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Abstract

This paper proposes a general model to value different strategies to enter a market, compar-
ing alternative sequential segmentation paths to simultaneous investment in all segments.
This general model also allows demand to evolve accordingly to an endogenous regime-
switching process, under which it can behave differently before and after investment. It is
shown how uncertainty, revenues and investment costs of each segment impact the choice
between sequential or parallel investment, as well as the optimal path. The model also
offers some insights for the valuation of growth options.
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Market segmentation under uncertainty

1 Introduction

When companies enter a market with a new product they face the decision to eventually

segment demand, for example using pricing strategies. Many companies charge initially

high prices to the top profitable segments of demand, those less sensitive to prices, and

then reducing gradually the price,enter lower segments, with a strategy that is known as

market-skimming. Other companies, instead, prefer to enter the market quickly, attracting

a higher market share with a lower price and benefiting from economies of scale. This

strategy is known as market-penetration. These companies can eventually expand to the

top segments of demand. On the other hand, there are companies that prefer to stick

themselves to a single segment of demand, either the more profitable or the less profitable

but large-scaled.

Many companies in a wide variety of industries face this type of decision. One example

is the airport industry. A significant and recent trend in the airport industry is the rise of

the low-cost airlines. Neufville (2008) suggests that this trend, along with the long term

forecasts uncertainty, has important implications for the airport design planning. Low cost

carriers and passengers have different characteristics of the traditional full-service carriers.

Usually they demand less quality of the infrastructure in exchange of a lower price. On

the other hand these carriers have different strategies, preferring “point-to-point” flights

over the traditional “hub” strategy.

The decision to serve one or both segments has important implications on the in-

vestments, largely irreversible, that are required when a new airport or an expansion are

analyzed. This is even more important under uncertainty, which creates real options and

determines optimal timing of investment. Real options embedded in airport projects have

been studied by Smit (2003) combining real options and game theory to value airport ex-

pansion investments. Pereira, Rodrigues and Armada (2007) model an airport investment

when the revenues and the number of passengers behave stochastically and negative or

positive jumps occur randomly. Gil (2007) present a description of a wide range of real

options embedded in airport investments.

This papers presents a general model that allow us to value alternative segmentation

strategies, namely comparing different segmentation sequences and the simultaneous in-

vestment in all segments. Sequential versus parallel development has been studied, in a

real options context, by Childs, Ott and Triantis (1998). They compare different strategies,

including optimal ordering of sequential investment, exploring project interrelationships.

Sequential investment is also analyzed in some detail in Dixit and Pindyck (1994, chapter

10).

Differently from Childs, Ott and Triantis (1998), it is considered that the underly-
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ing processes that drive demand of each segment are not correlated processes, but instead

demand behaves differently before and after investment in each segment, under an endoge-

nous regime-switching process. However, it can argued that there are some connections to

the Childs, Ott and Triantis (1998) approach. A higher correlation between two projects

(or segments is our case) implies a higher volatility after investing in both segments, while

a lower correlation means a lower volatility, due to the diversification effect. We also in-

clude a cap for each segment demand. This, along with the fact that after investing in

each segment the company benefits from a cash flow stream, allows, without the need to

appeal to features such as ”time to build”, the model to produce a solution that implies

that it is sometimes optimal to wait to invest in subsequent stages and not immediately

after investing in the first stage as in Dixit and Pindyck (1994, chapter 10).

The paper unfolds as follows. Section 2 presents the model to value investment in

a single segment, considering that demand growth ends after reaching a cap. Different

strategies are then analyzed in section 3 comparing sequential to simultaneous investment.

Section 4 presents a numerical example and section 5 concludes.

2 Investing in a single segment

Let Q, the demand of segment i, behave accordingly to the following geometric brownian

motion:

dQ = αiQdt+ σiQdWi (1)

where αi is the expected growth rate, σi the respective standard deviation and dWi incre-

ments of a Wiener process.

