being the estimates that they yield more probably in a close neighborhood of the benchmark

value, as shown in section 6.

Therefore, we have computed RMSE of LSMC estimates around their benchmark values, see table 10,

simply replicating 100 times LSMC valuations for a combination of order of the polynomial used in the

regression and number of paths simulated as reported in table 11. These results are depicted in surface plots

in figures 10-14. Moreover, in order to give a one equation portrayal of the influence of the two parameters

on RMSE and tackling its statistical significance, we have computed a multiple regression on the average

RMSE of the main value functions estimated, see table 12-16 where, for brevity, we report equations only for

three value functions out of five. As a matter of fact, the first value function stays as a sort of summary of

all the others, Wait mode, while the other two represent respectively an out of the money switching option,

plant 1 mode, and an in the money switching option, plant 2 mode.

data generating process N (·103) M K argmin(N,M) min(RMSE)
Wait Mode

GBM 1 20-640 2-9 40 640.000, 5 .0061906

GBM 2 20-640 2-9 40 80.000, 6 .0134957

GBM 3 10-320 1-8 40 320.000, 5 .0083723

model 1 in (Schwartz, 1997) 10-320 2-9 2000 320.000, 2 .0224053

model 2 in (Schwartz, 1997) 10-320 2-9 1520 320.000, 9 .0050930

model 3 in (Schwartz, 1997) 10-320 2-9 1600 320.000, 6 .0060304

Table 11: LSMC Configurations used to Study the influence on RMSE of N and M.
Legend: N=number of paths; M=order of the polynomial; K= discretization epochs; argmin(N,M): the
number of simulated paths and the order of the complete set of polinomials for which min(RMSE) is
achieved.

Differently from what finds (Stentoft, 2004) for LSMC pricing of an American Put written on an un-

derlying asset following a univariate GBM, we do not find always a monotonic negative relation between

both the order of the polynomial and the number of paths simulated. In that application, proposition 2

of (Longstaff and Schwartz, 2001) is confirmed. This is not always the case when LSMC is applied to the

KT model. Results depend very much on the underlying DGP.



44 Assessing LSMC for the KT GROPM, January 2007

For GBMs, the parameter which affects most RMSE is M, the order of the complete set of polynomials.

This is true for all three cases, and within them for each value function. As is depicted in figures 10-12 and

summarized by regressions in table 12-14, the order of the complete set of polynomials contributes signifi-

cantly to the reduction of RMSE up to some threshold level after which, instead, M increases significantly

RMSE. This happens for any level of N, number of paths simulated. This parameter is not significant in

reducing RMSE although regression coefficients have the same sign as M, to recap negative the linear and

positive the quadratic.

In conclusion, for underlying GBMs, increasing the number of paths decreases slowly RMSE while the

order of the complete set of polynomials first decreases and then increases RMSE inducing a “U” shaped

pattern for univariate GBMs or an “L” shaped one for bivariate and trivariate cases. As a matter of fact,

for bivariate and trivariate cases RMSE literally explodes after reaching a critical threshold of M = 6.

This evidence does not confirm proposition 2 of (Longstaff and Schwartz, 2001) but it is in accordance

with (Glasserman and Yu, 2004) where it is shown how MSE of the LSMC regression coefficients literally

explodes when the order of the polynomial exceeds a critical threshold. There the threshold depends on the

number of simulated paths. Here, we do not find much difference between RMSE for estimates derived with

a different number of simulated paths. This last remark suggest not to simulate too many paths being the

incremental reduction of RMSE smaller and smaller while requiring a lot of expensive CPU time, as shown

in section 5.

For model 1 in (Schwartz, 1997), a geometric Ornstein Uhlenbeck motion with spring effects on the log

of the normal value, the influence of the order of the polynomial on RMSE is little when it is non existent,

being predominant the effect of the simulated paths. This is evident at first glance from surface plots in

figure 13 where RMSE declines steadily as the number of simulated paths increases. In this case, more than

in all the others examined, regressions help us to delve into the influence of the individual parameters on

RMSE, see table 15.

Differently from the previous GBMs based cases, the estimates of the three value functions behave

differently. As a matter of fact, coefficients change both sign and significance. Hence, while the quadratic

effect of the number of simulated paths increases RMSE for the Wait to invest mode value function, the

same effect decreases RMSE for the other two value functions. Instead, the linear effect of the number of

simulated paths decreases significantly the wait mode value function RMSE while it is not significant in

the other two cases. Finally, it is worth mentioning that the order of the polynomial generally shows non

significant effect on RMSE but for Plant 1 mode value function for which the pattern previously observed
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for GBMs occurs again.

For model 2 in (Schwartz, 1997), a geometric brownian motion with stochastic convenience yield gener-

ated by an arithmetic Ornstein Uhlenbeck, we observe a negative effect on RMSE of both the order of the

polynomial and of the number of simulated paths, see figure 14. In this case, proposition 2 in (Longstaff

and Schwartz, 2001) is confirmed. These effects are statistically significant in most of the modes value

functions studied in table 16. As a matter of fact, linear effects are always negative and, in all cases but one,

statistically significant. Although that is true, even in this case the (Glasserman and Yu, 2004) pattern

emerges with the squared order of the polynomial term increasing RMSE in two cases out of three. The

same can be observed for the number of simulated paths squared term.

For model 3 in (Schwartz, 1997), a geometric brownian motion with stochastic convenience yield and risk

free rate generated by an arithmetic Ornstein Uhlenbeck, we observe patterns very similar to the previous

DGP. As a matter of fact, both the order of the polynomial and the number of paths simulated are relevant

for reducing RMSE. This is evident from figure 15 and from table 17. Linear effects are always negative

and in most cases statistically significant. Like in many of the previous cases, here we find for the number

of paths a quadratic term effect which increases RMSE.

In conclusion, LSMC accuracy depends on the underlying DGP not only for the actual size of the

minimum RMSE bu also for the pattern followed in achieving it. As a matter of fact, only in two cases out

of six, LSMC is a convergent algorithm.
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Figure 10: RMSE surface plots: Univariate GBM.
Legend: RMSE has been computed according to expression (49) for 100 estimates obtained for the different
combinations of number of Monte Carlo simulated paths, N = 20 − 640 · 103, and of different orders of the
polynomial used in LSMC regressions, M = 2 − 9. Upper left hand corner graph reports RMSE for Wait
Mode Value Function. Continuing row wise, RMSE for the other four value functions are reported, together
with the average RMSE of the whole model, in the lower right hand corner.
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Figure 11: RMSE surface plots: Bivariate GBM.
Legend: RMSE has been computed according to expression (49) for 100 estimates obtained for the different
combinations of number of Monte Carlo simulated paths, N = 20 − 640 · 103, and of different orders of the
polynomial used in LSMC regressions, M = 2 − 9. Upper left hand corner graph reports RMSE for Wait
Mode Value Function. Continuing row wise, RMSE for the other four value functions are reported, together
with the average RMSE of the whole model, in the lower right hand corner.
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Figure 12: RMSE surface plots: Trivariate GBM.
Legend: RMSE has been computed according to expression (49) for 100 estimates obtained for the different
combinations of number of Monte Carlo simulated paths, N = 10 − 320 · 103, and of different orders of the
polynomial used in LSMC regressions, M = 1 − 8. Upper left hand corner graph reports RMSE for Wait
Mode Value Function. Continuing row wise, RMSE for the other four value functions are reported, together
with the average RMSE of the whole model, in the lower right hand corner.
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Figure 13: RMSE surface plots: Univariate GOU.
Legend: RMSE has been computed according to expression (49) for 100 estimates obtained for the different
combinations of number of Monte Carlo simulated paths, N = 10 − 320 · 103, and of different orders of the
polynomial used in LSMC regressions, M = 2 − 9. Upper left hand corner graph reports RMSE for Wait
Mode Value Function. Continuing row wise, RMSE for the other four value functions are reported, together
with the average RMSE of the whole model, in the lower right hand corner.
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Figure 14: RMSE surface plots: Two Factor Model, Model 2 in (Schwartz, 1997).
Legend: RMSE has been computed according to expression (49) for 100 estimates obtained for the different
combinations of number of Monte Carlo simulated paths, N = 10 − 320 · 103, and of different orders of the
polynomial used in LSMC regressions, M = 2 − 9. Upper left hand corner graph reports RMSE for Wait
Mode Value Function. Continuing row wise, RMSE for the other four value functions are reported, together
with the average RMSE of the whole model, in the lower right hand corner.
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Figure 15: RMSE surface plots: Three Factor Model, Model 3 in (Schwartz, 1997).
Legend: RMSE has been computed according to expression (49) for 100 estimates obtained for the different
combinations of number of Monte Carlo simulated paths, N = 10 − 320 · 103, and of different orders of the
polynomial used in LSMC regressions, M = 2 − 9. Upper left hand corner graph reports RMSE for Wait
Mode Value Function. Continuing row wise, RMSE for the other four value functions are reported, together
with the average RMSE of the whole model, in the lower right hand corner.
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A. Wait mode Estimate:

Variable constant poly − ord nms poly − ord2 nms2 R2

Estimate 8.3238 -6.8323 -1.1434 2.1436 0.0452 0.7340
Error 5.6343 0.6940 0.9722 0.2345 0.0417 nobs

t-value 1.4773 -9.8446 -1.1761 9.1402 1.0836 48

B. Plant 1 mode Estimate:

Variable constant poly − ord nms poly − ord2 nms2 R2

Estimate 0.6148 -4.4460 -0.3287 1.4652 0.0160 0.4150
Error 6.6608 0.8205 1.1493 0.2773 0.0493 nobs

t-value 0.0923 -5.4189 -0.2860 5.2846 0.3242 48

C. Plant 2 mode Estimate

Variable constant poly − ord nms poly − ord2 nms2 R2

Estimate -2.4881 -4.5751 0.0553 1.7057 0.0001 0.8040
Error 3.5736 0.4402 0.6166 0.1488 0.0265 nobs

t-value -0.6963 -10.3936 0.0897 11.4666 0.0030 48

Table 12: Regressing RMSE on Polynomial Orders and Number of paths: Univariate GBM.
Legend: OLS regressions of RMSE, as depicted in figure 10, on the polynomial order and the number of
paths simulated. A second order term is added for each independent variable to test the existence of second
order effects.

