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Abstract

The risk of supply disruptions due to suppliers’ financial problems plays a prominent role in

manufacturers’ risk portfolios. Even large suppliers (e.g. Delphi) could file for bankruptcy, and

manufacturer’s actions, such as financial subsidies to the suppliers, affect profoundly suppliers’

financial health. Using a dynamic, stochastic, periodic-review model of the manufacturer’s joint

capacity reservation and financial subsidy decisions and a firm-value model of the supplier’s

financial state, this paper addresses the following questions: What is the optimal joint capacity

ordering and financial subsidy policy for the manufacturer? Must subsidy and capacity ordering

decisions be made jointly? How good are the recommendations from the traditional procurement

models, which ignore the benefits of controlling the supplier’s financial state through subsidies?

The paper presents general assumptions that allow the manufacturer to make ordering decisions

independently from subsidy decisions and investigates interactions between ordering and sub-

sidy decisions when these assumptions are violated. Conditions are presented for the optimal

subsidy policy to have a “subsidize-up-to” structure and for the optimal ordering decisions to

be newsvendor fractiles.
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1 Introduction

In October 2005, Delphi Corporation, the largest auto-parts supplier in the United States, filed for

Chapter 11 bankruptcy protection. According to Lester (2002), Delphi, which was ranked 63rd on

the S&P 500 list, had $17.1 billion in assets, $22.2 billion in debt, and $4.3 billion in unfunded

pension liabilities. While the size of Delphi’s bankruptcy is exceptional, it is just one example of a

long series of recent supplier bankruptcies in the automotive and other industries.1

Following a supplier’s bankruptcy, the probability of supply disruptions for the manufacturer

increases, as labor strikes are more likely to occur during contract renegotiations and supplier

bankruptcy reorganization. For example, following Delphi’s bankruptcy, both Delphi’s and GM’s

executives warned of possible supply disruptions (General Motors Corporation is Delphi’s largest

customer, accounting for 51% of Delphi’s sales). Even without labor strikes, order fulfillment and

product quality of the bankrupt supplier could be adversely affected, because bankrupt suppliers

lose key personnel, forgo investments in manufacturing process improvements, and sacrifice quality

control, either by choice or due to lack of financing (see Welch, 2005, for other examples of indirect

bankruptcy costs). The bondholders of the bankrupt supplier, concerned primarily with recovering

loans they extended to the firm, may try to liquidate the supplier’s operations in order to monetize

the supplier’s assets or try to “hold up” the manufacturer for additional payments.2

How can a manufacturer deal with the supplier’s deteriorating financial state and the resulting

loss of the supplier’s operational capacity? One answer to this question is offered by Ford Motor

Company and its supplier, Visteon, which considered filing for bankruptcy in 2005. Visteon’s

bankruptcy was averted after Ford (which is the largest of Visteon’s customers, accounting for

65% of Visteon’s sales) agreed to pay between $1.6 billion and $1.8 billion to help with Visteon’s

restructuring (White, 2005).

Similar to Ford, General Motors subsidizes its ailing supplier, Delphi. However, unlike Ford,

GM could not afford to buy Delphi out of bankruptcy completely, for this would have required

a $9 billion investment, a sum that would have forced GM itself into a perilous financial state,

dramatically increasing GM’s financing costs.3

1Collins & Aikman Corporation filed for bankruptcy protection on May 17, 2005, Universal Automotive Industries
filed for bankruptcy protection on May 26, 2005, Dana Corporation filed for bankruptcy protection on March 3, 2006,
Dura Automotive Systems filed for bankruptcy protection on October 10, 2006.

2A well-known “hold up” example is the UPF Thompson v. Land Rover case. UPF Thompson was a supplier of
chassis to Land-Rover’s Discovery model. After UPF Thompson’s bankruptcy in December of 2001, KPMG, which
was representing the claimholders of UPF Thompson, demanded a £35 million additional payment from Land Rover,
threatening to stop supplying chassis otherwise. Although Land Rover objected to these demands, considering them
blackmail, KPMG successfully argued in court that it is obligated to exploit, in the interests of the claimholders,
every asset of UPF Thompson, including its strategic position with respect to Land-Rover (see Jennings, 2002). The
case was settled outside of the courts for an undisclosed payment from Land Rover to KPMG.

3As the Wall Street Journal reported on January 12, 2007, General Motors bonds were rated Caa1 by Moody’s, B-
by Standard & Poor’s, and B by Fitch. The yield on GM bonds, maturing in July 2023, was 8.98%. For comparison,

1



A number of interesting research questions arise from GM/Delphi, Ford/Visteon, and other

examples. Specifically, what is the optimal joint capacity ordering and financial subsidy policy for

a manufacturer? Must subsidy and capacity ordering decisions be made jointly? How good are the

recommendations from the traditional procurement models, which ignore the benefits of controlling

the supplier’s financial state through subsidies?

To answer these questions I consider a dynamic, stochastic model of a supply chain, consist-

ing of a manufacturer and its supplier, and that combines elements of firm-value financial default

models and operational procurement models. The combined model is general as it imposes weak

assumptions on the evolution of the supplier’s financial state and allows general convex functions

to represent the manufacturer’s operating costs. For this general model I put forth conditions

under which the manufacturer can make capacity reservation decisions independently of the finan-

cial subsidy decisions. This separation result is similar in spirit to Modigliani and Miller (1958)

propositions that under certain conditions (specifically, perfect capital markets) one can separate

investment and financing decisions. One consequence of the separation result, is that the optimal

operational decisions in this paper can be the same as in the traditional procurement models. For

instance, when operating costs have the newsvendor structure, the optimal order quantities satisfy

the newsvendor fractile expressions.

The separation property does not mean that the subsidy decisions are irrelevant. On the

contrary, an option to subsidize the supplier could add significant value to the manufacturer. I

consider two examples for the use of subsidies: the subsidies are used by the supplier to reduce

its current liabilities, and the subsidies are used to invest in assets. For the model where subsidies

are invested in assets, the manufacturer’s optimal policy has the “subsidize-up-to” structure. For

the model where subsidies reduce liabilities, this structure need not be optimal, but one can still

analyze the optimal subsidies. Having found the optimal policies, I investigate their properties, for

example by studying comparative statics with respect to problem parameters. To illustrate how

the analysis of this paper can be applied in practice I discuss Ford’s decision to subsidize Visteon

in 2005.

Finally, I study the interactions between subsidy and capacity ordering decisions when the

separation assumptions do not hold.

To the best of my knowledge, this paper is the first attempt to model the relationship between

the supplier’s financial state and supplier’s capabilities to fulfill manufacturer’s order. This work is

related to the growing body of research on disruption risk management in supply chains (see, for

example, Vidal and Goetschalckx, 2000; Tomlin and Wang, 2005; Tomlin, 2006; Babich et al., 2007;

Babich, 2006; Dada et al., 2007; Tomlin and Snyder, 2006; Snyder and Daskin, 2006; Yang et al.,

10-year treasury yield was 4.66% and 20-year treasury yield was 4.84%. Thus, GM must pay approximately 100%
premium over the government rates to entice investors to lend GM money.
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2008, and references therein), and the research on random yields and supplier random capacities,

particularly a paper by Ciarrallo et al. (1994). In their paper, Ciarrallo et al. (1994) prove that

for a dynamic, periodic-review inventory problem, where supply uncertainty is modeled as random

supplier’s capacity and random capacities are a sequence of i.i.d. random variables, a base-stock

policy is optimal. This paper extends the main results in Ciarrallo et al. (1994) to the model with

general interperiod operating cost functions, Markov process for supply uncertainty, and subsidy

decisions that control the process for supply uncertainty. Because in this paper random capacity

is driven by a Markov process (instead of i.i.d. random variables), analytically I can characterize

a capacity reservation problem only (instead of an inventory problem, as in Ciarrallo et al. 1994).

The model in this paper is much more complex than a typical random-yield model, because, in

addition to determining the optimal ordering policy I control the dynamics of the distribution of

supply disruptions over time. Even the simplest mathematical properties of the corresponding

optimization problem, like convexity or unimodality are non-trivial to derive. Therefore, it is

remarkable that there exists a set of assumptions that allows the decomposition of this complex

problem into simpler ones and that leads to the optimal policies, which look deceivingly easy and

similar to the well-known inventory policies.

In a related work, Swinney and Netessine (2008) study the choice between short-term and long-

term contracts that the buyer offers to two suppliers in a two-period model, where suppliers could go

bankrupt if their random production costs turn out to be too high. Swinney and Netessine (2008)

show that the buyer prefers long-term contracts with the suppliers, because this arrangement allows

the buyer to offer higher a price to the supplier in the first period, reducing the supplier’s likelihood

of default. This is an interesting insight, which can be interpreted in the context of this paper as

that the subsidies to the suppliers can be used by the manufacturer to control supplier default risk.

My model is different from the one by Swinney and Netessine (2008) in several dimensions. For

example, I solve an N -period problem with general interperiod operating cost functions, general

random capacity functions, the financial subsidies as decisions, and financial subsidy costs, but

with only one supplier. I also employ a different model for the supplier’s financial defaults.

The supplier’s financial state model in this paper belongs to the family of firm-value financial

defaults models. Firm-value (also called Merton) models are based on the seminal work by Black

and Scholes (1973) and Merton (1974), who considered corporate debt as a contingent claim on the

value of the firm. Because these models focus on the economic reasons for bankruptcies, firm-value

models are well-suited for studies of the interaction between lenders and borrowers, effect of taxes

and bankruptcy costs, determination of the optimal capital structure (see, for example, Leland,

1994; Leland and Toft, 1996; Briys and de Varenne, 1997), and as in this paper, of interactions

between the supplier’s financial state and its effective capacity.
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The remainder of the paper is organized as follows. Model and assumptions are presented in

Section 2, followed by the derivation of the optimal policy in Section 3. In Sections 4 effects of

codependence between supply and demand shocks on the optimal policies are investigated. In

Section 5 I discuss effects of inventory on the optimal policies. Model with proportional random

yield is considered in Section 6. Effects of up-front production costs are studied in Section 7.

The paper concludes with a discussion of managerial implications, model limitations, and possible

extensions in Section 8. Technical results, proofs, and a Ford vs. Visteon example are presented in

the Appendix.

2 Model and Assumptions

Consider a dynamic, periodic-review, symmetric-information model of a manufacturer reserving

production capacity with a risky supplier.4 The number of periods in the planning horizon is

N . The uncertainty in the final-product market is represented by {Dn}N
n=1 — a sequence of

i.i.d. random variables with p.d.f. fD and c.d.f. FD. One can think of the final-product market

uncertainty as the demand for the product (the term we5 will use) or the market size. Let r be

the risk-free interest rate in the economy.6 Then α = e−r∆, where ∆ is the length of one period,

represents the one-period discount rate. Assume that either conditions for the existence of the

unique pricing measure are satisfied (see Pliska, 1997) or that the manufacturer is risk-neutral.

The timing of events within each period is as follows: at the beginning of a period the manufac-

turer observes the supplier’s state (which will be described shortly), the level of its own inventory,

x, and decides on how much, z, capacity to reserve with the supplier and how much, Θ, to pay

the supplier immediately (details of payments will be discussed shortly). By the end of the period

the uncertainty about the supplier’s capacity is realized and capacity, Y , becomes available to the

manufacturer. The manufacturer pays for the realized capacity and uses it to meet demand, D,

incurring operating costs M(x + Y, D) (examples of operating costs will be discussed shortly).