Each segment has a known size, Ci, after which growth ends. The revenue per unit of

demand is Ri, and we assume it is constant.

The equivalent risk-adjusted process of equation 1 is:

dQ = (r − δi)Qdt+ σiQdZi (2)

where δi = µi − αi and µi is the equilibrium rate of return.

Using the standard procedures the value of the project after investing is1:

Vi(Q) =



















AiQ
βi +

RiQi

δi
for Q < Ci

BiQ
γi +

RiCi

r
for Q > Ci

(3)

1Please refer to Armada, Pereira and Rodrigues (2008) for a similar model.
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where:

Ai =
C

1−βi

i

γi − βi
Ri

(

γi

r
−

(γi − 1)

δi

)

(4)

Bi =
C

1−γi

i

γi − βi

Ri

(

βi

r
−

(βi − 1)

δi

)

(5)

βi =
1

2
−
r − δi

σ2
i

+

√

(

−
1

2
+
r − δi

σ2
i

)2

+
2r

σ2
i

> 1 (6)

γi =
1

2
−
r − δi

σ2
i

−

√

(

−
1

2
+
r − δi

σ2
i

)2

+
2r

σ2
i

< 0 (7)

Demand can behave differently before and after investment. Before investment, de-

mand evolves accordingly to the following stochastic process:

dQ = (r − δ0)Qdt+ σ0QdW0 (8)

After investment Q is driven by equation 1.

Let Fi(Q) be the value the option to invest in segment i:

Fi(Q) = DiQ
β0 (9)

The following boundary conditions are used to find Di and the optimal trigger value,

Q∗

i :

Fi(Q
∗

i ) = Vi(Q
∗

i ) −Ki (10)

F ′

i (P
∗) = V ′

i (Q
∗

i ) (11)

where Ki is the invesment cost to enter segment i.

When δ0 is positive, as is commonly assumed, there are two possible solutions, de-

pending whether the trigger value, Q∗

i , is lower or greater than segment size, Ci.

Case 1: Q∗

i < Ci and δ0 > 0

For Q∗

i < Ci, the trigger value of Q is the solution to the following nonlinear equation:

(β0 − βi)AiQ
∗βi

i + (β0 − 1)
Ri

δi
Q∗

i − β0Ki = 0, (12)

and Di is:

Di = AiQ
∗(βi−β0)
i +

Ri

δi
Q

∗1−β0

i −KiQ
∗−β0

i = 0. (13)
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The value-function for the option to invest is:

Fi(Q) =















































(

AiQ
∗βi +

Ri

δi
Q∗

i −Ki

)(

Q

Q∗

i

)β0

for Q < Q∗

i

AiQ
βi +

RiQ

δi
−Ki for Q > Q∗

i ∧Q 6 Ci

BiQ
γi +

RiCi

r
−Ki for Q > Q∗

i ∧Q > Ci

(14)

For βi = β0, for example when δi = δ0 and σi = σ0, Q
∗

i and Di have the following

closed form solution:

Q∗

i =
β0

β0 − 1

δ0

Ri

Ki (15)

Di = Ai +
Ki

β0 − 1
Q

∗−β0

i (16)

Case 2: Q∗

i > Ci and δ0 > 0

The trigger value of Q, when it is greater than Ci, is:

Q∗

i =

[

β0

Bi (γi − β0)

(

RiCi

r
−Ki

)]
1

γi

(17)

The value of the option to invest is, for Q∗

i > Ci:

Fi(Q) =























γi

γi − β0

(

RiCi

r
−Ki

)(

Q

Q∗

i

)β0

for Q < Q∗

i

BiQ
γi +

RiCi

r
−Ki for Q > Q∗

i > Ci

(18)

3 Alternative strategies

When a company enters the market, it can choose to invest sequentially in segment i and

j or simultaneously in both segments. This section compares these alternatives strategies.