A. Wait mode Estimate:

Variable constant poly − ord nms poly − ord2 nms2 R2

Estimate 5.1268 -9.5338 -0.5577 3.5819 0.0264 0.8230
Error 7.1061 0.8753 1.2262 0.2958 0.0526 nobs

t-value 0.7215 -10.8919 -0.4548 12.1095 0.5022 48

B. Plant 1 mode Estimate:

Variable constant poly − ord nms poly − ord2 nms2 R2

Estimate 2.6875 -8.6341 -0.2665 3.2577 0.0149 0.8070
Error 6.9279 0.8534 1.1954 0.2884 0.0513 nobs

t-value 0.3879 -10.1178 -0.2229 11.2965 0.2900 48

C. Plant 2 mode Estimate

Variable constant poly − ord nms poly − ord2 nms2 R2

Estimate 1.9687 -8.4946 -0.2727 3.2947 0.0150 0.8280
Error 7.0459 0.8679 1.2158 0.2933 0.0522 nobs

t-value 0.2794 -9.7877 -0.2243 11.2339 0.2876 48

Table 13: Regressing RMSE on Polynomial Orders and Number of paths: Bi variate GBM.
Legend: see table 12.
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A. Wait mode Estimate:

Variable constant poly − ord nms poly − ord2 nms2 R2

Estimate 2.7819 -3.4017 -0.8250 1.4531 0.0359 0.5400
Error 8.7975 0.4813 1.6209 0.2168 0.0740 nobs

t-value 0.3162 -7.0684 -0.5090 6.7019 0.4855 48

B. Plant 1 mode Estimate:

Variable constant poly − ord nms poly − ord2 nms2 R2

Estimate -0.5376 -2.5915 -0.3687 1.1586 0.0180 0.4770
Error 7.6344 0.4176 1.4066 0.1882 0.0642 nobs

t-value -0.0704 -6.2054 -0.2621 6.1574 0.2808 48

C. Plant 2 mode Estimate

Variable constant poly − ord nms poly − ord2 nms2 R2

Estimate -1.2075 -2.3098 -0.4051 1.1332 0.0198 0.4700
Error 7.5574 0.4134 1.3924 0.1863 0.0636 nobs

t-value -0.1598 -5.5871 -0.2909 6.0838 0.3114 48

Table 14: Regressing RMSE on Polynomial Orders and Number of paths: Tri-variate GBM.
Legend: see table 12.

A. Wait mode Estimate:

Variable constant poly − ord nms poly − ord2 nms2 R2

Estimate 5.3150 0.1132 -1.0224 -0.0314 0.0237 0.9940
Error 0.7019 0.0977 0.1288 0.0330 0.0059 nobs

t-value 7.5727 1.1577 -7.9391 -0.9500 4.0389 48

B. Plant 1 mode Estimate:

Variable constant poly − ord nms poly − ord2 nms2 R2

Estimate -6.9806 -0.1818 -0.0061 0.0845 -0.0230 0.9980
Error 0.4356 0.0607 0.0799 0.0205 0.0036 nobs

t-value -16.0255 -2.9967 -0.0764 4.1243 -6.3151 48

C. Plant 2 mode Estimate

Variable constant poly − ord nms poly − ord2 nms2 R2

Estimate -8.6774 -0.1295 0.1024 0.0482 -0.0287 0.9900
Error 0.9508 0.1324 0.1745 0.0447 0.0080 nobs

t-value -9.1262 -0.9783 0.5869 1.0780 -3.6067 48

Table 15: Regressing RMSE on Polynomial Orders and Number of paths: GOU 01.
Legend: see table 12.
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A. Wait mode Estimate:

Variable constant poly − ord nms poly − ord2 nms2 R2

Estimate 4.9064 -1.4005 -0.9635 0.2076 0.0270 0.8180
Error 4.2111 0.5864 0.7726 0.1982 0.0353 nobs

t-value 1.1651 -2.3881 -1.2470 1.0474 0.7650 48

B. Plant 1 mode Estimate:

Variable constant poly − ord nms poly − ord2 nms2 R2

Estimate 4.8133 -0.0487 -1.2518 -0.2572 0.0434 0.8180
Error 3.8126 0.5309 0.6995 0.1794 0.0319 nobs

t-value 1.2625 -0.0917 -1.7895 -1.4333 1.3592 48

C. Plant 2 mode Estimate

Variable constant poly − ord nms poly − ord2 nms2 R2

Estimate 7.0745 -2.2449 -1.5311 0.5760 0.0555 0.9020
Error 2.4169 0.3366 0.4434 0.1137 0.0202 nobs

t-value 2.9271 -6.6699 -3.4528 5.0647 2.7437 48

Table 16: Regressing RMSE on Polynomial Orders and Number of paths: Two Factor Model, Model 2
in (Schwartz, 1997).
Legend: see table 12.

A. Wait mode Estimate:

Variable constant poly − ord nms poly − ord2 nms2 R2

Estimate 5.3855 -1.9367 -1.0137 0.4016 0.0308 0.8010
Error 4.1886 0.5833 0.7685 0.1971 0.0351 nobs

t-value 1.2857 -3.3203 -1.3190 2.0377 0.8773 48

B. Plant 1 mode Estimate:

Variable constant poly − ord nms poly − ord2 nms2 R2

Estimate 4.8600 -0.2073 -1.2690 -0.2003 0.0455 0.7870
Error 3.9991 0.5569 0.7337 0.1882 0.0335 nobs

t-value 1.2153 -0.3722 -1.7295 -1.0642 1.3587 48

C. Plant 2 mode Estimate

Variable constant poly − ord nms poly − ord2 nms2 R2

Estimate 7.9343 -1.8134 -1.7899 0.4324 0.0699 0.8710
Error 2.4790 0.3452 0.4548 0.1167 0.0208 nobs

t-value 3.2006 -5.2529 -3.9352 3.7070 3.3669 48

Table 17: Regressing RMSE on Polynomial Orders and Number of paths: Three Factor Model, Model 3
in (Schwartz, 1997).
Legend: see table 12.
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5 Trade off between precision and computational time

In this section we examine the trade off between computational time and accuracy. As shown in the previous

section, this trade off is not always convenient. Graphs reported in figure 16 and 17 give a graphic portrayal

of this. These graphs have been constructed on the same data used for surface plots and regressions on

RMSE reported above. The additional variable considered here is the CPU time which has been reported

on the vertical axis as the number of estimates that can be performed in one second, or
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The same RMSE of the surface plots is reported on the horizontal axis. This setting provides a quite

intuitive portrayal of the trade off between accuracy and computational time.

In the univariate GBM case, for a very low order of the polynomial, M = 2, 3, increasing the number of

paths simply does not affect RMSE. For 4 ≤ M ≤ 7 trade off between computational time and accuracy is

convenient although less than in other applications reported in extant literature, see for instance (Stentoft,

2004) and (Areal et al., 2007). For 8 ≤ M ≤ 9 trade off becomes negative, i.e. a larger number of paths

provides worse estimates.

In the bivariate GBM case, the RMSE-CPU trade off is generally unfavorable but for the M = 5. To

be specific, for 2 ≤ M ≤ 4, the increase in the number of paths simulated reduces RMSE only slightly.

Instead, for M = 5 it is evident a positive trade off between accuracy and speed. Finally, contrary to most

of the evidence reported in extant literature and like in the previous case, for very high order of the fitted

polynomials RMSE explodes showing a negative trade off. In order to avoid cramming the picture, we did

report in panel B of figure 16 an example of this pattern only for M = 7, being the results obtained for

higher orders of the complete set of polynomials very similar.

In the trivariate GBM case, for low levels of M, 1 ≤ M ≤ 3 there is a very slow trade off between

precision and speed. For intermediate levels of M, 4 ≤ M ≤ 6 trade off is slightly more favorable and curves

become almost vertical for a very high number of simulated paths. For M > 6, trade off becomes negative.

In model 1 (Schwartz, 1997), as expected from what observed in section 4.2, there is not much difference

in time accuracy trade off across different orders of polynomials. Although that is true, almost overlapping

curves show a very favorable trade off since they do not bend down asymptotically as, for instance, in the

three previous GBM cases.