The supplier may incur upfront costs based on the order it received (the upfront costs will be

denoted c0(z)) and it must pay costs contingent on the realized capacity (the contingent costs will

be denoted c(Y ), where function c(·) is increasing and convex). The supplier accepts the contract
4Because products suppliers provide are often customized, the possibility of the manufacturer changing suppliers

during the planning horizon will not be considered. One can attribute the restriction of finite (or countable) decision
points to human-resource constraints, which limit how closely the suppliers can be monitored. For example, in the
automotive industry a manufacturer could have thousands of suppliers and only a few supplier-account managers.
These human-resource constraints could have been to blame, in part, for Land Rover’s management overlooking UPF
Thompson’s bankruptcy. According to Lester (2002), the purchasing director of Land Rover had over 900 contracts
to supervise.

5Here and in the sequel ‘we’ refers to the readers and the author.
6One could have assumed that the risk-free rate follows a stochastic process (e.g. a Gaussian diffusion as in Briys

and de Varenne 1997) But this, more general, model does not generate new insights, while making calculations and
exposition more tedious.
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with the manufacturer if the manufacturer covers both upfront and contingent costs at the time

they are incurred. Furthermore, the manufacturer may decide to pay the supplier an additional

amount θ ≥ θ at the beginning of a period. This additional amount could represent the benefits to

the supplier from loans extended at favorable terms, or guarantees of future orders, or payments

to the supplier for reserving capacity. For the latter, θ = wz, where w is the capacity reservation

price. Because the manufacturer determines both the price, w, and the order quantity, z, one can

use a single variable θ in the analysis (that is the manufacturer need not inflate its order, z, because

increasing price, w, is easier). In general, I will refer to all kinds of additional payments represented

by θ as subsidies (even if some of them are not subsidies literally). Parameter θ is the minimum

profit the supplier requires when working with the manufacturer and its value reflects the market

power of the supplier. For the ease of exposition θ = 0, but this assumption does not affect the

qualitative insights of this paper. In summary, at the beginning of each period the manufacturer

pays Θ = c0(z)+ θ to the supplier, and at the end of the period the manufacturer pays c(Y ) to the

supplier.

I do not explicitly model the supplier’s decisions (because the resulting general equilibrium

model, connecting the supplier’s decisions with the process for its financial state and with the

manufacturer’s decisions is not tractable). But to alleviate concerns that the supplier could “take

the money and run”, note that the supplier is paid its production cost after it delivers capacity to

the manufacturer. Furthermore, the manufacturer may have visibility into supplier’s actions (e.g.

GM or Ford have close relationships with their suppliers Delphi and Visteon) and the threat of

losing future business is a significant deterrent for the supplier. Similarly, the threat of losing a

supplier prevents the manufacturer from reneging on its payments.

The financial state of the supplier at the beginning of period n is denoted by An. The financial

state transition rule is An+1 = TA(An, θn, Bn), where {Bn}N
n=1 are i.i.d. random variables, each

with a c.d.f. FB and a p.d.f. fB, which has infinite support. The transition function, TA, depends

on the subsidy amount, θ, rather than the total payment, Θ = c0(z) + θ. Because c0(z) payment

covers the supplier’s cash outflow of the same amount, the net cash flow to the supplier at the

beginning of a period equals the subsidy, θ. Similarly, the contingent payment, c(Y ), at the end of

a period covers supplier’s corresponding costs. Thus, if the manufacturer would like to control the

evolution of the supplier’s financial state, it can do so through subsidies, θ. The joint distribution

of Bn and Dn is given by a c.d.f. FBD.

An example of a model of the supplier’s financial state and the transition rule, TA, is based on

the celebrated firm-value (also called structural or Merton) family of models for pricing credit risk.

In such models, the supplier’s financial state, A, is the asset value of the supplier firm. During

each period (after subsidies are received) the assets of the supplier evolve due to cash flows from its
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businesses (other than the business with the manufacturer). A typical assumption in the credit-risk

literature is that assets follow a Geometric Brownian Motion (GBM) process (under a risk-neutral

measure), between the times when cash flows from the manufacturer arrive:

dA(τ)
A(τ)

= µdτ + σdW (τ). (1)

In (1) µ could be different from the risk-free rate, r, because of the dividends paid to the claimhold-

ers on the supplier firm. Random shock, B, represents the percentage change in the asset value,

A(∆)/A(0), each period. Under the GBM assumption B is log-normally distributed with param-

eters
(
(µ− 1

2σ2)∆, σ
√

∆
)

(recall that ∆ is the length of each period). The GBM process for the

assets, besides being well-studied and accepted in finance literature, facilitates calculations of the

optimal policies in this paper. One could relax the GBM assumption (see Section 8) without losing

the qualitative insights of this paper, but I will retain it for expositional reasons.

Continuing with the example based on credit-risk models, the supplier has debt on its books.

The amounts and maturities of debt are public knowledge at time 0.7 The payments on debt are Fn

and are due at the end of period n = 1, ..., N . This assumption corresponds to either a perpetual

loan with interest payments, Fn, or a loan which is retired every period and replaced with a new

loan with a face value of Fn.

The supplier uses subsidies, θ, either to increase its asset level at the beginning of a period

(say period n) from An to An + θ, or to reduce immediate liabilities from Fn to Fn − α−1θ (factor

α−1 reflects the fact that liabilities are reduced at the end of the period). In this paper we will

examine the consequences of both modeling assumptions and will refer to them as asset-investment

model and liabilities-reduction model. For the asset-investment model, the transition rule for the

supplier’s financial state is An+1 = TA(An, θn, Bn) = (An + θ)Bn. One can think of asset in-

vestments as impulse controls which change the level of the GBM process (1) at given times.

These impulse controls connect the supplier’s financial health with the manufacturer’s operational

decisions (as we will see, the optimal subsidies depend on the optimal capacity reservation deci-

sions). For the liabilities-reduction model, the transition rule for the supplier’s financial state is

An+1 = TA(An, θn, Bn) = AnBn.

Similar to Merton (1974), I model the supplier’s financial viability by the ratio of assets to

liabilities at the of the period, called the distance to bankruptcy, that is by ξn = ξn(An, θn, Bn) =
(An+θn)Bn

Fn
for the asset-investment model and ξn = ξn(An, θn, Bn) = AnBn

Fn−α−1θn
for the liabilities-

reduction model. In general, for any interpretation of the supplier’s financial state, the distance

to bankruptcy, ξn, depends on the subsidy, θn, the current financial state, An, and the shock to

the financial state, Bn, through ξn = ξn(An, θn, Bn). It is natural to assume that ξn(A, ·, B) is
7A number of empirical studies show that many firms are slow to change their debt level even if they deviate from

the “optimal” debt/equity ratio (see Fama and French, 2002; Welch, 2004; Leary and Roberts, 2005).
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increasing for all A and B, i.e. higher subsidies increase the distance to bankruptcy for any initial

financial state A and shock B. I will also assume that ξn(A, θ, ·) is increasing for all A and θ, i.e.

higher values of shocks B result in greater distance to bankruptcy.

As was discussed in the introduction, the supplier’s financial state may affect labor availability,

its output rate, quality of products, tardiness in order fulfilment, etc. In this paper the model of

supply risk to the manufacturer is an uncertain supplier’s capacity, Yn, which is a function of the

order quantity, zn, and the supplier’s distance to bankruptcy, ξn, that is Yn = Yn(zn, ξn). Details

of modeling random capacity are presented in Section 3.

The cost to the manufacturer of paying Θ = c0(z) + θ up-front to the supplier is φ(Θ), where

function φ satisfies φ(0) = 0, φ′(θ) ≥ 1, φ′′(θ) ≥ 0. One could think that as the manufacturer

pays the supplier, it worsens its own financial state. The manufacturer’s credit ratings could be

downgraded, leading to higher financing costs. A special case of the cost function φ is φ(θ) = θ.

Although, only positive subsidies will be allowed, for technical reasons, it will be convenient to

define φ on all real numbers as follows: φ(s) = 0, for all s ≤ 0.

As was mentioned earlier, function M(x + y, d) represents the manufacturer’s operating costs

(minus revenues). In this expression y is the supplier’s capacity available to the manufacturer

during a period, x is the inventory, and d is the realization of demand. In addition, define the

expected operating cost function M(y) = E[M(y,D)], where expectation is with respect to the

distribution of demand D, conditional on the value of Y = y − x. In this paper we will need the

expected operating costs function, M , to be convex. The general forms of functions M and M are

sufficient to derive the majority of results. This is important, because this affords us flexibility to

incorporate features of a particular practical problem into the operating cost function. For example,

one can consider a model for M where the manufacturer buys from a spot market as a recourse

against a supply shortage. In building intuition about the properties of the operating cost functions

it is useful to consider three special cases: newsvendor model, linear demand model, and iso-elastic

demand model.

Newsvendor: M(y, d) = h(y − d)+ + p(d− y)+, M(y) = hE(y −D)+ + pE(D − y)+, (2a)

Linear: M(y, d) = −p(d− gy)y, M(y) = −p(E[D]− gy)y, (2b)

Iso-elastic: M(y, d) = −pdy−gy, M(y) = −pE[D]y−gy. (2c)

Parameters h and p represent marginal overage and underage costs for the newsvendor model and

p represents unit revenue for the other models. One could also think of p as the expected per unit

recourse cost in case of a supply shortage. Parameter g is the price sensitivity. For the iso-elastic

demand model, 0 < g < 1.
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The manufacturer may maintain raw materials inventory as a hedge against future supply

disruptions. The transition rule for inventory is xn+1 = Tx(xn + Yn − Dn), where Tx is a non-

decreasing function.

To summarize, the manufacturer solves the following sequential optimization model:

minE
N∑

n=1

αn−1
{

φ [c0(zn) + θn] + c[Yn(zn, ξn)] +M[xn + Yn(zn, ξn), Dn]
}

, (3a)

s.t.

zn ≥ 0, θn ≥ 0, ξn = ξn(An, θn, Bn), (3b)

An+1 = TA(An, θn, Bn), n = 1, ..., N, (3c)

xn+1 = Tx[xn + Yn(zn, ξn)−Dn], n = 1, ..., N. (3d)

Throughout this paper I will assume that all functions are sufficiently smooth (so that their deriva-

tives are integrable) in order for the integration and differentiation operators to be interchangeable

(Folland, 1984, Chapter 2).

3 Conditions for Independence of Ordering Decisions from Sub-
sidy Decisions

As was mentioned in the introduction, the analysis of random-yield models (similar to (3)) is non-

trivial and leads to complex optimal policies (e.g., see Henig and Gerchak, 1990; Parlar et al., 1995).

The problem in this paper is even more difficult than a typical random-yield problem, because we

would like to know not only the optimal ordering policy, given a process for random supply, but

also the optimal policy for controlling the evolution of the random supply process over time. In this

section I will describe a set of assumptions that will enable us to find the optimal capacity ordering

policy separately from finding the optimal random-supply-process control policy, thus affording

analytical solutions to our complex problem. In the following sections I will discuss consequences

of relaxing these assumptions.

Assumption 1. Demand and supply shocks are independent (i.e. Dn and Bn are independent).

This assumption is reasonable for many problems. Recall the interpretation of supply shocks,

Bn, as generated by the supplier’s businesses other than its business with the manufacturer. If the

manufacturer and these other businesses are not in the same industry, then demands (and hence

payments to the supplier) that the manufacturer and other businesses observe can be independent.