3.1 Sequential investment

Valuation of sequential investment needs to be done backwards, starting with the option

to invest in segment j, Fj(Q). Q is the cumulative demand of segments i and j. Before

investing in j, demand is governed by the following stochastic process, under the risk-

neutral measure:

dQ = (r − δi)Qdt+ σiQdZi (19)
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After investing in j, demand, starting at the level of Q at that moment, follows a

similar process under different parameters:

dQ = (r − δj)Qdt+ σjQdZj (20)

The value of the option to expand to segment j, takes the form:

Fj(Q) = DjQ
βi (21)

The following value-matching and smooth-pasting conditions are used to find the op-

timal trigger value, Q∗

j , which corresponds to the value Q at which it is optimal to expand

to segment j, and Dj :

Fj(Q
∗

j ) = Vj(Q
∗

j ) − Vi(Q
∗

j) −Kj (22)

F ′

j(Q
∗

j ) = V ′

j (Q
∗

j ) − V ′

i (Q∗

j ) (23)

Expanding to segment j, paying the irreversible cost Kj, the firm exchanges Vi(Q
∗

j ) for

Vj(Q
∗

j ). It is reasonable to assume that, expanding, it will benefit from a larger demand

size, i.e. Cj > Ci. Therefore, depending on the parameters, the trigger value can be in the

[0, Ci[, [Ci, Cj [ or [Cj ,∞[ intervals.

Case 1: Q∗

j < Ci < Cj

For the first case, the solution is found with the following value-matching and smooth-

pasting conditions:

DjQ
∗βi

j = AjQ
∗βj

j +
RjQ

∗

j

δj
−AiQ

∗βi

j −

RiQ
∗

j

δi
−Kj (24)

βiDjQ
∗βi−1
j = βjAjQ

∗βj−1
j +

Rj

δj
− βiAiQ

∗βi−1
j −

Ri

δi
(25)

Q∗

j is the solution to the following nonlinear equation:

(βi − βj)AjQ
∗βj

j + (βi − 1)

(

Rj

δj
−
Ri

δi

)

Q∗

j − βiKj = 0, (26)

and Dj is:

Dj = AjQ
∗(βj−βi)
j −Ai +

(

Rj

δj
−
Ri

δi

)

Q
∗(1−βi)
j −KjQ

∗−βi

j . (27)

Note that when βj = βi, for example when δj = δi and σj = σi, there is a closed form
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solution:

Q∗

j =
βi

βi − 1

δi

Rj −Ri
Kj (28)

Dj = Aj −Ai +
Ki

βi − 1
Q

∗−βi

j (29)

Case 2: Ci 6 Q∗

j < Cj

For the second case, the following value-matching and smooth-pasting conditions allow

gives the solution:

DjQ
∗βi

j = AjQ
∗βj

j +
RjQ

∗

j

δj
−BiQ

∗γi

j −
RiCi

r
−Kj (30)

βiDjQ
∗βi−1
j = βjAjQ

∗βj−1
j +

Rj

δj
− γiBiQ

∗γi−1
j (31)

Q∗

j is the solution to the following nonlinear equation:

(βi − βj)AjQ
∗βj

j − (βi − γi)BiQ
∗γi

j + (βi − 1)
Rj

δj
Q∗

j − βi

(

RiCi

r
+Kj

)

= 0, (32)

and Dj is:

Dj = AjQ
∗(βj−βi)
j +

Rj

δj
Q

∗(1−βi)
j −BiQ

∗(γi−βi)
j −

(

RiCi

r
+Kj

)

Q
∗−βi

j . (33)

Note that even for δj = δi and σj = σi, Q
∗

j is still the solution to a nonlinear equation:

(βi − γi)BiQ
∗γj

j + (βi − 1)
Rj

δj
Q∗

j − βi

(

RiCi

r
+Kj

)

= 0 (34)

Case 3: Ci < Cj 6 Q∗

j

Finally, for Ci < Cj 6 Q∗

j , the solution is found with the following value-matching and

smooth-pasting conditions:

DjQ
∗βi

j = BjQ
∗γj

j +
RjCj

r
−BiQ

∗γi

j −
RiCi

r
−Kj (35)

βiDjQ
∗βi−1
j = γjBjQ

∗γj−1
j − γiBiQ

∗γi−1
j (36)

Q∗

j is the solution to the following nonlinear equation:

(βi − γj)BjQ
∗γj

j − (βi − γi)BiQ
∗γi

j + βi

(

RjCj −RiCi

r
−Kj

)

= 0, (37)
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and Dj is:

Dj = BjQ
∗(γj−βi)
j −BiQ

∗(γi−βi)
j +

(

RjCj −RiCi

r
−Kj

)

Q
∗−βi

j . (38)

When δj = δi and σj = σi, γj = γi and Q∗

j is:

Q∗

j =

[

βi

(Bj −Bi) (γi − βi)

(

RjCj −RiCi

r
−Kj

)]
1

γi

(39)

In either case, option value to invest in segment j is:

Fj(Q) =











DjQ
βi for Q < Q∗

j

Vj(Q) − Vi(Q) −Kj for Q > Q∗

j

(40)

Let Fi(Q) be the value option to invest in segment i. Before investment, demand

evolves accordingly to the following stochastic process:

dQ = (r − δ0)Qdt+ σ0QdW0 (41)

The solution for the value of option to invest in segment i takes the form:

Fi(Q) = DiQ
β0 (42)

The following boundary conditions are used to find the optimal trigger value (Q∗

i ), i.e.

the value Q at which it is optimal to invest in segment i:

Fi(Q
∗

i ) = Vi(Q
∗

i ) + Fj(Q
∗

i ) −Ki (43)

F ′

i (Q
∗

i ) = V ′

i (Q∗

i ) + F ′

j(Q
∗

i ) (44)

Note again that, depending on the parameters, the trigger value can be in the [0, Ci[,

[Ci, Cj [ or [Cj,∞[ intervals, and can also be lower or higher than Q∗

j , which means that

it may be optimal either to invest in the second segment immediately after entering the

first, or wait a bit more. In that case, given that Fj(Q
∗

i ) = Vj(Q
∗

i ) − Vi(Q
∗

i ) − Kj , the

value-matching and smooth-pasting equations are:

Fi(Q
∗

i ) = Vj(Q
∗

i ) −Kj −Ki (45)

F ′

i (Q
∗

i ) = V ′

j (Q∗

i ) (46)
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Case 1: Q∗

i < Q∗

j and Q∗

i < Ci < Cj

Value-matching and smooth-pasting conditions produce the following nonlinear equation,

whose solution is Q∗

i :

(β0 − βi) (Ai +Dj)Q
∗βi

i + (β0 − 1)
Ri

δi
Q∗

i − β0Ki = 0 (47)

Di is:

Di = (Ai +Dj)Q
∗(βi−β0)
i +

Ri

δi
Q

∗(1−β0)
i −KiQ

∗−β0

i (48)

where Dj is given by equations 27, 33, and 38 respectively for Q∗

j < Ci < Cj , Ci 6 Q∗

j <

Cj, and Ci < Cj 6 Q∗

j .

For βi = β0, the following closed form solution is found:

Q∗

i =
β0

β0 − 1

δ0

Ri
Ki (49)

Di = Ai +Dj +
Ki

β0 − 1
Q

∗−β0

i (50)

This trigger value is the same as that of investing in a single segment (see equation

15). The option to expand to the following segments does not change the level of Q for

which it is optimal to invest, although it changes the value of the investment opportunity:

Di depends now on Dj . For the particular case when the demand risk-neutral process is

unaffected by the act of investing, future growth options have no impact on the investment

optimal timing, although they make investment more valuable.