In model 2 (Schwartz, 1997), instead, trade off follows the same pattern accross different orders of the
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polynomial although curves are shifted and clustered on two groups. On the right side of panel B in figure 17,

are clustered low orders of the polynomial, 2 ≤ M ≤ 3, on the left side, high orders, 6 ≤ M ≤ 8. While the

curves for low order of the polynomial bend down as if they bunched into a vertical asymptote, high order

of the polynomial curves show a constant reduction in RMSE, hence a favorable, although decreasing, speed

precision trade off.

In model 3 (Schwartz, 1997), trade off patterns resemble those of the previous one. Although that is

true, in this case it is possible to reduce much more RMSE increasing the number of simulated paths for

M > 5.
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Figure 16: Trade off CPU-RMSE: GBM 1 - 3
Legend: RMSE on the horizontal axis, the same represented in figure 10 and 12, and one divided the CPU
time per individual estimate on the vertical axis, i.e. estimates per second. Each curve reports coordinates
for the an individual order of the regression polynomial computed for different numbers of paths. See also
inside legend.
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A. Model 1 in (Schwartz, 1997).
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B. Model 2 in (Schwartz, 1997).
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C. Model 3 in (Schwartz, 1997).

Figure 17: Trade off CPU-RMSE: Models 1,2 and 3 in (Schwartz, 1997).
Legend: RMSE on the horizontal axis, the same represented in figure 10 and 13, and one divided the CPU
time per individual estimate on the vertical axis, i.e. estimates per second. Each curve reports coordinates
for the an individual order of the regression polynomial computed for different numbers of paths. See also
inside legend.
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6 Inference about LSMC

The aim of this section is to assess the statistical significance of LSMC estimates. In other words, we aim to

answer the question: are LSMC estimates of the value functions in the KT model significantly different from

the lattice benchmarks which we have constructed in the previous sections ? In order to answer this question

we have to consider the actual applicability of inference methods to LSMC results. In extant literature this

is left as a open issue. For instance, according to Stentoft, it is not possible to make any statistical inference

on LSMC estimates for both American vanilla and high dimensional options since “not much is known about

the asymptotics of American prices for LSMC methods” (Stentoft, 2004) page 158.

The conclusion we reach is that generally ordinary inference methods are applicable to LSMC estimates

to verify any null hypothesis. To be specific, in our case, the null that LSMC estimates are equal to lattice

benchmarks is rejected in most of the cases.

This conclusion would be dismal by itself, but the statistical significance of some tests does not always

imply their economic relevance. Therefore, we have analyzed how LSMC estimates distribution behaves

in some economically relevant neighborhood of the lattice benchmarks. We conclude that LSMC is quite

reliable in providing accurate estimates although these estimates are significantly different from lattice

benchmarks.

It is quite common in extant literature about LSMC to replicate the individual estimate a number R of

times and then to take the average of these estimates as the final result, see for instance (Stentoft, 2004)

or (Glasserman and Yu, 2004). Although, to the best of our knowledge, no author justifies this choice,

this may be due to the fact that averaging randomly sampled observations, the central limit theorem holds

regardless of the form of the parent distribution, page 105 (Greene, 1994). Hence, LSMC estimates averages

are expected to be normally distributed and we can state this ignoring the actual parent distribution which

generated them. This, in turn, allows us to take advantage of all the nice properties of a normal distribution.

In conclusion, what we analyze below is the average of R replications of LSMC and not the individual

estimate as in the sections above.

In order to observe the distribution properties of the averages of R LSMC estimates replications, we

have set up the following experiment design. From the evidence provided in section 4.2, we chose the

combinations of simulated paths and order of the polynomial which provides the lowest RMSE. It is worth

remembering that this statistics just says that for that combination LSMC provides the average estimator

which minimizes the sum of the square of the bias and its variance. In other words, we have not proved

that LSMC is an unbiased estimator of benchmark values derived through lattice methods. Then we have
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replicated these valuations with a different initial seed of the random number generator in order to obtain a

number N of different results. As shown above, in section 5, each LSMC valuation of a KT model is rather

expensive in terms of both Cpu time and HD space. Hence, N has been kept low due to budget constraints

and looping in the random number generator.

Therefore, in order to observe how averages obtained from different R replications are distributed, we

have bootstrapped with replacement the N different results extracting a number B = 500.000 of batches of

different sizes R1 = 10, R2 = 100, representing ideally small and large samples. Next, we have computed

the average for each batch and we have analyzed its distribution, see histograms in figures 18-22.

Since one of the main conclusions which emerges from sections above is that LSMC behaves very differ-

ently depending on the underlying data generating process, we report this evidence per mode and not per

DGP. This allows us to underline differences across DGPs in evaluating each mode value function.

To begin with, from Panels A of tables 18,20,22,24,26, we observe that LSMC averages are generally

distributed normally. As a matter of fact both skewness and kurtosis are quite close to normal values.

Although that is true, evidence for Two Fm DGP is an exception with a very high kurtosis, expecially for

small samples, and rather negative skewness. This is true for all the modes, expecially for out of money and

in the money plants and their respective mothballed modes. Skewness is generally negative when it is not

significantly different from zero. A possible explanation of this pattern may be devised remembering that

in LSMC the sources of errors are the Monte Carlo simulation itself and the suboptimality of the strategy

approximated in the Bellman Dynamic Programming scheme. Possibly, the errors produced by Monte Carlo

simulation are symmetric around the mean estimate. Instead, those produced by following a suboptimal

strategy in a dynamic optimization are skewed negatively. In conclusion, these distribution confirm that in

most cases LSMC errors are actually Gaussians as (Clement et al., 2002) proved.

Moreover, from the same Panel A mentioned above, we observe that average LSMC estimates are gener-

ally lower than their respective lattice benchmark. Two factor and GOU DGPs present notable exceptions

for some modes. Namely, for wait mode estimates under a Two Fm DGP, lattice benchmarks fall almost

in the middle of the distribution both for small and large samples. The same is true for plant 2, with in

the money optionality, under a GOU DGP. In conclusion, although with the exceptions above, it is clear

that LSMC produces biased low estimates, hence distributions in figures 18-22 and statistics in Panels A

of tables 18,20,22,24,26 are a graphic portrayal of proposition 1 page 124 (Longstaff and Schwartz, 2001):

LSMC is asmptotically biased low. As a matter of fact, lattice benchmarks are far in the upper tail of the

LSMC valuations distributions, when they are not greater than the maximum average estimate obtained.
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Finally, as the sample size increases, we observe that while the point estimate of the value function

remains almost the same, its volatility decreases considerably. In other words, this shows convergence in

mean square of the average LSMC valuation which, in turn, implies convergence in probability. This does

not mean necessarily that proposition 2 page 125 (Longstaff and Schwartz, 2001) is proved. As a matter of

fact, distributions converge to a spike centered on a biased low estimate as empirical distribution functions

reported in figures 18-22 and boostrapped confidence intervals constructed below show.

In order to assess whether ordinary inference methods are applicable to LSMC results, we start consid-

ering as an example one individual average result, see panel B in tables 18,20,22,24,26, and apply to it one

sided test under the null H0 : θlsmc = θlatt, versus the alternative Ha : θlsmc < θlatt when the result obtained

through LSMC is lower than the lattice one or Ha : θlsmc > θlatt when the LSMC estimate is higher. These

are the cases any practitioner would confront, having estimated a KT model R1 = 10 or R2 = 100 times

and having averaged these results. The question is: is it appropriate to adopt ordinary inference methods

and consider, for instance, the pivotal quantity distributed as a Student t(Ri − 1) i = 1, 2?

To address this research question we rely on three different results, following (Hodrick, 1992) table 2.

To begin with, we construct the distribution of the pivotal quantity under the null. This is achieved simply

subtracting the average accross the B batches of size Ri results and adding back the lattice benchmarks.

Then, we compute pivotal quantities Φ =
√

Ri · θlsmc−θlatt
σlsmc

∀i = 1, 2. Next, we analyze their distribution in

three different ways, see tables 19,21,23,25,27, panels A, B and C.

To begin with, we compute most relevant quantiles, see Panels A in the mentioned tables, and compare

them with t(Ri − 1) for R1 = 10 and R2 = 100.27 Empirical quantiles are generally quite close to those of

the tabulated Student functions. This is generally true with the exception of results derived under a Two

Fm DGP. For this stochastic process, empirical quantiles are rather different from tabulated ones.

Next, we compute the empirical sizes that can be observed under the null counting cases in which

empirical pivotal quantitites are lower (higher) than nominal quantiles for left (right) tail tests, see Panels B

in the mentioned tables. In this case too, empirical sizes are remarkably close to the corresponding nominal

ones. Even in the case of Two Fm DGP, although to a lesser extent, empirical sizes are not too much far

from the nominal ones.

Finally, we compute the empirical power of these tests counting the fraction of the experiments which

fail to exceed the empirical critical value when the data are generated under the alternative, i.e. the pivotal

quantity distributions obtained from the LSMC estimates, see Panels C in the mentioned tables. Obviously,

27We have not considered the normal distribution quantiles since they are generally much more different than t(100− 1) from
the empirical ones.
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these results depend on how far the alternative is from the null. Hence, results vary considerably depending

on the mode. For all DGPs, wait mode results show a much higher error rate than the remaining ones.