The relaxation of the independence assumption is considered in Section 4.

Assumption 2. The manufacturer does not carry inventory (i.e. state variable xn = 0).
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In some settings this assumption is justified. For example, one could think that the products are

short-lived. Every period in the model represents the lifecycle of a product and inventory of obsolete

products is not valuable. At the same time the manufacturer maintains the long-term relationship

with the supplier. The relaxation of the no inventory assumption is discussed in Section 5. Without

inventory, one can combine contingent ordering costs c(y) and operating costs M(y, d) as follows:

L(y, d) def= c(y) +M(y, d). Taking expectation with respect to demand, D, L(y) def= c(y) + M(y).

Assumption 3. The supplier delivers capacity Y (z, ξ) = min[z, K(ξ)]

Function K is the supplier’s effective capacity and its argument is the supplier’s distance to

bankruptcy, ξ. The random capacity Assumption 3 not only leads to the desirable mathematical

properties of the manufacturer’s model, but also it is more appropriate for the automotive industry

examples, which motivated this research. An alternative, proportional random-yield assumption,

Y (z, ξ) = z min[1,K(ξ)], is discussed in Section 6.

I will assume that the supplier effective capacity function is

K(ξ) = k min (ξ, 1) , (4)

where k is the regular capacity level of the supplier. If the supplier is financially viable (i.e. ξ ≥ 1)

then it can provide the manufacturer up to its regular production capacity k. If the supplier is

experiencing financial difficulties (i.e. ξ < 1) the supplier’s capacity is proportionately reduced. In

general, for a strictly increasing, concave function g : R+ → R+, (where R+ is the set of positive

real numbers), and K(ξ) = k min [g (ξ) , 1], the qualitative results of this paper will remain true

(although mathematical expressions will change), but we will focus on expression (4) for simplicity.

Section 8 contains further discussion of the modeling choice for the effective capacity, K, and its

effects on the analysis.

Assumption 4. The supplier’s capacity costs depend only on the realized capacity (c0(·) ≡ 0).

The costs of capacity to the supplier comes from the cost of its production assets (e.g. number

of workers it employs). Therefore, one could argue that the costs to the supplier are more likely

to depend on the realized capacity, Y (which is a function of supplier’s assets), than on the order,

z, the manufacturer placed. Assumptions of payments contingent only on the quantity delivered

have appeared in many earlier random-yield models (e.g., Anupindi and Akella, 1993; Ciarrallo et

al., 1994; Dada et al., 2007). Implications of relaxing Assumption 4 are presented in Section 7.

With these assumptions, problem (3) becomes

minE

N∑

n=1

αn−1
{

φ(θn) + L[Y (zn, ξn), Dn]
}

, (5a)
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s.t.

zn ≥ 0, θn ≥ 0, ξn = ξn(An, θn, Bn), (5b)

Y (z, ξ) = min[z, K(ξ)], (5c)

K(ξ) = k min (ξ, 1) , (5d)

An+1 = TA(An, θn, Bn), n = 1, ..., N. (5e)

To solve optimization problem (5) it is useful to rewrite it in a DP recursion form. Let Vn(A) be

the optimal cost to the manufacturer starting operations in period n when the supplier’s financial

state is A. Then, VN+1(A) = 0, and for n = 1, ..., N

Vn(A) = min
z≥0,θ≥0

{φ(θ) + EL[Y (z, ξn)] + αEVn+1[TA(A, θ, B)]} , (6)

where B has the same distribution as B1 and ξn = ξn(A, θ, B). It will be convenient to define

Jn(A, z, θ) = φ(θ) + EL[Y (z, ξn)] + αEVn+1[TA(A, θ, B)]. Using this function, recursion equation

(6) can be rewritten as Vn(A) = minz≥0,θ≥0 Jn(A, z, θ).

3.1 Optimal Ordering Policy

In the next two subsections we will find the optimal capacity ordering and financial subsidy policies

for problem (6). The following proposition describes the optimal ordering policy. All proofs are in

the Appendix.

Proposition 1. In every period, for any subsidy decision, θ, the optimal order quantity, z, in

problem (6) is the minimum between regular capacity level, k, and the solution of the following

equation:

L′(z) = 0. (7)

From Proposition 1, for the newsvendor model (2a) with linear costs c(y) = cy, the optimal

order quantity satisfies the newsvendor’s critical fractile expression Pr[D ≤ z] = p−c
p+h . Proposition 1

yields results in non-newsvendor settings as well (which are presented in the Appendix). The main

takeaway from Proposition 1 is that, given the model assumptions, particularly the assumption

regarding the supplier effective capacity (Assumption 3), the optimal capacity order does not depend

on the subsidy amount. This is great news from the manager’s point of view, because the existing

models, which ignore financial subsidies, generate the optimal order quantities nevertheless. The

research takeaway from this proposition is that we can eliminate one of the decision variables

(order quantity) from the optimization problem (6). One should not interpret the statement of

Proposition 1 as the irrelevance of financial subsidies. Although order quantities do not depend on

financial subsidies, the manufacturer’s objective function does. In the next subsection we will find

the optimal financial subsidy policy, which minimizes the manufacturer’s cost.
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It is reasonable to assume that, unless the supplier is in financial trouble, the supplier has

sufficient capacity to satisfy the manufacturer’s optimal order. In other words, if z0 is the solution

of (7), then the regular supplier’s capacity k ≥ z0. I will assume for the remainder of the paper that

this is the case, and therefore the optimal order quantity from Proposition 1 is z0. Consequently,

Y (z∗, ξ) = min[z0, k min(ξ, 1)] = min[z0, kξ], and one can focus on the effective capacity defined as

K(ξ) = kξ, rather than (5d).

3.2 Optimal Subsidy Policy

Knowing that the optimal order quantity, z∗, satisfies (7), problem (6) is simplified to VN+1(A) = 0,

and for n = 1, ..., N

Vn(A) = min
θ≥0

{φ(θ) + EL[Y (z∗, ξn)] + αEVn+1[TA(A, θ, B)]} , (8)

where ξn = ξn(A, θ,B), Y (z, ξ) = min(z, K(ξ)) and K(ξ) = kξ. Properties of this optimization

problem and its solution depend on the properties of functions ψn(θ) = EL[Y (z∗, ξn)].

Lemma 1. If for all n, A, and B function ξn(A, ·, B) is increasing, then ψn(θ) = EL[Y (z∗, ξn)],

where ξn = ξn(An, θ, Bn), is decreasing in θ. If function ξn(A, ·, B) is concave, then function ψn(·)
is convex.

For the models where the supplier’s financial state is the supplier’s asset value, function ξn(A, ·, B)

is increasing. Therefore, for those models ψn(·) is decreasing. Furthermore, for the asset-investment

model, function ξn(A, ·, B) is concave and therefore ψn(·) is convex. Unfortunately, for the liabilities-

reduction model, ξn(A, ·, B) is convex and therefore ψn(·) need not be convex.

3.3 Optimal Subsidy Policy: Asset-Investment Model

For the asset-investment model, transition rule is An+1 = TA(An, θ, Bn) = (An + θ)Bn, and the

distance to bankruptcy is ξn = ξn(An, θ, Bn) = (An+θ)Bn

Fn
. It will be convenient to define a new

decision variable: the supplier’s asset level immediately after receiving financial subsidy, a = A+ θ.

Using this variable, the transition function and the distance to bankruptcy are redefined as An+1 =

TA(a, Bn) = aBn and ξn = ξn(a,Bn) = aBn
Fn

. Dynamic program (8) is as follows. VN+1(A) = 0,

and for n = 1, ..., N

Vn(A) = min
a≥A

Hn(A, a),

Hn(A, a) = φ(a−A) + EL[Y (z∗, ξn)] + αEVn+1(aB).
(9)

Modifying Lemma 1 to accommodate the new decision variable, one can verify that ψn(a) =

EL[Y (z∗, ξn(a, B))] is decreasing and convex in a, which leads to the familiar “up-to” structure of

the policy.
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Proposition 2. For all n, functions Vn and Hn (defined in (9)) are convex and the subsidy policy

has a “subsidize-up-to” structure. Specifically, there exist target levels, Sn, such that the optimal

level of the supplier’s assets after financial subsidies is a∗n = max(Sn, An). Furthermore, if φ(x) is

linear, then target levels, Sn, do not depend on the current level of the supplier’s assets, An.

The subsidize-up-to policy resembles base-stock inventory policy. In spite of that, the optimality

of the subsidize-up-to policy is not obvious. Lemma 1 and the modeling assumptions that lead to

convex function ψn are needed in the proof of Proposition 2. To further appreciate the importance

of the result, consider that for the other natural model of how subsidies are used — the liabilities-

reduction model — subsidize-up-to policy does not have to be optimal. Still, as the next subsection

shows one can find the optimal policy for that model as well.

3.4 Optimal Subsidy Policy: Liabilities-Reduction Model

For the liabilities-reduction model, transition rule is An+1 = TA(An, θ, Bn) = AnBn, and the

distance to bankruptcy is ξn = ξn(An, θ, Bn) = AnBn
Fn−α−1θ

, which is a convex function of θ. This

model is myopic with respect to the subsidy decisions. Therefore, even though convexity results

from Lemma 1 cannot be applied, one can still identify sufficient conditions for the quasi-convexity

of the manufacturer’s optimization problem (Proposition 3 below). Instead of the specific form

(i.e. ξn(An, θ, Bn) = AnBn/(Fn − α−1θ)) of the distance to bankruptcy let’s consider two more

general representations ξn(An, θ, Bn) = qn(An, θ)Xn(Bn) and ξn(An, θ, Bn) = qn(An, θ) + Xn(Bn).

Function qn in these expressions can be thought of as the distance to bankruptcy without random

shock to the supplier’s assets. To be consistent with earlier assumptions, function qn(A, ·) must be

increasing for all A. For the former representation it is also necessary that Xn(B) ≥ 0 for all B.

Proposition 3. Suppose that for n = 1, ..., N , ξn(An, θ, Bn) = qn(An, θ)Xn(Bn) or ξn(An, θ, Bn) =

qn(An, θ)+Xn(Bn). If φ′(·)
q′n(A,·) is increasing for all A, then the manufacturer’s problem (8) is quasi-

convex and the optimal subsidy amount, θ∗n, is the maximum of zero and the solution of equation

−k
∂qn(An, θ)

∂θ
E

[
Xn(Bn)L′(kξn)1{kξn≤z∗}

]
= φ′(θ), (10)

when ξn = ξn(An, θ, Bn) = qn(An, θ)Xn(Bn) or equation

−k
∂qn(An, θ)

∂θ
E

[
L′(kξn)1{kξn≤z∗}

]
= φ′(θ), (11)

when ξn = ξn(An, θ, Bn) = qn(An, θ) + Xn(Bn).