Case 2: Q∗

i < Q∗

j and Q∗

i > Ci

Value-matching and smooth-pasting conditions produce the following nonlinear equation,

whose solution is Q∗

i :

(β0 − γi)BiQ
∗γi

i + (β0 − βi)DjQ
∗βi

i + β0

(

RiCi

r
−Ki

)

= 0 (51)

Di is:

Di = BiQ
∗(γi−β0)
i +DjQ

∗(βi−β0)
i +

(

RiCi

r
−Ki

)

Q
∗−β0

i (52)

where Dj is given by equations 33, and 38 respectively for Ci 6 Q∗

j < Cj , and Ci < Cj 6

Q∗

j .

For βi = β0, this produces a similar result as in the previous case: the trigger value of

Q is the same as that of investing in a single segment, although the value of the project is

greater, benefiting from the value of the options to expand to subsequent segments.
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Case 3: Q∗

i < Cj and Q∗

i > Q∗

j

Q∗

i is the solution of the following nonlinear equation:

(β0 − βj)AjQ
∗βj

i + (β0 − 1)
Rj

δj
Q∗

i − β0 (Kj +Ki) = 0 (53)

Di is:

Di = AjQ
∗(βj−β0)
i +

Rj

δj
Q

∗(1−β0)
i − (Ki +Kj)Q

∗−β0

i (54)

For βj = β0, for example when δj = δ0 and σj = σ0, there is a closed form solution:

Q∗

i =
β0

β0 − 1

δ0

Rj
(Kj +Ki) (55)

Di = Aj +
Ki +Kj

β0 − 1
Q

∗−β0

i (56)

The solution for Q∗

i and Di is equivalent to equation 15 and equation16, replacing Ki

with Kj +Ki and Ri with Rj.

Case 4: Q∗

i > Q∗

j > Cj

For this case, a closed form solution is found:

Q∗

i =

[

β0

Bi (γj − β0)

(

RjCj

r
−Ki −Kj

)]
1

γj

(57)

Di = BjQ
∗(βj−β0)
i +

(

RjCj

r
−Ki −Kj

)

Q
∗−β0

i (58)

3.2 Simultaneous investment

In the previous section it is shown that it can be optimal to invest immediately in the

second segment if all parameters remain the same. However it can be argued that growth

rates, volatility, investment costs and segment size, for the case of simultaneous investment

in both segments, are not the same as those of the second segment.

Let, as above, demand before investment be given by equation 41 and after investment

evolve accordingly to the following stochastic process:

dQ = (r − δs)Qdt+ σsQdWs (59)

whrere δs and σs are not necessarily the same as δj and σj .

Market size, CS can be a multiple of segment i size, Cs = ψ1Cj, and investment costa

can also be a multiple of the sum investment in both segments, Ks = ψ2 (Ki +Kj). ψ1

and ψ2 can be either greater or smaller than 1.
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Before Investment Segment 1 Segment 2 Simultaneous

δ 0.02 0.02 0.02 0.02
σ 0.12 0.1 0.08 0.09
R 1 0.9 0.9
C 20 30 ψ1 30
K 200 90 ψ2 90
ψ1 1
ψ2 0.9
r 0.03
Q(0) 5

Table 1: Base-case parameters

Simultaneous investment is valued as in section 2 with δi, σi, Ci, and Ki replaced by

δs, σs, Cs, and Ks, respectively.

4 Numerical example

As in almost every model, results are sensitive to the parameters, and it is sometimes

difficult to draw general conclusions based on comparative statics. Table 1 presents the

base-case parameters. δ is taken as a market parameter independent of σ. The analysis

would have been different had it been allowed to change with σ. Segment 1 is bigger

than segment 2. After investing in segment 1, expanding to segment 2 reduces risk and

revenues. Whereas the latter means that this segment is less profitable, the first does not

means necessarily that it is less riskier. It has to be considered that if the two segments are

not perfectly correlated, risk can be lower after expanding to segment 2, even if segment

2 is riskier. When investing simultaneously in both segments, the company benefits from

the same segments size but with more risk and it is assumed that there are some economies

of scale at the investment level (ψ2 = 0.9).