As mentioned, this may be due to the fact that estimates obtained are much closer to lattice benchmarks.

Another feature of this evidence is that error rates decrease with the size of the sample R, indicating

consistency, and that all the tests are unbiased, i.e. (1 − β) > α. GOU results for all modes show a

quite high error rate due to the fact that in that case LSMC estimates are close to the lattice benchmarks.

However, in most cases, error rate is nil and empirical power of these tests is one.

In conclusion, being empirical quantiles and sizes of the simple one tailed tests considered quite close to

nominal ones, and being the power of these test quite high, we can conclude that it is appropriate to apply

classic inference methods to LSMC estimates. Moreover, from the empirical power function evaluated at

α = 5% we can reject the null of LSMC estimates being equal to lattice benchmarks in most of the cases.

These results would be disappointing by themselves. Although that is true, the previous bootstrapping

exercise provides us a way to study how many averaged LSMC estimates are entailed within some econom-

ically significant interval around their respective benchmarks. In order to check this specific property, we

have constructed some simmetric intervals around the benchmark increasing and decreasing them for some

percentages most suitable to describe empirical distributions shown above. Next, we have computed the

relative frequency of the B bootstrapped experiments falling in that interval around the lattice benchmarks.

For a similar procedure see chapter 25 in (Efron and Tibshirani,1993). In this context, this approach is

justified by its applicability to the generality of the cases in which average LSMC estimates distributions

are sometimes not even close to normal, preventing any construction of classical intervals based on the

normal distribution sufficient statistics. Results are reported in tables 28-33. In this case, results have been

organized per DGP process and not per mode. As a matter of fact, we aim to show that LSMC can provide

reliable estimates for all the modes value functions simultaneously given an underlying DGP.

Empirical confidence intervals reported in tables 28-33 share some common features. Firstly, although

not statistically significant as proved in the paragraphs above, LSMC estimates are definetly reliable: in most

cases, close to 100% cases entailed in very narrow confidence intervals. These range between a minimum of

±.5% for Two Factor model estimates and a maximum of ±2.0% for Trivariate GBM ones.

Secondly, as intervals shrink below the bias level, confidence levels fall abruptly. This is true with no

exception of DGP and mode, although it is not observed in some cases since the simmetric intervals adopted

are too coarse to single out these effect for some modes. For instance, in the Two Factor model estimates,

this effect can be clearly observed for every but the wait to invest mode.
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Thirdly, as the number of replications R increases, the distribution becomes less volatile. Hence, if

estimates bias is less than the confidence interval, more observations are entailed in it. Else, the whole

distribution shifts away from the benchmark and confidence level falls abruptly.

Fourthly, generally simmetric intervals provide different confidence levels for in the money and out of

money plants. To be specific, estimates for in the money plants are more reliable – have higher probability

– than out of money ones. Wait modes estimates, instead, generally follow in the money plants ones.

In conclusion, in this section we have shown that classic inference statistics is applicable to verify un-

biasedness of LSMC estimates. In applying LSMC to the KT model, this provides significantly different

estimates of the various modes value functions. Although these estimates are statistically different, they

are economically significant falling in very close neighborhoods of the lattice benchmarks, never more than

±2%. Being small sample estimates, R = 10, more volatile that large ones, R = 100, they are less reliable.

Although that is true, when the interval chosen is very small it could be completely unreliable even for a

large number of replications being the whole distribution shifted away – biased low – with respect to the

lattice benchmarks.
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Panel A: all experiments statistics Panel B: one experiment example
DGP boot.ed LSMC valuation LSMC valuation Pivotal Nominal

latt.bench. sample E() stdev() Skewness Kurtosis Emp. Prob. E() stdev() quantity confidence
GBM 1 10 129.2833 0.1767 0.0117 2.9947 99.873% 129.2381 0.5226 -3.5196 0.27709%

129.8198 100 129.2836 0.0558 -0.0006 2.9972 100.000% 129.2610 0.4936 -11.3209 0.00000%
GBM 2 10 209.2701 0.6802 -0.0839 3.0991 99.989% 210.6085 2.2143 -1.6222 6.79116%

211.7444 100 209.2704 0.2152 -0.0247 3.0047 100.000% 209.5098 1.8344 -12.1815 0.00000%
GBM 3 10 211.5564 0.4529 -0.0184 3.0139 99.727% 211.9036 1.2825 -2.2267 2.50611%

212.8066 100 211.5553 0.1434 -0.0056 2.9999 100.000% 211.7200 1.5342 -7.0833 0.00000%
GOU 1 10 4.0939 0.0297 -0.0140 3.0234 86.946% 4.0895 0.0664 1.3751 9.95546%
4.0606 100 4.0939 0.0094 -0.0036 3.0145 99.977% 4.0941 0.0971 3.4497 0.02807%

Two Fm 10 282.9364 0.5534 -0.7755 6.2164 54.246% 282.8343 1.5485 -0.3569 36.43019%
283.0091 100 282.9368 0.1753 -0.2463 3.3357 65.326% 282.9586 1.6675 -0.3030 38.09355%

Three Fm 10 246.0393 0.4571 0.0111 2.9826 84.448% 247.0771 1.3195 1.3767 90.06747%
246.5027 100 246.0396 0.1450 0.0089 2.9948 99.927% 246.1414 1.5283 -2.3638 0.90440%

Table 18: Small and Large Sample examples of LSMC estimates: Wait Mode

Panel A: Empirical quantiles of the t-stat/z-stat distributions

Pr(t < qi) 1% 5% 10% 50% 90% 95% 99%

t(10 − 1, qi) -2.8214 -1.8331 -1.3830 0.0000 1.3830 1.8331 2.8214
t(100 − 1, qi) -2.3646 -1.6604 -1.2902 0.0000 1.2902 1.6604 2.3646

GBM 1 10 -2.8461 -1.8459 -1.3916 -0.0022 1.3763 1.8260 2.8090
100 -2.3727 -1.6635 -1.2904 -0.0009 1.2881 1.6520 2.3470

GBM 2 10 -2.7250 -1.7782 -1.3469 0.0109 1.4241 1.8928 2.9050
100 -2.3238 -1.6350 -1.2750 0.0062 1.3108 1.6875 2.4121

GBM 3 10 -2.7860 -1.8089 -1.3705 0.0026 1.4001 1.8506 2.8372
100 -2.3580 -1.6567 -1.2897 0.0014 1.2950 1.6678 2.3777

GOU 1 10 -2.7780 -1.8188 -1.3760 0.0017 1.3901 1.8393 2.8350
100 -2.3520 -1.6534 -1.2862 0.0004 1.2947 1.6664 2.3784

Two Fm 10 -2.7396 -1.7629 -1.3241 0.0379 1.4366 1.8894 2.8874
100 -2.1878 -1.5437 -1.2141 0.0368 1.3856 1.7642 2.4884

Three Fm 10 -2.8957 -1.8562 -1.3932 -0.0013 1.3687 1.8115 2.7855
100 -2.3683 -1.6649 -1.2916 -0.0027 1.2914 1.6600 2.3563

Panel B: Empirical sizes for nominal quantiles Panel C: Type II error rates for α = 5%
sample 10% 5% 1% sample β qα

GBM 1 10 10.119% 5.100% 1.041% GBM 1 10 12.903% -1.846
100 10.160% 5.204% 1.123% 100 0.000% -1.664

GBM 2 10 9.438% 4.572% 0.851% GBM 2 10 3.150% -1.778
100 9.886% 4.901% 0.994% 100 0.000% -1.635

GBM 3 10 9.809% 4.812% 0.942% GBM 3 10 17.368% -1.809
100 10.132% 5.124% 1.086% 100 0.000% -1.657

GOU 1 10 10.110% 5.050% 1.021% GOU 1 10 72.647% 1.839
100 10.238% 5.227% 1.141% 100 3.147% 1.666

Two Fm 10 9.120% 4.465% 0.875% Two Fm 10 93.449% -1.763
100 8.769% 3.973% 0.684% 100 88.340% -1.544

Three Fm 10 10.156% 5.188% 1.124% Three Fm 10 76.742% -1.856
100 10.172% 5.197% 1.122% 100 6.452% -1.665

Table 19: Empirical Quantiles and Sizes and Power of the tests: Wait Mode
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Panel A: all experiments statistics Panel B: one experiment example
DGP boot.ed LSMC valuation LSMC valuation Pivotal Nominal

latt.bench. sample E() stdev() Skewness Kurtosis Emp. Prob. E() stdev() quantity confidence
GBM 1 10 304.3076 0.1939 -0.0243 3.0122 100.000% 304.4541 0.3287 -21.3766 0.00000%

306.6760 100 304.3076 0.0612 -0.0168 2.9954 100.000% 304.3754 0.5674 -40.5434 0.00000%
GBM 2 10 466.1684 0.8936 -0.3110 3.2942 100.000% 465.8010 2.3881 -8.8781 0.00023%

472.5055 100 466.1687 0.2825 -0.0972 3.0332 100.000% 465.6654 2.9905 -22.8729 0.00000%
GBM 3 10 477.5856 0.4775 -0.0081 3.0138 100.000% 477.2324 1.4232 -15.0003 0.00000%