The main insight from this proposition is that, if ratio φ′(·)
q′n(A,·) (the marginal subsidy costs

over the marginal supplier’s distance to bankruptcy function) is increasing for all A, then to find

the optimal subsidy amount in any period, given the initial value of the supplier’s assets, A, the
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manufacturer must solve equation (10) or equation (11). In addition, first order conditions (10)

and (11) define conditions when the manufacturer will not offer subsidies:

− k
∂qn(An, 0)

∂θ
E

{
Xn(Bn)L′[kξn(An, 0, Bn)]1{kξn(An,0,Bn)≤z∗}

}
< φ′(0) (12a)

− k
∂qn(An, 0)

∂θ
E

{
L′[kξn(An, 0, Bn)]1{kξn(An,0,Bn)≤z∗}

}
< φ′(0) (12b)

To prove Proposition 3 it is critical to assume that function qn(A, ·) is increasing, but the specific

definition of function qn is not essential (one example is qn(A, θ) = A/(Fn − α−1θ)). Given an

increasing function qn, one can find function φ, which satisfies φ(0) = 0, φ′(θ) ≥ 1, φ′′(θ) ≥ 0,

and the sufficient condition for quasi-convexity: i.e. φ′(·)
q′(A,·) is increasing. For example, if Fn = F

for all n and qn(A, θ) = A/(F − α−1θ), the financial cost function could be chosen as follows

φ(θ) = A
F−α−1θ

− A
F for A ≥ F2 and F ≤ F . This cost function φ satisfies all of the conditions

above.

The first order conditions (10) and (11) may appear, at first glance, to be difficult to com-

pute and analyze. But with GBM distribution (1) on the evolution of the supplier’s assets and

independence of the demand and supply shocks, these conditions require only slightly more compu-

tation effort8 than the Black-Scholes formula for option prices. The expressions for the first order

condition (10) for the specific inter-period operating cost functions are presented in the Appendix.

3.5 Model and Solution Properties, Comparatives Statics

In this subsection we will discuss the properties of the model and the solution. First, let’s consider

the relationship between the target asset level and the supplier’s assets at the beginning of a period.

Proposition 4. If the cost of financial subsidies, φ, is a strictly convex function, then, for the

asset-investment model (9),

(i) The optimal subsidize-up-to level, Sn, and the optimal asset level, a∗n, increase in the

current value of the supplier’s assets, A, for any period n.

(ii) Value functions Vn are decreasing for all n.

Next, we will study the dependence of the optimal decisions on problem parameters for the

specific forms of the manufacturer’s operating cost models. The following lemma will be useful in

proving Proposition 5.

Lemma 2. Let π be some parameter that affects operating cost function L. If ∂2

∂y∂πL(y; π) ≤ 0 then,

for the asset-investment model (9), for all n, Vn(A; π) is submodular and the optimal subsidize-up-to

level Sn is increasing in π.
8Additional effort is needed to find the root of a non-linear equation numerically.
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Proposition 5.

For the asset-investment model (9) and linear capacity costs, c(y) = cy:

(i) For the newsvendor model (2a), the optimal subsidize-up-to levels, Sn, increase in the

shortage penalty, p, decrease in the capacity cost, c, and decrease in the holding cost, h.

If the demand is normally distributed (Dn = µD + σDZn, where Zn ∼ N (0, 1)), then the

optimal subsidize-up-to levels, Sn, increase in the mean demand, µD. If the demand is

normally distributed and p−c
p+h ≤ 1

2 , the optimal subsidize-up-to levels, Sn, decrease in the

standard deviation, σD, of the demand.

(ii) For the linear-demand model (2b), the optimal subsidize-up-to levels, Sn, increase in the

expected demand, E[D], decrease in the capacity cost, c, and increase in the price sensi-

tivity, g.

(iii) For the iso-elastic demand model (2c), the optimal subsidize-up-to levels, Sn, increase in

the expected demand, E[D], decrease in the capacity cost, c, and increase in the revenue,

p.

To derive the next property of the optimal solution, I will focus on a single-period newsvendor

model (or the newsvendor model where the supplier uses financial subsidies to reduce current

liabilities) and take advantage of equation (28) (see Appendix) that describes the optimal subsidy

amounts.

Proposition 6. For a single-period newsvendor model, if φ′(·)
q′(A,·) is increasing and

(
µ− σ2

2

)
∆ ≥ ln

(
z∗

kq(A, 0)

)
, (13)

then the optimal subsidy amount, θ∗, increases in the volatility of the supplier’s assets, σ.

Inequality (13) is a sufficient condition on the values of the supplier’s asset volatility, σ, the

drift of the supplier’s assets, µ, the optimal order quantity, z∗, and the supplier production capacity

function prior to random shock, q. Roughly speaking, this condition says that the volatility, σ, is

not too large relative to the drift, µ. Then Proposition 6 states that the optimal subsidy to the

supplier is increasing in the volatility of the supplier’s assets, σ. The following numerical example

supplement the analytical statements in this section.

Example 1. For the first numerical example, let’s consider a single-period newsvendor model, with

the parameter values: period length ∆ = 1, drift of the supplier’s asset process µ = 0.05, base-case

volatility of the supplier’s asset process σ = 0.3, initial level of the supplier’s assets A(0) = 1000,

level of the supplier’s liabilities F = 1000, regular supplier’s capacity k = 5500. Supplier applies

financial subsidies to reduce its liabilities. The manufacturer faces normally distributed demand
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with a mean µD = 5000 and standard deviation σD = 1000. The profit margin for the manufacturer

is r − c = 0.5, holding cost is h = 0.5, penalty for shortage p = 1. The manufacturer’s cost of

financial subsidies is φ(θ) = A
F−θ − A

F where A = F2, F = 1000. In this example parameter values

are chosen so that the manufacturer’s orders contribute significantly to the supplier’s business and

the supplier is close to bankruptcy at the beginning of the planning horizon.9

Figure 1 illustrates how the optimal subsidy amount, θ∗, depends on the parameters of the

stochastic process describing the evolution of the supplier’s assets. The left panel of this figure shows

the dependence of θ∗ on the volatility of the supplier’s assets, σ. As we know from Proposition 6,

for small σ, θ∗ increases in σ. The left panel of Figure 1 also shows that if the supplier’s assets are

too volatile, the manufacturer will start reducing the subsidy amount. The right panel of Figure 1

shows the dependence of the optimal subsidy amount on the initial supplier’s asset level, A(0). As

one can expect, when the initial supplier’s asset level is already high, the manufacturer will not

offer any subsidies. When the initial supplier’s asset level is too low, the manufacturer will not

offer any subsidies either, because benefits of subsidies do not justify the cost of subsidies, φ(θ).
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Initial Level of 
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Figure 1: The optimal subsidy amount, θ∗, as a function of supplier parameters: asset volatility,
σ, and initial asset level, A(0) (see Example 1 for the numerical values of other model parameters)

Figure 2 illustrates the dependence of the optimal subsidy amount, θ∗, on the demand param-

eters: mean, µD, and standard deviation, σD. The graph in the left panel of Figure 2 is consistent

with the statement of Proposition 5 applied to the one-period problem, that is, the optimal subsidy

amount increases in the mean demand. From the right panel of Figure 2 we see that, for this nu-

merical example, the optimal subsidy amount decreases in the demand standard deviation, σD. As

we know from Proposition 5, if p
p+h ≤ 1

2 the optimal subsidy decreases in σD. There are numerical

examples (not presented here), where p
p+h > 1

2 and the optimal subsidy is non-monotone in σD.

The benefits to the manufacturer from subsidizing the supplier could be significant, as Figure 3

illustrates. This figure shows the percent improvement in the manufacturer’s objective function
9For all numerical examples, I chose to present only the results that are the most interesting and select parameter

values that lead to results that are both representative and interesting.
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Figure 2: The optimal subsidy amount, θ∗, as a function of demand parameters: mean, µD, and
standard deviation, σD (see Example 1 for the numerical values of other model parameters)
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Figure 3: Percent improvement in manufacturer’s cost if subsidies are given to the supplier as a
function of the volatility of the supplier’s assets σ and supplier initial asset level A(0) (see Example
1 for the numerical values of other model parameters)

(in this case, newsvendor objective function) as a result of giving the supplier the optimal subsidy

instead of zero subsidy. The magnitude of benefits for a particular real-life problem will depend on

the values of the problem parameters, such as operating cost function, L, and subsidy cost function,

φ. However, it is important to observe that paying suppliers only their marginal production cost

can be suboptimal for the manufacturer, especially when the supplier is in or close to bankruptcy.

This concludes the first numerical example.

I also applied results of this section to analyze the decision of Ford to subsidize Visteon in 2005.

The discussion of Ford vs. Visteon example is presented in the Appendix.

4 Dependent Supply and Demand Shocks

A condition necessary for the separation of the capacity ordering policy from the subsidy policy

is the independence between the manufacturer’s demand, D, and the shocks, B, to the supplier’s

state, A. One may argue that if all supplier’s customers (including the manufacturer) are in the
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same industry, then the demand and the shocks could be positively correlated. Alternatively, it

can also happen that as the demand for the manufacturer’s products increases the demand for

the products of other firms decreases (along with cash flows to the supplier). For instance, the

manufacturers and the other firms could be competing in the same final product market. This

would lead to negative correlated between the demand and the shocks. Finally, if the supplier’s

customer portfolio is well diversified, then the demand and the shocks can be independent. We have

studied the latter situation in earlier sections. In this section we investigate the effect of correlation.

Assumptions 2, 3, and 4 continue to hold. Without the separation between ordering and subsidy

decisions the analysis of problem (3) is more complex and to glean insights into problem properties

we will use a numerical study.

Example 2. Consider a single-period newsvendor model where the supplier uses subsidies to invest

in its assets, with the following parameter values: period length ∆ = 1, drift of the supplier’s asset

process µ = 0.05, initial level of the supplier’s assets A(0) = 50, level of the supplier’s liability F =

100, regular supplier’s capacity k = 130. The manufacturer faces normally distributed demand with

mean µD = 100 and standard deviation σD = 20. The overage cost is h = 1, the underage cost is

p = 1.2. The manufacturer’s cost of financial subsidies is φ(θ) = θ. As the measure of correlation in

this example I use linear correlation coefficient, that is ρ
def= corr[D, dW (∆)] = Cov[D,dW (∆)]√

V ar[D]
√

V ar[dW (∆)]
,

where dW (∆) is the shock to the supplier’s assets (equation (1)) over the planning horizon ∆.

Figure 4 illustrates the effect of correlation, ρ, and the volatility of the supplier’s assets, σ, on

the order quantity, the target level of the supplier’s assets, and the optimal objective value. Observe

that as the correlation between demand and supply shocks increases, the optimal order quantity

increases and the objective value decreases (the objective value represents the manufacturer’s costs).

Intuitively, as the correlation increases, high demand is more likely to be matched by the positive

shock to the supplier’s assets and the manufacturer is more likely to meet the demand with the

supplier’s capacity. Although Figure 4 shows that the target supplier’s asset levels increase in

correlation, other numerical experiments showed that this relationship could be non-monotone.

From Figure 4, the optimal order quantity, z∗, is decreasing in the volatility of the supplier’s

assets, σ, except when supply and demand shocks are independent, ρ = 0 (the case studied in the

previous section). Target asset level is decreasing in the volatility and the costs of the manufac-

turer are increasing. These observations are consistent with the properties of the optimal solution

discussed in Section 3.5. This concludes the example.
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Figure 4: The effect of correlation between manufacturer’s demand and the supplier’s asset shocks.
Top left panel: the optimal order quantity of the manufacturer. Top right panel: the optimal
target level of the supplier’s assets after subsidy. Bottom panel: the optimal objective value of the
manufacturer. The x-axes of each picture measures correlation. Sigma refers to the volatility of
the supplier’s assets, σ.