The trigger values of Q for which it is optimal to invest are 8.46 for segment 1 and

29.37 for segment 2. Figure 1 shows how the value of each segment and options to invest

in them behave with ”moneyness”.

The effect of volatility on the trigger values is shown in Figure 2. Obviously, demand

volatility before any investment has no effect on the trigger to invest in segment 2, while

it increases the trigger value to invest in segment 1. As the volatility of the first segment

increases, and becomes greater than demand volatility after expansion to the second seg-

ment, Q∗

1 increases slightly, whereas Q∗

2 decreases more significantly approaching segment

1 size. For lower values of σ1, expanding to segment 2 is only optimal after demand reaches

segment 1 size, and after a certain volatility level it becomes optimal to expand before

demand hits the previous segment size. Volatility of the last segment does not change
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Figure 1: Sensitivity of the value of each segment and options to invest to demand.
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(a) Volatility before investment
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(b) Volatility of segment 1
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(c) Volatility of segment 2

Figure 2: Sensitivity of trigger values to volatility before investment and segments
volatility.
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Before Investment Segment 2 Segment 1

δ 0.02 0.02 0.02
σ 0.12 0.08 0.1
R 0.7 0.9
C 10 30
K 90 200

Table 2: Parameters for sequential investment in segment 2 and segment 1.

the optimal level to enter the market (Q∗

1 remains unchanged) and increases the optimal

level to expand to it. This effect seems to be very pronounced: for relatively low levels of

volatility it only becomes optimal to expand after demand reaches the segment size. This

arises as a result of two effects: the first relates to the well known effect of the value of

waiting and the second is a consequence of imposing an upper limit to demand growth,

which makes the value of segment a decreasing function of volatility.

Another interesting issue is the comparison of different sequences of segmentation and

simultaneous investment. For sequential investment there are two alternatives: a) invest

in segment 1 and expand to segment 2, b) investment in segment 2 and expand to segment

1. Parameters for a) are those presented in Table 1. Note that column under segment 2

shows the parameters for demand behavior after expansion to segment 2. If we change

the sequence, we have to know which parameters characterize segment 2 when we invest

in it before expanding to segment 2. We assume that with this sequence we start with a

less riskier and less profitable segment (Table 2).

Figure 3 shows the value of each strategyand Figure 4 the trigger values for different

volatility levels of demand before investment. For lower values of demand, investing first

in the smaller, less riskier and less profitable segment is preferable. For higher levels of de-

mand simultaneous investment produces a higher value, due to investment cost economies

of scale. For intermediate levels, the bigger, riskier and more profitable segment is the

best choice to enter the market.

5 Conclusion

This paper proposes a real option model for the valuation of alternative strategies for

the market introduction of a new product. It compares sequential segmentation paths to

simultaneous investment in all segments. Unlike most real options models the model as-

sumes that demand can only grow up to a limit, determined by segment size. Additionally

demand can behave differently before and after investment in each segment.

Optimal timing and value for each strategy are computed. It is shown that, depending

on the parameters, it can be optimal to expand to subsequent segments immediately after
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Figure 3: Value of different strategies.
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Figure 4: Trigger values for different strategies.
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enter the previous or wait until demand reaches some specified trigger value. Under some

particular assumptions future growth options have no impact on optimal timing to enter

initial segments, although value is greater with more valuable future growth opportunities.

Most results are sensitive to the parameters, and it is sometimes difficult to draw

general conclusions based on comparative statics. Using an example, it is shown that for

lower values of demand, investing first in a smaller, less riskier and less profitable segment

is more profitable, while for higher levels of demand simultaneous investment produces a

higher value, if there are investment costs economies of scale. For intermediate levels, the

bigger, riskier and more profitable segment is the best choice to enter the market.
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