483.9836 100 477.5859 0.1509 -0.0047 2.9926 100.000% 477.6580 1.4652 -43.1729 0.00000%
GOU 1 10 180.0322 0.0012 -0.0176 2.9944 70.428% 180.0330 0.0024 0.1298 55.03628%

180.0329 100 180.0322 0.0004 -0.0016 3.0015 95.680% 180.0322 0.0041 -1.6388 5.06278%
Two Fm 10 516.3647 0.6850 -1.9213 13.9502 96.428% 517.0723 1.2767 -0.8171 21.64517%
517.4022 100 516.3641 0.2166 -0.5998 4.0580 100.000% 516.4825 1.8860 -4.8764 0.00005%

Three Fm 10 465.5974 0.4924 -0.0045 2.9874 99.973% 465.7229 1.4742 -3.3929 0.34265%
467.3046 100 465.5978 0.1558 0.0018 2.9988 100.000% 465.6025 1.5764 -10.7974 0.00000%

Table 20: Small and Large Sample examples of LSMC estimates: Plant 1 Mode

Panel A: Empirical quantiles of the t-stat/z-stat distributions

Pr(t < qi) 1% 5% 10% 50% 90% 95% 99%

t(10 − 1, qi) -2.8214 -1.8331 -1.3830 0.0000 1.3830 1.8331 2.8214
t(100 − 1, qi) -2.3646 -1.6604 -1.2902 0.0000 1.2902 1.6604 2.3646

GBM 1 10 -2.7736 -1.8104 -1.3693 0.0054 1.3974 1.8520 2.8469
100 -2.3578 -1.6585 -1.2852 0.0036 1.2926 1.6654 2.3774

GBM 2 10 -2.3655 -1.5934 -1.2277 0.0529 1.5996 2.1167 3.2488
100 -2.2004 -1.5696 -1.2290 0.0174 1.3679 1.7764 2.5669

GBM 3 10 -2.8007 -1.8229 -1.3768 0.0023 1.3916 1.8445 2.8376
100 -2.3570 -1.6563 -1.2882 0.0006 1.2928 1.6659 2.3602

GOU 1 10 -2.8053 -1.8208 -1.3756 0.0039 1.3963 1.8493 2.8600
100 -2.3499 -1.6516 -1.2857 0.0015 1.2934 1.6623 2.3759

Two Fm 10 -2.6147 -1.6864 -1.2640 0.0703 1.4978 1.9641 3.0021
100 -2.0829 -1.4488 -1.1441 0.0948 1.4710 1.8542 2.5904

Three Fm 10 -2.8398 -1.8360 -1.3794 0.0004 1.3852 1.8417 2.8442
100 -2.3632 -1.6573 -1.2889 -0.0010 1.2923 1.6650 2.3758

Panel B: Empirical sizes for nominal quantiles Panel C: Type II error rates for α = 5%
sample 10% 5% 1% sample β qα

GBM 1 10 9.805% 4.814% 0.923% GBM 1 10 0.000% -1.810
100 10.058% 5.129% 1.082% 100 0.000% -1.658

GBM 2 10 7.513% 3.072% 0.386% GBM 2 10 0.000% -1.593
100 9.043% 4.218% 0.693% 100 0.000% -1.570

GBM 3 10 9.906% 4.921% 0.969% GBM 3 10 0.000% -1.823
100 10.121% 5.118% 1.084% 100 0.000% -1.656

GOU 1 10 9.893% 4.898% 0.975% GOU 1 10 87.421% -1.821
100 10.075% 5.069% 1.062% 100 47.567% -1.652

Two Fm 10 8.240% 3.909% 0.690% Two Fm 10 45.274% -1.686
100 7.413% 3.097% 0.515% 100 0.001% -1.449

Three Fm 10 9.946% 5.024% 1.031% Three Fm 10 5.806% -1.836
100 10.128% 5.125% 1.093% 100 0.000% -1.657

Table 21: Empirical Quantiles and Sizes and Power of the tests: Plant 1 Mode
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Panel A: all experiments statistics Panel B: one experiment example
DGP boot.ed LSMC valuation LSMC valuation Pivotal Nominal

latt.bench. sample E() stdev() Skewness Kurtosis Emp. Prob. E() stdev() quantity confidence
GBM 1 10 525.7168 0.1843 -0.0009 2.9953 100.000% 525.7149 0.7915 -18.8706 0.00000%

530.4382 100 525.7168 0.0582 0.0009 2.9833 100.000% 525.7869 0.6043 -76.9667 0.00000%
GBM 2 10 785.2514 0.9839 -0.3865 3.3882 100.000% 784.9360 2.2602 -10.1629 0.00007%

792.1999 100 785.2512 0.3102 -0.1208 3.0385 100.000% 785.3788 2.6464 -25.7753 0.00000%
GBM 3 10 801.5168 0.4904 -0.0057 3.0105 100.000% 801.3396 1.2058 -19.2261 0.00000%

808.6709 100 801.5166 0.1550 0.0002 2.9972 100.000% 801.5752 1.5785 -44.9507 0.00000%
GOU 1 10 463.2708 0.0009 0.0041 2.9995 54.317% 463.2722 0.0018 2.4439 98.26924%

463.2709 100 463.2708 0.0003 -0.0026 3.0098 62.885% 463.2711 0.0028 0.6645 74.68137%
Two Fm 10 805.5491 0.8968 -2.4648 17.4737 99.836% 805.5813 2.3171 -2.6035 1.31655%
807.4890 100 805.5490 0.2835 -0.7855 4.4487 100.000% 805.3078 2.2756 -9.5849 0.00000%

Three Fm 10 738.7844 0.5005 0.0072 2.9821 100.000% 738.5269 1.3566 -9.7542 0.00010%
742.7113 100 738.7845 0.1584 -0.0030 2.9914 100.000% 738.8773 1.4364 -26.6923 0.00000%

Table 22: Small and Large Sample examples of LSMC estimates: Plant 2 Mode

Panel A: Empirical quantiles of the t-stat/z-stat distributions

Pr(t < qi) 1% 5% 10% 50% 90% 95% 99%

t(10 − 1, qi) -2.8214 -1.8331 -1.3830 0.0000 1.3830 1.8331 2.8214
t(100 − 1, qi) -2.3646 -1.6604 -1.2902 0.0000 1.2902 1.6604 2.3646

GBM 1 10 -2.8288 -1.8280 -1.3803 -0.0001 1.3865 1.8392 2.8319
100 -2.3617 -1.6550 -1.2873 -0.0015 1.2913 1.6577 2.3566

GBM 2 10 -2.2636 -1.5432 -1.1949 0.0697 1.6659 2.1962 3.3637
100 -2.1555 -1.5467 -1.2137 0.0195 1.3856 1.8025 2.6109

GBM 3 10 -2.8146 -1.8261 -1.3752 0.0001 1.3855 1.8377 2.8313
100 -2.3633 -1.6569 -1.2879 0.0000 1.2917 1.6617 2.3715

GOU 1 10 -2.8582 -1.8520 -1.3912 -0.0027 1.3756 1.8204 2.7897
100 -2.3797 -1.6609 -1.2922 0.0008 1.2845 1.6531 2.3496

Two Fm 10 -2.2705 -1.5163 -1.1542 0.1211 1.6957 2.2202 3.3563
100 -1.9490 -1.3774 -1.0984 0.1291 1.5595 1.9762 2.7812

Three Fm 10 -2.8565 -1.8454 -1.3873 -0.0009 1.3768 1.8245 2.8142
100 -2.3718 -1.6681 -1.2933 -0.0005 1.2894 1.6609 2.3556

Panel B: Empirical sizes for nominal quantiles Panel C: Type II error rates for α = 5%
sample 10% 5% 1% sample β qα

GBM 1 10 9.962% 4.961% 1.011% GBM 1 10 0.000% -1.828
100 10.104% 5.104% 1.086% 100 0.000% -1.655

GBM 2 10 6.945% 2.643% 0.295% GBM 2 10 0.000% -1.543
100 8.767% 3.998% 0.579% 100 0.000% -1.547

GBM 3 10 9.879% 4.939% 0.988% GBM 3 10 0.000% -1.826
100 10.108% 5.117% 1.097% 100 0.000% -1.657

GOU 1 10 10.116% 5.147% 1.064% GOU 1 10 93.923% -1.852
100 10.185% 5.155% 1.143% 100 90.622% -1.661

Two Fm 10 6.473% 2.606% 0.309% Two Fm 10 9.605% -1.516
100 6.420% 2.406% 0.317% 100 0.000% -1.377

Three Fm 10 10.060% 5.099% 1.058% Three Fm 10 0.000% -1.845
100 10.206% 5.236% 1.115% 100 0.000% -1.668

Table 23: Empirical Quantiles and Sizes and Power of the tests: Plant 2 Mode
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Panel A: all experiments statistics Panel B: one experiment example
DGP boot.ed LSMC valuation LSMC valuation Pivotal Nominal

latt.bench. sample E() stdev() Skewness Kurtosis Emp. Prob. E() stdev() quantity confidence
GBM 1 10 301.6550 0.1937 -0.0218 3.0101 100.000% 301.4179 0.7650 -10.7663 0.00004%