5 Inventory and Backorders

In this section we will relax Assumption 2 by introducing inventory and backorders. Assumptions

1, 3, and 4 continue to hold. Problem (3) becomes:

minE
N∑

n=1

αn−1
{

φ (θn) + c[Y (zn, ξn)] +M[xn + Y (zn, ξn), Dn]
}

, (14a)

s.t.

zn ≥ 0, θn ≥ 0, ξn = ξn(An, θn, Bn), (14b)

Y (z, ξ) = min[z, K(ξ)], K(ξ) = k min (ξ, 1) , (14c)

An+1 = TA(An, θn, Bn), n = 1, ..., N, (14d)

xn+1 = xn + Y (zn, ξn)−Dn, n = 1, ..., N. (14e)

Equation (14e) represents the inventory transition rule between periods (i.e., Tx(s) = s). It is

convenient to combine ordering and inventory cost terms in one expression. For that I need to

make additional assumptions that the contingent order cost is linear, c(y) = cy, and that at the

end of the last period inventory can salvaged at the same price as it was bought initially. Then

a rearrangement of terms in the objective of optimization problem (14), as in Heyman and Sobel

(2004, Chapter 3), leads to the desired representation. Specifically, the objective function of problem
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(14) contains
N∑

n=1

αn−1 [cYn +M(xn + Yn, Dn)]− cxN+1. (15)

This can be written as

N∑

n=1

αn−1 [c(xn + Yn)− cxn +M(xn + Yn, Dn)]− cxN+1. (16)

Using transition rule (14e) and collecting similar terms one obtains

N∑

n=1

αn−1 [c(1− α)(xn + Yn) +M(xn + Yn, Dn)] + consts. (17)

Thus, as before one can define the operating cost function, L(y, d) = c(1 − α)y +M(y, d), which

combines both ordering cost and inventory cost. Let’s redefine DP recursion to accommodate

inventory state variable x: VN+1(x, A) = 0, and for n = 1, ..., N :

Vn(x, A) = min
z≥0,θ≥0

{φ(θ) + EL[x + Y (z, ξn)] + αEVn+1(xn+1, An+1)} (18a)

s.t.

ξn = ξn(A, θ, B), Y (z, ξ) = min[z,K(ξ)], K(ξ) = k min (ξ, 1) , (18b)

An+1 = TA(A, θ,B), n = 1, ..., N, (18c)

xn+1 = xn + Y (z, ξn)−Dn, n = 1, ..., N. (18d)

As a corollary to Proposition 5 observe that for the last period, N , the optimal target supplier’s

asset level, SN , is decreasing in the inventory level, xN (assuming that xN < E[DN ]). Intuitively,

the more inventory the manufacturer has at the beginning of period N , the more demand it is

guaranteed to satisfy, and the less it relies on subsidies to assure the supply. Similar intuition

applies to other periods as well, however, a rigorous proof of this statement is challenging.

Because the introduction of inventory variable, x, in problem (18) interferes with the separation

of subsidy and ordering policies, deriving analytical properties of the optimization problem and the

solution (as we did in Section 3.5) is difficult. To glean insights into interactions of inventory

investments and subsidies we continue with a numerical study.

Example 3. Let’s consider a two-period newsvendor model where the supplier uses subsidies to

invest in its assets, with the following parameter values: period length ∆ = 1, drift of the supplier’s

asset process µ = 0, initial level of the supplier’s assets A(0) = 200, levels of the supplier’s liabilities

F = 500, demand every period is deterministic D = 100, and regular supplier’s capacity k = 110.

The underage cost is p = 15. The manufacturer’s cost of financial subsidies is φ(θ) = θ. The

discount factor is α = e−r∆, where r = 0.01. Initial inventory x1 = 0.
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Figure 5 demonstrates how inventory investments and subsidy decisions depend on the supplier’s

asset volatility, σ, and the overage cost, h. The shaded portion of the tables correspond to the cases

in which the manufacturer invests in inventory. As one would expect, an inventory investment is

more likely for lower values of the overage cost.
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Figure 5: Inventory investments and subsidies as functions of supplier’s asset volatility (σ) and
overage cost (h). Left panel: the optimal order quantity, z1; Right panel: the optimal target
supplier’s asset level, S1. Shaded portion corresponds to the cases in which the manufacturer
invests in inventory. Supplier’s asset volatility ranges from 0.25 to 0.5. The overage cost ranges
from 1 to 3.

An inventory investment is more likely as the supplier’s asset volatility increases. Intuitively, an

inventory investment is a safe way for the manufacturer to manage its costs in the second period.

In contrast, an investment in the supplier’s assets through subsidies, while improving the supplier’s

status in the first period, might not have significant consequences in the second period, because the

supplier’s assets fluctuate significantly. Thus, the greater the supplier’s asset volatility, the more

the manufacturer prefers using inventory as a risk-mitigation tool.

Finally, inventory and subsidies appear to be substitutes. From the right panel of Figure 5, when

the manufacturer stops using inventory as a risk-mitigation tool (e.g. as the overage cost increases),

the manufacturer raises the supplier’s optimal asset level.10 This concludes the example.

6 Proportional Random Yield

An assumption frequently used to describe supply uncertainty is that of a proportional random

yield. Using notation in this paper, with a proportional random yield the capacity available to the

manufacturer is Y (z, ξ) = y(ξ)z, where y is a random number between zero and one. Proportional

random yields are typically used to model uncertainties in a production process (e.g. in a semicon-

ductor industry), but one could also imagine that in case of a shortage the supplier might decide

to allocate available capacity proportionately to the size of the order, z11 (although as I will argue
10A comparison of the subsidy levels for the model in this section and the model in the previous sections will reflect

not only the flexibility to carry inventory, but also additional burden of backorders affecting costs in several periods.
Because these effects are difficult to separate, the comparison of the two models is omitted.

11I am grateful to the anonymous referee for offering this motivation.
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at the end of this section the supplier has better ways of rationing capacity). As we will see in

this section, in the proportional yield model the separation of the financial subsidy and capacity

ordering decisions does not hold. Intuitively, a manufacturer, which does not not provide significant

subsidy to the supplier, might still get the required number of parts by artificially inflating its order

quantity (similarly to the rationing game that leads to the bullwhip effect in Lee et al. 1997).

Using previously defined notation, I will assume that the proportional random yield, y, depends

on the supplier’s distance to bankruptcy at the end of the period, ξ, and define y(ξ) = min(ξ, 1).

Assumptions 1, 2, and 4 continue to hold. Optimization problem (3) becomes:

minE
N∑

n=1

αn−1
{

φ(θn) + L[Y (zn, ξn), Dn]
}

, (19a)

s.t.

zn ≥ 0, θn ≥ 0, ξn = ξn(An, θn, Bn) (19b)

Y (z, ξ) = y(ξ)z, (19c)

y(ξ) = min (ξ, 1) , (19d)

An+1 = TA(An, θn, Bn), n = 1, ..., N. (19e)

Unfortunately, as the previous work shows (e.g. Henig and Gerchak 1990) proportional random-

yield models do not possess convenient mathematical properties. For the optimization problem

(19), interperiod costs are not convex or even quasi-convex in decision variables z and θ. Thus,

analytical solution of this problem, particularly if the problem is dynamic, is difficult to obtain.

The following numerical example (and analysis) shows how capacity ordering decisions depend

on the supplier’s financial state in the model with the proportional random yield.

Example 4. Consider a single-period newsvendor model where the supplier uses subsidies to invest

in its assets. Assume that demand is deterministic and consider two cases: D = 100 and D = 500.

Other parameters are the same as in Example 2. Figure 6 shows the optimal capacity order and

target supplier’s asset level as functions of the supplier’s asset volatility, σ. Left panel corresponds

to demand D = 100 and right panel corresponds to demand D = 500. The left vertical axes

measure capacity orders. The right vertical axes measure target supplier’s asset levels.

For demand D = 100 case, it is optimal to keep the assets at the current level A = 50, but

inflate the order quantity. As the supplier’s asset volatility increases, similar to the observation in

Example 2, the optimal capacity order quantity decreases. Thus, as our intuition suggested, the

capacity orders depend on the state of the supplier’s assets.

For demand D = 500 case, observe that both the order quantity and the target supplier’s

asset level may change as the volatility of the supplier’s assets increases. Mathematical intuition
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Figure 6: Optimal capacity order and target supplier’s asset level as a function of volatility in the
model with proportional random yield. Left panel: demand is 100 units. Right panel: demand is
500 units.

regarding what might be happening is as follows. Consider the first order derivatives of the objective

function, J(z, θ) = φ(θ) + E[L(yz)], for the one-period model (19).

∂J(z, θ)
∂z

= E[L′(yz)y] (20a)

∂J(z, θ)
∂θ

= φ′(θ) + zE

[
L′(yz)

dy

dθ

]
(20b)

If ∂J(z,0)
∂θ < 0, the manufacturer would like to give subsidies to the supplier. The first term of

∂J(z,θ)
∂θ does not depend on z. Informally, the second term is larger, in absolute value, for larger

values of the multiplier z. At the optimum larger demand will correspond to larger values of

z and if E
[
L′(yz)dy

dθ

]
< 0 the second term will offset the first term φ′(θ) ≥ 1 leading to positive

optimal subsidies when demand D = 500. Also observe that the total quantity delivered, yz, can be

increased (stochastically) either by increasing capacity order quantity, z, or by higher subsidies, θ.

Thus, the two decisions are substitutable – greater subsidy corresponds to reduced order quantity.

This concludes the example.

Finally, I would like to argue that a rationing game based on the orders placed is not the

best approach for a supplier to allocate its sparse capacity. The supplier knows such rationing

game would lead to artificially inflated orders from the manufacturers and to the bullwhip effect.

Furthermore, the benefit to the supplier does not increase in the order size. The benefit to the

supplier is what we call subsidy from the manufacturer — the value the manufacturer shares with

the supplier beyond the supplier just breaking even. Thus, a supplier’s best customers are the ones

who pay the most, and if a supplier would like to reward its best customers it should allocate sparse

capacity not based on order sizes, but based on the subsidies. We already modeled such allocation

in the original model in this paper.
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7 Upfront Costs

In this section we will relax the zero upfront costs assumption and, instead, assume that upfront

costs are c0(z), where c′0(·) > 0 and c′′0(·) > 0. Assumptions 1,2, and 3 continue to hold. The DP

recursion is VN+1(A) = 0, and for n = 1, ..., N

Vn(A) = min
z≥0,θ≥0

{φ[c0(z) + θ] + EL[Y (z, ξn)] + αEVn+1[TA(A, θ,B)]} , (21)

where ξn = ξn(A, θ,B). As before, it will be convenient to define Jn(A, z, θ) = φ[c0(z) + θ] +

EL[Y (z, ξn)]+αEVn+1[TA(A, θ,B)]. Intuitively, with the addition of upfront costs the manufacturer

will order less than it would for problem (6). Let z0 be the optimal capacity order for the problem

without upfront costs and let’s continue assuming that regular capacity is large enough, that is

k > z0. According to Proposition 1, z0 satisfies L′(z) = 0.

Lemma 3. For any subsidy level, θ, and the initial supplier’s asset level, A, the minimizer z∗ =

arg minz≥0 Jn(A, z, θ) satisfies z∗ ≤ z0. If functions φ and c0 are strictly increasing, then z∗ < z0.

The takeaway from Lemma 3 is that one can restrict the range of order quantities to be z ≤ z0.

This restriction facilitates further analysis. For example, consider how the choice of the order

quantity, z, and the subsidy amount, θ, interact in problem (21). If function φ is strictly convex,

then in term φ[c0(z) + θ], order quantity, z, and subsidy, θ, are substitutes: to minimize costs we

trade off increasing z against increasing θ. On the other hand, in term EL[Y (z, ξ)], order quantity,

z, and subsidy, θ, are compliments: to minimize costs we prefer to increase both z and θ. To prove

the latter recall that Y (z, ξ) = min(z, kξ); ξ(A, θ, B) is increasing in θ; thus, to increase Y (z, ξ) we

need to increase z and θ; and for y < z0, L(y) is decreasing. In general, whether order quantity, z,

and subsidy, θ, are compliments or substitutes depends on which of the effects dominates.

Proposition 7. Restrict the order quantity space to z ∈ [0, z0] and consider problem (21). If φ is

linear, then ∂2

∂z∂θJn(A, z, θ) ≤ 0 for all A.

With restriction z ≤ z0 one can prove that for the asset-investment model, optimization prob-

lem (21) has convex structure. As was done for Proposition 2, define a new decision variable,

a = A+ θ — supplier’s asset level — and redefine transition and distance to bankruptcy functions:

TA(a, B) = aB, ξn = ξn(a,B) = a
Fn

B. The problem becomes:

Vn(A) = min
0≤z≤z0,A≤a

{φ[c0(z) + a−A] + EL[Y (z, ξn)] + αEVn+1(aB)} . (22)

For this model, Jn(A, z, a) = φ[c0(z) + a−A] + EL[Y (z, ξn)] + αEVn+1(aB).
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Proposition 8. Restrict the order quantity space to z ∈ [0, z0]. Assume functions φ and c0 are

strictly increasing and consider problem (22). For all n, functions Jn and Vn are convex. The

optimal order quantity, z∗n, and supplier’s asset level, a∗n, satisfy the following KKT conditions:

φ′[c0(z) + a−An]c′0(z) + Pr[z ≤ kξn]L′(z) = λn, (23a)

λnz = 0, λn ≥ 0, z ≥ 0, (23b)

φ′[c0(z) + a−An] + E

[
L′(kξn)k

∂ξn

∂a
1{z>kξn}

]
+ αE[V ′

n+1(aBn)Bn] = µn, (23c)

µn(a−An) = 0, µn ≥ 0, a ≥ An. (23d)

8 Conclusions, Limitations, and Extensions

Many manufacturing firms are facing supply risks due to the deteriorating financial health of their

suppliers. Motivated by real-life examples, this paper studies the use of subsidies (in every form)

as a way of controlling supply risk and answers a number of important questions: what is the

optimal joint capacity ordering and financial subsidy policy for a manufacturer? Must subsidy

and capacity ordering decisions be made jointly? How good are the recommendations from the

traditional procurement models, which ignore the benefits of controlling the supplier’s financial

state through subsidies?

An important contribution of this work is a set of assumptions under which (for an otherwise

very general model) the optimal ordering decisions do not depend on the subsidy decisions. Conse-

quently, if the managers believe that these assumptions describe their business situation accurately,

they can continue using the existing decision support systems for the procurement decisions — an

important managerial takeaway. A research takeaway is the approach for solving a complex, dy-

namic, random-yield problem. The problem considered in this paper is more difficult than a typical

random-yield model, because we not only decide on the optimal ordering policy, but also control

the dynamics of the supply disruptions distribution over time. Proving even the simplest proper-

ties for the optimization problem in this paper (even for a one-period problem), like convexity or

unimodality, is non-trivial. Therefore, the set of assumptions, that allows one to decompose the

problem and to derive the optimal policies is very useful.

The separation result does not mean that subsidies to the suppliers are irrelevant. On the

contrary, the value of the option to give subsidies could be very significant. I consider two examples

of the effects of subsidies on the supplier’s financial state. For the model where subsidies are used

to reduce the supplier’s liabilities, the manufacturer’s dynamic problem can be decomposed into

a sequence of one-period optimization problems, whose solutions I specify. For the model where

subsidies are used to increase the supplier’s assets, I prove that a “subsidize-up-to” policy is optimal

for the manufacturer. That is, every period, the manufacturer has a target level to which it should
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try to bring the supplier’s assets by offering financial subsidies. The paper presents conditions for

the manufacturer to share supply-chain profits with the supplier via subsidies. Traditionally, in

supply-chain models, a firm must have either market power or private information to receive its

part of the supply chain profit. This paper suggests that even when suppliers have no market power

and no private information, they can earn positive profits.

I derived a number of comparative statics results, which offer economic intuition for decision

making. For instance, the optimal subsidy amount and the subsidy target level increase in the ex-

pected final-product demand. Thus, when the manufacturer introduces new products (and demand

is expected to grow), it should support its suppliers. On the other hand, demand volatility for new

products could be high and I show that subsidies should decrease (when the overage costs are higher

than the underage cost). Which one of these effects will prevail depends on the parameter values.

The analysis shows that the optimal subsidies increase in the shortfall penalty and the sensitivity

of market price to the quantity. One can interpret shortfall penalty as the cost of losing customers

to a competitor. Similarly, the sensitivity of price to quantity may be an outcome of oligopolistic

competition. Thus, if there are relatively few firms in the market (again, this is true for products

at the early stages of their life-cycles; alternatively, this could apply to industries with high entry

costs, such as automotive or aerospace), subsidies to the suppliers should be higher than in markets

with many firms (e.g. mature markets).

A relationship between the supplier’s asset volatility and subsidies is non-monotone. As long

as the volatility is not too great (the paper provides a rigorous statement) an increase in the

volatility results in greater subsidies. However, if the volatility is already high, further increases

will result in lower subsidies. In practice, asset volatility tends to increase when a firm experiences

financial difficulties. The observation in this paper tells the managers to support suppliers that are

experiencing relatively small financial difficulties, but limit support to suppliers that are in deep

trouble.

The results of this paper are applied to analyze Ford’s decision to subsidize Visteon in 2005 (see

Appendix). The optimal policies implied by the model are close to the actual payments made by

Ford to Visteon.

I study the consequences of relaxing assumptions that lead to the separation of ordering and

subsidy decisions: independence between supply and demand shocks, no inventory, random capac-

ity, and zero upfront costs. The optimal order quantities increase in the correlation between supply

and demand shocks (because the manufacturer takes advantage of the higher demand and the cor-

responding higher effective supplier capacity). For the model with inventory and backorders, I find

that the manufacturer relies on inventory investments as a risk-mitigation tool when the volatility

of the supplier’s assets is high and uses subsidies when this volatility is low. For the model with
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proportional random yield, order quantities and subsidies are substitutes as the manufacturer can

assure supply either by generous payments to the supplier or by artificially inflating orders. Fi-

nally, the optimal order quantities in the model with upfront costs are lower than those in the main

model and whether order quantities and subsidies are substitutes or complements depends on the

convexity of the manufacturer’s cost function. The insights on the effect other problem parameters

are consistent with the results from the main model.

A number of generalizations would not change the main insights discussed in this paper. (i) If

the risk-free interest rate, r(t), follows a stochastic process (e.g., a Gaussian diffusion as in Briys and

de Varenne, 1997), the problem becomes computationally more complex, but the insights derived

from the current model do not change. (ii) One can also make the process for the supplier’s assets

(1) more general by introducing time-dependent parameters or jumps (as in Zhou, 1997). Two

complications arise if one uses a jump-diffusion process to describe the evolution of the supplier’s

assets. First, a question needs to be addressed whether the “jump” risk is priced by the markets.

Second, some of the proofs rely on variable B (shock to the supplier’s assets) being an absolutely

continuous random variable and would have to be modified to allow for jumps (which can be

done). (iii) One can add jumps in the supplier’s assets between periods (e.g. a random fraction

of the supplier’s assets is lost). (iv) Alternatively, one can assume that the supplier’s asset level

at the beginning of a period is an increasing concave function of the supplier’s assets at the end of

the previous period (this could reflect, for example, bankruptcy costs eroding the supplier’s asset

value). I believe that the results on separation of ordering decisions from subsidy decisions and

the structure of the optimal subsidy policy will continue to hold. (v) Finally, one can assume that

there are other random shocks affecting the supplier’s capacity, in addition to the shocks to the

supplier’s assets. Specifically, the effective supplier’s capacity (given by (5d)) can be defined as

K(ξ) = k min[ξC, 1] where C represents random shocks to the supplier’s capacity due to factors

independent of the asset-related shock B.

Several reasonable assumptions can be made regarding the effective capacity function, K. For

example, one could assume that production capacity drops to 0 in case of the supplier’s bankruptcy

(ξ < 1). Specifically, K(ξ) = k1{ξ≥1}, where k is the regular capacity level of the supplier. More

generally, one could assume that in case of a bankruptcy a random fraction, ν, of the production

capacity is lost. That is, K(ξ) = k
(
1− ν1{ξ<1}

)
, where ν is independent of shocks to the supplier’s

financial state, Bn. This model is similar to the random recovery models of corporate-debt defaults.

These alternative assumptions are less attractive in practice than the assumptions I employed

(because one needs to justify why the loss in the capacity is independent of the magnitude of the

drop in the financial health of the supplier). They also less convenient for mathematical analysis.

While they allow for the order decision z∗ to be independent of the subsidy decision, θ, they make
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function EL[Y (z∗, ξ)] non-convex in θ, which interferes with the proof of Proposition 2.

Although answers derived using the model in this paper are close to empirical observations,

one needs to be careful in applying these results directly, because several important considerations

were not accounted for. For example, I did not consider strategic benefits to the manufacturer from

offering subsidies to the suppliers. The manufacturer may own stock in the supplier firm and would

benefit if the value of that stock did not drop. In addition, as part of the payment arrangements,

the supplier may transfer some of its assets to the manufacturer, as was the case with Visteon. If

these side benefits are direct, that is their value can be priced, this value can be easily added to the

calculations of the optimal subsidy amounts. On the other hand, it is much more difficult to model

and price indirect costs of financial subsidies, such as agency costs. For example, it is difficult to

price the consequences of the supplier’s altering its behavior either by exerting less effort or by

investing in riskier projects in anticipation of a bailout from the manufacturer.

The effects of competition among suppliers and among manufacturers, supplier selection prob-

lems, the use of diversification, models of market entry and exit, dynamic games, are left, along

with agency problems, for future research.
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A Appendix. Technical Results.

A.1 Optimal Ordering Policy

Corollary 1 (Corollary to Proposition 1). For the linear-demand model (2b) with linear costs,

c(y) = cy, the optimal order quantity is

z =
E[D]− c/p

2g
. (24)

For the iso-elastic demand model (2c) with linear costs, c(y) = cy, the optimal order quantity is

z =
(

E[D](1− g)
c/p

) 1
g

. (25)

Proposition 9. For the newsvendor model (2a) with the deterministic demand, D, and linear

costs, c(y) = cy, the optimal order quantity satisfies z = D.

A.2 Optimal Subsidy Policy: Liabilities Reduction Model

In this section we will assume that ξn = ξn(Anθ, Bn) = qn(An, θ)Bn, where qn(A, θ) = A
Fn−α−1θ

and

that the ordering costs are c(y) = cy. N is the standard normal c.d.f.