304.0224 100 301.6548 0.0612 -0.0098 3.0010 100.000% 301.6881 0.6227 -37.4836 0.00000%
GBM 2 10 463.0764 0.8927 -0.3033 3.2917 100.000% 462.9786 2.9180 -6.9913 0.00188%

469.4297 100 463.0778 0.2823 -0.1031 3.0305 100.000% 462.7542 3.2586 -20.4861 0.00000%
GBM 3 10 474.4700 0.4770 -0.0108 3.0238 100.000% 474.6356 0.9500 -20.8264 0.00000%

480.8921 100 474.4706 0.1508 0.0021 3.0036 100.000% 474.3781 1.3930 -46.7629 0.00000%
GOU 1 10 165.4120 0.0029 -0.0084 2.9795 100.000% 165.4087 0.0109 3.2715 0.42044%

165.3974 100 165.4120 0.0009 -0.0053 3.0143 100.000% 165.4110 0.0092 14.8190 0.00000%
Two Fm 10 514.2161 0.6885 -1.9254 13.8027 96.344% 514.8076 1.2238 -1.1479 13.88563%
515.2518 100 514.2183 0.2163 -0.5997 4.0550 100.000% 514.7340 1.9735 -2.6236 0.43498%

Three Fm 10 463.5743 0.4929 -0.0011 2.9729 99.975% 463.2164 1.3695 -4.7685 0.03794%
465.2815 100 463.5734 0.1556 -0.0033 3.0125 100.000% 463.1720 1.5752 -13.3921 0.00000%

Table 24: Small and Large Sample examples of LSMC estimates: Mothballed 1 Mode

Panel A: Empirical quantiles of the t-stat/z-stat distributions

Pr(t < qi) 1% 5% 10% 50% 90% 95% 99%

t(10 − 1, qi) -2.8214 -1.8331 -1.3830 0.0000 1.3830 1.8331 2.8214
t(100 − 1, qi) -2.3646 -1.6604 -1.2902 0.0000 1.2902 1.6604 2.3646

GBM 1 10 -2.7696 -1.8085 -1.3677 0.0032 1.3974 1.8559 2.8569
100 -2.3494 -1.6529 -1.2815 0.0021 1.2960 1.6676 2.3730

GBM 2 10 -2.3624 -1.5881 -1.2243 0.0516 1.6053 2.1202 3.2472
100 -2.2014 -1.5683 -1.2281 0.0152 1.3684 1.7740 2.5585

GBM 3 10 -2.7914 -1.8152 -1.3758 0.0000 1.3893 1.8408 2.8242
100 -2.3502 -1.6553 -1.2890 -0.0006 1.2906 1.6625 2.3775

GOU 1 10 -2.8002 -1.8165 -1.3684 0.0011 1.3956 1.8582 2.8741
100 -2.3726 -1.6579 -1.2864 -0.0012 1.2906 1.6637 2.3749

Two Fm 10 -2.6064 -1.6829 -1.2642 0.0694 1.5043 1.9707 2.9988
100 -2.0790 -1.4489 -1.1451 0.0949 1.4683 1.8544 2.5878

Three Fm 10 -2.8368 -1.8298 -1.3821 0.0014 1.3852 1.8412 2.8349
100 -2.3649 -1.6557 -1.2886 0.0007 1.2878 1.6593 2.3703

Panel B: Empirical sizes for nominal quantiles Panel C: Type II error rates for α = 5%
sample 10% 5% 1% sample β qα

GBM 1 10 9.770% 4.790% 0.922% GBM 1 10 0.000% -1.808
100 9.999% 5.081% 1.062% 100 0.000% -1.653

GBM 2 10 7.435% 3.031% 0.381% GBM 2 10 0.000% -1.588
100 9.036% 4.204% 0.693% 100 0.000% -1.568

GBM 3 10 9.899% 4.858% 0.952% GBM 3 10 0.000% -1.815
100 10.137% 5.112% 1.064% 100 0.000% -1.655

GOU 1 10 10.177% 5.193% 1.089% GOU 1 10 0.145% 1.858
100 10.141% 5.194% 1.126% 100 0.000% 1.664

Two Fm 10 8.253% 3.868% 0.703% Two Fm 10 45.384% -1.683
100 7.416% 3.093% 0.490% 100 0.001% -1.449

Three Fm 10 9.987% 4.972% 1.024% Three Fm 10 5.769% -1.830
100 10.129% 5.107% 1.098% 100 0.000% -1.656

Table 25: Empirical Quantiles and Sizes and Power of the tests: Mothballed 1 Mode
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Panel A: all experiments statistics Panel B: one experiment example
DGP boot.ed LSMC valuation LSMC valuation Pivotal Nominal

latt.bench. sample E() stdev() Skewness Kurtosis Emp. Prob. E() stdev() quantity confidence
GBM 1 10 516.2512 0.1846 -0.0014 2.9878 100.000% 516.3350 0.7285 -20.1591 0.00000%

520.9793 100 516.2509 0.0583 0.0034 2.9905 100.000% 516.2241 0.5836 -81.4867 0.00000%
GBM 2 10 775.6372 0.9832 -0.3849 3.3941 100.000% 775.1576 4.5953 -5.1220 0.02247%

782.6008 100 775.6381 0.3116 -0.1227 3.0390 100.000% 775.0893 4.0733 -18.4408 0.00000%
GBM 3 10 791.8971 0.4898 -0.0110 3.0139 100.000% 792.3069 1.3808 -15.5642 0.00000%

799.1029 100 791.8969 0.1553 -0.0014 3.0031 100.000% 791.8777 1.6501 -43.7862 0.00000%
GOU 1 10 172.8615 0.0105 0.0042 2.9951 98.734% 172.8601 0.0461 1.5144 8.04396%

172.8380 100 172.8615 0.0033 0.0008 2.9997 100.000% 172.8545 0.0301 5.4872 0.00000%
Two Fm 10 797.1181 0.9029 -2.4846 17.4621 99.800% 797.1214 1.8721 -3.2493 0.43652%
799.0450 100 797.1197 0.2829 -0.7724 4.4230 100.000% 796.5099 5.9434 -4.2655 0.00100%

Three Fm 10 730.6185 0.5001 0.0023 2.9842 100.000% 729.9081 1.7573 -8.2797 0.00044%
734.5092 100 730.6177 0.1583 -0.0003 3.0012 100.000% 730.6016 1.7360 -22.5089 0.00000%

Table 26: Small and Large Sample examples of LSMC estimates: Mothballed 2 Mode

Panel A: Empirical quantiles of the t-stat/z-stat distributions

Pr(t < qi) 1% 5% 10% 50% 90% 95% 99%

t(10 − 1, qi) -2.8214 -1.8331 -1.3830 0.0000 1.3830 1.8331 2.8214
t(100 − 1, qi) -2.3646 -1.6604 -1.2902 0.0000 1.2902 1.6604 2.3646

GBM 1 10 -2.8002 -1.8245 -1.3822 -0.0003 1.3858 1.8393 2.8220
100 -2.3502 -1.6605 -1.2916 -0.0001 1.2911 1.6601 2.3689

GBM 2 10 -2.2716 -1.5416 -1.1929 0.0676 1.6660 2.1963 3.3540
100 -2.1605 -1.5528 -1.2183 0.0209 1.3917 1.8053 2.6227

GBM 3 10 -2.8132 -1.8252 -1.3743 0.0011 1.3831 1.8362 2.8394
100 -2.3671 -1.6576 -1.2881 -0.0005 1.2936 1.6673 2.3678

GOU 1 10 -2.8282 -1.8434 -1.3848 -0.0007 1.3827 1.8317 2.8085
100 -2.3638 -1.6560 -1.2907 -0.0007 1.2875 1.6590 2.3641

Two Fm 10 -2.2735 -1.5131 -1.1532 0.1230 1.6980 2.2212 3.3698
100 -1.9515 -1.3806 -1.0989 0.1287 1.5575 1.9748 2.7796

Three Fm 10 -2.8534 -1.8435 -1.3877 -0.0001 1.3752 1.8260 2.8182
100 -2.3666 -1.6651 -1.2943 0.0009 1.2897 1.6540 2.3616

Panel B: Empirical sizes for nominal quantiles Panel C: Type II error rates for α = 5%
sample 10% 5% 1% sample β qα

GBM 1 10 9.989% 4.933% 0.968% GBM 1 10 0.000% -1.825
100 10.175% 5.158% 1.062% 100 0.000% -1.661

GBM 2 10 6.928% 2.663% 0.300% GBM 2 10 0.000% -1.542
100 8.860% 4.047% 0.600% 100 0.000% -1.553

GBM 3 10 9.870% 4.940% 0.984% GBM 3 10 0.000% -1.825
100 10.114% 5.133% 1.108% 100 0.000% -1.658

GOU 1 10 9.996% 4.986% 0.979% GOU 1 10 33.781% 1.832
100 10.109% 5.146% 1.101% 100 0.000% 1.659

Two Fm 10 6.455% 2.581% 0.322% Two Fm 10 9.997% -1.513
100 6.452% 2.423% 0.299% 100 0.000% -1.381

Three Fm 10 10.069% 5.086% 1.048% Three Fm 10 0.000% -1.844
100 10.224% 5.210% 1.110% 100 0.000% -1.665

Table 27: Empirical Quantiles and Sizes and Power of the tests: Mothballed 2 Mode
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Figure 18: Distributions of Value Functions LSMC Estimates: All DGPs, Wait mode.
Legend: step functions represent the distributions of B = 500.00 experiments of the average estimate for a number of replications of R =
10, 50, 100 for the DGPs studied, beginning from the left hand upper corner GBM 1, GBM 2, GBM 3, Model 1, 2, and 3 in (Schwartz, 1997).
Distribution with higher variance represents average estimates for R = 10, the one with lowest variance represents average estimates for R = 100.
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Figure 19: Distributions of Value Functions LSMC Estimates: All DGPs, Plant 1 mode.
Legend: see figure 18.
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Figure 20: Distributions of Value Functions LSMC Estimates: All DGPs, Plant 2 mode.
Legend: see figure 18.
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Figure 21: Distributions of Value Functions LSMC Estimates: All DGPs, Mothballed Plant 1 mode.
Legend: see figure 18.
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Figure 22: Distributions of Value Functions LSMC Estimates: All DGPs, Mothballed Plant 2 mode.
Legend: see figure 18.
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Value Function=Wait

0 1.000% 0.900% 0.800% 0.700% 0.500%

10 100.000% 99.981% 99.778% 98.237% 73.842%
20 100.000% 100.000% 99.999% 99.872% 81.584%
30 100.000% 100.000% 100.000% 99.986% 86.704%
50 100.000% 100.000% 100.000% 100.000% 92.292%

100 100.000% 100.000% 100.000% 100.000% 97.790%

Value Function=Plant 1

0 1.000% 0.900% 0.800% 0.700% 0.500%

10 99.978% 97.733% 67.110% 12.528% 0.000%
20 100.000% 99.760% 73.370% 5.293% 0.000%
30 100.000% 99.977% 77.736% 2.304% 0.000%
50 100.000% 100.000% 83.607% 0.546% 0.000%

100 100.000% 100.000% 91.747% 0.014% 0.000%

Value Function=Plant 2

0 1.000% 0.900% 0.800% 0.700% 0.500%

10 99.932% 61.094% 0.484% 0.000% 0.000%
20 100.000% 65.717% 0.009% 0.000% 0.000%
30 100.000% 68.958% 0.001% 0.000% 0.000%
50 100.000% 73.719% 0.000% 0.000% 0.000%

100 100.000% 81.528% 0.000% 0.000% 0.000%

Value Function=Mothball Plant 1

0 1.000% 0.900% 0.800% 0.700% 0.500%

10 99.965% 97.092% 63.223% 10.878% 0.000%
20 100.000% 99.637% 67.946% 3.792% 0.000%
30 100.000% 99.935% 71.693% 1.603% 0.000%
50 100.000% 99.999% 77.158% 0.275% 0.000%

100 100.000% 100.000% 85.507% 0.000% 0.000%

Value Function=Mothball Plant 2

0 1.000% 0.900% 0.800% 0.700% 0.500%

10 99.552% 41.720% 0.113% 0.000% 0.000%
20 99.984% 38.362% 0.000% 0.000% 0.000%
30 100.000% 35.289% 0.000% 0.000% 0.000%
50 100.000% 31.728% 0.000% 0.000% 0.000%

100 100.000% 25.051% 0.000% 0.000% 0.000%

Table 28: Bootstrapped Confidence Intervals: Univariate GBM
Table entry is the relative frequency of the boostrapped B= 400.000 LSMC valuations that fall within an
interval obtained increasing or decreasing the lattice benchmark for the % reported in the first row of each
subsection. First column reports bootstrapped sample size.
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Value Function=Wait

0 1.500% 1.000% 0.900% 0.800% 0.700%

10 85.058% 30.195% 20.251% 12.435% 7.012%
20 92.778% 22.875% 11.734% 5.020% 1.816%
30 96.183% 18.486% 7.252% 2.228% 0.509%
50 98.907% 12.204% 2.968% 0.456% 0.038%

100 99.923% 4.715% 0.343% 0.013% 0.000%

Value Function=Plant 1

0 1.500% 1.000% 0.900% 0.800% 0.700%

10 80.718% 2.615% 0.542% 0.064% 0.006%
20 88.208% 0.249% 0.007% 0.000% 0.000%
30 92.419% 0.037% 0.000% 0.000% 0.000%
50 96.696% 0.002% 0.000% 0.000% 0.000%

100 99.495% 0.000% 0.000% 0.000% 0.000%

Value Function=Plant 2

0 1.500% 1.000% 0.900% 0.800% 0.700%

10 99.995% 84.327% 59.794% 27.470% 6.371%
20 100.000% 91.523% 61.990% 19.124% 1.571%
30 100.000% 95.076% 63.822% 13.839% 0.367%
50 100.000% 98.198% 66.954% 7.708% 0.026%

100 100.000% 99.870% 72.577% 2.179% 0.000%

Value Function=Mothball Plant 1

0 1.500% 1.000% 0.900% 0.800% 0.700%

10 78.899% 2.324% 0.423% 0.057% 0.003%
20 86.531% 0.243% 0.010% 0.000% 0.000%
30 90.648% 0.023% 0.000% 0.000% 0.000%
50 95.414% 0.000% 0.000% 0.000% 0.000%

100 99.082% 0.000% 0.000% 0.000% 0.000%

Value Function=Mothball Plant 2

0 1.500% 1.000% 0.900% 0.800% 0.700%

10 99.991% 81.911% 55.951% 24.223% 5.312%
20 100.000% 89.097% 56.503% 15.555% 1.099%
30 100.000% 93.011% 57.127% 10.282% 0.227%
50 100.000% 96.957% 58.480% 4.942% 0.012%

100 100.000% 99.591% 60.951% 0.896% 0.000%

Table 29: Bootstrapped Confidence Intervals: Bivariate GBM
Table entry is the relative frequency of the boostrapped B= 400.000 LSMC valuations that fall within an
interval obtained increasing or decreasing the lattice benchmark for the % reported in the first row of each
subsection. First column reports bootstrapped sample size.
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Value Function=Wait

0 1.200% 1.100% 1.000% 0.900% 0.800%

10 99.763% 99.134% 97.297% 92.804% 84.167%
20 99.994% 99.959% 99.680% 98.028% 92.040%
30 100.000% 100.000% 99.941% 99.410% 95.723%
50 100.000% 100.000% 100.000% 99.951% 98.726%

100 100.000% 100.000% 100.000% 100.000% 99.888%

Value Function=Plant 1

0 1.200% 1.100% 1.000% 0.900% 0.800%

10 10.669% 1.187% 0.063% 0.002% 0.000%
20 4.142% 0.069% 0.000% 0.000% 0.000%
30 1.527% 0.003% 0.000% 0.000% 0.000%
50 0.290% 0.000% 0.000% 0.000% 0.000%

100 0.006% 0.000% 0.000% 0.000% 0.000%

Value Function=Plant 2

0 1.200% 1.100% 1.000% 0.900% 0.800%

10 100.000% 99.976% 97.155% 59.652% 8.163%
20 100.000% 100.000% 99.678% 63.953% 2.420%
30 100.000% 100.000% 99.929% 66.730% 0.808%
50 100.000% 100.000% 100.000% 71.525% 0.095%

100 100.000% 100.000% 100.000% 78.677% 0.001%

Value Function=Mothball Plant 1

0 1.200% 1.100% 1.000% 0.900% 0.800%

10 8.519% 0.827% 0.047% 0.002% 0.001%
20 2.688% 0.038% 0.000% 0.000% 0.000%
30 0.960% 0.000% 0.000% 0.000% 0.000%
50 0.109% 0.000% 0.000% 0.000% 0.000%

100 0.004% 0.000% 0.000% 0.000% 0.000%

Value Function=Mothball Plant 2

0 1.200% 1.100% 1.000% 0.900% 0.800%

10 100.000% 99.932% 94.441% 48.912% 4.846%
20 100.000% 100.000% 98.831% 48.253% 0.935%
30 100.000% 100.000% 99.745% 48.040% 0.187%
50 100.000% 100.000% 99.987% 47.274% 0.014%

100 100.000% 100.000% 100.000% 46.439% 0.000%

Table 30: Bootstrapped Confidence Intervals: Trivariate GBM
Table entry is the relative frequency of the boostrapped B= 400.000 LSMC valuations that fall within an
interval obtained increasing or decreasing the lattice benchmark for the % reported in the first row of each
subsection. First column reports bootstrapped sample size.
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Value Function=Wait

0 0.700% 0.600% 0.500% 0.200% 0.010%

10 41.499% 35.416% 29.395% 11.377% 0.538%
20 40.614% 33.154% 26.216% 9.024% 0.437%
30 38.859% 30.012% 22.279% 6.441% 0.295%
50 35.690% 25.206% 16.434% 2.853% 0.099%

100 30.333% 17.170% 8.422% 0.385% 0.002%

Value Function=Plant 1

0 0.700% 0.600% 0.500% 0.200% 0.010%

10 100.000% 100.000% 100.000% 100.000% 100.000%
20 100.000% 100.000% 100.000% 100.000% 100.000%
30 100.000% 100.000% 100.000% 100.000% 100.000%
50 100.000% 100.000% 100.000% 100.000% 100.000%