Corollary 2 (Corollary to Proposition 3). For the newsvendor model (2a), for any asset level

A, the first order condition (10) becomes

φ′(θ) + k
∂qn(A, θ)

∂θ
E

[(
c + h1{kξn≥D} − p1{kξn<D}

)
1{z∗≥kξn}Bn

]
= 0. (26)

If the demand is a continuous random variable, then the first order condition can be written as

φ′(θ)− (p + h)k
∂qn(A, θ)

∂θ
E

[
Bn1{kξn≤D≤z∗}

]
= 0 (27)

or, equivalently,

φ′(θ)− k
∂qn(A, θ)

∂θ
eµ∆(p + h)

∫ z∗

0
N

[
d

(
x

kqn(A, θ)

)]
fD(x) dx = 0, (28)

d(x) =
ln (x)−

(
µ + σ2

2

)
∆

σ
√

∆
. (29)

Corollary 3 (Corollary to Proposition 3). For the linear demand model (2b), the first order

condition (10) becomes

φ′(θ) + k
∂qn(A, θ)

∂θ
E

{
Bn[c− pED + 2pgkξn]1{kξn≤z∗}

}
= 0 (30)
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or, equivalently,

φ′(θ) + k
∂qn(A, θ)

∂θ

{
(c− pED)eµ∆N

[
d

(
z∗

kqn(A, θ)

)]
+

2pgkqn(A, θ)e(2µ+σ2)∆N
[
d

(
z∗

kqn(A, θ)

)
− σ

√
∆

]}
= 0,

(31)

where function d is defined in (29).

Corollary 4 (Corollary to Proposition 3). For the iso-elastic demand model (2c), the first

order condition (10) becomes

φ′(θ) + k
∂qn(A, θ)

∂θ
E

{
B[c− pED(1− g)(kξn)−g]1{kξn≤z∗}

}
= 0 (32)

or, equivalently,

φ′(θ) + k
∂qn(A, θ)

∂θ

{
ceµ∆N

[
d

(
z∗

kqn(A, θ)

)]
−

pED(1− g)(kqn(A, θ))−ge
(1−g)

(
µ− gσ2

2

)
∆N

[
d

(
z∗

kqn(A, θ)

)
+ gσ

√
∆

]}
= 0,

(33)

where function d is defined in (29).

Using numerical algorithms for finding equation roots, one can quickly compute the optimal

subsidy amounts from expressions (28), (31), and (33).

For the newsvendor model with deterministic demand, the expressions for the optimal subsidy

amounts and the corresponding interperiod cost are even simpler, as presented in the following:

Proposition 10. Suppose that the demand, Dn, for every period n = 1, ..., N is deterministic, and

operating costs are from the newsvendor model. Then the optimal order quantity, z∗n = Dn. If φ′(·)
q′(A,·)

is increasing, the manufacturer’s problem (8) is quasi-convex and the optimal subsidy amount, θ∗,

is the maximum of zero and the solution of the following equation

pk
∂qn(A, θ)

∂θ
E[Bn1{kξn≤Dn}] = φ′(θ) (34)

or, equivalently,

pk
∂qn(A, θ)

∂θ
eµ∆N

[
d

(
Dn

kqn(A, θ)

)]
= φ′(θ), (35)

where function d is defined in (29). The optimal interperiod cost is

φ(θ∗) + pE [Dn − kqn(A, θ∗)B]+ =

= φ(θ∗) + p

{
DnN

[
d

(
Dn

kqn(A, θ∗)

)
+ σ

√
∆

]
− eµ∆kqn (A, θ∗)N

[
d

(
Dn

kqn(A, θ∗)

)]}
.

(36)

For the newsvendor model with deterministic demand, because the optimal capacity order is

z∗ = Dn parameter h does not affect the solution.
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B Appendix. Proofs.

Proof of Proposition 1.

For any θ, n, and A,

∂Jn(A, z, θ)
∂z

=
∂

∂z
EL[min(z,K)] = E

[
L′(z)1{z≤K}

]
= L′(z)E

[
1{z≤K}

]
. (37)

When z > k, E
[
1{z≤K}

]
= 0 and, therefore, ∂Jn(A,z,θ)

∂z = 0. For z ≤ k, E
[
1{z≤K}

]
is decreasing in

z and because 1 − FB(z) > 0 for all z ≥ 0, E
[
1{z≤K}

]
= E

[
1{z≤kξ}

]
> 0. Let ẑ be the solution

of L′(z) = 0. If ẑ ≥ k, because function L is convex, for all z < k, ∂Jn(A,z,θ)
∂z < 0. Therefore, the

optimal order quantity is z∗ = k. If ẑ < k, compute the second derivative of Jn with respect to z

obtaining

∂2Jn(A, z, θ)
∂z2

∣∣∣∣
z=ẑ

= L′′(ẑ)E
[
1{ẑ≤K}

]
> 0. (38)

Therefore, function Jn(A, ·, θ) is unimodal, with the lowest value at z∗ = ẑ. ¥

Proof of Lemma 1.

In the following I will omit subindex n. Using Y (z, ξ) = min(z,K(ξ)), K(ξ) = kξ, and ξ =

ξ(A, θ, B), the first derivative of function ψ is

ψ′(θ) = E

[
L′(kξ)k

∂ξ

∂θ
1{kξ<z∗}

]
. (39)

Because function L is convex with the minimum at z∗, for any x < z∗, L′(x) ≤ 0. Therefore, if ξ

is increasing in θ, then ψ′(θ) ≤ 0. The second derivative of function ψ is

ψ′′(θ) = E

{
L′′(kξ)

(
k

∂ξ

∂θ

)2

1{kξ<z∗}

}
+

E

{
L′(kξ)k

∂2ξ

∂θ2
1{kξ<z∗}

}
+ E

{
L′(kξ)k

∂ξ

∂θ

[
−∂ξ−1

B (A, θ, z/k)
∂θ

]
δ{kξ=z∗}

}
,

(40)

where δ is the Dirac’s delta function and ξ−1
B (A, θ, ·) is the inverse of function ξ(A, θ, ·), which is

assumed to be increasing. Because function L is convex, the first term in the above expression is

positive. If ξ(A, ·, b) is concave for all A and b, the second term in the above expression is positive

as well. The third term is equal to zero, because L(z∗) = 0. Therefore, ψ′′(θ) ≥ 0. ¥

Proof of Proposition 2.

The proof follows the standard inductive approach. First, observe that VN+1(A) = 0 is convex.

Then, assume that Vn+1 is convex. Consequently, EVn+1(aB) is convex in a. From Lemma 1,

ψn(a) = EL[Y (z∗, ξn)] is convex in a. By assumption, φ is convex. Therefore, Hn(A, ·) is convex
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for all A. It follows that there exists a unique target level, Sn, to which one would like to bring

the supplier’s assets, if possible. This target level, in general, depends on the current level of the

supplier’s assets, A, due to the term φ(a−A).

Because variables A and a appear together only in the term φ(a − A), function Hn is jointly

convex in (A, a). From Proposition B-4 in Heyman and Sobel (2004), it follows that function Vn is

convex. This concludes the inductive step. ¥

Proof of Proposition 3.

Consider ξn(A, θ,B) = qn(A, θ)Xn(Bn). For any period n, the first derivative of the objective

function with respect to θ is (I omit subindex n)

φ′(θ) + k
q(A, θ)

∂θ
E

{
X(B)L′[kξ(A, θ, B)]1{kξ(A,θ,B)≤z∗}

}
. (41)

The first order condition is

−kE
{
X(B)L′[kξ(A, θ,B)]1{kξ(A,θ,B)≤z∗}

}
= φ′(θ)/

(
∂q(A, θ)

∂θ

)
. (42)

Left-hand side of this equation decreases in θ, because L is convex, X(B) > 0, and q(A, ·) is

increasing. Therefore, to guarantee the uniqueness of the solution of the first order condition, it is

sufficient that φ′(·)
q′(A,·) be increasing. The proof for ξn(A, θ,B) = qn(A, θ) + Xn(Bn) is similar. ¥

Proof of Proposition 4.

Part (i). Using definition (9) observe that ∂2Hn(A,a)
∂A∂a = ∂2φ(a−A)

∂A∂a < 0. Therefore, Sn, which mini-

mizes convex function Hn(A, ·) increases in A. So does a∗n = max(Sn, A).

Part (ii). By induction, suppose that Vk(·) is decreasing for all k > n. Let A1 ≤ A2. Consider

Vn(A) =

{
Hn(A,Sn) if A < Sn,

Hn(A,A) otherwise,
(43)

where function Hn is defined in (9). If Sn(A1) ≤ A1 and Sn(A2) ≤ A2 (note that, from Proposi-

tion 4, Sn(A1) ≤ Sn(A2)), from the induction assumption and Lemma 1, it follows that Vn(A1) =

Hn(A1, A1) > Hn(A2, A2) = Vn(A2).

If A1 ≤ Sn(A1) and A2 ≤ Sn(A2), then Vn(A1) = Hn(A1, Sn(A1)) ≥ Hn(A2, Sn(A1)) ≥
Hn(A2, Sn(A2)) = Vn(A2).

If Sn(A1) ≤ A1 and A2 ≤ Sn(A2), then Vn(A1) = Hn(A1, A1) ≥ Hn(A2, A2) ≥ Hn(A2, Sn(A2)) =

Vn(A2).

If A1 ≤ Sn(A1) and Sn(A2) ≤ A2, then Vn(A1) = Hn(A1, Sn(A1)) ≥ Hn(A2, Sn(A1)) ≥
Hn(A2, A2) = Vn(A2). ¥
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Proof of Lemma 2.

Let’s rewrite DP recursion equation (9), accounting explicitly for the effect of parameter π:

Vn(A;π) = min
a≥A

{φ(a−A) + EL[min(z∗(π), kξn);π] + αEVn+1(aB; π)} . (44)

Define Hn(A, a; π) = φ(a−A)+EL[min(z∗(π), kξn);π]+αEVn+1(aB; π). By induction, Vn+1(A; π)

is submodular. Then

∂

∂a
Hn(A, a; π) = φ′(a−A) + E

[
∂

∂y
L(kξn; π)1{kξn≤z∗(π)}k

∂ξn

∂a

]
+ αE

[
B

∂

∂A
Vn+1(aB;π)

]
.

∂2

∂a∂π
Hn(A, a; π) = E

[
∂2

∂y∂π
L(kξn; π)1{kξn≤z∗(π)}

∂ξn

∂a

]

︸ ︷︷ ︸
≤0

+

E

[
∂

∂y
L(kξn; π)δ{kξn=z∗(π)}

d

dπ
z∗(π)

∂ξn

∂a

]

︸ ︷︷ ︸
=0

+αE

[
B

∂2

∂A∂π
Vn+1(aB; π)

]

︸ ︷︷ ︸
≤0

≤ 0.

Therefore, the optimal subsidize-up-to supplier’s asset level, Sn, increases in π.

In addition, observe that ∂2

∂A∂πHn(A, a;π) = 0 and ∂2

∂A∂πHn(A, a; π) = −φ′′(a−A) ≤ 0. Because

a ≥ A is a lattice, it follows from Theorem 8-3 in Heyman and Sobel (2004) that Vn(A;π) is

submodular and the induction step is complete. ¥

Proof of Proposition 5.

For the newsvendor model (2a), ∂2

∂y∂pL ≤ 0, ∂2

∂y∂(−h)L ≤ 0, and, for normal demand, ∂2

∂y∂µD
L ≤ 0.

Therefore, from Lemma (2), it follows that Sn is increasing in p, decreasing in h, and, for normal

demand, increasing in µD. Proofs of statements for the linear and iso-elastic demand models are

similar.