100 100.000% 100.000% 100.000% 100.000% 100.000%

Value Function=Plant 2

0 0.700% 0.600% 0.500% 0.200% 0.010%

10 100.000% 100.000% 100.000% 100.000% 100.000%
20 100.000% 100.000% 100.000% 100.000% 100.000%
30 100.000% 100.000% 100.000% 100.000% 100.000%
50 100.000% 100.000% 100.000% 100.000% 100.000%

100 100.000% 100.000% 100.000% 100.000% 100.000%

Value Function=Mothball Plant 1

0 0.700% 0.600% 0.500% 0.200% 0.010%

10 100.000% 100.000% 100.000% 100.000% 74.855%
20 100.000% 100.000% 100.000% 100.000% 82.906%
30 100.000% 100.000% 100.000% 100.000% 87.671%
50 100.000% 100.000% 100.000% 100.000% 93.423%

100 100.000% 100.000% 100.000% 100.000% 98.308%

Value Function=Mothball Plant 2

0 0.700% 0.600% 0.500% 0.200% 0.010%

10 100.000% 100.000% 100.000% 100.000% 27.946%
20 100.000% 100.000% 100.000% 100.000% 20.109%
30 100.000% 100.000% 100.000% 100.000% 15.340%
50 100.000% 100.000% 100.000% 100.000% 9.392%

100 100.000% 100.000% 100.000% 100.000% 3.229%

Table 31: Bootstrapped Confidence Intervals: Geometric Ornstein Uhlenbeck
Table entry is the relative frequency of the boostrapped B= 400.000 LSMC valuations that fall within an
interval obtained increasing or decreasing the lattice benchmark for the % reported in the first row of each
subsection. First column reports bootstrapped sample size.
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Value Function=Wait

0 0.700% 0.600% 0.500% 0.200% 0.100%

10 99.183% 99.017% 98.550% 73.041% 41.913%
20 99.949% 99.790% 99.386% 87.221% 56.337%
30 99.993% 99.972% 99.903% 92.342% 64.642%
50 100.000% 99.999% 99.996% 96.727% 75.247%

100 100.000% 100.000% 100.000% 99.409% 86.911%

Value Function=Plant 1

0 0.700% 0.600% 0.500% 0.200% 0.100%

10 99.039% 99.012% 98.711% 52.285% 19.155%
20 99.872% 99.231% 98.333% 52.957% 11.139%
30 99.974% 99.940% 99.380% 52.807% 6.617%
50 100.000% 99.997% 99.936% 53.127% 2.572%

100 100.000% 100.000% 100.000% 52.664% 0.276%

Value Function=Plant 2

0 0.700% 0.600% 0.500% 0.200% 0.100%

10 99.032% 98.999% 98.674% 35.860% 5.343%
20 99.921% 99.278% 98.196% 29.563% 1.120%
30 99.973% 99.935% 99.291% 24.934% 0.260%
50 100.000% 99.997% 99.923% 19.114% 0.015%

100 100.000% 100.000% 100.000% 10.143% 0.000%

Value Function=Mothball Plant 1

0 0.700% 0.600% 0.500% 0.200% 0.100%

10 99.043% 99.009% 98.722% 52.442% 19.176%
20 99.911% 99.295% 98.409% 52.900% 11.198%
30 99.971% 99.928% 99.374% 53.096% 6.646%
50 100.000% 99.995% 99.941% 53.399% 2.677%

100 100.000% 100.000% 100.000% 52.775% 0.318%

Value Function=Mothball Plant 2

0 0.700% 0.600% 0.500% 0.200% 0.100%

10 99.009% 98.979% 98.627% 35.972% 5.472%
20 99.909% 99.257% 98.264% 29.394% 1.098%
30 99.978% 99.925% 99.194% 24.841% 0.279%
50 100.000% 99.996% 99.924% 18.552% 0.013%

100 100.000% 100.000% 99.998% 10.073% 0.000%

Table 32: Bootstrapped Confidence Intervals: Two Factor Model
Table entry is the relative frequency of the boostrapped B= 400.000 LSMC valuations that fall within an
interval obtained increasing or decreasing the lattice benchmark for the % reported in the first row of each
subsection. First column reports bootstrapped sample size.
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Value Function=Wait

0 0.700% 0.600% 0.500% 0.400% 0.300%

10 99.711% 98.665% 95.353% 87.105% 71.934%
20 99.996% 99.916% 99.163% 94.772% 80.398%
30 100.000% 99.998% 99.859% 97.703% 85.340%
50 100.000% 100.000% 99.992% 99.512% 91.153%

100 100.000% 100.000% 100.000% 99.982% 97.190%

Value Function=Plant 1

0 0.700% 0.600% 0.500% 0.400% 0.300%

10 99.920% 98.696% 89.901% 62.828% 26.844%
20 100.000% 99.916% 96.440% 68.061% 19.193%
30 100.000% 99.992% 98.653% 71.755% 14.158%
50 100.000% 100.000% 99.760% 77.067% 8.345%

100 100.000% 100.000% 99.996% 85.123% 2.546%

Value Function=Plant 2

0 0.700% 0.600% 0.500% 0.400% 0.300%

10 99.505% 85.526% 33.654% 2.834% 0.028%
20 99.986% 93.344% 27.417% 0.336% 0.000%
30 100.000% 96.743% 22.935% 0.040% 0.000%
50 100.000% 99.120% 17.041% 0.001% 0.000%

100 100.000% 99.970% 8.877% 0.000% 0.000%

Value Function=Mothball Plant 1

0 0.700% 0.600% 0.500% 0.400% 0.300%

10 99.932% 98.684% 89.546% 62.223% 26.489%
20 100.000% 99.917% 96.114% 67.001% 18.676%
30 100.000% 99.991% 98.517% 70.419% 13.482%
50 100.000% 100.000% 99.747% 75.553% 7.831%

100 100.000% 100.000% 99.998% 83.584% 2.296%

Value Function=Mothball Plant 2

0 0.700% 0.600% 0.500% 0.400% 0.300%

10 99.365% 85.019% 33.328% 2.874% 0.038%
20 99.984% 92.712% 26.838% 0.320% 0.000%
30 99.999% 96.267% 22.476% 0.055% 0.000%
50 100.000% 98.905% 16.370% 0.001% 0.000%

100 100.000% 99.952% 8.356% 0.000% 0.000%

Table 33: Bootstrapped Confidence Intervals: Three Factor Model
Table entry is the relative frequency of the boostrapped B= 400.000 LSMC valuations that fall within an
interval obtained increasing or decreasing the lattice benchmark for the % reported in the first row of each
subsection. First column reports bootstrapped sample size.
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7 Conclusions

We assess the applicability of LSMC methods (Longstaff and Schwartz, 2001) to the general model of real

options by (Kulatilaka and Trigeorgis, 1994). After reviewing briefly the Kulatilaka-Trigeorgis (KT) model,

we motivate the choice of LSMC among the variety of Monte Carlo methods available in current literature

to price derivatives. We propose some simple correction methods to get unbiased results when using either

LSMC or lattice methods to discretize a variety of data generating processes, see table 1, for the KT general

model of real options. We devise several sets of experiments to assess applicability of LSMC to the KT

model. First, we show which are the most effective and the most efficient parameters in honing results from

LSMC. Second, we show how to make inference on LSMC results and construct confidence intervals in large

and small samples.

The main conclusion of these set of experiments is that LSMC accuracy is very much dependent on the

underlying DGP. We show how convergence propositions in (Longstaff and Schwartz, 2001) do not have

general applicability. As a matter of fact, they are veryfied only when the underlying stochastic process

contains a mean reverting feature, e.g. models 1,2 and 3 in (Schwartz, 1997), while this is not true for GBMs

underlyings. We conjecture that this may be due to the fact that a least squares regression approximates

better a bounded space, like the one in which a mean reverting process happens to be.28

We conclude that LSMC is definetly the best method to implement the KT model in multivariate

frameworks being quick and accurate when compared to multivariate lattices counterparts. This paper can

be considered as a building block for further extensions of the KT model.

For instance, LSMC method gives the analyst the opportunity to describe in a KT framework the

investment project with real options in a more thorough way than any other numerical or symbolic solution

approach. As an example, some path dependent project descriptors could be computed on each simulated

path, such as Internal Rate of Return or Pay Back Period. Furthermore, given that LSMC provides an

entire distributions of the expanded NPV, it is possible to compute its VaR or project at risk. In addition,

with the simulated cash flows at each epoch it is possible to compute CFaR. Hence, in a multivariate LSMC

framework it is easy to single out the most important sources of market risk in the risk mapping equation

represented by both periodic, see equation (3), and infrequent cash flows, see expression (5).

28We conjecture this is the same reason why LSMC is a convergent algorithm, as ∆t → 0, in pricing an American put but not
an American call, with known dividend yield of the underlying stock. In the case of models 1,2 and 3 (Schwartz, 1997) dealt in
the text, the payoffs and continuation values are defined in bounded finite space since the underlying itself is bounded. In the
case of an American put option this happens because the derivative has a bounded payoff.
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