A slightly more involved analysis is needed to prove that Sn decreases in σD. Observe that for

the newsvendor model with normal demand, L(y; σD) = cy+E[h(y−µD−σDε)++p(µD+σDε−y)+],

where ε is the standard normal random variable. Function L( · ;σD) need to be defined only for

y ≤ z∗, because it will have an input of min(z∗, kξ). Because p−c
p+h ≤ 1

2 , z∗ = µD +σDN−1
(

p−c
p+h

)
≤

µD. Therefore,
∂2

∂y∂σD
L(y; σD) = −(h + p) · n

(
y − µD

σD

)
· y − µD

σ2
D

≥ 0. (45)

In the expression above, n is the standard normal p.d.f. ¥

Proof of Proposition 6.

Rewrite equation (28) as follows:
∫ z∗

0
N

[
d

(
x

kq(A, θ)

)]
fD(x) dx =

φ′(θ)
kq′θ(A, θ)eµ∆(p + h)

. (46)
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Recognizing that θ, which satisfies this equation, is a function of σ, take the derivative of both sides

of this equation with respect to σ.

∫ z∗

0
n

[
d

(
x

kq(A, θ)

)] [(
µ− σ2

2

)
∆− ln

(
x

kq(A,θ)

)]
kq(A, θ)− σkq′θ(A, θ)θ′

kq(A, θ)σ2
√

∆
fD(x) dx =

∂

∂θ

(
φ′(θ)

kq′θ(A, θ)eµ∆(p + h)

)
θ′,

(47)

where n is the p.d.f. of the standard normal random variable. Combining together terms with θ′,

we obtain

∫ z∗

0
n

[
d

(
x

kq(A, θ)

)] [(
µ− σ2

2

)
∆− ln

(
x

kq(A,θ)

)]

σ2
√

∆
fD(x) dx =

[∫ z∗

0
n

[
d

(
x

kq(A, θ)

)]
kq′θ(A, θ)

kq(A, θ)σ
√

∆
fD(x) dx +

∂

∂θ

(
φ′(θ)

kq′θ(A, θ)eµ∆(p + h)

)]
θ′.

(48)

Because q and φ′(·)
q′(A,·) are increasing in θ, the coefficient in front of θ′ on the right hand side of

the equation above is positive. The expression on the left hand side is positive if
(
µ− σ2

2

)
∆ ≥

ln
(

z∗
kq(A,0)

)
, because ξ ≤ z∗ and q is increasing in θ. ¥

Proof of Lemma 3.

Derivative of Jn with respect to z is

∂Jn(A, z, θ)
∂z

= φ′(c0(z) + θ)c′0(z) + L′(z) Pr[z ≤ kξ] (49)

Because φ and c0 are increasing, and L′(z) > 0 for any z > z0, it follows that ∂Jn(A,z,θ)
∂z > 0 for any

z ≥ z0. ¥

Proof of Proposition 8.

Observe that VN+1(A) = 0 is convex. By induction, suppose Vn+1 is convex. Then EVn+1(aBn) is

convex in (A, z, a).

Observe that min(z, kξn) is concave in z and a. Function L is convex and for y < z0, L(y)

is decreasing. Therefore, EL(min(z, kξn)) is convex in z and a. It follows that Jn(A, z, a) =

φ[a−A+ c0(z)]+EL(min(z, kξn))+αEVn+1(aBn) is convex in (A, z, a). Set a ≥ A and 0 ≤ z ≤ z0

is convex. Therefore, by Proposition B-4 in Heyman and Sobel (2004), it follows that function

Vn(A) is convex. This concludes the inductive step.

From Lemma 3 we know that z∗ < z0 for all a. Therefore one needs to be concerned only with

boundaries z = 0 and a = A. KKT conditions (23) follow. ¥
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C Appendix. Ford vs. Visteon

To illustrate how models, discussed in this paper, can be applied in a realistic setting, in this section

I study Ford’s decision to give subsidy to Visteon in 2005. As was discussed in the introduction,

Visteon Corporation considered filing for bankruptcy in May 2005. However, the bankruptcy was

averted on May 24th after Ford Motor Company, which is Visteon’s largest customer, promised to

pay Visteon between $1.6 and $1.8 billion dollars and take over 24 of Visteon’s plants, inventory of

parts, and 17,400 workers (see White, 2005). Not all of this money was to be paid at once. Ford

paid $300 million for inventory immediately and lent Visteon $250 million to meet its short-term

debt payments. The rest of the money was to be paid from an escrow account over time, while

Visteon undergoes restructuring, at approximately $500 million per year.

To apply our models, we need to estimate the customer demand, the operating cost function,

L, and subsidy costs, φ, for Ford. We also need to calibrate the stochastic process for Visteon’s

assets as well as Visteon’s production capacity.

Let’s begin with Ford’s operating cost function. Assume that a duration of the decision period

∆ = 1 year. Competition in the automotive industry is intense. Therefore, it is reasonable to

assume that Ford is a price-taker, rather than a price-setter and use a newsvendor model (2a) for

the Ford’s operational cash flows. According to Wikipedia, Ford manufactured 6,418,000 cars in

2005. We have no other information about the demand distribution. For simplicity, let’s assume

that the demand for Ford for one year is deterministic and equal to D = 6.4 million cars. Based

on the income statement for Ford for 2005, the gross profit (= revenues − costs of goods sold) was

approximately $5,000 per car. The shortage penalty, p̂, which reflects goodwill losses, expediting

and outsourcing costs in case the supply does not meet the demand, is difficult for us, Ford outsiders,

to estimate (Ford managers may have some beliefs about it). Let’s assume that a shortage penalty

offsets tax charged on gross profit and p = $5, 000. Holding cost does not play a role in the

deterministic demand model.

Next let’s turn to estimating Visteon’s parameters. In the middle of May 2005, when Ford

executives were contemplating a subsidy to Visteon, 12-month LIBOR rates were quoted at 3.74%.

I will use 3.7% (continuously compounded) as both the risk-free rate, r, and the drift, µ, of the

supplier’s asset process. To compute A and σ I use an approach proposed in Bharath and Shumway

(2004). Specifically,

D = F, A = E + D, σD = 0.05 + 0.25σE , σ =
E

E + D
σE +

D

E + D
σD. (50)

From the 2004 annual report, the face value of Visteon’s current liabilities (due within a year), as of

December 31, 2004, was F = $3.84 billion (Ford executives must have had a more precise estimate

of Visteon’s liabilities in May 2005). The stock prices for Visteon in the middle of May were between
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$3.50 and $5 per share. As of December 31, 2004, there were 125 millon shares outstanding. This

translates, approximately, to $0.5 billion of total equity value. The implied volatility of Visteon’s

equity is σE = 55% (based on option prices in January 16, 2007). Thus,

D = F = $3.84 billion, A = $4.34 billion, (51a)

σD = 0.05 + 0.25σE = 0.05 + 0.25× 0.55 ≈ 0.19, (51b)

σ =
E

E + D
σE +

D

E + D
σD =

0.5
4.34

0.55 +
3.84
4.34

0.19 ≈ 0.23. (51c)

The regular capacity level k = D (that is, unless Visteon is bankrupt, it should be able to meet

Ford’s deterministic demand).

Example 5. First, consider the model where a subsidy from Ford is used by Visteon to reduce

its liabilities. I will model the cost of subsidies to Ford as φ(θ) = A
F−θ − A

F , where F = F = 3.84

billion and A = F2.

Using these numbers we compute that, according to our model, the optimal subsidy from Ford

to Visteon in 2005 should be θ∗ = $393 million. This number is well below the total subsidy of

$1.6 – $1.8 billion that Ford promisted Visteon. There are several reasons for this discrepancy.

First, one can only guess the magnitude of the shortage penalty or Visteon’s asset volatility

(as well as other parameters) in our model. When making the decision to bail out Visteon, Ford

managers had a much better idea how much the shortage would cost the company. Also, I computed

implied volatility based on 2007 data. It could have been different in 2005. Figure 7 illustrates

sensitivity of the optimal subsidy to the shortage penalty, p, and supplier’s asset volatility, σ.

Figure 8 illustrates the sensitivity of the optimal subsidy to the initial level of the supplier’s assets,

A(0), and the supplier’s liabilities, F . When drawing the graph for the sensitivity to the supplier’s

liabilities, I assumed that A(0) = F + $0.5 billion. Futhermore, one can only guess the functional

form of the operating costs. Fortunately, the majority of the results in this paper are true for any

convex function L, representing the operating costs. Therefore, one could easily recompute the

optimal subsidy if a more realistic operating cost function were available.

Second, the amount $1.6 – $1.8 billion is paid over a number of years, and I computed the

optimal subsidy amount for the first year only. The optimal subsidy of $393 million from our

model is comparable with payments made by Ford to Visteon in 2005 only. Subsidy amounts for

subsequent years will be computed in our model based on supplier’s asset levels An at the beginning

of each year.

Third, the only benefit to the manufacturer in our model from subsidizing its supplier is a more

financially stable supplier. In real life, in addition to improving Visteon’s financial condition, Ford

received some inventory, 24 plants, and other assets in return for the subsidy, which would inflate

the subsidy amount Ford is willing the give. This concludes the example.
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Figure 7: Sensitivity of the optimal subsidy, θ∗, to shortage penalty p and supplier’s asset volatility
σ (see Ford vs. Visteon example for the numerical values of other model parameters)
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Figure 8: Sensitivity of the optimal subsidy, θ∗, to the initial level of the supplier’s assets A(0) and
the supplier’s liabilities F . For the figure of sensitivity to the supplier’s liabilities it was assumed
that A(0) = F +$0.5 billion (see Ford vs. Visteon example for the numerical values of other model
parameters)

Example 6. Next, let’s consider a model where the supplier’s assets are increased by the manu-

facturer’s subsidies. Let the subsidy cost be φ(θ) = θ.

Model (9) has several desirable numerical properties. First, the expected operating costs

EL[Y (z∗, ξ)] depend only on the action a and can be pre-computed. Second, the value func-

tion depends on action, a, only, which speeds up the computations of the expected future value.

Third, with the linear assumption on the subsidy function φ, the optimization problem every period

does not depend on the state, A, of the problem (according to Proposition 2). In particular, the

target asset levels, Sn, do not depend on the state, A. Fourth, when solving optimization problem

each period, one can expedite the search for the optimal action using monotonicity results from

Proposition 4.

Suppose that the length of the planning horizon for Ford is 5 years. Figure 9 presents target asset

levels, Sn, for Visteon’s assets for n = 1, ..., 5 and for different values of supplier’s asset volatility,
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σ. Figure 9 shows that the target supplier’s asset levels decrease as the manufacturer approaches
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Figure 9: Target supplier’s asset levels, Sn, as
function of volatility of the supplier’s assets, σ
and year, n (see Ford vs. Visteon example for
the numerical values of other model parameters)

the end of the five-year planning horizon. As we have seen already in the one-period model, higher

volatility may result in higher subsidies. The middle curve in the figure, corresponding to σ = 0.23

is the base-case for the model where the supplier uses subsidies to reduce current liabilities. For

this base-case model, the subsidy amounts, computed as the difference between target levels S1

and the initial supplier’s assets, A(0), is approximately $1.2 billion. The larger subsidy amount,

compared with the number from the previous example, is due to the assumption that Ford’s cost

of paying financial subsidies is linear, φ(θ) = θ. This concludes the example.
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